appears in: COMPUTATIONAL LEARNING THEORY
AND NATURAL LEARNING SYSTEMS,
Drastal, Hanson, Rivest, eds., MIT-Press

How fast can a threshold gate learn?

WOLFGANG Maass! and GYORGY TURAN?

Abstract

This paper addresses a rather old problem in the theory of machine learning: how
fast can a threshold gate (or equivalently: a perceptron) learn from its errors? With the
well-known perceptron learning algorithm (Hebb’s rule) a threshold gate makes at most
finitely many errors. However the number of errors is in general exponential in the number
d of input variables of the threshold gate. We show in this paper that there is a different
on-line lea}ning algorithm for threshold gates, for which the number of errors and the
total number of computation steps is polynomial in d. We prove that the error bound of
this new learning algorithm is close to the theoretical optimum. We also show that the
new learning algorithm can be used for efficient training of threshold gates whose input
variables range over a larger domain, and for threshold gates with multiple responses (for
example discrete approximations to sigmoid threshold gates).

Finally, we examine in this paper the speed of algorithms for threshold gates that
are distributed in the sense that they do not require a global control. It is shown that all
distributed learning algorithms of a similar type as Hebb’s rule and Littlestone’s Winnow
rules are inherently slow.

nstitutes for Information Processing Graz, Technische Universitaet Graz, Klosterwies-
gasse 32, A-8010 Graz, Austria. e-mail: maass@iicm.tu-graz.ac.at. Written under partial
support by NSF grant CCR 890 3398.

2Department of Mathematics, Statistics and Computer Science, University of Illinois at
Chicago, M/C 249, POB 4348, Chicago, IL 60680. e-mail: U11557Quicvm.bitnet.
Automata Theory Research Group of the Hungarian Academy of Sciences, Aradi tér 1,
Szeged 6720, Hungary. Partially supported by OTKA-501.

ot o o At e i e A R et e e e

1. Introduction.

A threshold gate G with weights w;,... ,wq € R and threshold ¢ € R computes the

following function from {0,1}¢ to {0,1}: for inputs z1,...,zq4 € {0,1} it outputs 1 if
d

E w;z; > t, else it outputs 0. Any function that can be computed by such a gate G is

i=1
called a threshold function. For any w = (wy,... ,wq) € R? and t € R one also refers to

) d
Hy = {(:cl,.. .,Z4) € {O,I}d | Zwi:l:,' > t}

i=1

as a halfspace over {0,1}%. This is motivated by the fact that Hy,; = Fw N {0, 1}¢, where

d
Foi= {(azl,... ,zq) € RY | Zwia:,- > t}
i=1
_ is a halfspace over R?. Thus the notions of a threshold gate, a threshold function and
a halfspace over {0,1}¢ are equivalent and will be used interchangeably. The class of all
halfspaces over {0,1}% is denoted by HALFSPACEY.

A threshold gate may be viewed as a simple mathematical model of the computational
abilities of a neuron (McCulloch and Pitts (1943), Rosenblatt (1962), Minsky and Papert
(1988), Hopfield (1982)) and it forms the basic building block of neural networks (Rumel-

" hart and McClelland (1986)). Particular attention has been given to the question whether
it is necessary to “program” a threshold gate by explicitly providing the parameters w and
¢, or whether the threshold gate can automatically learn these parameters from its own
errors in a feasible number of steps.

This question can be made more precise by introducing some standard notions from
computational learning theory (Angluin (1988)).

The learning task is to identify an unknown target halfspace Hr from HALFSPACEZ.
A learning algorithm (or learner) A proposes hypotheses H from HALFSPAC_Eg. If the
current hypothesis H is incorrect, i.e. H # Hr, then the learner receives a counterezample
x from (Hr\H)U (H\H7). In other words, x is an input which is processed incorrectly by
the threshold gate with the current weights and the current threshold. After such an error
the values of the parameters are changed according to the learning algorithm A, to obtain
a new hypothesis. The new hypothesis may also depend on the previous counterexamples,
i.e. on the “history” of the learning process.

The learning complexity LC(A) of the learning algorithm A is the largest number
of errors that may occur before A identifies the target halfspace, for any target halfspace
and any choice of the counterexamples. LC(A) is also called the mistake bound of A
(Littlestone (1988)). The learning complezity LC(HALFSPACE?) of HALFSPACEY is

LC(HALFSPACE]) := min{LC(Aj | A is a learning algorithm for HALFSPACE! }.

1

One can now rephrase the question whether a threshold gate can learn within a feasible
number of steps as the question whether LC(HALFSPACE?) is bounded by a polynomial
in d.

This learning problem has been studied in particular in the context of percepirons
(Rosenblatt (1962), Minsky and Papert (1988), Nilsson (1965)). These are circuits con-
sisting of several gates where only the last gate is a threshold gate with variable weights
and threshold. |

Rosenblatt has shown that the learning complexity of the so-called perceptron algo-
rithm (or Hebb’s rule) for learning a halfspace over {0,1}¢ is finite (Rosenblatt (1962),
Minsky and Papert.(1988)). However the learning complexity of this algorithm is clearly
not polynomial in d (see Section 6). Littlestone (1988) proposed other learning algorithms
for threshold gates (Winnow 1, Winnow 2) but it has remained open whether these can
learn all monotone target halfspaces in HALFSPACE? with a polynomial number of mis-
takes (as the Winnow algorithms only produce nonnegative weights they cannot learn
non-monotone target halfspaces). -

In this paper we show that LC(HALFSPACE?) is polynomial in d.

More generally, we consider threshold gates with d inputs from {0,... ,n — 1}. This
gives a somewhate more realistic model (see the discussion in Hampson and Wolper (1990))
and leads to interesting learning problems even in the case when d = 2. A threshold gate
with d inputs from {0,... ,n — 1} accepts the set

d
Hw,t = {(:171,... ,.’L‘d)E {0,... ,n—l}d l Zwia}izt} =Fw’tﬂ{0,... ,n—l}d,

i=1

called a halfspace over {0,...,n — 1}%. The class of all halfspaces over {0,... ,n — 1}¢
is denoted by HALFSPACEY. The learning complexity LC(HALFSPACEY) is defined
analogously to LC(HALFSPACEY) above. In Section 3 we show that

LC(HALFSPACE?) = O(d*(logd + log n)),

i.e. there is an algorithm for learning a halfspace over {0, ... ,n— 1}? which makes at most
O(dz(logd + log n)) errors. Furthermore, the number of computation steps executed by
the algorithm is polynomial in d and logn.

The new learning algorithms presented in this paper are based on the existence of
efficient algorithms in convez optimization for finding a point in a convex body given by
a separation oracle. The latter algorithms can be used in particular to find a point in
a polytope, thus as a special case one gets those linear programming algorithms which,
instead of using an explicit representation of the input in the form of a list of the faces,
access their input through a separation oracle. Both the ellipsoid method (Khachian (1979),

2

see Grotschel, Lovéasz and Schrijver (1988)) and Vaidya’s algorithm (Vaidya (1989)) fit into
" this framework. Grotschel, Lovéasz and Schrijver (1988) give a general theory, presenting
several applications of this class of algorithms.

We observe that in fact every algorithm for finding a point in a convex body (given by
a separation oracle) gives rise to a halfspace learning algorithm. The O(d?(log d +logn))
learning algorithm is obtained by using the algorithm of Vaidya (1989).

It is substantially easier to design an efficient learning algorithm for halfspaces in
Valiant’s PAC-model (Valiant (1984)) for batch learning. In this model one assumes that
the examples are drawn according to an arbitrary time-invariant distribution over the
underlying domain, and it is sufficient to output an approximation to the target concept. It
turns out that for a learning algorithm in the PAC-learning model it is sufficient to output
any hypothesis that is consistent with the given set of examples (Blumer, Ehrenfeucht,
Haussler and Warmuth (1989)). Hence one can design a polynomial time computable
learning algorithm for halfspaces in the PAC-learning model in the following way: one uses
a computationally feasible algorithm for linear programming for the given set of positive
and negative examples in order to compute some halfspace that is consistent with these
examples. It is easy to see that this method is too weak to yield a learning algorithm
- with polynomial error bound in the model considered here for on-line learning. An on-line
learning algorithm for halfspaces that always outputs hypotheses that are consistent with
all previously seen counterexamples may make up to 2¢ errors in the LC-model considered
here. Hence a different approach is needed.

We also exhibit in this paper an efficient learning algorithm for threshold gates that
have more than two output values. A multithreshold gate G with weights wy,... ,wg € R
and s different thresholds t; < ... <t, (t1,...,ts € R,s € N) is assumed to compute the
following function fg : {0,... ,n —1}¢ = {0,...,s}:

d
max-< J w;T; > t; if this set is not empty
fG(xlv"'vxd)= {]| izzl e J} ’ ,

0 , otherwise.

