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THE UNIFORM REGULAR SET THEOREM IN
A-RECURSION THEORY1

WOLFGANG MAASS

Several new features arise in the generalization of recursion theory on crl to
recursion theory on admissible ordinals d, thus making ¿y-recursion theory an
interesting theory. One of these is the appearance of irregular sets. A subset A
of a is called regular (over a), if we have for all B<a that AnBeL-,
otherwise A is called irregular (over ø). So in the special case of ordinary
recursion theory (d: o) every subset of a is regular, but if a is not a cardinal
of L we find constructible sets A Ç a which are irregular. The notion of
regularity becomes essential, if we deal with a-recursively enumerable (a-r.e.)
sets in priority constructions (a-r.e. is defined as >1 over L.). The typical
situation occurring there is that an d-r.e. set A is enumerated during some
construction in which one tries to satisfy certain requirements. Often this
construction succeeds only if we can insure that every initial segment A fì B of
A is completely enumerated at some stage before a. This calls for making sure
that A is regular because due to the admissibility of a an d -r.e. set A is regular
iff for every (or equivalently for one) enumeration / of A (f is an enumeration
of A iff f :a-->A is a-recursive, total, 1-1 and onto) we have that VB <
aAo 1 a(A ît þ C fþD f[ø] := f"o is the image of the set ø under /).

Although there exist irregular a-r.e. sets for many admissible a (namely
those a where a*,the I'-projection of a, is less than a), the situation is not
bad, for Sacks proved in [3] that for all a-r.e. sets A there exists a regular
a-r.e. set B of the same a-degree as A (regular set theorem). We can
therefore overcome the difficulty of dealing with irregular sets in a priority
construction as follows: Instead of performing a construction directly for a

given o-r.e. set A, we first choose a representative B of the ø-degree of A,
which is a-r.e. and in addition regular. Then we apply the construction to B
instead of A.

The only unsatisfying point is that this treatment makes the final result
nonuniform because all known proofs of the regular set theorem which give the
step from A to B contain a nonuniform step. These proofs require us to leave
the universe L" and define from the outside the index of B for a given A, using
the extension of A rather than merely the index of A. Sacks asked therefore in
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[3, Question Q7], whether an d-recursive function can be defined which
computes for any given index of an a -r.e. set an index of an a -r.e. regular set of
the same a-degree. This question was later repeated by Shore [5], who in the
meantime had developed methods which in some cases eliminate nonuniform
steps in the priority construction itself.

We give here a positive answer to this question in Theorem 1. We further
prove in Theorem 2thatin fact a single natural number ftocãrr be found such
that for every admissible ø the a -recursive function {no} does the desired work
on a. This might be a bit surprising, because deeper theorems which work
uniformly for every a. are a rare species-the only other member known at
present seems to be Shore's uniform solution of Post's problem [6]. As a
corollary of Theorem 2we get a uniform simple set theorem. The application of
Theorem 2 to Shore's proof of the splitting theorem yields a relatively uniform
version of the splitting theorem.

$0. Preliminaries. A function f : a --> o is called a -recursive if the graph of
/ is ø-r.e. (i.e.I,'L"). a* (the I, projection of a) is the least ordinal ô < a such
that a total a -recursive 1-1 function P : a ---> a * exists. Since a * is at the same
time the least ordinal ô such that an a-r.e. A C ô exists with A I L-,irregular
a-r.e. sets existiff a* 1a. A set K e L. iscalled a-finiteif K C 1". Fromsome
fixed universal I,L" set U we get an indexing (W").." for a-r.e. sets.

Forsets A,B çø we say that A is a-recursivein B (A -"B)if wehavefor
soûle ?6, e1 (which we call the indices of the reduction procedure) that for every
KEL-

K Ç A <->AM,N€L"((K,M,N)e W. 
^ 

M çB n N C a - B),

K Ç a - A <->3MN e L"((K,MN) € W., n M Ç B n N C d - B).

