
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 46, 129-154 (1993) 

Threshold Circuits of Bounded Depth 

ANDRAS HAJNAL 

Department of Mathematics, Statistics, and Computer Science, 
University of Illinois at Chicago and Mathematical 

Institute of the Hungarian Academy of Sciences, Budapest 

WOLFGANG MAASS* 

Institute for Theoretical Computer Science, Technische Universitiit Graz, 
Austria, and Department of Mathematics, Statistics, and Computer Science, 

University of Illinois at Chicago 

PAVEL PUDLAK 

Department of Mathematics, Statistics, and Computer Science, 
University of Illinois at Chicago and Mathematical Institute, 

Czechoslovakian Academy of Sciences, Prague 

MARIO SZECEDY 

Department qf Computer Science, University of Chicago 

AND 

GY~RGY TURIN 

Department of Mathematics, Statistics, and Computer Science, 
University of Illinois at Chicago and Automata Theory 

Research Group of the Hungarian Academy of Sciences, Szeged 

Received December 8, 1988; revised January 5, 1991 

We examine a powerful model of parallel computation: polynomial size threshold circuits 
of bounded depth (the gates compute threshold functions with polynomial weights). Lower 
bounds are given to separate polynomial size threshold circuits of depth 2 from polynomial 
size threshold circuits of depth 3 and from probabilistic polynomial size circuits of depth 2. 
With regard to the unreliability of bounded depth circuits, it is shown that the class of func- 
tions computed reliably with bounded depth circuits of unreliable A, v , 1 gates is narrow. 
On the other hand, functions computable by bounded depth, polynomial-size threshold 
circuits can also be computed by such circuits of unreliable threshold gates. Furthermore we 
examine to what extent imprecise threshold gates (which behave unpredictably near the 
threshold value) can compute nontrivial functions in bounded depth and a bound is given for 
the permissible amount of imprecision. We also discuss threshold quantifiers and prove an 
undefinability result for graph connectivity. 0 1993 Academic Press, Inc. 

* Supported in part by NSF Grant CCR-8703889. 

129 
0022~0000/93 $5.00 

Copyright 0 1993 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



130 HAJNAL ETAL. 

1. INTRODUCTION 

Circuits with bounded depth and unbounded fanin were studied recently for 
several different reasons. These circuits are related to relativized separation of 
complexity classes (Furst et al. [13]) and definability problems (Ajtai [ 11); they 
also form a model of parallel computation (Chandra et al. [S]). 

The results of Ajtai [I], Furst et al. [ 131, Yao [34], Hastad [ 151, Razborov 
[25], and Smolensky [31] give superpolynomial lower bounds for the size of 
bounded depth circuits with A, v, 1 gates computing PARITY, and of bounded 
depth circuits with A, v, 1 and PARITY gates computing MAJORITY. 
Thus with respect to bounded depth, polynomial size reducibility ( Gus) [IS], 
0 <bp PARITY <bp MAJORITY. 

The next step in extending this hierarchy would be to study bounded depth, 
polynomial size circuits where MAJORITY is also allowed as a single gate. 

We consider here these circuits and the complexity class TC” of Boolean 
functions computed by them. This class was first studied by Parberry and 
Schnitger [22]. The definition we use allows gates computing thresholdfunctions of 
the form 

T;t(.Y,, ..., Y,) = 1 iff f a,y,Bk (where a = (a,, . . . . a,)). 
z=I 

Circuits with threshold gates are also related to several computational brain 
models (e.g., Boltzmann machines [27]) and to other models related to pattern 
recognition and learning, some of which have been studied since the 1950’s (e.g., 
perceptrons 120,271). 

We show that depth-2 threshold circuits computing INNER PRODUCT MOD 
2 must have exponential size. The proof is based on the notion of a discriminator 
and a lemma of Lindsey [3,9, lo] about Hadamard matrices. As INNER 
PRODUCT MOD 2 can be computed by polynomial size depth-3 threshold 
circuits and by polynomial size depth-2 probabilistic threshold circuits, this gives a 
separation of the corresponding complexity classes. We were not able to prove 
lower bounds for circuits of larger depth. 

Probabilistic threshold circuits of depth d can be simulated by deterministic 
threshold circuits of depth d+ 1 (with polynomial increase in size). If the problem 
to be computed satisfies some symmetry conditions then there is a simulation in the 
other direction too. 

We also consider reliability in the context of bounded depth, unbounded fanin 
circuits. The study of reliable computation by circuits of unreliable gates (i.e., gates 
which output an incorrect value with a certain probability) goes back to von 
Neumann [21]. More recent results are due to Dobrushin and Ortyukov [lo] and 
Pippenger [23 J. These results show, that in the bounded fanin case every function 
can be computed reliably over any complete basis without a significant increase in 
complexity (depth and size). 
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In the bounded depth, unbounded fanin case the situation is quite different. The 
class of functions which are computable reliably with bounded depth A, v , 1 cir- 
cuits of any size is very restricted. These are the functions for which {x: f(x) = 1 } 
can be obtained from a bounded number of subcubes by Boolean operations. In 
contrast, threshold circuits with unreliable gates can be used for reliable computa- 
tion in bounded depth. 

For threshold gates one can consider another notion of unreliability, which may 
have some practical relevance if it becomes technically feasible to build threshold 
gates with large fanin. A threshold gate is called imprecise if it behaves unpredic- 
tably when the evaluated sum is near the threshold value. We prove a general lower 
bound which is useful in determining the permissible amount of imprecision. 

We also consider a logical characterization of TC” using the generalized quan- 
tifier #k (“there are at least k elements...“) introduced by Immerman and Lander 
[ 171. It is shown that CONNECTIVITY of graphs cannot be defined by sentences 
of bounded quantifier rank using threshold quantifiers and a successor relation. 

There are many open problems about threshold circuits. Some of these are 
mentioned at the end of the paper. 

2. DEFINITIONS AND EXAMPLES 

A thresholdfunction is of the form 

G(YI, . ..> Y,) = if CyZ, EiyiBk 
otherwise, 

where the q’s are the weights, a = (aI, . . . . cx,) E 2”’ is the weight vector, and k E Z is 
the threshold value. We use the notation 

a = f Ictjl. 
i=l 

We shall also use the notations T;(y,, . . . . y,), T!Jk(yl; . . . . y,) for the functions 
“at least k l’s, ” “at most k 1’s.” 

A threshold circuit C is a Boolean circuit where every gate computes a threshold 
function. We assume that the gates are on levels. Level 0 contains 2n + 2 nodes 
labeled x1, . . . . x,, X, , . . . . ,3,, 0, and 1. Every edge connects a node on level 1 to a 
node on level I + 1. A circuit is a formula if every gate has outdegree Q 1. 

The size of C is the number of gates, its depth is the length of a longest path. The 
weight of C is the maximal absolute value of weights occurring in gates of C. 

If v is a gate of C and x is an input, we write C,(x) for the value computed at 
v for input x. C(x) is the output value. 