We write MULTITHRESHOLDZ*® for the class of all functions computable by such
multithreshold gates, for arbitrary weights and thresholds from R. Note that
MULTITHRESHOLD? contains various discrete approximations to the frequently consid-
ered sigmoid continuous threshold functions (Rumelhart and McClelland (1986)). Another
motivation for the investigation of multithreshold gates is the desire to explore simple mod-
els for the (very complicated) information processing capabilities of a neuron in a natural
neural system. In a first approximation one may view the current firing rate of a neuron
as its current output (see Rumelhart and McClelland (1986), Schwartz (1990)). The fir-
ing rates of neurons are known to change between a few and several hundred firings per

3

e s p———

second. Hence a multithreshold gate provides a somewhat better computational model for
a neuron than a gate that has only two different output signals. Muroga (1971), Olafsson
and Abu-Mostafa (1988) have previously investigated non-monotone multilevel threshold
functions. Multithreshold automata have been studied by Goles and Martinez (1981).

‘After defining a suitable extension of the learning model to the case of learning func-
tions, we give in Theorem 4.1 an algorithm for learning multithreshold gates. The number
of hypotheses required and the total amount of computation time of this learning algorithm
are both bounded by a polynomial of d, s and logn.

We consider in Section 4 also the problem of learning a halfspace over an arbztmry
finite set X C RY, i.e. learning a concept from the class

HALFSPACEY := {C C X | for some w € R%,¢ € R it holds that C = X N Fu,:},

where F, . is a halfspace in R¢ as defined above. Using a similar approach as in the
previous learning algorithms and the existence of a centerpoint for every finite set in R?
(Yaglom and Boltyanskii (1961), see Edelsbrunner (1987)), we present in Theorem 4.3 a
learning algorithm that makes at most polynomial in d and log|X| many errors. This
algorithm does not appear to have a computationally efficient implementation.

We also discuss in this paper various lower bounds for the error bounds that can be
achieved by arbitrary on-line learning algorithms for threshold gates. It is shown that
the learning complexity of every algorithm learning a halfspace over {0,...,n — 1}¢ is
Q(d?logn) (without any assumption on the computational feasibility of the algorithm).
Thus the upper bound mentioned above is optimal up to a factor of logd. The lower
bound in fact applies to a larger class of learning algorithms, where a hypothesis may be
any subset of {0,... ,n — 1}¢, and not just a halfspace. Recent results of Littlestone (see
Maass (1991)) imply that this lower bound remains valid even if the learner is allowed
to use randomization and the environment is assumed to be oblivious in presenting the
examples.

One of the simplest threshold circuits consisting of more than one gate is the conjunc-
tion of two threshold gates, with two inputs from {0,... ,n — 1}. Sets accepted by such
circuits correspond to intersections of two halfplanes in {0,...,n — 1}2. It is shown in
Theorem 5.6 that every learning algorithm for this class requires 2(n) hypotheses in the
worst case. This complements the negative results of Blum and Rivest (1988) for the case
of threshold gates with n Boolean input variables.

The perceptron learning algorithm (Hebb’s rule) differs from our new learning al-
gorithm for threshold gates insofar as it is a distributed algorithm: each weight can be
thought of being controlled by a separate processor. We show that every distributed half-
space learning algorithm which satisfies a condition called boundedness (see Section 6) is
inherently slow. This condition is satisfied by all known distributed learning algorithms

4

for threshold gates. In particular, it follows that the learning complexity of the Winnow
algorithms of Littlestone (1988) is exponential in d.

This paper is organized as follows. In Section 2 we give a formal definition of the
learning model considered. Section 3 contains the new learning algorithms for threshold
gates. In Section 4 we discuss learning a threshold gate with several outputs, and learning
a halfspace over an arbitrary set. Section 5 contains the lower bound results. Distributed
learning algorithms are considered in Section 6. Open problems are discussed in Sec-
tion 7. The Appendix contains some technical details, and the description of the convex
optimization algorithms used in Section 3.

This paper provides complete proofs for a number of results that were announced in
Maass and Turan (1989), (1990a). Complete proofs of other results from these papers are
given in Maass and Turdn (1990b), (1990 c).

2. Definitions.

In this section we describe the general on-line learning model of Angluin (1988), which
generalizes the classical 1earniné models for perceptrons and neural networks. Littlestone
(1988) introduced an equivalent version of this model.

A learning problem is specified by a domain X and a concept class C C 2%, The sets
C € C are called concepts. In this paper X will always be a finite subset of R.

The goal of the learner (or learning algorithm) is to identify an unknown target concept
Cr € C, fixed in the beginning of the learning process by the environment. The learner
proposes hypotheses H € C. If H = Cr then the environment responds “yes”. Otherwise,
it responds with a counterezample = from the symmetric difference HACT := (CT\H) U
(H\Cr). If z € C7\H then it is called a positive counterexample, if + € H\Cr then it is
called a negative counterexample.

A learning algorithm for C is any mapping A which produces hypotheses
HA, = AHP,... HM 2,00 ,30)

from C which may depend on the previous hypotheses H JA and the counterexamples z; €
H fAC’T received. As in this paper we only consider deterministic learning algorithms,
the previous hypotheses may be suppressed as arguments of A.

The learning complezity of a learning algorithm A is defined by

LC(A) := max {i € N | there is some Cr € C and some choice of

counterexamples z; € H fACT for
j=1,...,i—1such that H# # Cr}.

]

Note that in the definition of LC(A) the amount of computation performed by A to
determine the next hypothesis is not taken into consideration. The attention is focused on
the amount of interaction between the learner and the environment. As it will be noted
later on, the learning algorithms presented in this paper (with one exception) have the
additional property that they are computationally feasible as well, in the sense that the
required number of computation steps is bounded by a polynomial function of the input
parameters.

The learning complezity LC(C) of the concept class C is defined by
LC(C) := min{LC(A) | A is a learning algorithm for C}.
In Sections 3 and 4 we consider the domain {0,... ,n — 1}¢ and the concept class

HALFSPACES := {C C{0,... ,n —1}* | for some w € R%,t € R it holds’
that C = Hw,t},

where for w = (wq,...,wg) ER%, tER

d
Hw,t = {(.’l)],... ,IL'd) € {0, ,Tl—l}d | Zw,‘:)}i Zt}
i=1

The definition of the other learning problems discussed will be given in the corre-
sponding sections of the paper.

3. A polynomial time on-line learning algorithm for threshold gates.

In this section we present learning algorithms for threshold gates with d inputs from
{0,... ,n — 1}, or equivalently, algorithms for learning halfspaces over {0,... ,n—1}%

There are several learning algorithms in artificial intelligence which proceed by updat-
ing the version space, i.e. the set of concepts not ruled out by previous counterexamples
(Mitchell (1977), Cohen and Feigenbaum (1982)). The learning algorithms to be presented
proceed similarly by maintaining an approzimation of the version space. Typically, the
“real” version space is slightly enlarged to obtain a more tractable representation. The
goal of a fast learning algorithm is to find a new hypothesis with the property that ev-
ery counterexample to this hypothesis eliminates a large part of the version space. This
guarantees that the version space shrinks fast, and the target concept is identified in few
learning steps.

In the case of learning halfspaces we represent the considered concepts
C € HALFSPACE? by suitable points in R?. More precisely, we represent C by a point

6

d
w € R4 such that C = Fei1n{0,...,n~ l}d, where Fy 1 = {x € R¢ | > ziwi 2
=1

1}. Hence we may view the version space as a subset of R¢, and we can exploit its
geometrical structure. The key property of the chosen representation of the version space
is the following: any counterexample to some hypothesis C' € HALFSPACE? (represented
by some point w € R?) does not just eliminate the point w, but a whole halfspace in
R? that contains the point w. Hence in order to guarantee fast learning, it is sufficient
to choose as next hypothesis some C € HALFSPACES such that its representation w lies
in the center of the remaining version space in R?. Different algorithms are obtained by
using different notions of a center. In each case the essential property of the center w € R¢
of the version space is that every halfspace that contains w contains a large portion of the
version space.

This strategy is closely related to the ellipsoid method for linear programmang, or more
generally, for convez optimization (Khachian (1979), see Grotschel, Lovasz and Schrijver
(1988), Schrijver (1986)). It may be viewed as an extension of the paradigm of binary
search to higher dimensions. The learning algorithm for halfspaces that is induced by the
ellipsoid method maintains a d-dimensional ellipsoid which contains the current version
space. In a learning step the algorithm poses that halfspace which is represented by the
center of the ellipsoid as the next hypothesis. It turns out that a counterexample to this
hypothesis eliminates a whole half-ellipsoid from the version space. The remaining half-
ellipsoid is included in a new ellipsoid (having smaller volume than the previous one),
and the algorithm proceeds to the next learning step. In order to show that this process
identifies the target concept Cr € HALFSPACE? after polynomially many iterations, one
shows that the version space contains a small ball By C R? such that every point in By is
a representation for Cr. Obviously the described algorithm will identify Cr at the latest
when the volume of the current ellipsoid is as small as the volume of Br.

