
Maass, ê1"."n eg7-322)

On the Relationship between the Complexit¡ the Degree,
and the Extension of a Computable Set

Wolfgang Maass*
Dept. of Math,, Stat., and Comp. Sci
University of Illinois at Chicago
Chicago, IL. 60680

Theodore A. Slaman'
Dept. of Mathematics
University of Chicago
Chicago, IL. 60637

ABSTRACT

We consider the equivalence relation A :c B ("A and B have the same time
complexity") <+ (foralltimeconstructible f : A e DTIME(f) ë B e DTIME(/)). I"
this paper we give a survey of the known relationships between this equivalence relation
and degree theoretic and extensional properties of sets. Furthermore we illustrate the
proof techniques that have been used for this analysis, with emphasis on those arguments
that are of interest from the point of view of recursion theory. Finally we will discuss
in the last section some open problems and directions for further research on this topic.

1. Introduction.

In the subsequent analysis of the fine structure of time complexity classes rve con-

sider the following set of time bounds:

' 7,: {-f ,N--+N l/(") > nand f is time constructibleon a RAM}.

/ is called time constructible on a RAM if some RAM can compute the function 1' ¡+
1f(n) ¡tr O(f (")) steps. We do not allow arbitrary recursive functions as time bounds in
our approach in order to avoid pathological phenomena (".g. gtp theorems [HU], [6]).
In this way \Me can focus on those aspects of complexity classes that are relevant for

concrete complexity (note that all functions that are actually used as time bounds in

the analysis of algorithms a¡e time constructible).
We use the random access machine (RAM) with uniform cost criterion as machine

model (see [3], [1], [15], [19]) because this is the most frequently considered model in

+Written under partial support by NSF-Grani CCR 8903398. Part of this research was

carried out during a visit of the first author at the University. The first author would
like to tha¡rk the Department of Computer Science at the University of Chicago for its
hospitality.
**\Mritten under partial support by Presidential Young Investigaton Award DMS-8451748
and NSF-Grant DMS-8601856.

298 Maass, Slaman e97-322)

algorithm design, and because a RAM allows more sophisticated diagonalization - con-

structions than a T\rring machine. It does not matter for the following which of the
common versions of the RAM-model with instructions for ADDITION and SUBTRAC-
TION of integers is chosen (note that it is common to exclude MULTIPLICATION of
integers from the instruction set in order to ensure that the computation time of the
RAM is polynomially related to time on a T\rring machine). In order to be specific we

consider the RAM model as it was defined by Cook a¡¡d Reckhow [3] (we use the common

"uniform cost criterior'o[1], i.e. I(n): 1 in the notation of [3]). This model consists of
a finite program, an infinite array Xe, Xr, . . . of registers (each capable of holding an

arbitrary integer), and separate one-way input- and output-tapes. The program con-

sists of instructions for ADDITION and SUBTRACTION of two register contents, the
conditional jump "TRA m if. X;) 0" which causes control to be transferred to line rn of
the program if the current content of register X¡ is positive, instructions for the transfer
of register contents with indirect addressing, instructions for storing a constant, and the

instruction "READ X;" (transfer the content of the next input cell on the input-tape
to register X¡) and *PRINT X¡|' (print the content of register X; on the next cell of
the output-tape).

The computation time of a RAM for input ø is the number of instructions that it
executes for this input. One says that a RAM is of time complexity / if for every n € N
and every r e {0,1}" its computation time for input ø is < /(n). The relalionship
between computation time on RAM's and Turing machines is discussed in [3] (Theorem

2), [1] (seciion 1.7), and [19] (chapter 3). It is obvious that a multi-tape T\rring machine

of time complexity ú(n) can be simulated by a RAM of time complexity O(t(n)). With
a little bit more work (see [fO]) one can construct a simulating RAM of time complexity

O(" + (t(")llost(n.))) (assuming that the output has length O(n * (t(")llogt(n)))).
'We define

DrrME(.f) ,:
{, . ro,,r. | äö;îå:j#;iJJî

comnrexitr

}
For á and B contained in {0,1}* (the set of all finite binary sequences) we define

A 1c B :e V/ e T(B e DTIME(Í) + A e DTIMEU))

and

A :c B :<+ V/ e T(A e DTIM E(f) ë B e DTIM E(f)).

Intuitivel¡ A:c B if á and B have the same deterministic time complexity. The

-c'-equivalence classes are called complexity types. We write 0 fot DTIME(n), which

is the smallest complexity type. Note that for every complexity type C and every f e f
one has either C ç DTIM E(f) or C n DTIM E(Í) : Ø.

Maass, Slaman e97-322) 299

Remark. Geske, Huynh a¡¡d Selman [5] have considered the related partial order "the
complexity of -4 is polynomially related to the complexity of. 8", and the associated

equivalence classes ("polynomial complexity degrees"). Our results for complexity types

(e.g. Theorems 5 and 6 below) provide corresponding results also for polynomial com-

plexity degrees.

In order to prove results about the structure of complexity types one needs a tech-

nique to construct a set within a given time complexity while simulta¡reously controlling

its other properties. It is less difficult to ensure that a constructed set is of complexity

type C if one can associate with C an "optimal" time bound Íc e T such that for all

setsX€C

{r e r I x e DTIMEU)} : {"f e T I I :o(/c)}'

In this case, 1ve call C a principal complexity type. Blum's speed-up theorem [2] as-

serts that there are complexity types that are not principal. For example, there is a
complexity type C such that for every X eC,

$ e r I x e DnIME(Í)j: {t . r l1i eN (ir"l : " (#)) }
Note that this effect occurs even if one is only interested in time constructible time

bounds (and sets X of "low" complexity).
In order to prove our results also for complexity types which are non-principal,

we show that in some sense the situation of Blum's speed- up theorem (where we

can characterize the functions / with X e DTIME(/) with ihe help of a "cofinal"
sequence of functions) is already the worst that can happen (unfortunately this is not

quite true, since we cannot always get a cofrnal sequence of functions fi with the same

nice properties as in Blum's speed-up theorem). More precisely: we will show that each

complexity type can be characterized by a cofinal sequence of time bounds with the

following properties.

Deffnition. (ú¡)oe¡t Ç N is called a charøcteristic sequence if f : i ¡-+ ú¡ is recursive and

(1) Vi € N({¿ii € ? and program ú¡ is a witness for the time-constructibility of {ú¡});
(2) Vó,n e N({ú;..,.1X") < {¿rX??)).

Deffnition. Assume that .4 g {0, 1}- is an arbitrary set and C is an arbitrary com-

plexity type. One says that (ú¡);eN is charo,cteristic for,4. if (f¡)¡ç¡ is a characteristic

sequence and

vr erØ e DTIME(/) <+ li e N(/(n)) : o({t¡}(n)))).

One says that (ú¿)¡ç¡ is characteristic for C if (¿r)i€N is characteristic for some,4. € C

(or equivalently: for all A e C).

300 Maass, Slaman e97-322)

Remark. The idea of characterizing the complexity of a recursive set by a sequence of

"cofinal" complexity bounds is rather old (see e.g. [17], [10], [LY], [20], [MW]). However

none of our predecessors exactly cha¡acterized the time complexity of a recursive set in
terms of a uniform cofinal sequence of time constructible time bounds. This is the form

of characterization which we employ in later proofs. [10] and [MW] give corresponding

results for space complexity of Turing-machines. Their results exploit the linear speed-

up theorem for space complexity on Turing-machines, which is not available for time

complexity on RAM's. Time complexity on RAM's has been considered in [20], but only

sufficient conditions are given for the cofinal sequence of time bounds (these conditions

are stronger than ours). The more general results on complexity sequences in axiomatic

complexity theory ([17], [20]) involve "overhead functions", or deal with nonuniform

sequences, which makes the specialization to the notions considered here impossible.

Because of the lack of a fine time hierarchy theorem for multi-tape Turing-machines,

it is an open problem whether one can give a similar characterization for the Turing

machine time complexity of a recursive set.

The relationship between complexity types and characteristic sequences is clarified

in Sçction 2 of this paper. Theorem 1 states that one can associate with every complexity

type C of recursive sets a sequence (ú;)¡6¡ that is characteristic for C. This fact will
be used in most of the subsequent results. We show in Theorem 2 that the converse of
Theorem 1 is also true: for every characteristic sequence (úr)re¡ there exists a complexity

type C such that (ún)oe* is characteristic for C. We give a complete proof of Theorem 2,

since this proof provides the simplest example of the new finite injury priority argument

that occurs as sub-strategy in the proofs of most of our subsequent results.