TC: is the class of languages L s { 0, 1) * for which there is a polynomial p and 
a sequence (CJnGN of depth d threshold circuits such that C, computes L n (0, 1)” 
and both the size and the weight of C, are bounded by p(n). 
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TC”= U&N TC: is the class of languages recognizable by threshold circuits of 
bounded depth such that the size and the weight are bounded by a polynomial. (As 
for AC”, one can define uniform variants but we do not pursue this in this paper.) 

We give some examples of functions in TC”. 

PROPOSITION 2.1. Symmetric functions can be computed by depth-2 threshold 
circuits of linear size and weight 1. 

Proof Let f(xi, . . . . xk) be a symmetric function described by S= {s,, . . . . sk} c 
(0, . ..> n) (i.e., f(x) = 1 o C:= i x, E S). Then the circuit 

T:“, , V:,(x), T:,s, (~1, . ..> T:,(x)> T:,,(x)) 

computes f: (Observe that the number of l’s that are input to the final gate is 
always either k or k + 1). 1 

Another example is given by the SUM-EQUALITY function. (SUM- 
EQUALITY,(x,, . . . . x,, yl, . . . . y,) = 1 iff x7=, xi= C:=, y,.) 

PROPOSITION 2.2. SUM-EQUALITY is in TC,“. 

INNER PRODUCT MOD 2, is the 2n-variable function x . y = xi y, @ . . 0 
x, y,. Proposition 2.1 implies that this function is in TC,“, (It will be shown not to 
belong TC,” .) 

Other problems in TC,” are ADDITION, SUBTRACTION, and COMPARISON 
of two n-bit numbers.+ 

The reductions of Chandra et al. [8] and the results of Beame et al. [6] imply 
that the following problems are also in TC”: MULTIPLICATION of two n-bit 
numbers, SORTING of n n-bit numbers, MULTIPLICATION of n n-bit numbers, 
and DIVISION of two n-bit numbers (the last two, following [6], require 
nonuniformity). This relationship is further elaborated in Reif [26]. 

We mention some modifications of the circuit model for which the class of 
functions computable in bounded depth and polynomial size is equal to TC”: 

1. Restriction to nonnegative weights: negative weights can be eliminated by 
replacing cli yi by a,( 1 - jj) if C(~ < 0 everywhere in the circuit, and computing for 
every gate u not only C,(x) but c(x) too. This transformation does not increase 
the depth and at most doubles the size. 

2. Restriction to majority gates: as the weights are polynomial, one can use 
multiple edges and new edges from the constants to obtain majority gates. 

3. Generalization to threshold gates with arbitrary weights: as the number of 
bits of the weights can be assumed to be polynomial and the addition of several 
numbers can be done in bounded depth and polynomial size using majority gates 
[8], these gates can be simulated by subcircuits performing this task. 

+ Note added in proof Recently Siu and Bruck have shown that ADDITION and COMPARISON 
are in TC,“; furthermore Siu and Roychowdhury have shown that MULTIPLICATION and DIVISION 
are in TC,“. 
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4. Gates for every symmetric function: equivalence follows from Proposi- 
tion 2.1 and modification 2 above. 

Proposition 2.1 suggests that depth d circuits with gates computing symmetric 
functions can be simulated by depth 2d threshold circuits. This simulation can be 
improved. 

THEOREM 2.3. Let f: (0, l}” -+ (0, 1) be computed by a depth d, size s circuit C 
of gates computing symmetric functions. Then f is computed by a depth d+ I 
threshold circuit C’ of size O((s + n)*) and weight 1. 

LEMMA 2.4. Let f: (0, 1 }” -+ (0, 1 } be computed by a depth-2, size-s circuit C of 
gates computing symmetric functions. Then f is computed by a depth-2 size-O(sn) 
circuit C’ such that C’ has threshold gates (with weights 0 or 1) on level 1 and a gate 
computing a symmetric function on level 2. 

Proof Let C be of the form 

where yV (1 < i < m, 1 < j < ri) are variables or their negations, S is given by 
1s 1, ..-, Sk} c (0, . ..) m} and Si is given by {si,,, . . . . s~,~,} E (0, . . . . ri}. 

Let the gates on the first level of C’ be T:;,( yil, . . . . y,,,) and T: s,,, ( yil, . . . . y,,,) for 
1~ i < m, 1 d j < ki and the final gate S’ be given by 

f ki+st, ..., f ki+sk 
i=l i=l 

. 

Then C’ computes f by the observation proving Proposition 2.1. 1 

Proof of Theorem 2.3. C’ is constructed by applying the construction of 
Lemma 2.4 d - 1 times starting at levels 1 and 2 and, finally, applying the construc- 
tion of Proposition 2.1. The size bound follows by observing that each gate u in C 
corresponds to 2k gates in C’, where k is the size of the set describing the symmetric 
function computed at v. n 

Other equivalent models (threshold parallel computer, TRAM, threshold Turing- 
machine, and a deterministic variant of the Boltzmann-machine) are given by 
Parberry and Schnitger [22]. The equivalence to circuits with ADDITION and 
MULTIPLICATION follows from the reductions of [S]. The equivalence to 
probabilistic threshold circuits is given in Section 4. A logical characterization of 
TC” is described in Section 7. 

Note that the classes TCS are not necessarily invariant under these simulations. 
The definition used here has the advantage that for every d, TCj is closed under 
p-projections [ 18,301 and has a natural complete problem MAJd: MAJd(x,, . . . . x,) 
is computed by a depth d, indegree n’ld tree of MAJORITY gates. 



134 HAJNALETAL. 

3. LOWER BOUNDS FOR DEPTH-2 CIRCUITS 

PARITY cannot be computed by a single threshold gate as every threshold 
function is monotone increasing or decreasing in every variable. Therefore 
Proposition 2.1 implies TC,” s TC,“. Now we show that the second and third levels 
of the hierarchy are also different. 

THEOREM 3.1. TC,” 5 TC;. 

This follows from: 

LEMMA 3.2. Fix any E > 0 and polynomial p. Assume that C is a depth-2 threshold 
circuit with weight <p(n) computing INNER PRODUCT MOD 2 of two n-bit 
strings. Then if n is sufficiently large, the size of C is at least 2(‘12-E)n. 

Before proving the lemma we define discriminators. 

DEFINITION. Let C be a circuit with n inputs and A, BG (0, 1 }” be disjoint sets. 
Let P, (resp. PB) denote the uniform probability distribution on A (resp. B). Then 
C is an e-discriminator for A and B if 

IPA = 1) - Ps(C(x) = 1)1> E. 

If f is an n-variable function, C is an E-discriminator for f if it is an s-discriminator 
for A= {x: f(x)= i} and B= {x: f(x)=O]. 

LEMMA 3.3. Let Tz(C, , . . . . C,) be a circuit with n inputs, a = CT=, 1~1~1 and 
A, BG (0, l}” be disjoint sets such that the circuit accepts A and rejects B. Then 
some subcircuit Ci (1 <id m) is a (l/a)-discriminator for A and B. 

