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Abstract 

Dietzfelbinger. hl. and W’ hlaass. The complexity of matrrx transposition on one-tape off-line 

Turing machines with output tape, Thcorettcal Computer Scrence 108 (1993) 271-290. 

A series of existing lower bound results for deterministic one-tape Turing machines is extended to 

another, stronger such model suttable for the computatton of functions: one-tape off-line Turing 

machines wtth a wrote-only output tape. (“OfT-line” means: havmg a two-way input tape.) The 

following optrmal lower bound is shown: Computrng the transpose of Boolean ix i-matrrces takes 

R(1”‘)=Rtt1”~) steps on such Turing machtnes. ()I= 1’ is the length of the input.) 

1. Introduction 

During the last few years lower bound arguments for a sequence of restricted 

Turing machines (TMs) of increasing power have been developed. Techniques have 
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been devised that make it possible to prove optimal superlinear lower bounds on the 

computation time for several concrete computational problems on one-tape TMs 

without input tape [4], on one-tape TMs with a one-way input tape (“on-line 

one-tape TMs”) [9, 141, and finally on one-tape TMs with a two-way input tape 

(“off-line one-tape TMs”; this is the standard model for the definition of space- 

complexity classes). For this model an optimal lower bound of Q(n3’2/(logn)“2) for 

the matrix transposition function [lo, 33 and a barely superlinear lower bound of 

Q(n log n/log log n) for a related decision problem [ 111 have been established. 

In this paper we consider the next more powerful type of restricted Turing machine 

(for which the preceding lower bound arguments do not suffice): off-line one-tape 

TMs with an additional output tape. Whereas the addition of the output tape 

obviously makes no difference for solving decision problems, it was already noted in 

[lo], respectively, [3] that these machines can perform matrix transposition in 

O(n 514) steps, as opposed to Q(n”‘2/(log n)‘:‘) steps for the previously considered 

version without output tape, where the output has to appear on the worktape. 

This stronger model is also of some interest from a technical point of view, because 

it exhibits a feature that is characteristic for TMs with several worktapes (which are so 

far intractable for lower bound arguments): the extensive use of the worktape as an 

intermediate storage device. This feature played only a minor role in the analysis of 

matrix transposition on one-tape off-line TMs without output tape, because one could 

easily show that any use of the worktape as an intermediate storage device is 

inefficient for this model: Once some bits have been written on the worktape, they can 

be moved later only by time-consuming sweeps of the worktape head. During each 

sweep at most log II bits can be moved, where n is the length of the input. (The number 

of bits that can be moved during one sweep is about log II rather than constant since 

the input tape can be used as a unary counter, thus can store up to logn bits. This 

feature of one-tape TMs with two-way input tape can be used to show that such 

machines can simulate ,f( n)-time-bounded k-tape TMs in O(f( n)‘/log n) steps, 

see [2].) 

In this paper, we prove an optimal lower bound of Q(n’l”) for the transposition of 

Boolean matrices on one-tape off-line TMs with output tape. This result also separ- 

ates such TMs from k-tape TMs with k 3 2: as is well known, 2-tape TMs can compute 

the transpose of an 1 x I-matrix in 0( j2. log I) = 0( n log n) steps. (For a short proof of 

this fact see [3].) The lower bound argument employs Kolmogorov complexity to 

enable us to analyze the possible flow of information during the transposition of 

a suitably chosen matrix on such a machine. (For other lower bound proofs using 

Kolmogorov complexity see 16, 7, 121. For a survey of the use of Kolmogorov 

complexity in lower bound proofs see [S].) This analysis differs from previous lower 

bound arguments with Kolmogorov complexity by its emphasis on the time-dimen- 

sion of the computation: it is not enough to watch which information aer reaches 

a certain interval on the worktape, rather it is essential to note which information may 

be present in such an interval at specific time points. In particular, the argument 

exploits the fact that in certain situations the same information may have to be 
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brought into the same tape area several times (because after it was first brought there, 

it had to be overwritten to make space for some other information). 

Moreover, the Kolmogorov complexity lemmata (Lemmas 4.1 and 5.10) employ 

a new trick (from Cl]), which allows us to prove optimal bounds for matrix transposi- 

tion even in the case where the entries of the matrix are single bits. (The technique of 

[lo] could only handle the case with entries of length at least log n. In [3] the results of 

[lo] are extended to entries of all lengths.) 

The following notions and definitions are used in this paper. The definition of 

Turing machines is standard (see, e.g., [S]). A k-tape TM is a TM with k (read/write) 

worktapes. The worktape alphabet is assumed to be {0, 1, B}. (If larger worktape 

alphabets r were allowed, the lower bound in this paper would change by the 

constant factor l/log((TI).) The output tape (if present) is initially blank. It is 

a two-way write-only tape, i.e., the output tape head can move in both directions but it 

cannot read. When positioned on some cell on the output tape, the head can write 

a 0 or a 1 or not write at all. If an output tape cell contains bE { 0, 1 } at the end of the 

computation, then b must be written to this cell at least once, may be several times, but 

no symbol different from b must ever be written to this cell. 

Remark 1.1. This restriction on the capabilities of the output tape is slightly more 

general than the more natural requirement that the output tape head can move only 

from left to right. Thus, this simpler model is also covered by the proof in this paper. 

There is an even more general convention for output tapes, namely, where it is 

permitted to overwrite symbols already written by different symbols. Although it is 

not clear if it really is stronger, the latter model is not covered by our lower bound 

proof, as we explicitly use the property that if the output tape head writes a symbol 

then it is the correct one. 