More generally, it holds that every convex optimization algorithm which can be for-
mulated in a certain oracle model (to be defined below) can be used directly as a halfspace
learning algorithm. Therefore we first formulate the convex feasibility problem in the or-
acle model and describe the reduction of halfspace learning to this problem. Having this
reduction, one can simply “plug in” any convex feasibility algorithm which uses the oracle
model, to obtain a learning algorithm for halfspaces. In particular, the convex feasibility
algorithm of Vaidya (1989) leads to the halfspace learning algorithm which is optimal up
to a factor of logd.

The goal of the convex feasibility problem is to find a point in an unknown convex
body P C R? which has a guarantee r, and is given by a separation oracle.

A guarantee r € N for the convex body P is a number such that the volume of P
within the ball of radius r around 0 is at least r—¢. Having a guarantee means that it is

7

known in advance that the unknown convex body is “not too small”.

Information about P can be obtained through the separation oracle. The oracle can
answer queries of the form “y € P?”, where y € R%. If y € P then the response to
the query is “yes”, and the problem is solved. Otherwise the response is a halfspace
F = {x : ¢Tx > b} such that P C F but cTy < b (such a halfspace separates y from
P, hence the name of the oracle). Furthermore, it is assumed that there is a polynomial
p such that if y is m bits long then the response (c,b) of the oracle is not longer than
p(m,logr,d) bits. In the case of separation oracles that arise in the learning problem
considered here one has p(m,logr,d) = m +logr + d.

We will reduce the learning of halfspaces to the following problem in combinatorial
optimization.

Convex feasibility problem: given a separation oracle and a guarantee r for
an unknown convex body P, find a point in P.

We consider algorithms for the convex feasibility problem for which the number of
oracle queries and the total number of computation steps performed are both bounded
by functions of d and logr. The query complezity ¢(d,logr) of such an algorithm is the
number of queries required in the worst case. The time complezity t(d,logr) is the number
of computation steps performed in the worst case.

Theorem 3.1. Assume that there is an algorithm A* solving the convex feasibility prob-
lem with query complexity ¢(d,logr) and time complexity ¢(d,logr). Then there is a
learning algorithm A for HALFSPACE? such that LC(A4) < q(d,4d(log d +logn + 3))+1
and the total amount of computation performed by A is at most t(d,4d(logd + logn +
3)) + ¢(d,4d(log d + log n + 3)) - p(d,log n) for some polynomial p.

Proof. Let the first hypothesis of A be {0,... ,n — 1}4. If a counterexample is received
then this must be a negative counterexample x* = (z},...,z}). This point will be con-
d
sidered the origin by transforming the domain to U = ,xl{—xf, ...,mn—1—=2z*}. The
1=
subsequent steps of the learning algorithm will be described as learning a halfspace over
this domain. It is straightforward to translate thé hypotheses and the counterexamples
between the two domains, contributing the overhead g(d,4d(logd +logn + 3)) - p(d,logn)
to the total number of computation steps.
d
Let Cr = {x € {0,...,n —1}* | 3 w;z; >t be the target concept. Because of

=1
the preceding first step of the learning a,ligorithm and the subsequent transformation of the
coordinate system we have 0 ¢ C'r. This implies that ¢ > 0. Hence by multiplying with a
positive constant it may be assumed that ¢t = 1, i.e. Cr = Fw1 NU. Define

SOLcy = {ueR? | Cr=FuaNU}.

8

d

If x € Cr (resp. x ¢ Cr) then every u € SOLCT must satisfy ulx = > ujz; > 1 (resp.
=1 :

uTx < 1). Conversely, if u satisfies these conditions for every x € U then it belongs to

SOLc,.. Hence

SOLop = (] Fean [] Fr-
x€CT x€U\Cr

Thus SOLcy, is the intersection of n? halfspaces (the halfspaces corresponding to U\Cr are
open). In particular, SOL¢.. is convex. Hence A* can be used to find a point in SOLcy.

We need some standard bounds for linear inequalities to get a guarantee for SOLc.,.
The proof of the following lemma is given in the Appendix for completeness.

Lemma 3.2, 2%d(egdtlogn+3) is 5 gyarantee for SOLcy..
Proof. See Lemma A2 in the Appendix. , O

The learning algorithm A proceeds as follows. It simulates A* by presenting the
hypothesis Fy,; N\U whenever A* asks a query “y € SOL¢,.?”. Hence to prove the theorem

”

it is sufficient to show that a response to a query “y € SOL¢.?” of algorithm A* can be

obtained from the counterexample z received after presenting the hypothesis Fy,; NU. Of
course, if this hypothesis is correct, the learning process terminates.

Case 1. : z is a positive counterexample.

This means that yTz < 1 but z € Cp. Hence for every u € SOL¢y, it holds that
u%z > 1. Thus F, ; is a separating halfspace for y.

Case 2. : z is a negative counterexample.

In this case yTz > 1 but z ¢ Cr. Hence for every u € SOLCT it holds that ulz < 1.
Thus F_, _; is a separating halfspace for y.

Therefore A can indeed simulate A*, and the bounds for the complexity of A* directly
imply the claimed bounds for the complexity of A, taking also. into account the overhead
mentioned at the beginning of the proof. O

Now we turn to the informal description of algorithms for the convex feasibility prob-
lem.

Algorithm 1: the ellipsoid method (Khachian (1979), Grotschel, Lovéasz and Schrijver
(1988)). ‘

The algorithm maintains a d-dimensional ellipsoid containing the unknown convex
body. Initially the ellipsoid is the ball of radius r around the origin. The next query to the

9

separation oracle is the center of the ellipsoid. The response to the query determines a half-
space. The intersection of this halfspace and the ellipsoid forms a half-ellipsoid containing
the convex body. This half-ellipsoid is then included in an ellipsoid. As calculations are
performed with finite precision, it is necessary to slightly enlarge this ellipsoid to compen-
sate for rounding errors. This slightly enlarged ellipsoid is used in the next iteration. The

volume of the new ellipsoid is smaller by a factor e—éﬂ than the volume of the original
ellipsoid. Hence as the volume of the initial ball is at most (2r)¢ and the volume of the
unknown convex body within this ball is at least r—¢, the number of iterations necessary
is at most 10d2In2r. In one iteration one has to perform O(d?) arithmetic operations
assuming that the standard algorithm is used for multiplying matrices. It is sufficient
to do the calculations with a precision of O(d?logr) bits. Hence, again assuming that
the standard algorithms are used for the multiplication and division of numbers, the time
complexity of the algorithm is O(d®(logr)?).

Applying Theorem 3.1 with the ellipsoid method one obtains a halfspace learning algo-
rithm with learning complexity O(d3(logd+logn)) and with time complexity polynomial
in d and logn.

We refer to the Appendix for further details.

Algorithm 2: Vaidya’s algorithm (Vaidya (1989)).

The algorithm maintains a full-dimensional polytope P defined by some of the half-
spaces obtained as responses to previous queries. Thus P always contains the unknown
convex body. The next query to the separation oracle is an approzimation to the so-called
volumetric center of P. Also, in order to prevent P from becoming too complicated, some
of the inequalities defining P may be dropped.

The volume of P decreases by a constant factor on the average, where the constant
is independent of d. Therefore the query complexity of the algorithm is O(dlogr), and so
one obtains a speedup d in query complexity compared to the ellipsoid method. The time
complexity of the algorithm is given in Vaidya (1989) in the unit cost model, i.e. each
arithmetic operation is counted as one step. The number of arithmetic operations needed
in one iteration is O(d?), again assuming that we use standard matrix multiplication. The
precision required is polynomial in d and logr (Vaidya (1990)). Hence the time complexity
of the algorithm is also polynomial in d and logr.

We again refer to the Appendix for further details.

Thus we obtain the following upper bound for the complexity of learning a threshold
gate.

10

Theorem 3.3. LC(HALFSPACE?) = O(d?(log d+log n)). The upper bound is achieved
by a learning algorithm for which the total number of computation steps is polynomial in
d and logn.

Proof. Apply Theorem 2.1 with the convex feasibility algorithm of Vaidya (1989). O

4. Adaptive threshold gates with graded response and real valued inputs.

First we consider learning a function computed by a multithreshold gate, i.e. identi-
fying a target function from the class MULTITHRESHOLD*® defined in the introduction.
We recall that a function f : {0,...,n —1}¢ — {0,...,s} is in this class if there are

= (w1,... ,wq) € R? and t = (t1,... ,t;) € R* with t; < ... < t, such that for every
x € {0,... ,n — 1}% it holds that

d
ma,x{j | > wizi > tj} , if this set is not empty,
f(X) = i=1

0 , otherwise.