Proof Let the random variable C:(x) (resp. C:(x)) be the output of Ci when 
x is distributed uniformly on A (resp. B). Then x7=“=, a,C,“(x)> k and 
x7! i criCf(x) < k - 1. Taking expectations and rearringing we obtain 

1 < 5 qqC:‘(x)) - E(Cf(x)) 
i= 1 

<a’,~,~m IP~(Ci(x)~l)~P~(Cj(x)~iI~ 1 
. . 

This lemma reduces the problem of proving a lower bound for depth d circuits 
to showing that there are no depth (d - 1) &-discriminators for large E. The lemma 
holds for arbitrary probability distributions. Later (Theorem 4.6) we shall prove a 
partial converse of this lemma. 

The following lemma is a special case of a lemma due to Lindsey (see [3,9, 111). 
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LEMMA 3.4 (Lindsey). For every X, YE { 0, 1 }“, 

I({(x,y)EXX Y:x.y=l)(-l{(x,y)&Yx y:x~y=o}(l 

135 

Proof of Lemma 3.2. Let T;(C,, . . . . C,) be a circuit satisfying the assumption 
of the lemma. Thus the Cj are threshold gates. Let C, be a gate of the form 

f pjxj+ i y,y,zl. 
j=l j= 1 

Let 

x,:= 
i 
x: i pjxj=u ) 

j=l 1 

Y,,:= y: i yjyjkl-u 
i j=l 

(thus (u( <<p(n)). Then 

HP(n) 

{(x~Y):ci(x~Y)=l}= 0 x,x yu. 

u= -rip(n) 

Applying Lemma 3.4, 

I I((x, Y): Ci(X, y)= 1, ~~Y=~}l-l{~~,Y~:~i~x,y)=~,x~y=o}ll 

e y JWQ (2n-t 1) p(n) 2342 
u = -rip(n) 

and as ~{(x,y):x~y=1}~=22”-1-22”-‘, I{(x,y):~.y=O)(=2~“-~+2”-~, if Ci 
is an &‘-discriminator for INNER PRODUCT MOD 2, then a’ < 2-(112-6’2)n if n is 
sufftciently large. Hence in the original circuit c( 2 2(“2--E’2)n from Lemma 3.3. But 
01< mp(n), thus 

1 
ma--- 

P(n) 

2(li*-“/2)“~2(1/2--E)n 

if n is sufficiently large. i 

Proof of Theorem 3.1. INNER PRODUCT MOD 2 is not in TC,” 
by Lemma 3.2. On the other hand, it is in TC,” as it was remarked after 
Proposition 2.2. 1 

Lemma 3.2 implies further lower bounds using reduction by p-projections. 
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COROLLARY 3.5. Fix any polynomial p. Let C he a depth-2 threshold circuit with 
weight 6 p(n). Then the following holds: 

2nl,it!,. if c 
computes MULTIPLICATION of two n-bit numbers then it has size 

> 
(b) if C computes CONNECTIVITY of n-vertex graphs then it has size 2”(“‘; 
(c) if C computes MAI’ of n bits then it has size 2*(@‘. 

Proof: (a) Let x=x,O~~~Ox,O~~~Ox,~,O~~~Ox,, y= y,0...0G..y20...0y, 
where Llog, n J O’s are inserted between any two variables. Then x1 y, 0 . Ox, y, 
is the mth digit of the product xx y, where m is the length of x. 

(b) The fact that INNER PRODUCT MOD 2 is a p-projection of 
CONNECTIVITY follows from a result of Skyum [29]. A more eflicient construc- 
tion is obtained by taking a cycle of length 4n and replacing every second pair of 
opposite edges by the labeled subgraph of Fig. 1. (Other edges are labeled 0.) 

(c) Proposition 2.1 shows that INNER PRODUCT MOD 2 is computed 
by a depth-3 formula of O(n) variable majority gates which leads to the desired 
projection. 1 

The proof method of Lemma 3.2 can also be used to prove lower bounds for 
depth-2 threshold circuits having arbitrary weights on the first level. 

THEOREM 3.6. Let E, p, C be as in Lemma 3.2, except that there is no bound on 
the size of weights for gates on level 1. Then if n is sufficiently large, C has size at 
least 2(‘13- +. 

Prooj(Outline). Following the proof of Lemma 3.2 it suffices to show that if C, 
is a threshold gate of the form 

FIGURE 1 
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then 

if n is sufficiently large. 
Form a 2” x 2” matrix where the rows (resp. columns) are indexed by x’s in 

increasing order of Bx (resp. y’s in increasing order of yy), and entry (x, y) is 
Ci(x, y). In this matrix every entry either to the right of, or below an entry which 
is 1, is also equal to 1. Divide the matrix into 22ni3 square submatrices of size 
22n/3 x 22n/3. There are at most 2. 2”13 squares containing both a 0 and a 1. The 1 
entries not in these squares can be covered by 2”13 rectangles of height 2”13 and 
width 6 2”. Thus using Lemma 3.4 the difference above is at most 

2 .p3 .24”‘3+2fl13.~~=3.25”13, 1 

4. PROBABILISTIC THRESHOLD CIRCUITS 

A probabilistic threshold circuit is a threshold circuit with two kinds of inputs, 
x = (Xl) **., x,) and unbiased random bits r = (ri, . . . . r,). P(C(x, r) = 1) is the 
probability that C accepts x. 

For A, B 2 (0, l}“, E > 0, we say that C gives advantage E to A over B if 

P(C(x,r)=l)b$+c for every x E A, 

P(C(x,r)=l)<$-.5 for every x E B. 

RTC: is the class of languages L G (0, 1) * for which there is a polynomial p and 
a sequence of depth d threshold circuits (C,),, N such that C, gives advantage E, 
to Ln (0, l}” over Ln (0, l}“, cc1 <p(n), and the size, the weight, and the 
number of random bits used by C, are all bounded by p(n): 

RTC;= u RTC;. 
LIEN 

We shall use the standard Chernoff inequality: if S, is the sum of m in&per&.nt 
random variables each taking value 1 (resp. 0) with probability p (resp. 1 - p) then 
P(S, > pm + h) < e-(2h2/m) and P(S, < pm-h) < e-(2h21m). 

LEMMA 4.1. Let A, Bc (0, 1 }” be disjoint sets. Let C be a depth-d probabilistic 
circuit with size, weight, and number of random bits all bounded by p(n) which gives 
advantage E to A over B. Then there is depth-(d + l), deterministic circuit c’ which 
accepts A, rejects B and has size and weight bounded by O(p(n) nEe2). 

Proof. Consider T”,,,(C,(x, rl), . . . . C,(x, r,)), where the Cjs are disjoint copies 
of C. For every x, Ci(x, ri) (I < i < m) are independent random variables. For every 
x E A, P(CJx, ri) = 1) > f + E, so P(Cy=, Ci(x, ri) <m/2) < e-2E2m from the Chernoff 
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inequality and similarly for x E B, P(C;=, C, (x, r;) 2 m/2) < e “““. The probability 
that the circuit above gives an incorrect output for some x E A u B is < 2” v 2c2”‘, 
which is < 1 for some m = O(IZE-~). For this m, some choice of the random bits 
rl, . . . . rm works for every x. m 

PROPOSITION 4.2. RTC: E TC;, , , hence RTC” = TC”. 