As an immediate consequence of the proofs of these results we show in Theorem

3 ihat every complexity type contains a sparse set. As another consequence we get in
Theorem 4 that the complexity types of computable sets form a lattice under the partial
order (6.

In Section 3 we show that with the help of these tools one is able to prove sharper

versions of various familiar results about polynomial time degrees. It is shown in Theo-

rem 5 that every complexity type outside of P contains sets of incomparable polynomial

time Turing degree. In Theorem 6 we construct a complexity type that contains a mini-

mal pair of polynomial time Turing degrees. A comparison of the proofs of these results

with the proofs of the related results by Ladner [7] and Landweber, Lipton, Robertson

[8] shows ihat the sharper versions which are considered here pose a more serious chal-

lenge to our construction techniques (we apply finite injury priority arguments and a

constructive version of Cohen forcing).
In Section 4 we use the concepts and techniques that are introduced in this paper

for an investigation of the fine structure of P. \Me show in Theorem 7 that in P each

complexity type C f 0 contains a rich structure of linear time degrees, and we show

Maass, Slaman e97-322) 301

in Theorem 8 that these degree structures are not all isomorphic (in particular we

characterize those C that have a maximal linear time degree). The proofs of these two
theorems provide evidence that finite injury priority arguments are not only relevant

for the investigation of sets "higher up", but also for the analysis of the finite structure

of P.
In Section 5 we study the partial order of sets in a given complexity type under

inclusion (modulo finite sets). We show that this partial order is dense, and we prove a

splitting theorem for arbitrary sets in any given complexity type.

Finall¡ in Section 6 we will discuss some open problems.

The main results of this paper have previously been reported in the extended ab-

stracts [12], [13].

2. The Relationship between Complexity Types and Characteristic Se-

quences.

Theorem 1. ("inverse of the speed-up-theorem for time on RAM's"). For eaery re-

cursiae set A there erists a sequence (úu)ne* that is characteristic for A.

We refer io [14] for a proof of this result (the technique of this proof is not needed

for the proofs of the subsequent results.)

In the proof of Theore.m 8 we will need the following stronger version of Theorem

1.

Corollary 1. For every recursive set,4 there exist recursive sequences (f¡);eN, ("¿)¡e*,
(d¡)¿eN, (t¡)¿eN such that

(t¡);eN is characteristic for A

{¿¡X") converges in (c¿.{¿¿}(") steps for all i,n € N

{"¡}:*.4 and {r¿}(r) converges in (d¡'{¿¡Xlrl) steps, for all i e N, r € {0,1}..
n

Theorem 2. ("refinement of the speed-up-theorem for time on RAM's"). For eaery

characteristic sequence (f,)n.* there is a set A such that (ú;);.N is characteristic for A.

PRoor: Fix an arbitrary characteristic sequence (út)¡e¡t, and a sequence (K¿);eN of
numbers such that {¿¿}(") converges in (K¿'{¿¿X") steps, for all i,n € N.

The claim of the theorem does not follow from any of the customary versions of
Blum's speed-up-theorem [2], because it need not be the case that {¿r}: o({¿;-r}). In
fact it may occur that {f¡} : {Í;-r} for many (or even for all) i e N. Even worse, one

may have that .I(;.{¿¿}(")) K;-t.|t¿-t}(n) for many i,n € N (this may occur for
example in the characteristic sequences that arise from the construction of Theorem 1

if i does not encode a "faster" algorithms (i)e of time complexitv {(i)rXn) < {¿¡-tX");
in this case one may have that{ú¡}(n) : {t¡-r }(n) and the computation of {t;}(n) takes

302 Maass, Slaman e97-322)

longer than the computation of {ú;-1}(n) because the former involves simulations of both

{¿¡-r X") and {(i)1}(n)). Therefore it is more difficult than in Blum's speed-up-theorem

to ensure in the following proof that the constructed set á satisfies A e DT I M ¿({¿; })
for every i e N. To achieve A e DTIME({¿;}) it is no longer enough to halt for all
j > i the attempts towa¡ds making A(*) * UXr) after {ú¡}(løl) steps, because the
value of {¿¡Xl"l) may only be known alter K¡.{¿¡Xl"l) steps and it is possible that

j,li*- : oo'

Instead, in the following construction one simulates together with {j}(r) and {t¡}(løl)
also the computations {ts}(lcl), ... ,{t¡-rXl"l). That one of these j * 2 computations
which converges first will halt the computation of ,4,(r). It is somewhat delicate to
implement these simultaneous simulations of j * 2 computations (where j grows with

lrl) in such a way that for each fixed i € N the portion of the total computation time
fot A(x) that is devoted to the simulation of {t¡}(løl) does not shrink when j grows to
infinity (obviously this property is needed to prove that .4 € DTIME({¿¡})).

In the following we construct a RAM .r? that computes a set ,4. for which (t¡)¡.¡¡ is

a characteristic sequence. We frx some coding of RAM's by binary strings analogously

as in [3].
'We arrange that each code for a RAM is a binary string without leading zeros,

so that one can also view it as binary notation for some number J € N. 'We assume

that the empty string codes the "empty" RAM (which has no instructions). Thus one

can associate with each binary string ø the longest initial segment of ø that is a code

for a RAM, which will be denoted by j" in the following.

The RAM R with input ø € {0,1}- acts as follows. It first checks via "looking
back" for lrl steps whether the requirement "A + U\ for j :: j" has already been

satisfred during the first løl steps of the construction (for shorter inputs). If the answer

is "yes",.rl decides without any further computation that ø / A. If the answer is "no",
R on input ø dovetails the simulations of t0,... ,f¡ on input lrl and of j on input r in
the following manner. The simultaneous simulation proceeds in phases p : 0, Ir2r. . .

At the beginning of each phase p the RAM ,R simulates one more step of j on input r.
If. m¡ is the number of steps that ¡1 has used to simulate this step of j on input r, then
.R simulates subsequently rnj steps of f¡ on input lrl. If. m¡-r is the number of steps

that ,R has used so far in phase p (for the simulation of one step of j on n and rn¡ steps

of.t¡ on løl), then -R simulates subsequently rnj4 steps of f¡-r on input lrl; etc. If the

number of steps that -R spends in phase p exceeds lø1,.8 immediately halts and rejects

0.

If .R has finished phase p (by simulatin9rno steps of úe on input lø1, where rns is

the total number of steps which .R has spent in phase p for the simulation of. fi,. . . ,t¡
on løl and j on x) and none of the j * 2 simulated computations has reached a halting
state during phase p, then ¡R proceeds to phase p f 1.

Maass, Slaman e97-322) 303

If the computation of j on input ø has converged during phase p then .R puts ø

into A if and only if UXt) : 0. \Mith this action the requirement "A + {j}" becomes

satisfied and the computation of .R on input o is finished.

If j on input r has not converged during phase p, but one of the other jf 1 simulated

computations (of ús, . . . ,,t j on lcl) converges during phase p, then -R decides that r / A
and halts.

'We now describe some further details of the program of -R in order to make a precise

time analysis possible.

In order to avoid undesirable interactions ft reserves for each simulated RAM a

separate infinite sequence ARRAYÈ of registers, where ARRAYft consists of the registers

X2*+t,12¡1r),j : 0, Ir2r...

Furthermore we specify for each k e N a sub-array MEMORYT of ARRAY¡, consisting

of the registers X2x+r.12¡a\ for j - 0,2,4,. .. in ARRAYT. For each fr e N the
constructed RAM ,R uses ARRAY¡ for the simulation of the RAM coded by f6 (more

precisely: -R uses MEMORYß to simulate the registers of the RAM ú¡, and it uses the

remaining registers in ARRAY¡ to store the program thai is coded by úr). Furthermore
.R uses ARRAY1.,.1 to simulate the RAM coded by j : j, € N (this does not cause a

conflict since j and ú¡ar are never simultaneously simulated).
'We have made these arrays explicit because in order to simulate a step of the k-th

one of these machines that involves, sag the i-th register of that machine, .B has to
compute on the side (via iterated additions) the "real" address 2k+r . (2 .2i + t)

"¡.
the corresponding register in MEMORY*. The number of steps required by this side-

computation depends on fu, but is independent of i. Therefore there exist constants

c(k),k € N, that bound the number of steps that .R has to spend to simulate a single

step of the fr-th one of these machines. It is essential that for any fixed k a j, * 1 this
constant c(&) is independent of the number j, +Z of simulated machines for input æ

(this follows from the fact that ARRAYß is independent of j,).
At ihe beginning of its computation on input r the RAM R computes j :: jr. Then

-R "looks back" for lrl steps to check whether "A+ {j}" has already been satisfied at

some argumenl, n' such that j" is aprefix of o' and r' is a prefix of x. Let rL¡.., ¡ïk
be a list of all such binary strings ø' (ordered according to their length). We implement
the "looking back" for argument ø as follows. For each of the shorter inputs ür¡azt. . .