As the original learning model is defined for learning sets, one has to specify an
extension of this model to the case of learning functions. We distinguish three different
extensions M;, M, and Mj, which differ in the type of feedback information that the
learner receives when he makes an error. Analogously as before, the learner makes an
error when for a hypothesis f he encounters an input x, for which f(x) # fr(x), where f
is the current hypothesis, i.e. the function computed by the gate with the current values
of the parameters w and t, and fr is the target function.

In the weakest model M; the learner only receives the point x and the information

that f(x) # fr(x).

In the intermediate model M, the learner receives a pair (x, a), where a € {0,1}. If
a = 0 then f(x) > fr(x), i.e. f(x)is too high. If a =1 then f(x) < fr(x), i.e. f(x) is too
low.

In the strongest model M; the learner receives the pair (x, f (x)), i.e. he is told the
correct output for x.

The other aspects of these models are the same as before. In particular, a learning
algorithm is a function which produces a new hypothesis, i.e. new parameter values w' and
t', in dependence of the total information received from the previous errors. The learning
complexxty of an algorithm is the number of errors it can make in the worst case, before
identifying the target function fr. The learning complexity LC(MULTITHRESHOLDd)
of the class of multithreshold functions is the minimum of the learning complexities of
learning algorithms for this class.

Note that in the case s = 1 each model coincides with the original one.

11

The question we consider is whether there is a learning algorithm for
MULTITHRESHOLD®® which has learning complexity polynomial in d, s and logn.

It turns out that the first model M; is too weak for the existence of such an algorithm,
even if both d and s are assumed to be constants (d = s = 2). A lower bound demonstrating
this will be presented in Section 5 (Theorem 5.7). On the other hand, it is possible to
give such algorithm in the intermediate model M; (which appears to be more realistic
than the strongest model M;). This follows from the observation that every halfspace
learning algorithm can be used to learn multithreshold functions, and the results of the
previous section. A reduction from multithreshold symmetric automata to binary threshold
symmetric automata was previously given by Goles and Martinez (1981).

Theorem 4.1. LC(MULTITHRESHOLDY*) < LC(HALFSPACE®*+*).

Proof. First we define a representation for multithreshold functions which is slightly more
general than the one given above. For u := (wi,... ,Wa,t1,-.. ,ts,0) € RE*H! we also
write u = (w, t,b). Define f, : {0,... ,n—1}¢ = {0,...,s} by

i=1

d
Fa(x) = { max {j | 20 wizi > t; + b} , if this set is not empty,

0 , otherwise.

Clearly fu is a multithreshold function with thresholds t{ < ... <t} defined by t’j =
min{ty +b|j <k <s}forj=1,...,s. Foreach u=(w,t,b) we associate with fu the
halfspace C = H(y,)5 from HALFSPACE%*?, i.e.

d]
C = {(x,y) €{0,...,n— 139+ | Zw.-a:,- —thyj 2> b} .
' i=1 j=1

In order to prove the theorem it is sufficient to show that for every learning algorithm
A* for HALFSPACEZ** there is a learning algorithm A for MULTITHRESHOLDZ*® sim-
ulating A*, with LC(A) < LC(A*). Assume that a target function

fr € MULTITHRESHOLD®* has been fixed. Let W = (@;,... ,wq) and t = (t,... ,ts)
be parameters with #; < ... < %, such that

d ~
max {j | > wizi >t + b} , if this set is not empty,
fr(x) =

=1
0 , otherwise.

We construct a learning algorithm A for MULTITHRESHOLD®?* that simulates the given
learning algorithm A* for HALFSPACEZ** in a learning process for a corresponding target

concept Cr = H (€ HALFSPACES*®, If A* presents a hypothesis H(w, —t),5, then

w,—t),0

12

A presents the hypothesis fy, for u = (w,t,b). (To be precise, A outputs the standard
representation (w,t') for fy with ¢} := min{¢x 4 b|j < k < s}. But this is not relevant for
the following,.)
Now assume that A receives a pair (x,0), i.e., it gets a vector x such that j := fu(x)is
d
too high. Since fu(x) = j one has) w;z; > t; + b. This implies that (x, e;) € H(w,-t),5

=1
where e; := (0,...,0,1,0,...,0) is the j-th unit vector in R®. Since fr(x) < j it holds

d ~
that Y @;z; < t;, hence (x,e;) ¢ Cpr. Thus (x,e;) is a negative counterexample for the

=1
hypothesis H(w, —¢),5 of A*.

If A receives as response a pair (x,1), then j := fu(x) is too low. This implies that

d

S wiz; < tjpr + b, thus (x,ej41) € Hw,—t)p- On the other hand fr(x) > ;j implies
i=1

that (x,e;41) € Cr (since ; < ... < %,). Hence in this case (x,e;1+1) is a positive
counterexample for Hy _¢)5-

Thus every hypothesis of A* is translated to a hypothes1s of A, and every ‘counterex-
ample for the hypothesis of A is translated to a counterexample for the hypothesis of
A*. Hence A can receive at most LC(A*) counterexamples, and thus LC(A) < LC(A*),
proving the theorem. O

Corollary 4.2. LC(MULTITHRESHOLDZ?) = O((d + s)? (log(d + s) + log n)). The
upper bound is achieved by a learning algorithm for which the total number of computation
steps is polynomial in d, s and logn.

Proof. This follows directly from Theorems 3.3 and 4.1. Note that in the proof of Theorem
4.1 the computational overhead needed by A compared to A* is clearly polynomial in d, s
and logn. O

Now we turn to another extension of halfspace learning. Instead of the domain
{0,... ,n — 1}¢ we now consider as domain an arbitrary finite subset X C R? and the
concept class '

HALFSPACEY := {C C X | for some w € R%,¢ € R it holds that C = X N Fy,¢}

of halfspaces over X. Learning a concept from this class corresponds to learning a threshold
gate with d real valued input variables with inputs ranging over X.

How many hypotheses are needed to learn a halfspace over X? If we neither know
anything about the number of digits needed to represent the elements of X, nor have
any other information ensuring that X is not “too degenerate”, then the approach of the
previous section cannot be used. Without the guarantee r there is no upper bound on
the number of iterations required before finding a point in the solution set. Nevertheless
we show that by a different combinatorial argument one can give a learning algorithm of

13

learning complexity O(d?log|X|) for every X C R, For X = {0,... ,n—1}4 the learning
complexity of this algorithm is comparable to the previous algorithms (the upper bound is
slightly better than that of the ellipsoid method). On the other hand the algorithm seems
to be inefficient computationally.

Theorem 4.3. For every X C R? it holds that
LC(HALFSPACE%) = O(d?log |X|).

Proof. The proof is based on the notion of a centerpoint. A point w € R? is called a
centerpoint of a finite set Y C R? if every open halfspace not containing w contains at
most -5 +1 —=|Y| points from Y.

Lemma 4.4. (Yaglom and Boltyanskn (1961), see Edelsbrunner (1987)). Every finite set
has a centerpoint. O

Now let X = {X1,... ,Xm}. The first hypothesis of the learning algorithm is again X.
If a counterexample is received then this must be a negative counterexample, which will
considered to be the origin. Thus we may assume that the target concept is of the form
Cr=Xn FG;,1 with W € R%. The second hypothesis is §. If a counterexample is received
then this must be a positive counterexample x*.

Consider the hyperplanes E; defined by x¥y = 1in R? for 1 = 1,...,m. These
hyperplanes partition R? into convex regions such that wy,ws € R? belong to the same
region iff x7w; — 1 and x7 wz — 1 have the same sign (+, — or 0) for every i = 1,... ,m.
One can easily show that for every target concept Cr the points w such that C7r = XN Fy 1
form one of these regions having a nonempty interior, and some of the lower dimensional
regions on its boundary.

Now select points wy, ... ,W,, one from each full dimensional region contained in the
halfspace {y | (x*)Ty > 1}. We shall use the fact that s = O(m*) (see Edelsbrunner
(1987)). The learning algorithm will identify that one of these points which determines
the target concept.

During the course of the algorithm we maintain a set CAND of points which are not
eliminated by previous counterexamples. Initially CAND = {wy,... ,w,}. If [CAND| =1
then the learning process is completed.

If [CAND| > 1 then the next hypothesis is X N Fy; where w is a centerpoint of
CAND. We have w # 0 since CAND C {y | (x*)Ty > 1} and w belongs to the convex
hull of CAND.

If x is a positive counterexample to this hypothesis then CAND can be updated to
CAND N {y | xTy > 1} C CAND N {y | xTy > xTw}, using xTw < 1.

14

If x is a negative counterexample then CAND can be updated to CANDN {y | xTy <
1} CCANDN {y | xTy < xTw}, using xTw > 1.

Thus in'both cases one can apply Lemma 4.4 to conclude that [CAND| decreases by
a factor of at least %. Hence, using that s = O(m?) as noted above, the number of
iterations needed to achieve [CAND| < 1is O(logd_.s_l(md')) = 0(d?logm). This gives the

claimed upper bound for the learning complexity of the algorithm. (

5. Lower bounds to the complexity of learning algorithms for threshold gates.

In this section we show that the learning algorithms of the previous sections are not
too far from being optimal. Furthermore we show that there does not exist a fast learning
algorithm for learning the intersection of two halfspaces.