Proof Follows directly from the previous lemma. 1 

Note that the corresponding statement holds for AC” only if s;l= (log n)o(‘) 
[2]. Now we show that the two hierarchies differ on the second level. 

THEOREM 4.3. TC,” Y$ RTC,“. 

This follows directly from Lemma 3.2 and the following lemma (giving another 
proof of Theorem 3.1). 

LEMMA 4.4. INNER PRODUCT MOD 2 is in RTC,“. 

LEMMA 4.5. Let L E (0, 1 } *, A,=Ln(O, l}“, B,,=En(O, l}“, and p be a 
polynomial. Suppose there is a sequence (C,), E N of depth d probabilistic circuits such 
that C, has size, weight, and number of random bits all bounded by p(n) and 

(1) for XEA,, P(C,(x,r)=l)>cr, 
(2) for x E B,,, P(C,,(x, r) = 1) 6 B, 

(3) O<(an-BXL~~(n). 
Then L E RTC”. 

Proof: Assume C, uses random bits rl, . . . . r, and is of the form Tz(C’, . . . . Cm). 
Assume w.1.o.g. ( OL, + /I,)/2 > f . 

Let p, q be integers with q 6 2p and take p new random bits r’ = (r;, . . . . rb). Let 
sr, . . . . sy be different elementary conjunctions of the new random bits. Consider the 
circuit c’ given by 

T;‘+,+,Kt . . . . C”, ~1, . . . . sq), 

where c( = XT=, 1u.J and a’ is obtained by appending the weight (CI + 1) q times 
to a. Then 

P(C(x, r, r’)= l)= P(C(x, r)= 1). P(3i<q: si= 1) 

P(C(x, r)= l).q/2p 

and a simple calculation shows that for some p = 0( -log(a, - pn)) and a suitable 
q, C’ gives advantage i(oz” - 8,) as required in the definition of RTC”. 1 
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Proof of Lemma 4.4. We describe a depth-2 probabilistic circuit for INNER 
PRODUCT MOD 2. Let x = (xi, . . . . x,,), y = (yi, . . . . y,), and let r = (r,, . . . . r,) be 
random bits. Consider the circuit 

T2” Gn-l(~l A yl A rl, .fl v Y1 v rl, . . . . x, A Y, A rn, -f, v Yn v r,). 

Observe that if xi= yi= 1 then xi A yi A ri = Xi v jji v ri = ri, otherwise 
xi A yi A ri=O, Xi v yi v ri= 1. If for (x, y) there are k indices i with xi= yj= 1, 
this fixes n-k O’s and n-k l’s for T2n-,. The remaining bits are generated 
randomly in pairs of O’s and 1’s. Thus if k is odd, we shall never have exactly n O’s 
and 1’s. Hence for such an input the probabilit of acce tance is 4. If k is even, the 
probability of having n O’s and n l’s is w jiP- 2/nk > 2/nn, and the probability of 
having n - 2t O’s is equal to the probability of having n + 2t 0’s. Hence for such an 
input the probability of acceptance is f 4 - $$k. The proof is completed by 
applying Lemma 4.5. 1 

In the remainder of this section we present some evidence that the simulation of 
probabilistic threshold circuits by deterministic ones must increase the depth in 
general. 

Let G be a group of permutations on { 1, . . . . n}. Then G induces a group G* of 
permutations on (0, 1 }“. 

DEFINITION. A,, B, E { 0, 1 }” are homogeneous if A,, and B, are the orbits of G* 
for some group of permutations G. 

For example, considering CONNECTIVITY of graphs, A, = {Hamilton cycles} 
and B, = (disjoint unions of two cycles of length n/2} are homogeneous sets of 
inputs, where G is the group of permutations of the edges induced by relabelings 
of vertices. 

THEOREM 4.6. Let d> 3 and let A,,, B, s (0, 1 }” be disjoint homogeneous sets. 
Then the following are equivalent: 

(a) A,, and B, can be separated by depth d+ 1 (deterministic) circuits with size 
and weight bounded by a polynomial, 

(b) there are depth d&,-discriminators for A,, and B, with size, weight, and 8;’ 
bounded by a polynomial, 

(c) there are depth-d probabilistic circuits giving advantage E, to A,, over B, 
such that the size, the weight, the number of random bits, and &;I are all bounded by 
a polynomial. 

Proof. (a) =S (b) is Lemma 3.3, (c) 2 (a) is Lemma 4.1, therefore we only have 
to prove (b) =S (c). 

Let C be an &,-discriminator for A, and B,, with PA,(C(x) = 1) = TV,, 
Psn(C(x) = 1) = /In. Assume w.1.o.g. E, = ~1, - /I,, > 0. 

For yeG let Cy denote the circuit computing C(y*(x)), where y* is the element 
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of G* induced by y. Let P, be the uniform probability distribution on G. Then as 
G* is transitive on A, and B,, for every XEA, (resp. XE B,), PG(Ci’(x)= l)=cc,, 
(resp. P&C?(x) = 1) = fin). 

The Chernoff inequality implies as in Lemma 4.1, that there are permutations 
y,, . . . . yrn with m = O(nse2) such that if P& denotes the uniform probability distribu- 
tion on (yi, . . . . y,}then for every x E A, (resp. x E B,), P~(C”(x) = 1) > ~1, - ~,,/3 
(resp. Pb(CY(x) = 1) 6 pn + sJ3). 

Assume w.1.o.g. that m = 2’ and r,, . . . . Y, are random bits. Let C’ be a circuit such 
that 

c’(x I, ..-> x,, Tlr -.., r,) = C(yf(x)), 

where (ri, . . . . rl) is i in binary. Then applying Lemma 4.5 to center the probabilities 
CI, - &,/3 and fi, + ~,/3 around $, we obtain a circuit giving advantage E, 112 to A, 
over B,. 

What remains is to describe the construction of C’. 

LEMMA 4.7. Let D be a threshold circuit of the form Tf(D,, . . . . D,) where all 
weights in fl are nonnegative and D* be a new circuit called the switch. Form a circuit 
D’ of the form Ty’(D,, . . . . D,, D*), where B’ is $ appended by a coefficient 1. Then 
if D* outputs 0, D’ behaves as D, otherwise it outputs constant 1. 

Proof Clear. 1 

Continuing the proof of Theorem 4.6, let C be of the form Tz(C,, . . . . C,), 
where we assume w.1.o.g. that all weights are nonnegative. Let sr, . . . . s2f be all the 
elementary disjunctions of the random bits rl, . . . . rl. (Thus always exactly one of 
them is 0.) 