(one after the other) -B carries out the same computation as discussed below for ¿. If it
turns out after løl steps of this subcomputation that for one of these arguments ø¿ (i €
{1,...,/c}) the construction satisfied the requirement á + {j}, then -R immediately
halts and rejects ø (note that for the first such r; we actually have then A(*¿) * UXr;)).
Otherwise -R continues the computation on input r as follows.' -R calls a program for
the recursive function i r+ ú¡ and uses it to compute the numbers ú0, . . . , ú.¡. Afterwards

304 Maass, Slaman Q97-322)

-R "decodes" each of the programs ti (i e {0,... ,j}), which are given as binary string

(the binary representations of the number ú¡ e N). E uses for each instruction ^9 of
progra¡n ú¡ 4 registers in ARRAY¡ (that are not in MEMORY;) to store the opcode and

the up to three operands of ^9 (similarly as in the proof of Theorem 3 in [3]). In the

same way R ttdecodest' the program j.
If this preprocessing phase of E on input r takes more than 100 . læl steps (in

addition to the steps spend on "looking back") then .R immediately halts and rejects ø.

During the main part of its computation (while it simulates f0,... ,ú¡,j) -R main-

tains in its odd-numbered registers (which do not belong to any of the arrays ARRAY¡)
two counters that count the total number of steps that have been spent so far in the

current phase p, as well as the number of steps of the currently considered prograrn

that have already been simulated during phase p. In order to allow enough time for the

regular updating of both counters, as well as for the regular comparison of the values

of both counters with the preset thresholds (lrl,*¡), it is convenient to add every c

steps the number c to each counter (where c € N is a sufficiently large constant in the

program of .R).

In addition Ã stores in its odd-numbered registers the input æ, j,lhe number of

the currently simulated program, and for each of the simulated programs the address of
the register that contains the opcode for the next instruction that has to be executed for

that program. With this information R can resume the simulation of an earlier started
prograrn without any further "overhead stepstt because each simulated program only acts

on the registers in its t'ownt' array ARRAY¡. Of course Ã always has to spend several

steps to simulate a single instruction of any of the stored programs tor... ,tj, j. It has to
apply a series of branching instructions in order to go from the stored (numerical) value

of the opcode in ARRAY¡ to the actual instruction in its own progra,m that corresponds

to it, and it has to calculate the "real" addresses of the involved registers in MEMORY¡.
However it is obvious that for each simulated program å there exists a constant c(fr)

(independent from j : j, and z) that bounds the number of steps that lB has to spend

to simulate a single instruction of program fr.

We now verify that (f¡)¿eN is characteristic for A.

Claim t. A e DTIME({U }) for every i € N.

PRoor: Fixi andset,S;:: {r e {0,7}. I j" (i}. Every ã e S¿Oáis placedinto.4in
order to satisfy the requirement "A I {j}" for some j < i. We then have A(i) + {iXõ),
and for sufficiently longer inputs r with j, : j the constructed RAM .B finds out during

the first part of its computation on input e (while "looking back" for lrl steps) that the

requirement "A + U\" has already been satisfied. This implies that r / .4. Thus for

each j (i only finitely many ã are placed into .4 in order to satisfy the requirement

"A + {j}". Therefore S; I Ais finite. Since,9; e DTIM E(n) it only remains to prove

rhar 3; nAe DTIMn(t¿lt).

Maass, Slaman e97-322) 305

'We show that .R uses for every input ¿ € ^9¡ at most O({údxlol)) computation
steps. By assumption we have {¿;Xlrl)) lol, and therefore E uses only O({t;}(lrl))
steps in its preprocessing phase for input o.

We had fixed constants K¿ € N such that the computation of program f¿ on input
n consists of < Ki . {¿¡X") steps (for all n € N). BV construction the total number of
steps that .R spends for input r on the simulation of j :: j" on x and of ti+tr... ,tj
on frl is bounded bV lrl I T¿,., where 4," is the number of computation steps of
program ú¿ on input løl that are simulated by ,R on input x. By construction we have

T;," 1 K¿ . {t¿}(lxl) + lrl (because the computation of R on x, is halted at the latest at
the end of the first phase p where {¿¡}(lrl) is seen to converge, and no phase p consists

of more than lrl steps of .R).

Furthermore we know that there is a constanf c(t;) that bounds the number of
steps that -R needs to simulate a single instruction of ú¡. Thus ft spends < c(ti) . Ti,, :
O({úrxlrl)) steps on the simulation of ú;11,...,tj on lrl and j on ø. Furthermore
the number of "overhead steps" of .R for the updating of counters, the comparison of
their values with preset thresholds, and the switching of programs can be bounded by
a constant times the number of steps that .R spends on the actual simulations. Thus it
just remains to be shown by induction on i- fr that A on input a e S¡ spends for every
k < i altogether at most O({f;}(løl)) steps on the simulation of t¡ on lrl. However this
follows immediately from the construction, using the definition of the parameters rn¡
and the observation that the constants c(t¿) do not depend on ø.

Clairn 2. Let U(j,") be the maximal number of steps that program j uses on an input
of length n. Then:

A: {j} *u(j,n): o({t¡}(n)).

Pnoor: Fix any j e N such that A: UI. Assume for a contradiction that it is not

the case that U(j,n) : O({rr}(n)), i.e. we have rio
m

: oo. \Me show that then

the requirement "A + {j}" gets satisfied at some argument ø with j" : j.
Obviously we have for all sufficiently long ø with j" : j that the computation

of -R on r does not get halted prematurely because the preprocessing phase takes too
many steps, or because a phase p in the main part of the computation requires more
than lrl steps. Furthermore for each i (j there exists by construction a constant c¡

such that for all r with j, : j ,R simulates for each step in the computation of j on
ø at most ci steps in the computation of ú; on input lrl. Therefore our assumption

"\rffi: oo together with the fact that {ús}(n) > ..'> {¿¡Xr) for all r¿ € N
implies that there is some r with j.: j so that ft on input r does not halt prematurely
because some {t¡}(løl) with i < j is seen to converge before UXr) is seen to converge.

For such input ø the RAM -R succeeds in satisfying the requirement ",4. # {j}" bV

setting A(r) * UX"). This contradiction completes the proof of Claim 2.

306 Maass, Slaman e97-322)

Claim 1 and Claim 2 together imply the claim of the theorem. n

As an immediate consequence we get from the preceding two theorems the following

result (recall that ,5 ç {0, 1i- is called sparse if there is a polynomial p such that

Vn(l{o e S I lrl : rz}l I p(n)); see [r0] for a contrasting result about sparse sets)'

Theorem 3. Eaery cornpleaity type contains a spørse set.

Pnoor: Let C be an arbitrary complexity type. By Theorem 1 there exists some se-

quence (t¡);eN which is characteristic for C. In order to get a sparse set ^9 such that

(t¡)¡eN is cha¡acteristic for S we use a variation of the proof of Theorem 2. In this varia-

tion of the construction one never places ø into the constructed set unless lj"l < log lol.

¡

Remarks.

1. It is an open problem whether every complexity type contains a tally set.

2. Fbrther results about the relationship between extensional properties of a set and

its complexity type can be found in Section 5.

It is obvious that the partial order (6 on sets (which was defined in Section 1)

induces a partial order 16r on complexity types. In this paper we are not concerned

with the structure of this partial order (6, however we want to mention the following

immediate consequence of Theorems 1 and 2.

Theorem 4. The compleaity lypes of computable sets with the partial ord,er !ç form
a lattice. Furthermore, if the characteri,stic sequence (¿i)n.* is chøracteristic for the

complexity type C' and, the charaçteristic sequence (úl')leu is characteristic for the com-

plexity type C", then some sequence (ti'")reN uith {t|i"(n)} : *i"({¿i}(n), {ti'}(n))
is characteristic for the infimum C' A Ctt of C' , C" , anil some sequence (úi""*)¿a¡¡ tlitå

{¿ï".X") : ma"({úl}(n), {li'}(n)) is characteristic for the supremum C' v Ctt of Ct , Ctt.