First we consider the problem of learning a threshold gate with d inputs from {0,... ,n—
1}4; i.e. learning a concept from HALFSPACEZ. In Section 3 a computationally feasible
learning algorithm was given for this problem, which identifies the target concept after at
most O(d?(logd + logn)) counterexamples.

The next theorem shows that every halfspace learning algorithm (even if it is not
computationally feasible) requires in the worst case Q(d? logn) counterexamples.

Theorem 5.1. If d > 2 then LC(HALFSPACE?) > () logn. If d =1 then
LC(HALFSPACE?) > |log(n + 1)].

Proof. Inorder to describe the argument it is useful to introduce the concept of a decision
tree. A decision tree T for HALFSPACE! is a rooted binary tree with the following
properties:

— each inner node is labelled by an element x of {0,...,n — 1}¢ (representing a query
“y € CT?,”),

— there are two edges leaving each inner node, labelled “yes”, resp. “no” (corresponding
to possible answers to the query asked at the node),

— each leaf is labelled by a concept from HALFSPACE? in such a way that each concept
occurs as the label of exactly one leaf, and the label of every leaf is consistent with
all labels along the path leading from the root to the leaf (the number of inner nodes
along this path is the depth of the leaf).

Thus a decision tree can be thought of as describing an algorithm to learn a concept
from HALFSPACE? in a learning model different from the one used in this paper. In that
model the learner can ask queries (called membership queries) to determine the membership
of elements in the target concept.

The following lemma is a special case of a result of Littlestone (1988).

15

Lemma 5.2. (Littlestone (1988)). Assume that there is a decision tree T for HALFSPACEZ
such that the depth of every leaf of T is at least t. Then LC(HALFSPACE?) > ¢.

Proof. Let A be an arbitrary learning algorithm for HALFSPACEZ. It has to be shown
that for some target concept and for some choice of the counterexamples to the hypotheses
of A, A needs at least ¢t hypotheses before it can identify the target concept. It is conve-
nient to imagine that the target concept is not decided in advance, but that there is an
adversary providing the counterexamples to the hypotheses of A. The adversary uses T to
determine his responses. The first counterexample is the element at the root. In general,
the adversary moves down the tree, always giving the element x labelling the current node
as a counterexample. If x was a positive (resp. negative) counterexample then he moves
along the edge labelled “yes” (resp. “no”). As all concepts occurring as labels of leaves in
the subtree below the current node are still candidates for being the target concept, the
learning process has to continue until a leaf is reached. Thus by the assumption on T', the
adversary forces A to ask at least ¢ hypotheses. a

This lemma is useful as it reduces the problem of proving a lower bound for every
learning algorithm to the problem of constructing a single decision tree with the required
property. Such a tree can be constructed using the standard proof for the lower bound to
the number of threshold functions (see Muroga (1971), generalized to non-Boolean inputs
in Hampson and Volper (1990)).

Lemma 5.3. There is a decision tree T¢ for HALFSPACEZ with all its leaves having
d .

depth at least) |log((n — 1)ni™? +1)].
i=1 ’

Proof. We argue by induction on d. For d = 1 the claim follows by considering the
decision tree corresponding to binary search over the domain {0,... ,n — 1}. For the
induction step one relates HALFSPACE? to HALFSPACES~! in a way that is easy to
visualize for the case d = 3. Each concept in HALFSPACE? corresponds to a line L
through the plane {0,... ,n —1}? x {0}. Consider a hyperplane H C R?® that contains L.
By rotating H around the axis L one can realize |{0, coon—=1P x{1,... ,n— 1} +1=
(n — 1) - n? +1 different halfspaces from HALFSPACE? (provided that the angle of L is
chosen in such a way that no hyperplane H with L C H contains more than one point from
{0,...,n—=1}2>x{1,... ,n—1}). For a precise proof of the induction step fix for any d > 2
a decision tree T¢~! for HALFSPACES™! that exists by the induction hypothesis. Let T
be a variation of T9~1 where every query (z1,...,%d-1) € {0,...,n — 1}47! is replaced
by the query {z;,...,24-1,0} € {0,... ,n — 1}

Now consider an arbitrary leaf £ of T¢~!. If C, € HALFSPACEZ™! denotes the
concept arriving at £, and £ denotes the leaf corresponding to £ in T, then it holds that

Ce:= {C € HALFSPACE? | €N {0,... ,n — 1} x {0} = C4}

16

is the class of concepts arriving at £'.

We fix weights wy,... ,wg—; € R and a threshold ¢ € Q such that C, = {x €

R4~ 1| Z w; z, > t} and 1,wy,... ,wq—; are linearly independent over Q. The linear
=1
independence can be achieved since for a suitable fixed threshold ¢ € Q one can choose the

representation (wy, ... ,wq—1) of C¢ arbitrarily from some small ball in R4-! (see Lemma
3.2).
Now add a d-th weight wy € R, and let w := (wq,... ,wq). Then

. d—1
Hw,t= {(:1}1,... ,a:d)E {0, ,n—l}d | Zw,x,+wdzd>t}

i=1

=C[X{0}U{(:lf1,... ,zd) € {0,... ,n—].}d_1

d-1
x {1l,...,n—1} I ngmi+wdmd Zt}.

=1

As wy increases from —oo to +00, Hy, ¢ increases from Cyx {0} to Cex{0}U({0,... ,n—
1}4-1 x {1,...,n — 1}). An element (z1,...,24) € {0,...,n =1}t x {1,...,n =1}
d—1
t— z wiT;
=1
z
1 dlfferent concepts, ordered under inclusion corresponding to the linear ordering < of

t— z w;z;

{0,...,n—=1}4"1 x {1,... ,n — 1} according to the value of —T— Hence one can
perform a binary search on < to identify one of these concepts. As there may be other
extensions of Cy x {0} which are not in this sequence of concepts, it may be necessary to
add further queries after completing the binary search to identify a concept.

Let T¢ be the decision tree for HALFSPACE? obtained from T by appending to each
leaf of T the subtree that implements the queries described above. As the depth of each
subtree is at least [log((n—1)n¢"1+1) |, Lemma 5.3 follows from the induction hypothesis.

O

enters Hy ¢ for wg = . Thus by the assumption on the w;’s we get (n —1)n4~1 +

To complete the proof of Theorem 5.1 note that the bound for d = 1 follows directly
from considering binary search. If d > 2, n > 3 then

l_z;:[log((n —Dnil 4 1) > dlog_(h —1)+ (g) logn —d 2 (g) log n,

and if d > 2, n = 2 then

17

zd:uog(z"-l +1)] = (g) O

i=1
With the same induction argument as in the proof of Lemma 5.3 one can derive the
following lower bound for the number of concepts in HALFSPACEZ. This lower bound is

d
a slight improvement of the lower bound of n(2) in Hampson and Volper (1990). We will
use this lower bound in the proof of Theorem 6.1.

Proposition 5.4. | HALFSPACEZ | > n(®) . (n —1)%. d

We note that the lower bound of Theorem 5.1 holds for a larger class of learning
algorithms, where the learner may propose arbitrary subsets of the domain {0,...,n—1}4
as hypotheses. It is easy to see that Lemma 5.2 remains valid with the same proof.
(Littlestone (1988) also proved a converse of the lemma for this class of algorithms, see
also Maass and Turén (1990 b).) Hence one obtains the following lower bound result.

Theorem 5.5. Let A be a learning algorithm for HALFSPACE? which is allowed to use
arbitrary subsets of {0,...,n — 1}¢ as hypotheses. Then for some target concept Cr and
some choice of the counterexamples, the number of hypotheses used by A to learn Cr is
at least (g) logn if d > 2, and at least |_log(n + 1)_| ifd=1. O

Comparing the lower bound with the O(d %(log d + log n)) upper bound of Theorem
3.4, one can conclude that allowing arbitrary hypotheses does not increase significantly
the speed of on-line learning for halfspaces. There are classes for which is not the case
(see Angluin (1988), Maass and Turén (1990 b) for surveys of the power of different formal
models of on-line learning).

We note that recent results of Maass (1991) and Littlestone imply that the lower
bound (multiplied by %) remains valid even if the learner can use randomization and the
environment is assumed to present the examples in an oblivious manner.

In the remainder of this section we will present lower bounds for on-line learning of
threshold circuits and multithreshold gates.

First we consider on-line learning for a simple type of threshold circuit, which is the
conjunction of two threshold gates having fan-in 2, where the inputs of these threshold
gates are from {0,... ,n — 1}. The subsets accepted by the circuit with different choices
of the weights and thresholds form the concept class

2 —~ HALFSPACE? := {CNC' | C € HALFSPACE? }.