Let C{ be Ci equipped with switch sj (1 < i d m, 1 < j < 2’) and let C’ be of the 
form 

T::,,,-,,+,(Cf, . . . . CL, . . . . C:‘, . . . . C;,, 

where a’ is a repeated 2’ times and CI = Cy=, cli. (The Cfs have disjoint sets of gates 
but use the same random bits r,, . . . . r,). The correctness of the construction and the 
size bounds follow from the remarks preceding Lemma 4.7. The switch has depth 1, 
so the depth of C is not increased if it is at least 3. 1 

We note that to prove (a) directly from (b) it suffices to take O(nep2) circuits 
C(y*(x)) with y chosen at random from G and apply a suitable threshold function 
to the outputs of these circuits. 

5. CIRCUITS WITH UNRELIABLE THRESHOLD GATES 

A gate is called s-unreliable if with probability E it computes an incorrect output 
(E is called the unreliability of the gate). In a circuit of unreliable gates the gate 
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failures are assumed to be independent. The unreliability of different gates in a cir- 
cuit may be different. C is a circuit of >&-unreliable gates if it consists of gates u 
that are s(u)-unreliable and E(U) > E for every u. C computes a function f with error 
probability 6 if for every x, C computes f(x) with probability B 1 - 6. We assume 
E<& 

First we consider bounded depth, unbounded fanin circuits with A , v , 1 
gates. 

Let A(f) be the smallest number of subcubes from which {x: f(x) = 1 } can be 
obtained by union, intersection, and complementation. 

PROPOSITION 5.1. For every r and 6 > 0 there is an E > 0 such that every function 
f with A(f) < r can be computed by a depth 6r + 4 circuit of A , v , 1 gates with 
error probability 6, for every assignment of unreliabilities < E to its gates. 

Proof If A(f) dr, f can be written in the form g(h,, . . . . hz,), where hi 
(1 < i < 2r) is a conjunction or disjunction of some of the variables oft Let F’ be 
a formula of depth 6 2r computing g( yr , . . . . yZr) with fanin d 2 [ 193 and let F be 
obtained from F’ by replacing the variables yi by hi. 

Let G be a subfotmula of F of depth i computing a function fc. We claim that 
there is a circuit CG of depth 3i - 2 which computes fG with error probability 6 for 
every assignment of unreliabilities 6 E to the gates (where E depends on 6). For 
i= 1 this is obvious. For i > 1 the fanin is < 2, so we can use induction as in 
Pippenger [23, Theorem 2.41 (compute fG three times from its subcircuits and 
take majority, requiring two additional levels). (If F is levelled then the circuit 
constructed will also be levelled.) 1 

Note that in the construction above the size of the circuit computing f is also 
bounded by a function of r. 

Now we can prove a converse of the proposition above which shows that if a 
function f can be computed reliably then A(f) is bounded by a function of the 
depth. (Here we do not need to assume that the circuit is levelled.) 

THEOREM 5.2. For every E >O and 6 > 0, if f is any function computable by a 
depth d circuit of > e-unreliable A , v , 1 gates with error probability f - 6 then 

A(f) = d°Cd). 

Proof Let C be a depth d circuit of > c-unreliable gates computing f with error 
probability $ - 6. Let s be a number satisfying 

(1 -&)s+’ .sd-*<& 

An edge of C is a red edge if its tail is a gate (not an input variable). We con- 
struct a circuit C’ from C as follows: starting from the output gate upwards, replace 
every A -gate (resp. v -gate) with red indegree > s by an A -gate (resp. v -gate) 
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with a single constant 0 (resp. 1) input (the new gate has the same unreliability as 
the original one); delete superfluous gates. 

LEMMA 5.3. For every input x, 

IP(C(x)=l)-P(C’(x)= l)/ <6. 

Proof: Let u be an A -gate (the proof for v gates follows similarly). Let 
VI 3 .*., v, (t > S) be the inputs of o and assume that if ui is input to u, then i<j. Then 

P(& c”,(x)=l)=fi, P(c”,b)=l[;~ C,l(r)=l) 

Q(1 -&)‘<(l -&)s+‘, 

as for every input, every gate outputs 0 with probability 3 E. 
The number of new gates in C’ is 6 sdp 2, as new gates occur in depth > 2, and 

every gate in C’ has red indegree <s. Hence, if B denotes the event that all replaced 
A -gates (resp. v -gates) output a 0 (resp. a 1) in C, then 

But 

P(B)>l-(l-~)“+‘s~-~>l-& 

P(C(x) = 11 B) = P(C’(x) = 11 B), 

so the iemma follows by considering the event C(x) = 1 under conditions B 
and B. 1 

c’ contains < sdp ’ gates. The variables input to each gate u correspond to a 
subcube or its complement. Let the subcubes be Q,, . . . . Q, (t d sd- ‘). 

If A(f) > sd- ‘, then there are y and z such that f(y) = 1, f(z) = 0, and for every 
i,yEQiifandonlyifzEQ,.ThenP(C(y)=1)>$+6, P(C(z)=l)<$-6,and 

JP(c(y)=1-P(c(z)=1)~6lP(c(y)=1)-P(c’(y)=1)( 

+IP(c’(y)=l)-P(C’(z)=l)[ 

+IP(C’(z)=l)-P(C(z)=1)1<26, 

using the lemma above (the middle term is 0), a contradiction. The bound follows 
by a computation showing s = O(d log d). 1 

Theorem 5.2 can be used to give lower bounds to the depth required for the 
reliable computation of several simple functions in AC”. As an example we mention 
EQUALITY, i.e., the function A’=, (xi= y,). 

COROLLARY 5.4. For every E > 0, and 6 > 0, every circuit of 2 &-unreliable A , 
v , 1 gates computing EQUALITY with error probability i- 6 has depth 

B(log n/ log log n). 
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Proof By Theorem 5.2 it is suffkient to show A(EQUALITY)Zn. Let 
Q i, . . . . Qm be subcubes of the 2n-dimensional cube generating {(x, x): x E (0, 1)“). 
Each Qi can be written as Qr x Qy, where Q: (resp. Qy) is a subcube in the first 
(resp. second) n dimensions. If for some x1 #x1 it holds that xi E Qi o x2 E QI for 
every i= 1, . . . . m, then we get a contradiction, considering (xi, xi) and (x,, x,). 
Hence m 2 n. 1 

Now we turn to circuits of unreliable threshold gates. We show that in this case 
bounded depth circuits can be used for reliable computation. In Theorem 5.5 we use 
the assumption that each gate has the same unreliability. 

THEOREM 5.5. Let f be a function computed by a threshold circuit C of depth d, 
size s, and weight w. Then for every E < $, f is computed by a depth-d circuit C’ of 
E-unreliable threshold gates with error probability 2~, such that c’ has size 
O(w 3(d- ‘)s~(~- ‘j2), and weight w. 

This follows from the following lemma. 

LEMMA 5.6. Let F be a threshold formula of depth d, size s, and weight w 
computing a function f Then for E < i andfor every t, f can be computed by a depth-d 
threshold formula F’ of E-unreliable gates with error probability 6, where 6 = E + 1Jt 
such that F’ has size 0(( (ws)~ + (log(ts))3)“-‘) and weight w. 