Pnoor': The key fact for the proof is ihe following elementary observation. Consider

any two sets ?, S ç {0,1}* and characteristic sequences (tr);eN and (s;)¿6¡ such that

(ft)reN is characteristic for 7 and ("n)neN is cha¡acteristic for '9. Then

T >c S <+ Vilj({úi} : o({s¡})).

In order to prove the claim of the theorem one first has to verify that one can find

programs ú|i", ¿I'* for min({úi} ,{t'l\), respectively max({fl}, {fi}), so that (úii")rex
and (tf;'*)¡6N are characteristic sequences. The only nontrivial point is the requirement

to define the recursive function i rr ú1"i" in such a way that for all i € N, {t'i"}1n¡ =
min({ti}(n), {¿i'X")) and ú}"i" is a witness for the time constructibility of this function.

In order to achieve this, it is essential that program fl io "knows" time constructibility

factors cl,cl' such that {t}Xn) converges in < cl .{¿iX") steps and {ti'}(") converges

Maass, Slaman e97-322) 307

in (cl' .{¿íX") steps. Since program ú1"i" has to compute min({ti}(n), {f!'}(n)) in a
time constructible fashion, it needs c'¿, c'! ir order to know when it is "safe" to abandon

the simulation of the longer one of the two computations {ti}(n), {t'!}(") (a,fter the
shorter one has converged). But this is no problem, since the proof of Theorem 1 shows

(as in the corollary to Theorem 1) ihat one can assume without loss of generality that
recursive sequences (cl);eN, (c!');eN of time constructibility factors are given together
with the characteristic sequences (¿i)0.* and (f!')¡6¡.

Since (tii");ç¡ is a characteristic sequence, there exists by Theorem 2 a set Tmin C

{0, 1}* such that (tii");eN is characteristic for ?'i". Let ¿min 6" the complexity type
of ?'i^. It is obvious that C^in 1c C' andC^in 1c C't. In order to show that C'i"
is the infimurn of C' and Ct' , one has to verify for an arbitrary complexity iype C with
C 1c C' and C 1c C" that C'i")s C. Let the sequence (ú¡);eN be characteristic for C

((¿¿)l.N exists by Theorem 1). The key fact at the beginning of this proof implies that
virj({¿l} : o({¿¡})) and Viìj({rl'} : c¿({¿¡i)). Hence vilj({úi"t"} : o({rj})), which
implies that C''")-c C.

One verifres analogously that the complexity type C*"* which is defined by (ti'*);eN
is the supremum of C', C" with regard to (6. !

3. Time Complexity versus Polynomial Time Reducibility.

In this section we study the relationship between the complexity type of a set and

its polynomial time T\rring degree. We first introduce the customary recursion the-

oretic vocabulary for the discussion of priority constructions. One important part of
the following constructions is the construction technique of Theorem 2, which allows

us to control the complexity type of a set that is constructed to meet various other re-

quirements. Therefore we will review briefly the construction of Theorem 2 in recursion

theoretic terms.

A støge is just an integer s viewed in the context of a definition by recursion. A
strøtegy is just an algorithm to determine the action taken du¡ing stage n, recursively

based on various parameters of the construction. Typically, a strategy is used to show

that the sets being constructed have some specific property; we call this a requirement.

We organize our attempts to satisfy the requirements in some order which we call the
priority ord,ering. If requirement Q comes before requirement Æ, we say that @ has

higher priority and ¡R has lower priority.
In the construction of Theorem 2 we built .4 to satisfy two families of requirements.

Fbr each i, Ahad to be computable on a RAM, running in time O({¿;}). Second, any

RAM that computed ,4 had to operate with time O({¿r}), for some i. We assigned

priority by interleaving the two types of requirements in order of their indices.

308 Maass, Slaman Q97-322)

For an element of the first family of requirements, we used a strategy which imposed

a sequence of iime controls on the construction. The behavior of the ith strategy was

to terminate all action of lower priority in determining ,4,(r) once the construction

had executed suffi.ciently many phases to exceed {¿¡Xl"l) many steps. Suppose that

strategies of higher priority only act finitely often to cause ,4. to accept strings. Then,

using the finite data describing the higher priority activity tve ca,n correctly compute ,4.

at r in time O({t¡}) by first checking the datafor an answer at a. If the value of .4 at

ø is not included in the data then we run the construction until the ith time control

strategy calls a halt to lower priority activity. \{e then read off the answer.

For each of the second family of requirements, we used a diagonalization strategy.

Namely, if {i} ever converges at an argument ¿ before a strategy of higher priority

terminates our action then we define A al a to make A(r) # {¿Xt). By our association

of at most one diagonalization strategy to each string, the two possibilities were for

{i} to disagree with .4 or to have running time O({¿i}). The latter being the case

when diagonalization is impossible since the time control associated with higher priority

strategies terminates the diagonalization attempt at every string'

\Me collectively refer to the time control and diagonalization strategies as the C-

strategies.

The proof that the sequence (f¡)¡.* is characteristic for á has two essential fea-

tures. The first is that each of the constituent strategies is injured finitely often. The

jth time control strategy s¡ is injured when the value of A at r is determined differently

from the one assumed by s¡. In the proof of Theorem 2, this occurs when the value of A

is determined by a diagonalization strategy with index less than j. The second feature,

which occurs on a higher level, is that no single move in the construction prohibits

the subsequent application and complete implementation of further time control and

diagonaliz ation s trategies.

\Mith this in mind, \Me can look for other families of strategies, which are compatible

with the C-strategies, to produce interesting examples within a given complexity type.

Our next result compares complexity with relative computability'

A Turing reduction is given by a RAM M, augmented with the ability to query

an oracle as to whether it accepts the query string. We evaluate M relative to ,4 by

answering all queries with the value of ,4. on the query string. M specifies a polynomial

time Turing reduction if there is a polynomial g such that for every oracle / and every

stringr,theevaluationof M withinputrhaltsinlessthang(lrl)steps. SaythatBis
polynomial time Turing reducible to ,4, if there is a polynomial time Turing reduction

that, when evaluated on a string r relative to .4. returns value B(ø). We use the term

Turing reduction to avoid confusion with the related notion of many-one reduction.

Note, the choice of RAM's in the definition of polynomial time T\rring reduction is not

important; for example, the same class is obtained using any of a variety of macåine

models.

Maass, Slaman (297-322) 309

Theorem 5. A complexity lype C contøins sets A ønd B that are incomparable with
regaril to polynomial time Turing reiluctions if and, only if C ç P.

Pnoor': Let C be fixed and let (ú¡);eN be characteristic for C. We build ,4 and B and

use the C-strategies to ensure that á and B belong to C. In addition, we ensure for each

polynomial time Turing reduction {e},

(3.1)
{'X¿)-B + cçP
{"}@)-A + ccP.

We will describe the strategies for the new requirement, the inequality strategies. In
fact, since they are symmetric, we only describe the strategy to ensure the first of the
two implications in 3.1. These strategies are combined with the earlier ones using the
same combinatorial pattern as before.

We describe the eth new strategy. We first arrange, by a variation of looking back,

that no strategy of lower priority is implemented until we have established {e}(A, x) I
B(a) for some specific string æ. Let /s be the greatest length of a string which is accepted

into á or B by the effect of a strategy of higher priority. Let .40 and Bq be ,4 and B
restricted to strings of length less than or equal to ls. Again, by looking back, we may

assume that ,4.s, Bs and /e are known. For each length J, we use a string ø¿ of length
/ to attempt to establish the inequality. (The choice of o¡ is made to ensure that r¡ is
will not even potentially be used by some strategy of higher priority.) We simulate the
computation relative to the oracle that is equal to ,4s on strings of length less than fe

and empty elsewhere. If we are able to complete the simulation without being canceled

by a time control strategy of higher priority, then we define B(r¿) io disagree with the
answer returned by the simulation.

There are two possible outcomes for this strategy. We could succeed in establishing

the inequality between {rX¿) and B. In this case, the inequality strategy is compatible
with the C-strategies. It only requires that finitely may strings are in B and it places

no permanent impediment to the implementation of all of the C-strategies. These are

the two features we already isolated as determining compatibility.
On the other hand, the inequality between {rX¿) and B might never be estab-

lished. This can only occur if for every l, the inequality strategy is terminated before

completion of its simulation of I"j(A,r¡) by some time control strategy of higher pri-
ority. But then the time control imposed by that higher priority strategy must be

polynomial, since it is bounded by a constant times the running time of {e}. In this
case, C is contained in P.