As LC(HALFSPACE?) = O(logn), it would be interesting to have a similarly ef-
ficient learning algorithm for 2 — HALFSPACE? as well. It turns out that this is not
possible.

18

Theorem 5.6. LC(2 — HALFSPACE?) = Q(n).

Proof. We describe an adversary strategy which forces every learning algorithm to use
2(n) hypotheses before it can identify the target concept. '

Let Q := {(i,5) € {0,... ,n—1}? | i € {0,n — 1} or j = {0,n — 1}} be the perimeter
of the domain {0,...,n —1}? and U := {(|2] + &, | 3] +0) | k=0,1, £= 0,1} be the
four corners of the unit square in the middle of the domain.

We observe that if H is a concept from 2 — HALFSPACE? such that U € H then
it holds that H N Q # 0. Indeed, consider a representation of H as Foia N Fug,ta N
{0,...,n —1}?, where Fy,;, and F, 1, are halfplanes in R2. As the convex hull of U

contains a circle of diameter 1, Fw, 1, N Fu, 1, either contains one of the four cornerpoints

R
{0,0},...,{n —1,n — 1} from Q,lo; it contains a segment of length at least 1 on one of
the sides of the square determined by the cornerpoints. The latter implies that it contains
a point from Q.. & -

The adversary uses the following strategy. If the hypothesis H € 2— HALFSPACES is
such that U\ H # 0 then he responds with an element of U\ H as a positive counterexample.
Otherwise the observation above implies that HNQ # §, and the response of the adversary
is any element from H N Q given as a negative counterexample.

Let us call a concept from 2—HALFSPACE? a strip if it is of the form SN{0,... ,n—
1}2, where S is bounded by two parallel lines touching the circumscribed circle of U.
Clearly there are ©(n) strips, and each element of @ is contained in only constantly many
strips. ,

Now a positive counterexample of the adversary does not eliminate any strip as a
candidate for being the target concept. A negative counterexample x from @ rules out
only those concepts which contain x, hence it eliminates only contantly many strips. Thus
every learning algorithm is forced to use Q(n) hypothesis before being able to identify the
target concept. | O

Finally we show that the same argument implies a negative result for learning multi-
threshold gates, as mentioned in Section 4.

We consider learning a target function fr from MULTITHRESHOLD?2?, i.e. a multi-
threshold function with inputs from {0,... ,n—1}2, having 2 thresholds, assuming the weak
model M;. Here the response to each hypothesis f is counterexample x such f(x) # fr(x).
Thus the learner is not told, whether f(x) > fr(x) or f(x) < fr(x).

Theorem 5.7. Every algorithm for learning a function from MULTITHRESHOLD}? in
the model M; requires Q(n) hypotheses for some target function and some choice of the
counterexamples.

19

Proof. A strip considered in the proof of Theorem 5.6 corresponds to two multithreshold
functions with two thresholds, each assigning value 1 to points between the parallel lines,
and 0, resp. 2 to the other two parts of the domain.

The adversary strategy is the following. If for the hypothesis function f there is
some x € U such that f(x) # 1, then x is given as a counterexample. Otherwise, as
outlined above, there must be a y € @ such that f(y) = 1, and this element is given as a
counterexample.

As there are ©(n) multithreshold functions corresponding to strips and each coun-
terexample eliminates only constantly many from being a candidate for the target function,
every learning algorithm is forced to present {(n) hypotheses. O

6. Distributed learning algorithms.

In this section we consider algorithms for learning a threshold gate which are dis-
tributed in the sense that the weights wy, ... ,wq and the threshold ¢ are controlled by sep-
arate processors, with some limited amount of communication. Such learning algorithms
are of particular interest in the context of computational brain models, where emphasis is
on learning without a global control.

There are several important examples of distributed learning algorithms for threshold
gates such as the perceptron algorithm (also called Hebb’s rule, see Rosenblatt (1962),
Minsky and Papert (1988), Rumelhart and McClelland (1986)) and the Winnow algorithms
(Winnow 1 and Winnow 2) of Littlestone (1988). All these learning algorithms have in
common that w; remains unchanged if for the current counterexample x = (21,...,Zq)
it holds that z; = 0. Otherwise, if x is a positive counterexample then the perceptron
algorithm replaces w; by w; + 1, and the Winnow algorithms replace w; by aw; (for some
fixed constant -« > 1); if X is a negative counterexample then the perceptron algorithm
replaces w; by w; — 1, Winnow 1 replaces w; by 0, and Winnow 2 replaces w; by %’-
These algorithms have in common that there is a bounded number of different updating
operations and that these operations commute. Hence they are k-bounded according to the
following definition. We will show in Theorem 6.1 that all k-bounded learning algorithms
are inherently slow.

Definition. A learning algorithm A for HALFSPACE? is k-bounded (for some k € N) if
- the following conditions are satisfied.

(a) There are d + 1 sets S1,...,54+1, where each S; consists of at most & functions
h:R — R, such that hoh' =h'ohforallh, k' € S; (i =1,...,d+1).

(b) The hypotheses of A are updated in the following manner: assume that the s-th
hypothesis of A is Hy(s),¢(s), Where w(s) = (wi(s),... ,w4(s)), and x is a counterex-

20

ample to Hy(s),¢(s)- Then the next hypothesis Huy (s41),1(s+1) 18 obtained by setting
wi(s + 1) = hi(wi(s)) for i = 1,...,d, t(s + 1) = hap (t(s)), where h; € S; for
i=1,...,d+ 1 (there is no limitation on the way in which the operations h; € S; are
selected in each learning step).

We note that the definition of a k-bounded learning algorithm does not attempt to
capture the intuitive notion of a distributed learning algorithm. However a distributed
learning algorithm where each processor can receive at any step only one of k possible
signals from its environment (i.e. from the part of the input to which it has access,
from other processors and from the feedback device), is likely to be k-bounded (provided
that the weight-change operations of each processor are commutative). In particular, the
perceptron algorithm and the Winnow algorithms are k-bounded for k¥ = 3. An example
for a distributed learning algorithm for threshold gates that is not k-bounded can be found
in Duda and Hart (1973). They discuss in Table 5.1 a variation of Hebb’s rule where the
increment depends also on the time step at which it occurs. Note that this algorithm -
requires more global control than Hebb’s rule or the Winnow rule, since each processor
must have access to a global clock. The following result gives a lower bound for the
complexity of all k-bounded learning algorithms.

Theorem 6.1. Let A be a k-bounded learning algorithm for HALFSPACEZ. Then A

requires nn(%) hypotheses for some target concept and some choice of the counterexamples.

Proof. As the weight-change operations of A are commutative, the hypothesis of A de-
pends only on how often each operation has been applied to the weights and the threshold.
Thus within ¢ steps A can produce at most (¢ 4+ 1)¥(4+1) different hypotheses. Hence if A
can learn any target concept from HALFSPACE? within ¢ steps it must be the case that

(t 4+ 1)@+ > | HALFSPACEZ |.

From Proposition 5.4 one gets then

| . .
t+1 > |HALFSPACE! [F@¥D > (n(8)(n — 1)4) FEFD = poR)

if d > 2. If d =1 then the bound follows as well, as | HALFSPACEL} | > n. O

In several cases it is also of interest to study the efficiency of a halfspace learning
algorithm for the case where all target concepts belong to a subclass of HALFSPACE!
(e.g. monomials, in the case n = 2). Therefore we formulate a generalization of Theorem
6.1 which is proved by the same argument.

21 :

Theorem 6.2. Let A be a k-bounded learning algorithm which can learn any concept
from some concept class C C HALFSPACE? with at most ¢t hypotheses. A is allowed to
1

produce hypotheses from HALFSPACE¢ not belonging to C. Then t > |C] M) — 1. O

It is easy to see that the perceptron algorithm requires nf(4) hypotheses to learn some
target concepts as it increases each weight by at most 1, and there are concepts requiring
weights of size n®(4), This follows by a counting argument from Proposition 5.4; one can
also construct concrete examples with this property (Hampson and Volper (1990)). Thus
Theorem 6.1 does not imply a new lower bound for this algorithm.

The Winnow algorithms modify the weights by multiplication, and thus they can
produce exponential size weights in polynomially many steps. Hence the above counting
argument cannot be used to prove a lower bound. On the other hand it follows from
Theorem 6.2 that the Winnow algorithms need 2%(4) steps to learn some monotone Boolean
threshold function, using the fact that there are at least 2(%)-‘«1 such functions. This
argument provides the first lower bound for the Winnow algorithms that is superpolynomial
in d.

We close this section with a remark showing that in a sense the perceptron algorithm
is an optimal k-bounded distributed halfspace learning algorithm.

Theorem 6.2 implies that if any k-bounded distributed learning algorithm can learn
a class C C HALFSPACES with the number of hypotheses bounded by a polynomial in d,
then |C| < 20(4184) The following proposition implies that this upper bound on the size
of C is in fact optimal up to a constant factor in the exponent.