Proof By induction on d, for d = 1 the statement is obvious. For d > 1 let F be 
of the form Tz(F,, . . . . F,), where CI = (c(i, . . . . a,) and Fi computes f, (1 < i<m). 

Let Fi.,j be disjoint formulas of s-unreliable gates computing fi with error 
probability 6’ for 1 < i < m, 1 d j 6 N, where 6’ and N will be specified later. Let 

F’= TY’(F;,,, . . . . F;,N, . . . . FL,,, . . . . FL,,), 

where a’ = (~1 i , . . . . c1 i , . . . . a,,, , . . . . a,), i.e., each F: is repeated N times. We claim that 
for some choice of Z, F’ computes F with error probability 6. 

For a fixed input x let the random variable yi, j be the output of Fi, j. The y,ls 
are independent as the Fi,js are disjoint. 

Let I0 := {i:f.(x)=O}, I, := {i: fi(x)= l} and cr*=Cy=i ai. 
Iffi(x)=O (resp.fi(x)=l) then E<P(yi,j=l)<h’ (resp. 1-6’<P(~,,~=l)< 

1 -E). The final gate in F’ evaluates the sum 

N N N 

f C “iYi,j= C @i C Yi,j+ 1 cli 1 Yi.j. 
i=l j=l i E IO .I = 1 ie II ,=l 

The Chernoff inequality (see [‘i’, 321) implies that for iEZO, 

f’ EN - N213 < f y,,, < 6’N + ~213 2 1 _ ze - 2~“” 

j=l 

511/46/2-2 
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and for i E I,, 

P (1-6’)N-N2’3< 5 y;,i,<(1-&)N+N2’3 
( > 

2 1 - 2e+y 
j=l 

thus 

P a< f f txiyi,i<b >1-22me-2N”3, 
i=l j=l 

where 

a= c ai(&N-N2’3)+ c Uj((l-s’)N-N2’3) 
ie fo ie II 

=(EN-N213) f q+N. 1 @,(1-E-6’) 
i=l it If 

=(EN-N2~3).C1*+(1-&-J’)N. f cxifi(X) 
i=l 

and 

b= c cri(G’N+N2’3)+ c u,((~-E)N+N”~) 
is IO IE I, 

=(6’N+N2’3) f a;+N. c i&(1-&-X) 
i=l ie II 

=(6’N+N2’3)a*+(1-&-S’)N. f c$fi(x). 
i= 1 

A simple calculation shows that if E < i, 6’ <E + 1/4ws and N> (8~s)~ then there 
isanintegerIbetween(6’N+N2’3)~*+(1-&-~’)N(k-1)and(&N-N2’3)~*+ 
(1 -E-S’) Nk. With this integer 1, F’ computes f with error probability 
E + 2me-2N’13 which is smaller than the required E + l/t if N> (i In(2tm))3. The 
bound on the size of F’ follows by induction. 1 

Proof of Theorem 5.5. To construct C’, first transform C into a formula of size 
O(sd- ‘) and then apply Lemma 5.6 with t = EC’. 1 

As a corollary we obtain that functions in TC” can be computed reliably with 
bounded depth, polynomial size circuits of unreliable threshold gates. 

COROLLARY 5.7. Let (fN),EN E TC” and E < $. Then for some d and polynomial 
p there is a sequence of depth-d circuits (C,), E N of E-unreliable gates, such that C, 
computes f, with error probability 2&, and the size and the weight of C, are at most 
P(n ). 

Proof: Is clear from Theorem 5.5. fl 
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Finally we mention one result for the general case of threshold circuits with E(U)- 
unreliable gates u, where E(U) E [0, E,,,] may vary with V. We show that one can 
simulate a threshold circuit C by a circuit of the same depth with s(u)-unreliable 
gates, E(V) E [0, E,,,], provided that E,,, is very small. More precisely we require 
that E max < l/%x, where a is the maximal sum of weight CT! 1 lail for gates T; in C. 
Although this condition requires, in general, that .smax become smaller when n 
grows, the result is of some interest in the case of threshold circuits C with a = o(n) 
(e.g., if all weights in C are constants and the fanin is o(n)). 

THEOREM 5.8. Let f be a function computed by a threshold circuit C of depth d, 
size s, and weight w. Further, assume that a := CT= 1 lail <a,, for every gate Tt in C. 
Then for E,,, := 1/8a, there is a circuit c’ of depth d, weight w, and size 
0( ((8a, + log( 2sd- ‘/E~,,))~ . sd- l)d- ’ ) s.t. C’ computes f with error probability 
6 knax for every assignment of unreliabilities E(U)E [O, E,,,] to the gates v in c’. 

Proof. By the observation before Theorem 2.3 we may assume that all weights 
ai in circuit C are positive. As in the proof of Theorem 5.5 we First replace C by the 
corresponding threshold formula c of size O(sd- ‘). Then one proves a variation of 
Lemma 5.6 for an arbitrary threshold formula c of depth d, size sd- ‘, weight w, 
and Cy! 1 Iai( <a,, for every gate in 2;. The same construction as in Lemma 5.6 
yields for E,,, < 1/8a, and N > (8a0)3 + (log 2sd- l/s,,,)’ a threshold formula C’ 
with the desired properties (in the proof we now use the more general version of 
the Chernoff inequality for a sum of random variables with different expected 
values, see Spencer [32]). 1 

6. CIRCUITS WITH IMPRECISE THRESHOLD GATES 

Let T;(Y ,, . . . . Y,,,), a = (aI, . . . . am), be a threshold gate. When CyZ, ajyj is ‘near 
to the threshold k, a small error in the evaluation may change the output. In this 
section we assume that the gate makes no error if lCyZ I aj yj - k( is larger than 
some sensitivity parameter S(a), whereas the output is unpredictable otherwise. 

Fix a function S: N + N, which is called the sensitivity function. 

DEFINITION. T>‘(y,, . . . . y,) (where a = (aI, . . . . a,,,) and a =x7= i Iail) is an 
S-imprecise threshold gate if 

(a) when CyE 1 ai yi > k + S(a), it outputs 1; 
(b) when Cy= i aj yi < k - S(a), it outputs 0; 
(c) otherwise it outputs 0 or 1. 

A computation of a circuit of S-imprecise gates is legal if the outputs of every 
gate satisfy (a) and (b). Thus the behavior of such a circuit is not completely deter- 
mined as it may have several different legal computations. A circuit of S-imprecise 
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gates computes a function f precisely if every legal computation gives the correct 
value. 

First we observe that under some conditions on S, S-imprecise gates can be used 
for precise computation. 

PROPOSITION 6.1. Zf S(2/?a) </l then the threshold gate T;( y,, . . . . yII,) and the 
S-imprecise threshold gate 

give the same output for every input and for every legal computation of the imprecise 
gate. 