Thus, either the inequality strategies are compatible with the C-strategies and

we may use thé framework developed earlier to build á and B in C of incomparable

polynomial time Turing degree or C is contained in P. !

310 Maass, Slaman e97-322)

The inequality strategies are, in some ways, simpler than the C-strategies. In the

style of Ladner's early constructions [7], they act to establish an inequality during ihe
first opportunity to do so. If no opportunity arises, we conclude ihat C is contained in
P. On the other hand, these strategies have a feature not appearing in the earlier argu-

ment. If an inequality strategy never finds a string at which it can establish the desired

inequality, then it completely halts the implementation of lower priority strategies. This
behavior is acceptable in the context of our construction, since if it occurs then we may

conclude that the theorem is true for a fairly trivial reason. Of course, these types of
strategies appear in basic looking back constructions. Here, we interleaved them with
other finite injury strategies.

Minimal pairs. In Theorem 5, we gave a construction showing that in every complex-

ity type there is a pair of sets which are polynomial time Turing incomparable. Thus, in
the sense of Theorem 5, complexity type is never directly tied to relative computability.
In this spction, we ask whether there is any correlation between informational content

as expressed by polynomial time Turing degree and complexity type. We give a partial
negative answer in Theorem 6.

Theorem 6. There is a complerity type C which contains sets A and, B that form a

minimal pair uith regaril to polynomial lime Turing reiluctions (i.e. A, B / P, but for
all X, X 1o A and, X Se B implies that X e P).

Pnoor: We build .4 and B by recursion. A cond,ition is a specification of an oracle on

all strings whose lengths are bounded by a fixed integer; i.e. a finite approximation to
an oracle. For U a condition, let domain(U) denote the set of strings on which [/ is

defined. During stage n, we specify conditions An anð, Bn on á and B with domains

at least including {0, 1}<" so that An-t Ç A, and Bn-1 C Bn.

Readers familiar with recursion theoretic forcing and priority methods (see [9])
will recognize ol;n building a pair of Cohen generic subsets of {0, 1}-. Their mutual
genericity with respect to polynomial time Turing reductions implies that they form a
minimal pair of P-degrees. We use the priority method to arrange that ,4 and B meet

enough dense sets for genericity to apply.

The fact that ,4 and B are recursive follows from the observation that the recursion

step in the generation of An and B, is computable. In fact, there is a RAM thai
implements this recursion. \Mhen we speak of a step in the construction we are referring
to a step in the execution of this RAM.

In the construction, we take steps to ensure that ,4 and B satisfy the claims of the

theorem by ruling out each possible counter example. Thus, we individually satisfy the
following individual requirements.

G¿. If. {d} = A then there is a RAM that runs at least as fast as {d} and computes B.
Similarly, for ,4. and B with roles reversed.

t:

Maass, Slaman e97-322) 311

H.,¡. If, {e} and {/} are polynomial time oracle RAM's such that {"}(¿) : {/XB),
then their common value X is in P. In fact, in satisfying H.,¡ we will exhibit the
polynomial time algorithm to compute X.

We ensure each of these requirements by use of an associated strategy. We will
shortly sketch how the strategies operate. First, we give some indication of their context,
since it is somewhat different than that in the earlier constructions. As before, we assign

a priority ranking to the requirements. We invoke the first n strategies during stage n,
and thereby arrange that every strategy is in use during all but finitely many stages. We

determine the action taken in the main recursion during stage n by means of a nested

(minor) recursion of length n in which we calculate the effects of strategies. During stage

n, v/e extend á and B so as to agree with the common value chosen by the maximum
possible initial segment of strategies. Provided that for each strategy D,

(1) for all but finitely many stages, the conditions on ,4. and B chosen by Ð are the
same as those chosen by all higher priority strategies and

(2) for any sets ,4. and B which are produced by a construction whose operation during
all but finitely many stages is determined by E, .4 and B satisfy the requirement
associated with D,

then A and B constructed as above will satisfy all of the requirements. We will first
sketch the operation of the strategies and then the way by which they are combined in
the minor recursion.

We turn now to our specific strategies. We view a strategy I as a proceilure.

It is called with arguments r4.r-1, Bn-rt ¿tteløult, gdeløutt and default-time. These

arguments have the following types: the first four are conditions and the final one is
an integer. Their intended roles in the construction are to have ,4.r-1 and 8,.-1 as

the conditions on A and B determined in the previous stage; the next two, ¡d'efautt

ur'.¿ Ûdelautt, are the default conditions on .A and B which will be used at the end of
stage n if Ð does not disallow their use; d,ef ault-time is the number of steps needed to
run the construction up to the point of calling E, which is enough to compute ¡ttelautt
*t¿ ?d'ef autÚ. The strategy returns two conditions ár, and B, which extend :4.¿-1 and

Bn-t. In the construction, they indicate the conditions that E intends be used as the
stage n computation of .4 and B.

G¿. The strategy gd to ensure the satisfaction of the requiremertt G¿ acts as follows.
(1) First, check for a string y ir d.omain(A"-t) such that {A}@) converges in less than

n steps and gives a value that is different from .4*-1(y). If there is such a y, return
¡deføutt *r¿ Sdelautt. (In step (1), ute loolc back to see whelher G¿ is alreøily

satisfi,eil by øn inequølity between {d} and, A.)
(2) Otherwise, check for a string g in d,omain(Aderault¡ - domain(A,-r) such that {d}

converges at gr in less than d,ef aultlime many steps. If there is such a y then for
á,, return the extension ,4.* of .4,-1 ihat is identically equal to 0 at every string

312 Maass, Slaman e97-322)

in domain(Artelautt¡ - dornain(A,-r) other than y. At y, A* is defined to disagree

with {d}(y). For .B,, return the extension B* of. Bn-1 that is identically equal to
0 on every string in domain(8f;'1øutt) - d,omain(Bn-t). (We look for an argumenl

where it is faster to compute {d} than it is to run the default computøtion. If we

find one then we d,efine An to establish A+ {d,}.)
(3) If neither of these cases apply, then return ¡rtef autt and Bdr'l""tt. (If no action is

requireil, return the d,eføult ualues.)

If there is a y such that the evaluation of {d}(y) takes less time then the evaluation

of the default value for B(g), then gd ensures that {d} I A. Olherwise, g¿ ensures that
B is always given by the default calculation and so ca¡r be computed in less time than
the evaluation of {d}. Thus, 9¿ ensures that if {d} : ¿, then there is an algorithm to
compute B that runs in less time.

In addition, the values for ,4. and B returned by g¿ only deviate from the input
default values finitely often. Once g¿'s outputs are identical with the ultimate values of
A, and Bnrif gd ever returns a value other than its input default value then, by (1), it
automatically returns the default during every stage large enough to verify {d,} + A.

H.,¡. Let {e} and {/} b. polynomial time oracle RAM's. Let pbe a polynomial that
bounds their running times. The strategy h.,¡ lo ensure the satisfaction of ff",¡ acts as

follows.

(1) First, check for a string g such that {e} (An-t,y) + {f} (Bn-t,y) is verified by

a computation of length less than n. If there is such a y, return ¡tteløutt *r¿
SdeJault. (Look back to see whether lhe requirement is alread,y satisfied, by the

inequøIity {"}(t) I {f}(B).)
(2) Otherwise, check fot a y of length less than or equal to def ault-tiræe such that

there are two extensions ,4.r and A't of. An-1 such that {"}(A' ,y) and {"}(A" ,y) arc

defined by computations with queries only to the domains of ,4.' and A't and have dif-
ferent values. If there is such a y, then return the value B* f.ot Bn that extends Br-1
and is identically equal to 0 on every string in {0, t}Sr(aef autt-tine)

-domain(B--').
Return as value for An whichever of ,4' a¡d ,4." establishes {e}(A.,y) # {l}@",v),
for the (returned) value .B, : B*. (If the cond,ition An-1 iloes not alread,y d,ecid,e

the aalue of {e}(A,y) for øll y's of length less than or equal to d,ef ault-time then use

the spli,t in {e} to malce {rX¿) # {f}@). We attempt to meet a set of cond,itions

associateiL with mutual genericity.)
(3) If neither of these cases apply, then return ¡ttetautt and B!'f""t'. (At in g¿, if no

action is required, then relurn the default oalues.)