Observe that we have to check only the second equivalence if A is IrL..

$1. The uniform regular set theorem for a fixed admissible a. We are going
to discuss the nonuniform proof of the regular set theorem first in order to
make the problem clear (we use the simplified version of this proof due to
Simpson [4]).

Let f : d --> A be an enumeration of an irregular a-r.e. set A. Define the
deficiency set D of / by

o : {x I =y 
> x(f (y) < /(r))}.

D is then again a-r.e. and in addition regular. If ,4 happens to be a subset of a * we
can see easily:

(1) A <-D because fora given z 1 a* we take x e a -D such that f(x)> z
and may then reduce the fI, statement z É ffal to the equivalent å statement
zÉf[x).We can always find the x lor z (a* such that x e.a-D and,

f@)> z, because z ìA is ø-r.e. and bounded below a*, therefore a-finite.
Thus z n A ç/[xr] for some x0 and we may take the x >xo such that /(x) is
minimal, which is of course in a - D.
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(2) D -"A, because K Ç a - D <->U,="(/(r) - fþDC a - A.
If we are not so fortunate as to have that A C a * we have to consider in (1)

elements z>-d* as well and we may not find the desired xe a-D vvith

f(*)> z, because z ìA need not be a-finite. Therefore the given A Ca is
first projected by some a-recursive projection P:a---> ø* into the a-r.e. set
Ã:: P[A]. Then we take an enumeration f of Á and define the desired
regular set to be the deficiency set of f nut ttris approach tends to conflict with
(2): ln order to verify now that K C a - D we would like to ask whether
P"[H)Ça - A holds for I/:: LJ,=*(f(*)-/[x]). But in order to compute
P-'[H] recursively in A we have to compute ,F/ ORgP recursively in A. For
this we need that RgP<.,A. Since P cannot be chosen such that Rgp is
a-recursive, we are forced to take for every given A a different projection pa
such that RgPo <.,4. The canonicalway to define such a projection Po is to
look from the outside at the finished enumeration of A and choose the minimal
7o such that the enumeration of yo ll A required unboundedly many steps. We
then get immediately a total projection g i d -) f oì A and together with an
a-finite 1-1 onto map h tfo--->a * we may define P¡:: h.g and as Rgp¡:
h[yoflA] we have Rg P,.<.A. The choice of 7o is in an essential way
nonuniform, because there is no hope of computing /o a-r€cursively from an
index of A.

Sacks came up with a very stimulating and natural idea to overcome this
difficulty: Define the desired regular set D as an effective disjoint union
O:{(y,x)lxeD,} of deficiency sets D7 for every l1d, such that every D,
is a guess at the correct 7o. So every D" should be defined as above, using
instead of g a projection g" of an initial segment of a onto 7 O A. Since g" is
the total projection g i d --> Toer A which was used before, we have the correct
deficiency set as the component Droin D. Since we are allowed to use /o as â
parameter in the reduction procedure we have then A <"D. Unfortunately
with this approach one runs into serious difficulties proving that D is regular.
Though every single D" is regular, the set D might not be regular because
every component D" uses a different projection.

The following uniform proof of the regular set theorem leaves the idea of
embedding the nonuniform proof in a uniform construction behind and is
based on an intrinsic uniform proof strategy (which results in getting in addition
uniformness with respect to the reduction procedures). We forget 7o and take a
fixed projection P id.-->q *. Returning to the previous discussion of the
nonuniform proof one wanted to compute Rg P recursively in A. But instead of
making Rg P recursive in A (which causes the nonuniformness) we change the
question asked about RgP. Whereas RgP is nonrecursive, Rg(Ply) it
recursive (with 7 as additional argument). Therefore we decompose the global
deficiency set of P '/ into local components D", each of which codes essentially
only A O 7 but does not use more of P than P | 7. The desired regular set
D : {(y,x)lx e D"} is therefore recursivein A. On the other hand "z Ø. A" is
a "local" property of A and therefore may be recovered from local compo-
nents D" iÎ y > z.
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THeoner\a 1. Assume a is admissible. Then there is an a-recursiue function r
such that for all e E a the d -r.e. set W,ç¡ is regular and of the same a-degree as
W". Furthermore the indices of the reduction procedures between W. qnd W,ç¡ can
be computed a-recursiuely from e as well.