Proof: If CT= i ~r,y, B k (resp. Cy=, aiyi d k - 1) then XT= i 2BCriyi B p(2k - 1) + 
S(~~CY) (resp. CT! i fiCl,yi < b(2k - 1) - S(2@)). 1 

In the natural special case S(a) =&a this shows that, e.g., majority gates with 
fanin less than l/2.5 can be simulated by imprecise gates. Circuits of imprecise gates 
built using this simulation have large depth. The bounds below imply that, in 
general, small depth circuits of imprecise gates cannot be used for precise computa- 
tion. The lower bounds hold for circuits which are not necessarily levelled. 

For a function f, let 

c(f, x) := I{i:f(x)#f(x”‘)}l 

(where xc’) is x changed in the ith component), and 

4f 1 :=max{U x)} 
x 

be the critical complexity off: 
For a circuit C of S-imprecise gates let the sensitivity ratio of C be 

T2S is a gate of C 

THEOREM 6.2. Zf C is a depth-d circuit of S-imprecise gates computing a function 
f precisely, then 

4f 16 usPad. 

Proof: If v is a gate of C then C,(x) denotes the output of v assuming that every 
gate of C works correctly. For every input x we define the threshold circuit C” as 
follows: 

(1) the graph of C” and the weights in each gate are the same as in C, 
(2) if v is a gate of C of the form T2S and C,(x)=0 (resp. C,(x)= 1) then 

the threshold value at v is k + S(U) (resp. k - S(a)). 
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Thus C” is a “standard” threshold circuit. Note that a computation of C” on any 
input is a legal computation of C. Cz( y) is the output of u in C” for input y. If v 
corresponds to an input variable xi we write C,(y) = Cc(y) = yi. 

LEMMA 6.3. Let v be a gate of C of the form T>S and vl, . . . . v, be the gates input 
to v. Then for every inputs x and y if C,(x) # CE (y) then 

Proof. Assume C,(x) = 1, C:(y) =0 (the other case follows the same way). 
Then 

f ajCo,(x) 2 k 
j=l 

and the definition of C” implies that 

f aj’Z,(Y)<k-S(a). I 
j=l 

Let 

h’: := i IC,(x)- C;(x”‘)l. 
i=l 

LEMMA 6.4. h: d (I,( C))depth(“). 

Proof. By induction on the depth of u. If depth(v) = 1 then ur, . . . . u, are input 
variables xi,, . . . . xi,. Then 

n 

h; .S(a) f 1 JC,(x) - C:(x”‘)( 
i=l 

. f IC,W- qx(")l lql 

j=l 

G i f Ic,(x)-c~,(x”‘)l lajl 
i=l j-1 

< t 1 lajl=a, 
i= 1 (j: $=i) 

where the first inequality follows from the previous lemma and the third inequality 
follows from the fact that C,(x) # Ct (xci’) only if ij = i. 
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If depth(u) = d > 1 then 

where the first inequality follows as above and the second inequality follows by 
induction. 1 

Theorem 6.2 now follows from applying Lemma 6.4 to the input x maximizing 
CCL x). I 

Using results of Simon [28] and Turan [33] this leads to the following lower 
bounds. 

COROLLARY 6.5. Let E > 0 and S(a) = Ea. If f is an arbitrary nondegenerate 
Boolean function (resp. a nontrivial property of r-vertex graphs where n = (;)) and C 
is a depth-d circuit of S-imprecise gates computing f precisely then d = sZ(log log n) 
(resp. d = Q(log n)). 

Proof: If f is a nondegenerate Boolean function (resp. a nontrivial graph 
property) then c(f) = sZ(log n) [28] (resp. c(f) = Q(&) [33]). I 

The remark after Proposition 6.1 implies that the lower bound for graph proper- 
ties cannot be improved, in general. 

For general sensitivity functions S(a) write S in the form S(a) = a”(“) (&(a) < 1). 
We assume that E(a) is a nondecreasing function (as, e.g., in the case of S(a) = a& 
and S(a) = a/log a). 1 

THEOREM 6.6. (a) Zf lim, _ o. E(a) < 1 then for every (f,),,, N E TC”, f, can be 
computed by bounded depth circuits of S-imprecise gates with polynomial size and 
weight. 

(b) ?,f lim,,, E(a) = 1 then there is no sequence of nondegenerate Boolean 
functions (f, ), E N with log c(fn) = Q(log n) which can be computed by circuits as 
in (a). 

(c) If 1 -&(a) = o(log log a/log a) then there is no sequence of nondegenerate 
Boolean functions (f,,),, E N which can be computed by circuits as in (a). 

ProoJ: (a) follows from Proposition 6.1, (b) and (c) follow from Theorem 6.2 
similarly to Corollary 6.5. 1 
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7. THRESHOLD QUANTIFIERS 

We fix a similarity type Y containing relations only. A, denotes a model on the 
ground set { 1, . . . . n} (all models considered are finite). 

A threshold quantifier is of the form #:(x1, . . . . x,), where r is the arity of the 
quantifier and k is the threshold value. Formulas are built from atomic formulas 
using A , v , -I and threshold quantifiers ( v and A of any number of formulas 
is allowed; #;(xi, . . . . x,) binds x1, . . . . x,). The interpretation of the quantifiers is 
the following: 

A, I= # ;(xl, . . . . x,1 $(x1, . . . . x,) 

* I ((4 9 .‘., a,): A, I= $(a~, . . . . a,)>1 2 k. 

(Thus 3 and V are special cases.) Let d be a class of structures and dfi be the class 
of structures in d on the ground set ( 1, . . . . n}. A sentence #n defines Z& if for every 
A, it holds that 

A sequence @ = (dn)neN defines d if 4, defines Z& for every n. 
The quantifier rank (QR), depth (D), and size (S) of formulas is defined induc- 

tively. For atomic formulas each measure is 0. For $ = 1 $, QR(4) = QR($), 
Wd)=WICI)+ 1, W)=S(ti)+ 1. For #=h v ... v A,,, QW)=maxl.ism QR(h), 
D(4)= l+maxlGiGm QR(4J, S(4)= l+Cy=i S($J (similarly for 4=#, A...A #,,,). 
For 4 = # Lti, QR(4) = QR($) + r, D(4) = D($) + r, S(4) = St+) + 1. @ = (4,JnsN 
is of bounded quantifier rank (resp. depth) and polynomial size, if for some d and 
polynomial p, QR(d,) < d (resp. D(4,) d d) and S($,) < p(n) for every n. 

Structures are encoded as usual (an r-ary relation on (1, . . . . n} by nr bits). A class 
d of structures corresponds to a sequence (f;;“), E N of Boolean functions, where f< 
is the characteristic function of &, (having p(n) variables for some polynomial p). 

The relationship between threshold circuits and threshold quantifiers is given by 
the following proposition. 

PROPOSITION 7.1. The sequence (ff ), E N is in TC” if and only if d is defined by 
a @ of bounded depth and polynomial size, where the language of @ contains a new 
relation symbol P and the interpretation of P is fixed for every n. 