Assume that h",¡ is respected during all but finitely many stages. If the inequal-

ity between {tX¿) and {/}(B) is established in (2), then the requirement is trivially
satisfied.

Maass, Slaman e97-322) 313

Assume that {e}(A) and {/}(B) are equal and let X be their common value. Let

y be a string such that h",¡ is respected during the stage when ,4(y) is defined. We

compute X(y) as follows. First, compute the largest rn so that the evaluation
"t

lffli"t'
a"a Affli"tt involves less than lyl steps. Then, evaluate {e}(.4*,y), where,4.* is equal

to A!f,!"r"t' on d,omain(A*!\"') and is identically equal to 0 elsewhere.

Since its operations are explicitly evaluated in polynomial time, it is clear that this
procedure can be implemented on a RAM in polynomial time. To see that it correctly

computes X, note that since h.,¡ is respected during almost every stage and does not

establish the inequality between {"X¿) and {/}(B), the default values for A and B
are the ones actually used in the construction. Further, the rr¿ computed by y is the

stage when lr",¡ examines all conditions extendin1 A*-t e A*!Tt\ to frnd a pair of
conditions that gives a pair of incompatible values for {e} at y. By assumption, å",¡
could not split the values of {e}, so every extension of. A*-1 gives the same answer to

{r}(-, y) as A gives. In particular, {"}(á., y): {e\(A,y): X(A), as desired.

Note, that this strategy also only returns conditions different from the input default

values finitely often by the same argument that applied to 9¿.

The construction. This method of combining strategies also appears in [SSl, Shinoda-

Slaman]. \Me let .4s and Bs be the trivial conditions with empty domain.

During stage n, we set up the minor recursion to invoke the frrst n strategies in
the priority ordering. First, we execute the nth strategy with arguments ár-1, Bn-ti
¡tteJault un¿ gdeløut¿, given by the trivial extensions of. An-1 and Br-1 which are are

identically 0 on every string of length less than or equal to n not in the domains of
Az-r and Bn-tl and d,ef ault-time, equal to the number of steps needed to compute

these quantities. By recursion, in decreasing order of priority, we execute the next

strategy with arguments ,4.,-1, Bn-¡ /d"1"¿l¿ and Sdeløutt , obtained from the previous

strategy's returned values; and def ault-time, equal to the number of steps needed to
compute the construction through the point of executing the previous strategy. The

output of the highest priority strategy (namely, the last strategy executed) gives the

values f.or An and Bn.

Suppose that D is one of the above strategies. Then, X is in operation for all but
finitely many stages. Hence, it determines the default value given to the strategies of
higher priority for all but frnitely many stages. Further, each strategy of higher priority
than D only returns conditions different from the its input default values at most finitely
often. So, the values returned by E will be the ones used by the construction during
all but finitely many stages. By the above remarks, this is enough to conclude that the

requirement associated with D is satisfied. !

Remark. It is an open problem whether eaery complexity type C g P contains a

minimal pair.

314 Maass, Slaman e97-322)

4. On the Fine Structure of P.

In contrast to many results in structural complexity theory that are only relevant

for sets outside of P, the investigation of complexity types also leads to some challenging
questions about the fine structure of P itself. One may argue that the exploration of
the possibilities and limitations of construction techniques for sets in P may potentially
be useful in order to distinguish P from larger complexity classes (e.g., PSPACE).

Those time bounds / that are commonly used in the analysis of algorithms for
problems in P have the property that

sup{/(rn) | m I c' n} : 06("))

for every constant c € N, and that / agrees almost everywhere with some concave

function S (i.e. Yk > n(g(n)) S ;91f¡¡¡. These two properties together entail the
useful fact that DTIMEU) is closed under linear time Turing-reductions (we assume

that the query tape is erased after each query). Note also that the first property alone
gua^rantees already that DTIME(/) is closed under linear time many-one reductions.

In view of the preceding fact it is of interest to analyze for sets in P a slightly dif-
ferent notion of complexity type, where the underlying set ? of time bounds is replaced

by the class ?¿ of those f in T that satisfy the two additional properties above. This
version has the advantage that each linear time T\rring degree ,is contained in a single
complexity type (in other words: each complexity type is closed under the equivalence

relation :¡¡.). Therefore we assume in this section that ? has been replaced by Tt.
Linear time reductions have provided the only successful mea^rls to show that certain

concrete sets have exactly the same time complexity (e.g. Dewdney [4] proved that
BIPARTITE MATCHING =¡¡^ VERTEX CONNECTIVITY ("are there) k disjoint
uu-paths in G, for u,u,lc givcn")). The following result implies that this method is not
general.

Theorem 7. Euery compleæily type C ç DTIME(") oÍ polynomiøI time computable

sets contains inf,nitely many d,ifferent linear time degrees, and, the linear time d,egrees in
C are ilense. Furthermore C contains incompara,ble linear time d,egrees, but no smallest
Iinear time degree.

PRoor: Assume that C g DTIME(n). The construction of sets A, B in C that are

incomparable with regard to linear time reductions proceeds as in the proof of Theorem
5.

In order to show that C contains no smallest linear time degree we fix some arbitrary
set A € C. We construct a set B € C with A lnn B by deleting from,4. all elements that
lie in certain "intervals" 1,,^ i: {ø e {0,1}* l, S lrl < rn}. Since A/ DTIME(n)
one can falsify each possible linear time reduction from A to B by choosing the length
n'ù - n of the removed interval Ir,* sufficiently la^rge (for given n define m via "looking

Maass, Slaman e97-322) 315

back"). In order to gua^rantee that in addition B eC, we combine these strategies in

a finite injury priority argument with the "C-strategies" from the proof of Theorem 2

(see the discussion at the beginning of Section 3).

In order to show that the linear time degrees in C are dense we assume that sets

A,B eC aregivenwithB (u..4. Letñ ¡: {0nø ln eB} andã:- {1nø lu e ,a}'

Then we have,4.:ri. ãu.ã (tfrus Ãuã € C and B (r¡, ÃuA¡. One constructs

in the usual manner (with "looking back" as in [7]) a linear time computable set .L

such that for D :: (Ãnt')U.ã one has D {tin B unð' ÃUñ lrr^ D. Furthermore

it is obvious from the definition of D that B (li. D <rr^ ÃU ñ. Thus D € C and

B (¡. D (ri. Ãu É:li. Á.
Finally we observe that the existence of sets A, B in C with A lt¡n B (see the

beginning of the proof) implies thai there is a set G e C with B (u. G: set

ç ¡: {0nø | x e A}U {lnø ln e B}.

Thus an iterative application of the preceding density result implies that C contains

infinitely many linear time degrees. !

It is tempting to conjecture that for every polynomial time computal>le set A /
DTIME(n) there is a set B of the same complexity type with A fii"B and B {t;n A,

furthermore that the structure of linear time degrees of sets in a complexity type is the

same for every polynomial time computable complexity type C ç DTIME(n). The

following result implies that both conjectures are false (see section 1 for the definition

of a principal complexity type).

Theorem 8. A compleaity tgpe C ç P has a largest linear time d,egree if and only if C

is principal (in fact if C is non-principal then it iloes not eaen conlain a mar.imal linear

time ilegree).

Idea behind the proof of Theorem 8. If. C is a principal complexity type then it
contains a set U which is almost (i,e. up io padding) universal for C. One has then

X (t, [/ for every X eC.
Assume now that C is non-principal, and that X is an arbitra.ry set in C. One then

constructs a set A € C with A {ti^ X. This will imply the claim, since one has then

(Av X) e C andX (ri. (Av X),where (Av X)': {y0 ly e A}u {y1 I y e X}.
Tìo achieve A {ti^ X it is sufficient to satisfy each instance of the following require-

ment.

R". A t {"}(X) or {e}(X, y) uses more than e ' lyl steps for some string y, where as

usual each oracle query counts as one step.

316 Maass, Slaman e97-322)

The corollary of Theorem 1 shows thai there exist recursive sequences (t¡)¡6¡ and
(r¡)¡e* such that (úr)re* is a characteristic sequence for C and Vi({e¿} :* X and {e¡}
is of time complexity O({¿;})), where :* denotes equality modulo finite sets. The
constructed set .4 will lie in C, if we can satisfy each of the following requirements.

5", A belongs to DTIME({t.}.

Tj. If. {j} e r and .4 e DTIME({j}) then for some i e N, U} : O({úr}).