Pnoor'. Let P:a--> d * be an d-recursive projection. From a given set W"
we first go to the nonempty set M::{O}U{x+1lx€ W"} and then to the
unbounded set A:: {qlK,aMlØ}. For this we use a total map 4 -+Kn
from a onto L". For later use in Theorem2we assume that the map is defined
uniformly by a parameter-free A'-formula for all admissible a.

We take then an enumeration f : a -- A o1 A and define the desired regular
SEt AS

D :-- {(y,x) I ly > x(/(y) < y 
^ 

P (1O)) < p(/(x)))}.

It is obvious that an index r(e) for D can be computed a -recursively lrom e,

using the index for P as the only parameter.
(a) A="D. Let z e. a be given. K::(P(z)+1)nP[A] is ø-finite and

therefore P-'[K] g /[x'] for some xo. Take I > xo such that p(/(y)) is minimal.
Using this y as witness for the right side we get "-" of the following
equivalence:

z É. A <->3y((z + 1, y)e a - D n P(/(y)) > P(z) ¡ z Ø fÍyl).
For "<-" assume for a contradiction that z : /(yr) for some )o and that y is
witness for the right side. This cannot be because the properties of yo imply
then that (z *l,y)eO.

The set A has by construction the property that for any B C a: A is weakly
a-recursive in B ift A is a-recursive in B. Thus we have proved that A <.D.

(b) D is regular ouer d. We show that for every B1y, D n{(y,x)l
y < B ^ 

x < B|€L". Choos€ /r<B minimal such that 
=y 

> þ(f0)<7) (y,
need not exist, but this case is trivial). If 7r < B take lr-- þ such that f (y,) < y,
and P(/(y')) is minimal. If a 7z exists suchthat yrlyz<B and ay>P
(/(y)< y,^PUOD<P(/(y'))) then choose the least such. Choose /z such
that f (yz)l yzand PU0ù) is as small as possible. Continue this construction as

long as possible. Since P(/(y,)) is descending the construction has only finitely
many steps. We arrive at sequences 7,,...,Tni 1t,...,y, such that for all
y <Pirf yt=y 1yi+r then min{P(/(y))iy >þ ¡f(y)<y}: P(/(y,)) (define

l^+ti: B forcompleteness). D ñ P x p isthen a-finitebecause iÎ y,x € B and
(y,xleD,we can either find a witness y <B with y>x, f(y)<y, P(fj))<
pU@Ð or min{P(/(y)) jy > þ ¡f(y)<7}< p(f@D in which case we only
have to look at the value P(/(y,)) where T, = 1 l li+r.

(c) D <"A. It is obvious that

(y,y) e a - D <->{z e y I 
p(z)< p(/(y))} - fblc a - A,

therefore

K Ç a -, -,,.yu*({z e t I 
p(') <rff(y))}- /tyl) Ç a - A

where the union LJ1",r,.*". is of course ø-finite.
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Rnn¡,nxs. (1) This theorem works as well for admissible structures (L., c)
with C regular over L..

(2) The additional uniformness with respect to the indices for the reduction
procedures shows that the regular set theorem is in fact an "a-eftective
statement": The regular set theorem claims for every ¿ the existence of three
ordinals: an index e' ror a regular set w'.. and indices for the two reduction
procedures w" =.w", and w",-. v7". Theorem 1 shows that witnesses for all
three existential quantifiers can be computed a -recursively from e.