Let p be a polynomial and consider the concept class

Cp:={C¢e HALFSPACEg | C = Hy,; for some w = (wy,...,wq) € 7% teZ
such that |w;| < p(d), i=1,...,d}

Proposition 6.3. If p(d) > d for every d, then |C)| = 20(dlogd) and the perceptron
algorithm can learn any target concept from C, with at most O(d?p*(d)) hypotheses.

Proof. Consider Hy, ; € HALFSPACES such that w = (wy,...,wq), (wy,... ’wL%J) is
a permutation of (1,2,... ,[gj), Widjyy == wq = —1 and ¢ := 0. Then it is easy
to see that different permutations correspond to different concepts, thus |Cp| = 2 (diceid)N
The upper bound for |Cp| is obvious. The upper bound for the learning complexity of the

perceptron algorithm on concepts from C, follows from the familiar upper bound on the
complexity of this algorithm (see Minsky and Papert (1988)). O

22

7. Some open problems.

Let Ck,q be the class of all monotone threshold functions for which only k of the d
input variables are “relevant”, i.e.

Cra:={CC {0,1}d | 3ay,... ,dd,teR such that ay,...,aq4 >0,
a; > 0 for at most k indices i € {1,...,d},
and Vzy,...,74 € {0,1}((21,...,2a) €C

d
& Z ;T 2 t)}
i=1

Littlestone (1988) has shown that with the Winnow learning algorithm one can learn any
target concept Cr from Cy 4 with O(ﬁfﬁ) hypotheses from HALFSPACEZ, where § is a
separability parameter of Cr that may be exponentially small in k. It remains an open
problem whether LCHALFSPACEZ (Ck 4) can be bounded from above by a polynomial in &
and log d (the superscript HALFSPACEY indicates that the learning algorithm for Cj 4 is
allowed to use hypotheses from the larger concept class HALFSPACE).

It is shown in Theorem 5.6 that LC(2 — HALFSPACE2) = Q(n). However it remains
an open problem whether LC(2 — HALFSPACEY) = O(d°(™). Note that the results of
Blum and Rivest (1988) only imply that this polynomial error bound cannot be realized
by a polynomial time computable algorithm (provided that P # NP).

Another important open problem is whether one can achieve polynomial upper bounds
in the LC-model for these and other concept classes that correspond to feedforward neural
nets of small depth, if one allows a larger hypothesis space (e.g. corresponding to neural
nets of larger depth and size).

Finally some interesting problems related to distributed learning algorithms for thresh-
old gates are left open by the results of Section 6. In particular it remains open whether
the lower bound of Theorem 6.1 remains valid without the condition of commutativity for
the weight-change operations (see (a) of the definition of k-boundedness at the beginning
of Section 6).

Acknowledgement. We would like to thank David Haussler and Carsten Lund for their
valuable remarks.

23

REFERENCES

ANGLUIN, D. (1988). Queries and concept learning. Machine Learning, 2, 319-342.

BLuM, A. AND RivesT, R.L. (1988). Training a 3-node neural network is NP-
complete. Proceedings of the 1988 Workshop on Computational Learning Theory (pp.
9-18). San Mateo, CA: Morgan Kaufmann.

BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D. AND WARMUTH, M.K. (1989).
Learnability and the Vapnik - Chervonenkis dimension. Journal of the ACM, 36,
929-965.

CoHEN, P.R. AND FEIGENBAUM, E.T. (1982). The Handbook of Artificial
Intelligence. Volume III. Los Altos, CA: William Kaufmann.

CRICK, F. AND ASANUMA, C. (1986). Certain aspects of the anatomy and physiol-
ogy of the cerebral cortex. In J.L. McClelland and D.E. Rumelhart (Eds.), Parallel
distributed processing. Vol. II. Cambridge, MA: MIT Press.

DUDA, R.O. AND HART, P.E. (1973). Pattern classification and scene analysis. New
York: Wiley.

EDELSBRUNNER, H. (1987). Algorithms in combinatorial geometry. (EATCS mono-
graphs on theoretical computer science, v. 10). Berlin, New York: Springer.

FELDMAN, J.T. AND BALLARD, D.H. (1982). Connectionist models and their prop-
erties. Cognitive Science, 6, 205-254.

GOLES, E. AND MARTINEZ, S. (1981). A short proof on the cyclic behaviour of
multithreshold symmetric automata. Information and Control, 51, 91-97.

GROTSCHEL, M., LOovAsz, L. AND SCHRUIJVER, A. (1988). Geometric algorithms and
combinatorial optzmzza,tzon (Algorithms and Combinatorics; 2) Berlin, Heidelberg:
Springer.

HAMPSON, S.E. AND VOLPER, D.J. (1990). Representing and learning Boolean func-

tions of multivalued features. IEEE Transactions on Systems, Man, and Cybernetics,
20, 67-30.

HEBB, D.O. (1949). Organization of behavior. New York: Wiley.

HOPFIELD, J.J. (1982). Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences of the

U.S.A., 79, 2554-2558.

KHACHIAN, L.G. (1979). A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR, 244, 1093-1096. English translation: Soviet Mathematics Dok-
Iady, 20, 191-194.

LITTLESTONE, N. (1988). Learning quickly when irrelevant attributes abound: a new
linear-threshold algorithm. Machine Learning, 2, 285-318.

Maass, W. (1991). On-line learning with an oblivious environment and the power of
randomization. Proceedings of the 1991 Workshop on Computational Learning Theory
(pp. 167-175). San Mateo, CA: Morgan Kaufmann.

24

MAAss, W. AND TURAN, GY. (1989). On the complexity of learning from counterex-
amples. Proceedings of the Thirtieth Annual Symposium on Foundations of
Computer Science (pp. 262-267). Washington, DC: IEEE Computer Society Press.

Maass, W. AND TURAN, GY. (1990 a). On the complexity of learning from coun-
terexamples and membership queries. Proceedings of the Thirty-First Annual Sym-
posium on Foundations of Computer Science (pp. 203-210). Washington, DC: IEEE
Computer Society Press.

MaAss, W. AND TURAN, GY. (1990b). Lower bound methods and separation results
for on-line learning models. To appear in Machine Learning.

Maass, W. AND TURAN, GY. (1990c). Algorithms and lower bounds for on-line
learning of geometrical concepts. Unpublished manuscript.

McCuLLocH, W.S. AND PITTs, W. (1943). A logical calculus of ideas imminent in
neural nets. Bulletin of Mathematical Biophysics, 5, 115-137.

MINSKY, M. AND PAPERT, S. (1988). Perceptrons: an introduction to computatzonal
geometry, Expanded ed1t10n Cambridge, MA: MIT Press.

MITCHELL, J.M. (1977). Version spaces: a candidate elimination approach to rule
learning. Fifth International Joint Conference on Artificial Intelligence (305-310).

MUROGA, S. (1971). Threshold logic and its applications. New York: Wiley.
NiLssON, N.J. (1965). Learning machines, New York: McGraw-Hill.

OLAFSSON, S. AND ABU-MOSTAFA, Y.S. (1988). The capacity of a multilevel thresh-
old function. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10,
277-281.

PapADIMITRIOU, C.H., AND STEIGLITZ, K. (1982). Combinatorial optimization:
algorithms and comple:mty Englewood Cliff, NJ: Prentice-Hall.

ROSENBLATT, F. (1962). Principles of neurodynamics. New York: Spartan Books

RUMELHART, D.E. AND MCCLELLAND, J.L. (1986). Parallel distributed processing:
ezplorations in the microstructure of cognition. Cambridge, MA: MIT Press.

SCHRIJVER, A. (1986). Theory of linear and integer programming. New York: Wiley.
SCHWARTZ, E.L. (1990). Computational Neuroscience. Cambridge, MA: MIT Press.

VAIDYA, P.M. (1989). A new algorithm for minimizing convex functions over convex
sets. Proceedings of the Thirtieth Annual Symposium on Foundations of Computer
Science (pp. 338-343). Washington, DC: IEEE Computer Society.

VAIDYA, P.M. (1990). Personal communication.

VALIANT, L.G. (1984). A theory of the learnable. Communications of the ACM, 27,
1134-1142.

YAGLOM, M. AND BoLTYANSKII, V.G. (1961) Convez figures. English translation.
New York: Holt, Rinehart and Winston.

25

Appendix

Lemma Al is a standard upper bound for the size of a solution of a system of linear
inequalities. In Lemma A2 we restate and prove Lemma 3.2.

Lemma A1l. Let C be ahalfspace over {—n,... ,n}?. Then there are integers wy,... ,wq,t
having absolute value at most 23d(ogd+logn+3) such that C = Fy N {-n,... ,n}?, where
d
Hpre— {(:1:1,... ,) € Rdl 2 Wik; 2 t}.
i=1

Proof. Let W = (@y,... ,@q) € R%, T € R such that C = Fie AT . ,n}¢. Thus

izi >t for every (z1,...,24) €C,

-
I
[y

.M"“
&2

iz; <t forevery (z1,...,24) € {-n,...,n}*\C.