In the case of a conflict between different requirements the one with the smaller

index (i.e. higher priority) wins. In particular in order to satisfy ^9" one has to make sure

that all attempts to satisfy a requirement -8", with et) e at some a,rgument y € {0, 1}.
(where one tries to achieve that,4(y) * {"'}(X,y)) are halted after C".{t"}(lyl) steps

(where C" is some constant). On the other hand, in order to satisfy requirement Re, at
argument y one first has to know the value of {"'}(X,g). The number of computation
steps needed for that depends on the algorithm {";}(t) that one uses to simulate oracle
queries "z e. X?" We ignore in ihis sketch that we have only {"¿} :* X instead of

{";} : X. This will only cause finitely many additional "injuries" that force us to
repeat the attempt to satisfy,R", (each time when a new discrepa^ncy between {e¡}
and X is detected by "looking back"). It is not a priori clear which attempt to satisfy

R", (via some y, er as above) will succeed within the negative restraint imposed by

^9", because we know very little about the behaviour of the given sequence (ú¡)¿E¡. In
particular we may have that {¿¡} : {¿¡+t} for many i, and therefore the number of
steps needed to evaluate {r'}({"r},9) need not be bounded by C". {¿"Xlyl) (if e'> e is

sufficiently large). However, since C is non-principal there is an infinite set W Ç N such

that there exists for every i €W an infinite set fl¡ Ç N with {¿¿il¡7, : o({f¡-r}l¡r,).
This set VZ supplies a ttdenset' set of t'windows" through which at least one attempt for
each requirement -R", can be carried out without interference by requirements ^9" with
e<e'.

Additional priority conflicts (and finite injuries) occur between the requirements

S" and T¡, and between the requirements -R" and Ç'. In order to satisfy Q one has to
make á different from any set that is computed by an algorithm that is "too fast" (this
requires that certain y a.re placed into .4., or kept out of A). The interaction between

the requirements ,9" and f is handled in the same way as in the proof of Theorem 2.

!

Maass, Slaman e97-322) 317

5. Extensional Properties of Sets that have the Same Time Complexity.

In this section we investigate some basic properties of the partial order

Po(C):: ({Xlx e C}, Ç*1,

where C is an arbitrary complexity type and C* denotes inclusion modulo finite sets

(i.e. X Ç* Y:e X -Y is finite). This investigation is part of the long range project

to study the relationship between extensional properties of a set and its computational

complexity. Among other work in this direction we would like to mention in particular

the study of the complexity of sparse sets (see e.g. [16]), and the investigation of the

relationship between properties of recursively enumerable sets under C* and their degree

of computability. Our approach differs from this preceding work insofar as it also applies

to "actually computable" sets (i.e. sets in P). Therefore it provides an opportunity to

develop finer construction tools that can be used to examine also the structure of sets

of small complexity.

Theorern 9. Every set X can be split into two sets ,4., B of the same complexity type

as X (i.e. X : AIJ B, AìB :Ø, X -c A:c B).

Idea of the Proof of Theorem 9. Associate wiih the given set X a characteristic

sequence (ú;)¡eiu as in Theorem 1. For every e, n € N and r € {0' 1}- define

TIME(e,ø) :: (number of steps in the computation of {e} on input ø)

and

MAXTIME(e,n) :: nrax{TIME(e,a) I l"l : "}.
It is sufficient to partition X into sets ,4, and B in such a way that for every e € N the

following requirement s R!, R! , S!, S: are satisfied:

R!:e (A: {e} + V/ € T(Vn(MAXTIME(e,") S /("))
+ fi e N("f : o({¿¡}))))

Sj :<+ A e DT I ME({¿"}(n)).

R!,5! are defined analogously.

Note that it is not possible to satisfy R! bV simply setting A(x) ::1 - {e}(ø) for

some ø: in order to achieve that ,4 C X we can only place ø into A if. a € X.
Instead, we adopt the following strategy to satisfy ni (ttre strategy for .Rf; is

analogous): For input ø € {0,1}* compute {"Xt).

Case f. If {e}(ø) : 0, then this strategy issues the constraint "x e A ë x € X').

318 Maass, Slaman e97-322)

Case II. If {e}(r) : 1, then this strategy issues the constraint "* I A" (which forces

øinto Bif æ€X).
In the case of a conflict for some input c between strategies for different require-

ments one lets the requirement with the highest priority (i.e. the smallest index e)

succeed (this causes in general an "injury" to the other competing requirements).

The interaction between the described strategies is further complicated by the fact

that in the case where .Rf is never satisfred via Case II, or via Case I for some a e X,
we have to be sure that Case I issues a constraint for ølmost eaery input r (provided
that the simulation of ie)(ø) is not prematurely halted by some requirement .9f wiih
i 1 e, see below). Consequently the number of requirements whose strategies act on

the same input ø grows with lrl (only those Rf,Ef with i < lrl can be ignored where

one can see by "looking back" for lcl steps that they are already satisfied).

The strategy for requirement ^9/(S"B) is as follows: it issues the constraint that for
all inputs ø with lrl >

" the sum of all steps that are spent on simulations for the sake

of requirements rBf, RP,Sf ,Sf with i) e has to be bounded by O({ú"}(lrl)). One

can prove that in this way S!(SÐ becomes satisfied (because only finitely many inputs
are placed into á or B for the sake of requirements of higher priority). One also has to
prove that the constraint of .9/ does not hamper the requirernents of lower priority in
a serious manner.

In order to verify that this construction succeeds, one has to show that each require-

ment.rBf,-Rf is "in¡ured" at most finitely often. This is not obvious, because we may

have for example that Bf;-, (which has higher priority) issues overriding constraints for
infinitely many arguments ø according to Case L However in this case we know that
only finitely many of these ø are elements of X (otherwise .,Bf-1 would have been seen

to be satisfied from some point of the construction on), and all of its other constraints

are "compatible" with the strategies of lower priority (since we make .4., B ç X).
Finally we verify that each requirement R!(R?) is satisfred. This is obvious if

Case II occurs in the strategy lor R! for some input ø where -Rl is no longer injured;
or if Case I occurs for such input ø with o € X (in both cases we can make ,4. * {"}).
However it is also possible that ¿ /. X for each such r (and that {e} : 1), in which case

.Rj becomes satisfied for a different reason. In this case we have {e}(ø) : 0 : X(n) fot
each such ø. Therefore we can use {e} to design a new algorithm for X that is (for every

input) at least as fast as the algorithm ie) for.4 (it uses {e} for those inputs where {e}
is faster than the "old" algorithm for X of time complexity {t"}). therefore one can

prove that X e DTIME(f) for every / € ? that bounds the running time of algorithm

{e} for ,4. This implies that /(n) : O({t¡}(n)) for some J e N (by construction of the
characteristic sequence (t¿)¡eN). D

Corollary 2. For every complexity type C # O the partial oñ,er PO(C) of sets in C

has neither minimal nor maximal elements.

Maass, Slaman e97-322) 319

Let POol(C) be the pa^rtial order

({XlX eCv X : {0,1}* VX : di,g.)

(thus POg,1(C) results hom PO(C) by adding the smallest set / and the largest set

{0,1}.).

Corollary 3. For every complexity type C there is an embedding ,E of the partial
order of the countable atomless Boolean algebra AB into POyJ(C) with.Ð(1) : {0,1}*,
,Ð(0) : /, and E(avb): E(a)U.E(ó) as well as E(aAå) : E(a)ì.Ð(ö) for all elements

a,b e AB.

Remark. In order to define this embedding .E one starts with any two sets X, {0, 1}- -
X in C, and applies thè splitting theorem iteratively. The idea is to represent the

elements of AB by arbitrary finite unions of those sets in C that are constructed in this

way. In order to guarantee that these finite unions [/ are also in C (unless ¿/ :* {0, 1}*)
oné has to prove a slightly stronger version of the splitting theorem. The following
additional property of. A, B is needed: For every f e T for which there exists some

U e DTIM,E(/) with UnX: AotUìX: B one has X e DTIME(/). One can

prove this stronger version with a small variation in the strategy for requirement R!
(.Rj can now be satisfred via Case II at a single input ø only if. a e X; if .Rf never gets

satisfied at any input ø via Case I or Case II one can argue that ø / X whenever the

simulation of {e}(ø) can be finished in an attempt for R!, independently of the output
of {e}(z)).

In the following we write YCX ilY ç X and X - Y is infinite.