$2. The uniform regular set theorem uniformly for art admissibre a. Here
we want to get rid of the parameter of the projection p : a -->a* which was
used in the definition of the function r in Theorem 1. we are going to do this by
using X'-Skolem functions. Proofs for the following easy facts about the fine
structure of L can be found in Devlin [1].

For any d one can define uniformly by a r,-definition over L. without
parameters a å-Skolem function h. h ]s a partial function a x L. -+ L. which
generates l,-Skolem hulls. We need the following property of. h: If X Ç L. is
transitive and closed under pairing, we have hlo x Xl: Lu for some B < a
where Lp1r,L.. Furthermore there is no y <B such that oxX CL, 1;,,L.,
due to the parameter-free å-definition of å.

Define Lo to be the closure of Lu U {ô} under pairing. The function 6 - í"
has a parameter-free l,-definition over L_ and \rye have íu C Lu*-,
La E Lt,*-*t. Every ru has the properties required above for X and therefore
hlot x íu1 is "the next x,-substructure Lp ar[er 16", being equal to t. if there
exists no p <a such that ô < B and Lp (r,L..

Inverting these }-Skolem hull constructions we get l,-projections: Define
R(ô, x, y):= (y : (yo, ),) e íu ¡ h(yo,y,): r). R has a paiameter-free 2,L--
definition and therefore we can define a å-uniformization p : a x a --> a of R
by a parameter-free formula. It follows that for all limit ordinals ô, p(ô, .)
maps /r ¡co x írl 1-1 into lu. In particular if there is no ô') ô such that ô,( a
andLy 1r,L., wehavethat P(ô,.)mapsa 1-1 intoiu. In thecase d*<ø we
can always find a limit ô > a * with these properties. we are going to use
P(ô0,'), where ôo is the least ô such that domP(ô, .): o, as the projection in
the deficiency set. Though P(ôo, .) projects only into l*, we get a projection
into a * by using that a * is the cardinality of f* in L.. Since we do not want to
use ôo or a * as parameters in the definition of the deficiency set, we develop for
every ô a deficiency set D¡ similar to that in Theorem 1 which uses p(ô, .)
together with an a-finite 1-1 map of i, into the guessed a-cardinality or i" as
the projection. we define the desired regular set D as the eftective disjoint
union of the sets Dr. Because every D6 uses a different projection, we have to
take precautions in order to keep D regular and recursiv e in w.. The idea is to
put some restrictions on the definition of every D5, which will not harm D6" but
will deform the other sets Do in such a way that we can handle them easily. This
is done by using the fact that for every ô > ôo we eventually find a witness for
-r L6 (¡, L" and that for ô ( ô0, domP(ô, . ) C L*.
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Tueon¡u 2. There exists a nøtural number no with the following property:
For euery admissible a >- a the a-recursiue function {no} is total ønd for euery
e € a, W6o¡1"¡ is a regular set such that W6o¡1.¡:-W".

Pnoor'. We construct a parameter-free lr-formula V(u,u) such that for
every admissible a >a¡ and every e €a the @-r.e. set {u e.a lL" ts!P(e,r.r)} is
regular and has the same a-degree as W". The desired index no is then
essentially a code for V.

From a given a-r.e. set W" we proceed as in Theorem 1 to an enumeration
f :a-- A with index ã where A:-W". The following regular a-r.e. set D is
then of the same a-degree as A:

p::{(ô,7,r)l(6 : r:0 nfy > x(f(y)</(r)))v (ô limit ¡iueL,
n 3fg e L,(L,tsfg:i,,--> { l-l n-=ra(g,((,1€ ¡ g,:í6--> €,1-l)]
n Vg'€ L,(g' : L" + € 1-1--+ g'{" g)

nSy3u(y >.r n (3o e ô(u limit)

--->Vw e L6(Ly ts <Þ(w)-+ Lo ts O(w)))

rt Lrts[-At'g'(t'< É ¡ g': ir-- 1' 1-l)]

¡ l0) < y n3x'y'e' e íu(¡(u)< y n P" (6,ë): 
"' 

n P"(ô, f@)): t,
n P'(ô, l0D: y' ¡ g(y ') < g(r,)))))).