Proof (Outline). We consider the “only if” part as the other direction is 
straightforward. The argument is a modification of the proof of the analogous result 
for AC” and first-order logic in Gurevich and Lewis [ 141 and Immerman [ 161. Let 
C, be a bounded depth, polynomialsize threshold circuit computing f f. We may 
assume that all gates are majority gates. The gates, edges, and paths of C, can be 
encoded by s-tuples over (1, . . . . n} for some constant s and thus the description of 
C, can be encoded into a single relation of constant arity over { 1, . . . . n>. The 
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desired (Pi giving the output of C, is built recursively, using this relation, from 
formulas describing the output of gates on previous levels. 1 

Proposition 7.1 shows that undefinability results imply lower bounds for 
threshold circuits. Undefinability with special relations for P imply lower bounds 
for “structured” threshold circuits. Below we give an example. 

Let the similarity type 9’ contain R(x, y) (adjacency) only, and the additional 
relation with a fixed interpretation be s(x, y) always interpreted as the standard 
successor relation on { 1, . . . . a}). Let CONNECTIVITY := {G = (V, E, S): G’ = 
(V, E) is a connected undirected graph, S is as above}. 

THEOREM 7.2. CONNECTIVITY is not definable by any @ (over Y as above) of 
bounded quantgier rank. 

First we state a general lemma about threshold quantifiers of arity > 1. 

LEMMA 7.3. If s(u*, is defined by a sentence 4 then it is also defined by a sentence 
I++ of the same quantlyier rank such that $ contains only wary threshold quantlyiers. 

Proof For simplicity we show how to eliminate a binary threshold quantifier 
# :(x,, x2). Let d(‘) = (d”’ , , . . . . dt’) (i = 1, . . . . N) be all possible degree sequences of 
directed graphs on n vertices having k edges (without multiple edges but with loops 
allowed). (I.e., xi”=, dj’) .j = k, and dj” is the number of vertices with outdegree j.) 
Then 

-4 I= \j /1 #:,,,(X,)(#f(XZ)(P(X,,X2)) > i= I ( ,=l > 

where ti, j = C;= j dj”. 1 

(We note that the above transformation may increase the size exponentially.) 
The proof of Theorem 7.2 uses a variant of the FrdissbEhrenfeucht games 

introduced by Immerman and Lander [7]. Given G, = (V,, E,, S,) and 
G, = ( Vz, El, S,), players I and II play m moves. In move i, 

(1) player I selects a structure G,, (I, = 1 or 2) and a set Vi! s V,,, 

(2) player II selects a set Vi-,, E V,-, in the other structure with 
I q = I G-,,I, 

(3) player I chooses v!-“E Vipl,, 

(4) player II chooses VIE Vi<. 

After m moves, II wins if the bijection v: o vf (1 6 i<m) is an isomorphism 
between {vi, . . . . vk} E V, and {UT, . . . . vi} c V,; otherwise I wins. G, zm Gz if II has 
a winning strategy in the game. 
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Let G, and G2 be structures of size n and 4 be a sentence with unary threshold 
quantifiers such that QR($) 6 m. 

LEMMA 7.4. Zf G1 zm G2 then G, k 4 o G2 k 4. 

Proof. Omitted. It is analogous to the proofs of similar statements for other 
versions of the Frdisst-Ehrenfeucht game. 1 

Proof of Theorem 7.2. From Lemmas 7.3 and 7.4 it suffices to show that for 
every m there are structures G1 and G, such that G, E CONNECTIVITY, 
G2 4 CONNECTIVITY and G, So G,. 

The structures G, = (I/, , E,, S,), G2 = (V,, E,, S,) are defined as follows: 

I/,=I/,={l,...,n},n~2”+5; 

S, = S, are the standard successor relation; 

(The two structures are shown in Fig. 2). The winning strategy of player II is given 
as follows: Let the vertices chosen in the first i moves be {u:, . . . . u!} in GI and 
{u:, . . . . uf} in Gz. Assume that 

(a) the mapping w~++w~ (l<j<lO) (see Fig.2) ~J’t)uf (l<j<i) is an 
isomorphism between 

A; = {w;, . ..) w:(), ?I;, . ..) ui’} and Af= {wf, . ..) w&l;, . ..) u;>, 

(b) if a,, b, and u2, b, are corresponding vertices in A t (resp. A f) then either 
bI - a, = b, -a2 (i.e., the distances in the successor relation are the same) or 
2 m+l-i<min(jb,-a,l, (b2-aJ). 

Claim. If i< m, player II can maintain assumptions (a) and (b) after the 
(i + 1)th move. (Clearly the claim implies the existence of a winning strategy (both 
assumptions hold for i = O).) 

To prove the claim, consider interval I,= [a- 2m-i, a + 2”-j] for every 
u&4: UAf. The assumptions imply that if for al, b, E Ai, Ia, n Z,, #0, 
then bl -a, = b,--a2 (and thus, in particular, Z,,nZ,,#0), where u2, b2 are 
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the vertices corresponding to a,, b,. Therefore UaeAl Z, and u,,,;Z, form 
isomorphic sets of intervals (considering lengths) and ’ I ( 1, . . . . n) - U,, A; Z,l = 
I { 1, . . . . 4 - Laf &I. 

Now assume that in the (i + 1) th move I selects Vi,+ ’ in Gt . Then II selects P’:’ ’ 
in G2 as follows: he “imitates” the choice of Z in UoSA; Z, by choosing corre- 
sponding vertices in U,, Ai z Z, and selects the same number of vertices outside these 
intervals arbitrarily. The assumptions guarantee that any pair of vertices selected 
outside the intervals defined above will maintain the assumptions for is 1. After 
this choice the choice of II in the last phase of step i+ 1 is clear. 1 

We note that the proof, in fact, implies a log, n - 0( 1) lower bound to the quan- 
tifier rank of any sentence with threshold quantifiers which defines CONNEC- 
TIVITY for n vertex graphs. Thus for this property threshold quantifiers are not 
more powerful than 3 and V. 

8. SOME OPEN PROBLEMS 

The most important open problems about threshold circuits are to separate the 
classes TCS and to show TC” 5 NC’ (candidates showing this are mentioned in the 
Introduction).It would also be interesting to show that CONNECTIVITY is not 
in TC”. 

There are open problems concerning circuits of depth 2. There are no lower 
bounds known for depth-2 circuits of 

(a) gates computing symmetric functions (note that by Theorem 2.3 these 
circuits are simulated by depth-3 threshold circuits of weight 1 with quadratic 
increase in size), 
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(b) threshold gates with arbitrary weights (these circuits are called Gamba- 
perceptrons in [20], where the problem of proving a lower bound is also posed). 

There are also no lower bounds known for probabilistic threshold circuits of 
depth 2. 

Does Corollary 5.7 remain true if the circuits C, are required to compute f, 
reliably for every assignment of unreliabilities <E to the gates (where E does not 
depend on n as in Theorem 5.8)? 

Are there any nondegenerate Boolean functions computable in depth o(log n) 
by circuits of imprecise threshold gates with sensitivity function S(a) = EC(? 
(A candidate would be the “addressing function” [28] which has critical complexity 
m% n1.J 

It would also be interesting to extend Theorem 7.2 to graphs with a linear order 
on the vertices. 
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