Theorem 10. (Density Theorem)

Assume thatYCX and Y 1c X (i.e. V/ eT(X e DTIME(f) +Y e DTIME(Í))).
Then there i..?t ,4 such that YC,ACX and A:c X.

Idea of the proof of Theorem 10. Let (f;);eu be a characteristic sequence for X.
It is sufficient to construct .4 such that Y ç Aç X and for all e € N the requirements

R.,5",T.,(J" are satisfied, where R"rS" are identical with the requirements.Rj,.g/ in
the proof of Theorem 9 (together they ensure that A:s X) and

T"i lA-Yl2e
U"i lX-Al2e.

The strategy to satisfy R" is similar to the strategy for satisfying Rf . However in
Case II (where {"Xr) : 1), unlike in ihe splitting theorem, A" does not have the power

to keep r out of .4 (even if r?" has ihe highest priority) because r may later enter Y.
Instead, -R" issues in Case II the constraint "ø / A ç r lY" (i.e. rB" wants to keep r
out of A if if turns out that x / Y).

320 Maass, Slaman (297-322)

It is easy to see that ,R" becomes satisfied if Case I occurs for some ø € X, or if
Case II occurs for some r lY (provided that R" is not "injured" at r by requirements

of higher priority). If neither of these events occurs, then we can conclude ihat {e}(u) :
X(r) whenever the simulation of {e}(r) can be finished before it is halted for the sake

of some requirement S¡ with i (e. This information can be used (as in the proof of
Theorem 9) to design an algorithm for X that converges for every input c "at least as

fast" as the computation {e}(ø). tr

Corollary 4. For every complexity iype C the partial order PO(C) is dense.

It is easy to see that PO(C) is isomorphic to the countable atomless Boolean algebra

AB if. C : O. Furthermore it was shown that AB can be embedded into POo,1(C) for
every complexity type C. However the following corollary suggests that the structure
of the partial order PO(C) is substantially more complicated than that oÍ AB if C + O.

Obviously any complexiiy type C I O is closed under complementation, but not under
union or intersection. However, it could still be the case that any two sets A, B e C

have a least upper bound in the partial otdet PO(C). This is ruled out by the following
result.

Corollary 5. Consider an arbitrary complexity type C I 0. Then any two sets A, B €
C have a least upper bound in the partial oÃer PO(C) if and only if AU B e C. In
particular one can define with a first order formula ovet PO(C) whether AU B e C

(respectively An B € C) for A,B e C.

Proof. Assume that A, B eC, AUB lC, AUB C D and D € C. Then (AUB) <c D
and (,4 U B)cD. Thus there exists by Theorem 10 a set Dt e C with (,4. U B)çDtçD.
Therefore Dîs not a least upper bound for A and B in PO(C) - n
Remark.

This result suggests that the first order theory of the partial oÅet PO(C) is non-

trivialforClO.

6. Open Problems.

There are various results in structural complexity theory which state that there
exist in some complexity class .I(sets with a certain property Q. Each such result
gives rise to the more precise question which complexity types in .I{ contain sets with
property 8. At examples we mention the open questions whether every complexity type
contains a tally set (i.e., a subset of {0}-), and whether every complexity type C $ P
contains a minimal pair of polynomial time Turing degrees. The answers to a number

of open problems of this type appear to be of interest on their own. Furthermore their

¡
Maass, Slaman e97-322) 321

solutions may help to enla.rge our reservoir of construction techniques for computable

sets (in particular also for sets of "low" complexity).

Another problem area is the characterization of the structure of the (time-bounded)

degrees of computability of the sets in a complexity type C. For example one would like

to know whether the sets in C rcalize infinitely many different types in the first order

language of the partial o¡der of the degrees in C, and whether this theory is decidable.

Other open problems arise if one compares the degree structures of diffe¡ent complexity

types. For example we do not know whether the structure of polynomial time Turing

degrees of sets in a complexity type C ç P is the same for each such complexity type, and

we do not know whether Theorem 8 specifies the only difference between the structure

of linear time degrees within a non-zero complexity type C Ç P.

An interesting open question about the lattice of all complexity types under (6r is
whether there is an automorphism of the partial order of complexity types that moves

some complexity type in P to a complexity type that is not in P,

With regard to the partial otder PO(C) of sets in a complexity type C under

inclusion, it would be of interest to know whether the structure of. PO(C) depends

onCforC+O.
Finally, we would like to point out that all other resource-bounds for computations

(e.g. nondeterministic time, or deterministic space) give also rise to the consideration of
corresponding equivalence classes (or "complexity types") of those sets that are equiva-

lent with regard to these complexity measures. Many questions that relate complexity

types for deterministic computations with complexity types for nondeterministic com-

putations or space bounded computations are obviously very hard. However some of

these may turn out to be easier to answer than the related ttglobalt' questions about

inclusions among the corresponding complexity classes. As an example we would like to

mention the problem whether there are sets ,4., B such that A lç B (i.e. á and B have

different deterministic time complexity), but for all space constructible space bounds /
we have A e DSPACEU) ë B e DSPACEU).

RBrnRnncps

[1] A.V. Auo, J.E. HorcRonr, J.D. Uu,rvr¡.u, The Design and Analysis of Computer
Algorithms, Addison-\Mesley (Readin g, I97 4).

[2] M. Blulr,t, A machine-independent theory of the complexiiy of recursive functions,
J. ACM, 14(1967), 322-336.

[3] S.A. CooK, R.A. RBcxHow, Time-bounded random access machines, J. Comp.
Syst. Sc., 7(1973), 354-375.

[4] A.K. Dnwonnv, Linear time transformations between combinatorial problems,
Internat. J . Computer Math,, 1 1 (1982), 91-1 10.

322 Maass, Slaman e97-322)

[5] J.G. Gosxn, D.T. HuvnH, A.L. Solu.e.n, A hierarchy theorem for almost every-
where complex sets with applications to polynomial complexity degrees, Prbc. of
the 4th Annual Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science, vol. 247 (Springer, 1987), 125-135.

[6] J. H,tnrMANIS, J.E. HopcRoFT, An overview of the theory of computational
complexity, J. ACM, 18(1971), 444-476.

[7] R. L.a.onnR, Og the structure of polynomial-time reducibility, J. ACM,22(1975),
155-i 71.

[8] L. L,tulwBBER, R. Lrrrou, ÄND E" RosBRrsoN, On the structure of sets in NP
and other classes, TCS, 15(1981), 181-200.

[9] M. LnRIr,tau, Degrees of Unsolvability, Springer (1983).

[10] L.A. LEvIN, On storage capacity for algorithms, Sovieú Math. Dokl., 14(1973),
r464-t466.

[11] N. LvNctt, Helping: several formalizations, J. of Symbolic Logic,40(1975), 555-566.

[12] W. M,tass, T. A. SlnltaN, The complexity types of computable sets (extended
abstract), Prcc. of the Structure in Complexity Theory Conference, 1989.

[13] W. MAASS, T.A. SllvrlN, Extensional properties of sets of time bounded com-
plexity (extended abstract), Proc. of the 7th Int. Conf . on FundamentaJs of Compu-
tation Theory, J. Csirik, J. Demetrovics, F. Gésceg, eds., Lecture Notes in Computer
Science vol. 380, Springer Verlag (Berlin 1989), 318-326.

[14] W. MAASs, T. A. SLnltnN, The complexity types of computable sets, in prepa-
ration.

[15] M. M.a,cH'rnv, P. Youuc, An Introduction to the General Theory of Algorithms,
North-Holland (Amsterdam, 1978).

[16] S. MaHaNoY, Sparse complete sets for NP: solution of a conjecture of Be¡man
and Hartmanis, J. Comp. Syst. 5c.,25(1982), 130-143.

[17] A.R. MEYER, P.C. FrscuER, Computational speed-up by effective operators, J.
of Symb olic Logic, 37 (7972), 55-68.

[18] A.R. MnvnR, K. WwxluANN, The fundamental theorem of complexity theory,
Math. Centre Tracts, 108(1979), 97 -1I2.

[19] W.J. Paul, Komplexitaetstheorie, Teubner (Stuiigart, 1978).

[20] C.P. ScttllonR, G. Sruupr, A characterization of complexity sequences, Zeitschr.
f. math. Logik u. Grundlagen d. Math.,21(1975), 47-56.

[21] J. SuIlon.L, T.A. Sl¡tr¿AN, On the theory of the PTIME degrees of the recursive
set, Proc. of Structure in Complexity Theory Conference, 1,988,252-257.