The formula @ which occurs in the definition is a parameter-free X,-formula
with the property that Lu 1r,L. <>Vw € L" (L- F <Þ(w)--+Lu ts Õ(w)). <Þ can
be defined easily with the help of the l,-Skolem function /r.

We further used a wellordering 1. o1 L_, which can be defined uniformly
(parameter-free) A, over L.. We assume that <. has the property:
Vþye a(p<y ax€-.Lp¡le L,-Le+x<-l).

The statement P'(ô, x)-x'is an abbreviation for ¿, tsO0(ô x)-x, where
@o is the l,-formula defining P.

Those features of the set D which we did not explain before are built in for the
sake of the case d. : d.*. Whereas for o * ( a the set S of å-substructures Lp
of L. is c-finite, we have for a* : a that s is unbounded in a and not d-r.e.
Therefore the sets D, which use P(ô, . ) as a projection are too unstable to code
A in a nice way. we added therefore as the set Do the deficiency set of / to D.
A further precaution insures that the rest of D does not get too strong in the
case d * : d i In general we cannot decide recursively in A in this case whether
for some E, z P(6,2) [ (converges). In order to avoid brooding too long over
this decision , if A happens to be regular we project only those z such that
P(õ, z) converges in a given time. The disadvantage of this limitation is that we
have to argue more carefully in the case d * ( a of the proof.

First we introduce some abbreviations for the proof. An a -recursive set M is
defined by (ô,7, x)e¡ut<>L"eL, 

^L,tsf¡t G:i.u--t ( l-l).
An a -recursive function H with dom H:M is given by

H((õ,y,x)): G,g)r.f,ts[g:í"--+ { l-L n--t3{,g,({,1€ ¡ g,:í"-->6, 1-t)]

n Vg'€ L,(g' , í, -- É L-L--> g {"g,).
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We write F(y,u,õ,"y,x,(g,Ë)) for the formula which follows the
quantifiers Syau in the definition of D. Observe that ,,(6,y,x)e
dom,EI n -F(y, u,õ,^l,x,H((6,y,)c>))" can be expressed by a l,-formula over
L..

If (ô, 7, x) e D because of the second part of the definition of D, we call
those y,a witnesses for (ô, T,x)eD which, for the appropriate g,f, satisfy
F(y, u,6, ^f , x, (g, 6)).

For the case .' * < a we write ôo for the least limit ordinal ô such thdt
domP(ô, .): a. Observe that L* 1r,L. if ô0> ø. We further write Í for the
least x such that i,^e L, 

^ 
L, ts [3g : i6--+ a* l-I]and f for the <. -minimal g

with L, F [g : i*-- a* 1-1].
(1) c*<c. (a) A<*.D: We have

z Ø A <+ayxu(x > î ¡ z < y n f(u) < y
n P"(ô¡, e) I ¡ P"(6o,/(r)) J a P"(ô6, z) I ¡

g(P(ô0, z))< g(P(60,1@Ð) ¡ --r z € fÍ*l ¡(60, 7,x) e u - D).
"--)"i í:: g(P(ô0, z)). Then K:= g.p(ô0, . )[A] n Z + I isa_finite because

í 1 a* . This implies that K, :: (á . P(ôo, . )-'[K] is a -finite and a subset of A.
Therefore we find yo>i such that Krgftyrl.choose xs>lo such that the
value $(P(6",f(xo))) is as small as possible. By definition of yo we have
í < S(P e then sorne uel 7o such that f (uo)1yo, Z ( 7o and
P""(ô0, ë , P*(ô0, z) [ .It is obvious that yo,x6, øo satisfy the
right sid ce.

"<-": Assume that the right side holds for y,x,u and z : f (Ð for some y. It
follows that y,ø are witnesses for (õo, l,x)e D, a contradiction.