.M"-
g2

1

-
I

It may also be assumed w.l.o.g. that for every (z1,... ,24) € {-n,... ,n}*\C

Indeed, as

d
min{'tv— Z'&?iw; | (z1,...,z4) € {—n,... ,n}d\C} >0

i=1

this can be achieved by multiplying with a sufficiently large positive constant. Hence

&y,... ,Wg,t is a solution to the following system of (2n + 1)? linear inequalities in the
variables y1,... ,Yd+1: '

d
(1) Zwiy,- > yay1 for every (z1,...,zq) €C,

i=1

d
Zm,-y,- <yq41—1 forevery (zi1,...,24) € {-n,... ,n}\C.

=1
By setting
(2) vi =yi —yi for 1=1,...,d+1

26

and adding (2n + 1)¢ slack variables §x we obtain the system
(3)

d
—Zz‘i(y?’ —'y,-_)+(y‘}"_'_1 —Yzu1)+ 6 =0 forevery x=(z1,...,24) €C,

i=1

d
Ez.'(y?' -y) - (y:i*-+1 —Ya41) + 6x=—1 forevery x= (z1,---,%a)

i=1
€ {-n,...,n}*\C,
yF>0,y7 >0 forevery i=1,...,d+1,
6x >0 for every x € {—n,...,n}".
Clearly (3) has a solution which can be obtained from wy,... ,Wq,t. The rows of the

matrix A describing the first (2n + 1)? inequalities of (3) are linearly independent, as the
coefficients of the é’s form an identity matrix. Hence (3) has a basic feasible'sclution z (i.e.,
a solution for which the columns of A corresponding to positive components are linearly
independent; this statement is Theorem 2.1 on p. 31 in Papadimitriou-Steiglitz (1982)).
The submatrix B formed by these columns has the following form (after rearranging some
rows and columns):

C O
I
where the elements of C and D are 0,41,...,%n, and C is a square matrix of size at

most 2(d+1). Hence | det B| and the absolute value of all subdeterminants of B is at most
(2(d+1))!n2(¢+D), The right hand sides of (3) are 0, -1, and in each column of B there are
at most 2d + 3 elements for which the determinant of the matrix obtained by deleting the
row and the column containing the given element is nonzero. Thus from Cramer’s rule each
component z; of the basic feasible solution z can be written as z; = d—:t%, where u; € Z

and |u;| < (2(d+1))In2(¢+1)(2d + 3). Now an integer solution to (1) can be obtained from
z using (2) and finally multiplying everything with the common denominator |det B|. The
absolute values of wy,... ,wy, t obtained in this way are at most

2(2(d + 1)) n2@+D(2d 4 3) < 21+2(d+l)log(2(d+1))+2(d+1)log n-+log(2d+3)
< 21+3dlog 3d+3dlog n+log4d _ 23d(log d+log n)+(1+(3 log 3)d+log(4d)) <

3d(log d-+1 +3
< 93d(log d+log n+3)

where we use that log3 < % and d > 2 (if d = 1, the claim is trivial). O

27

Lemma A2, 244(logd+logn+3) g 5 quarantee for SOLcy..

Proof. We have to show that the volume of SOLCT N B is at least r—9, where r =
94d(log d+10g n+3) and B ig the ball of radius r around the origin. Let ¥ € R%, t € R
be values such that Cr = Fy+NU, where U = igl{—x,’?,... y;n—1—z}}. Consider
C = Fx=N {-n,...,n}?. By Lemma Al there exist integers wy,... ,wq,t of absolute
value < 23"(l°f5 Hog n+3) such that C = F,, ;N {-n,... ,n}%. Then clearly Cr = F, ;N U
and as 0 ¢ Cr it holds that ¢ > 0.

Now let w* := (w},... ,w}), where w} = ;—’i‘f for i = 1,...,d. It is obvious that
Cr=Fux1 NU.

We will show that

d 1 1
x |w! — ——1 €SOL¢.. N B.
i=1 w"‘ 2tnd’ + 2tn d —SO Cr
Consider any u = (ul, ., uq) € R? with u; = w!+e¢; for some arbitrary ¢; € [—ﬁ, 5%7]

We show that Cr = F,,; N U. Consider any (x1,...,%4) €U.

(a) Assume x = (z4,... ,xd)GCT. Then as wix > ¢, we get
d 4 o d
uig; = wiz; +) €zi= i+) €z >
pum = Lovin+ o= Ltpee
2t 1 1 1
> =l+——"—-=>1
251 smd T a1 T

Hence (z1,... ,24) € Fyu1.

(b) Assume X = (z3,... ,24) € U\Cr. Then as wTx <t — 1, we get

2w a(t—1) 1 1 1
- e e I
Z”x' 2%—1 '+Z€$'— 5i=1 T =l Ty ts <

=1

Hence (z1,... ,24) ¢ Fu,1.

Zind>
(tnd)~¢ > (234cg d+logn+3)p d)=¢ > r=4 proving the lemma. O

d
Clearly u € B, thus X [w;“ A W} + 2tnd] C SOLcp N B. The volume of this box is

Finally we give some details of the ellipsoid method and Vaidya’s algorithm.
Algorithm 1. The ellipsoid method.

28

The bounds and the formulas are from Grotschel, Lovész and Schrijver (1988). An
ellipsoid E(4,a) is given by its matrix A and its center a such that E(A4,a) := {x €
RY | (x - a)TA™}(x — a) < 1}

The algorithm computes a sequence of ellipsoids E(Ag,ax). The next query presented
to the oracle is the center a;.

Initially Ag = r2I, ag = 0 (where r is the guarantee for the unknown convex body).

If the oracle returns the separating halfspace F = {x | ¢Tx > b} for the query ay,
then the next ellipsoid E(Ag,ax) is given by

1 Akc

a i~ a +
k+1 k n+ 1 ,-—--"CTAkc

2n? +3 (A 2 AkcchAk)
A~ k .

" n+1 cTAxe

Here “~” means that all computations have to be done with a precision of 80d 2 log 2r bits.
The upper bound for the number of iterations necessary is 1042 log 2r.

Algorithm 2. Vaidya’s algorithm.
The bounds and the formulas are from Vaidya (1989).

The algorithm maintains a pair (Q, z), where Q = {x e R% | alTx > b;,i=1,... ,m}
is a full-dimensional polytope and z € Q. The point z is an approximation to the volumetric
center of @, which is defined as follows.

The logarithmic barrier for @ is the function — Z In(a¥x — b;). The Hessian of this

=1
function is given by

H(x) = Z (aTx b)2’
The volumetric center w of @ is the minimum of
F(x) := 3 In(det(H(x))).

The heuristic for considering w given in Vaidya (1989) is that this is the point where
the ellipsoid {y € R?¢ | (y — x)TH(x)(y — x) < 1} € @Q (providing a local quadratic
approximation to @) has the largest volume. Hence using this point as the next query can
be expected to eliminate a large portion of @ from consideration.
Let € and 6 be fixed constants such that § < 10~* and € < 10736.
The sequence of pairs generated by the algorithm is (P, zx). Initially
d

Py = {x eRY|z;>—r for i=1,...,d, and > z;< dr} is a simplex and z, is the
' i=1 .
explicitly computable volumetric center of Py.

29

For a given pair (P, zx) the algorithm performs the following computation. (In order
to avoid additional indices, assume that Py = {x € R? | aTx > b;,i =1,... ,m}.)
Compute H(x), the quantities

al H(x) la; :
oi(x) :=ﬁ for 1 =1,...,m,
m a
VF(X) = - Z Gi(x)m
i=1 3 i

and

T
Q) = Z 7)o

There are two cases.
Case 1. (Querying the oracle)

If 0;(z;) > efor i = 1,... ,m then present the query zk to the oracle. Assume that
the oracle provides a separating halfspace F = {x € R? | ¢Tx > b} Choose a 3 such that
cTz; > B and .

cTH(zk)'lc _ Ve
(cTzp—B)2 ~ 2 °

Let Piry; be obtained from P by adding the inequality cTx > B. The point zry; is

obtained by executing the following iteration [301n(2¢=*-°)] times:
z — 2z —0.18Q(z) "' VF(z).

Case 2. (Simplifying the polytope)

If the condition of case 1 does not hold then let ¢ be a value for which o;(zx) is as
small as possible (1 < i < m). Let Pr41 be obtained from P by deleting the defining
inequality a7 x > b;. The point 2z, is determined by executing the iteration

z —z —0.18Q(z) "' VF(z)

[301n(4€¢73)] times.
Now Vaidya (1989) showed that the volume of Py is at most

d(logr+1n(?§))+1 @+1)- (k;ne

Hence the guarantee implies that the number of iterations needed is O(dlogr).

30