(b) D is regular ouer Lo: Fix B (a. We want to show that {(ô,y,¡)l
6,y,x 1 PIÀ D €L. Defina Mti={(ô, y,¡)l ô : y :0n ¡ < B}. Take to> g
such that /(y.) is as small as possible. Then (0,0,x)€ M1 gets into D ift there
exists y < )osuch that y > x n T(y)< f@).It follows that Mtn D C L.. Define

liI:: {(6, y,x>l õ, y,x < p n ô limit ¡ i,u e L, ¡ L,tsaúk : í, --rE 1-1).

ú is a-finite.
Define Mr:: {(6, y, x> e ¡ø I A , ô6}. Choose uo such that

Vô < B(ô ) ô6-+ )w €. L5(L^ts O(w) 
^ 

L, ts - O(w))).

Then ve to consider wit
Choo har Vô < BVz < z
Take I as possible. Then
witne , we can find such
we have found a priori bounds on witness es y, u which put elements of Mz into
D, it is obvious that Mrn D e L..

M¡::{(ð,1,x)e¡øl A = ôoÂr <Í}. Then j is an a priori bound on
witnesses y. Take zo as before and choose uo such thatyz <zo(p%(õo,z)!).
Take ur such that ,tzro and f(ur) is minimal. Then ø, is an a priori bound
on u.
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Mo:: {(õ, y, x> e ¡ø I a : ôo Â .r 2 f }. A bound ul on witnesses a is defined
just as for Mt. For witnesses y we argue as in the proof of rheorem 1. Take
Tr= þ as large as possible such that

Vy < y,-fy = þAu$(y)< y ¡ f(u)< 7 n p"(ô0,/(y)) J ).
If 7r < B take f '> þ which satisfies /(y,) 1yr Aau(f (u)1Tt 

^p"(a,,/(y,)) J )
such that the value á(P(ô0,/(y,))) is as small as possible. we then look for the
minimal þ< I such that yz) y1 and

3y > þ(/(y) < y, n JuÇ(u) 1 Tz ^p, 
(ô0, /(y)) j

n g (p(ô,, /(y )) < I (p(ô0, /(y,))))).

lq:il 19 lake )z such that f(P(ô6,1(y,))) is minimal. Since the sequence
g(p(ô.'/(y'))) is descending this process stops after getting sequences
I r, . . .t "1" ) ! t,, . ., I ^. 

Define Tn+t i: B. Then'for elements (6, y, x) ol Mo we only
have to consider witnesses usuu y=p and-if T,=l(7i*r_the
witness yi.

Ms::{(ô,y,x)etítl ô<ôo}. If y is wirness for (ô,y,x)eD where
(õ,y,x)€M,, rhen p(ô,/(y))J,{a, ã) + ana Luo(",L.. This implies thar y( ôo and therefore ôo is an a priori bound on witnesses y. A bound on
witnesses u is given by ø1 such that ut > ôo and /(u,) is minimal.

(c) D <-A: For this part of the proof we analyze the given set K in
essentially the same way as we did with the set M in (b). For those parts of K
which correspond to the previous sets MtMowe set up the computation in A
which is typical for deficiency sets. For the other parts we again search for a
priori bounds. This gives rise to the following computation:

K Ç a - D <->3226(z > supK A zo ) z,e,ffzl n

3K1(K1 : {(õ, y,x) e K | 0 : 7 : O} n

U (f @)- fî*Dc a - A) n:r(K
(O,0,¡)eKr

={(ô,7,r)eK jô limit níueL, n

L,ts=StG: Lu -+ f 1_1)Ì naK2(K2: {(ô, y, x)e kjô > ô6} n

3u6(Vô < z(ô limir n ô ) ôo--->

3w e L"(L.F O(w) 
^ 

Lttsr <Þ(w))) n

SuoYu < zoV6 < z((ô limit n ô ) ôo-+ p,"(ô, u) J ) n

3u, = uo(l(u,) - lÍr'lÇ a - A rt

V(ô, 7, x) e KrVy 1 uoV u s ut

- (F(y, u, õ, t, x, H ((6,7, x )))))) n 3K,(K. :
{(ô, y,x)e f la : ôon x < i} ¡

SuoVo 1zo(P""(õo, u) ü n iJur> uo
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(1@)- llr,lç a - A n V(ô, 7, x) € K:Vy < i,Yu < ut

- F(y, u,6, l, x, Ëf ((ô, 7, r ))) 
^

aKo(Ko= {(ô, 7, x)e kl ô : ôo n x = Í} n

U (lzeylSu=u'
(ô'v'x)ÉK¿ 

$@)< y n p,(6s,é) I ¡p"(ô,,/(x)),1, n p,(ôe, z) tr ¡

É (P(ô0, z)) < g (P (6', /(¡ ))))) - /t' l) Ç " - A)) n 3K'(K' :

{(6, y,x)e f I a < ôo} 
^ 

au,= õs(Í(u,)- fÍu,lÇa - A n

V(ô,7, x) e KrVy < ôoVu 3 ut--1F(y,u,õ,l,x,H((6,y,r)))).

(2) a* : a. (a) A <".D: z É. A <->ax(f(x)> z 
^-1 

z ef[x]n(0,0,x)e
d-D).

(b)D<".4: For a:r,¡ we have KÇa-D<>lJao,o,,¡.*(1@)-/[t])e
a-4.

For ø >ar we have (using the regularity of A):

KÇa-D<-> U ff(r)-/[¡]) Ea-A ¡(0'0'¡)€K 
azyo(z>K n z - Í[y"lÇa - A n

AK'(K': {(ô,7, x) e K lô limit ¡ iu e L, ¡
L,tsAg{G:L"-- f 1-1)} ¡

V(ô, 7, x) e K'Yy 1 loV u ( Io -- F(y, u, 6, "f, x,Ir((6, 7, x))))).

ReNrA,nr. The indices of the preceding reduction procedures can again be

computed a -recgrsively from e for every fixed a. It seems unlikely that one can

eliminate those parameters in the reduction procedures which come from a
(ôo etc.)

$3. Applications. We will discuss applications to inadmissible structures

in l2l.
An immediate application of Theorem 2 is the following.
IJNrFonv SIrutpI-¡ Ser THeoneù1. There exists a natural number nt with the

following property: For euery admissible a>-o) the a-recursitse function {n'} is

total ønd for euery e € a, W ø,¡<"'t:.W. where W u,¡<"', is regular and' simple if W"

is not a-recursiue.
Pnoo¡. An a-r.e. set B C a iscalledsimple iÎ a - B isunboundedbutdoes

not contain an unbounded a-r.e. set (this implies B not cr-recursive). It is well
known that if g i d. --+ D is an enumeration of a regular nonrecursive set D we

have that B : {x l3y > ¡(g(y)< g(x))} is simple and of the same a-degree as

D (B is automatically regular as well). Since this step from D to B is uniform,
we just have to apply this step to the set D: W¡o¡1"¡ which is given by

Theorem 2.

For the following application we use Shore's uniform method for splitting
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regular sets from [5] (which is only nonuniform with respect to the break-up
into the cases d * ( ø and a* : a) and get a

(Rer-nrrver-v) UNmonu SpurrlNc Tnronsrú. There exist natural numbers
n, m with the following property: For eoery admissible a the a-recursiue functions
{n}, {m} are total and for €D€e €1,€ze a we get s¿fs A¡i=W6¡ç,.",,¡¡ akd
B¡i- W 6¡p,..,.i¡ such that A¡ OBr :- W.,, A,n Bi : Ø, W..l-A¡ and W-l-Ù,
if W".>-0 where i :0 if a* 1a and i :7 if a* : a.
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