The function MATRIX TRANSPOSITION is induced by the operation of transposing 

a matrix: given an input XE{ 0, 1 >“, n = I ‘, regard x as the representation of a Boolean 

matrix AE{O, 1) lx’ in row-major order, and output the transpose AT in row-major 

order (or, equivalently, A in column-major order). That means, if the input is 

x=blb2...bn with b,c(O, l}, for 1 dmdn, then the output is y=b,(,,b,,,,...b,(,,, 

where the permutation rc of { 1,2, . . . , n} is defined by rc((i-l).l+j)=(j-l).I+i, for 

1 <i, j < 1. (A variation of this function was used in [ 10, 1 l] for separating two-tape 

TMs from one-tape off-line TMs without output tape; before that, it had occurred in 

[13] as an example of a permutation that is hard to realize on devices similar to 

Turing machines.) 

Remark 1.2. For the sake of simplicity, we do not specify MATRIX TRANSPOSITION on 

inputs of length n, where II is not a square, and ignore such n in the following. It is easy 

to extend the function MATRIX TRANSPOSITION to nonsquare n, so that both the upper 

and the lower bound hold for all n. (For example, ignore the last n - (L&I )’ bits of 

the input.) 
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The Kolmogorov complexity of a finite binary string is defined as follows. Let an 

effective coding of all deterministic Turing machines (with any number of tapes) as 

binary strings be given and assume that no code is a prefix of any other code. Denote 

the code of a TM hil by r Ml. Then the Kolmogorov complexity of XE{O, 1 } * (with 

respect to this fixed coding) is K(x) := min { ) [Ml U/ 1 UE { 0, 1 } *, M on input u prints x ). 

A string XE { 0, 1 } * is called incompressible if K(x) 2 1 x I. (A trivial counting argument 

shows that for each n there is an ~~10, 1 j” with K(x)>n=ixj.) 

The paper is organized as follows: in Section 2 we state the theorem, sketch the 

proof of the upper bound, and give a detailed outline of the lower bound proof. In 

Sections 336 we prove the lower bound. (The proofs of the Kolmogorov complexity 

lemmata are given in Section 6.) 

2. Main result and outline of the proof 

Theorem 2.1. The time complexity qf‘ MATRIX TRANSPOSITION on one-tape oflline 

Turing machines with a one-way output tape is @(n5i4). (Here n = 1’ is the length of the 

input, which is a Boolean 1 x l-matrix given in row-major order.) 

Proof of the upper bound (sketch). (This was already noted in [lo, 31.) Let the input 

x~(0, 1 }” represent the Boolean 1 x l-matrix A =(aij)r 6i, jsl, i.e., 

x=all...ar[u2r . ..Q.,...Ul,...Ul,. 

Split A into submatrices Ak, 1 <k<l ‘I’, where Ak consists of the columns 

(k-1).11’2+1 ,..., k.11’20fA.Fork=1,2 ,..., 1 II2 compute and output the transpose 

AZ of A, as follows: first, write A, in row-wise order on the worktape (this takes one 

sweep over the input, hence O(1’) steps); then, output A, column by column (this 

takes 1 Ii2 sweeps over the representation of Ak on the worktape, which consists of 13’2 

bits, hence O(1”) steps). Altogether, A is printed column by column, and 
0(j5/2)=O(n5’4 ) steps are made. 

One may ask how the TM orients itself on the input tape so that it is able to pick 

out those entries of each row of A that constitute A,. But this is easy, once it has 

placed markers at regular distances of 1 ‘I2 cells on the worktape and has constructed 

one “yardstick” of length 1, which is done once and for all at the beginning of the 

computation. The markers at distance I’!’ can be used to measure the length of the 

rows of Ak and to carry the “yardstick” along during the copying procedure at 

(almost) no extra cost; the “yardstick” itself is used to measure the distances between 

the left ends of successive rows of A, on the input tape. Further, the markers at 

distance 1 ‘I2 are used for printing out Al row by row. We leave it to the reader to work 

out the details. 0 

As the proof of the lower bound is long and quite involved, we will outline its 

overall structure in the remainder of this section. In the course of this description, we 

will also indicate the meaning of and motivation for most of the notation used in the 

formal development of the proof. 
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The proof is indirect: We fix an incompressible input .X = b 1 . . b, of length II = 1’ and 

assume that M makes fewer than C. n5j4 = C. 15j2 steps on this input, for some 

constant C62-‘s. The goal is to reach a contradiction. In principle, the whole 

argument is one big case analysis-each of the cases leads to a contradiction. As some 

of the cases are trivial, we choose a slightly different way of developing the argument: 

based on the assumption that fewer than C. nsj4 steps are made, we identify more and 

more features that must be present in the computation. At one point we actually 

distinguish between two cases (Section 4 versus Section 5) and show that both of them 

lead to a contradiction. 

In the course of identifying more and more properties of the computation of M we 

introduce more and more notation, and restrict our attention to smaller and smaller 

sets of input bits (these sets are called Bi, B2, B3, . ..). Sometimes the structure 

identified and given a name is quite natural (e.g., the “printing times” in Definition 3.1 

or the concept of “visibility” in Definition 3.6), others may at first seem artificial (e.g., 

the “early” and “late” bits in Definition 5.3). All the structure we will deal with will 

concern the position of the worktape head at certain time steps, namely when some 

output bit is printed or some input bit is read. In the following, descriptions of the 

notation we use will be set off by paragraphs numbered A, B, C, etc. 

(A) (Definition 3.1) Each bit b,, 1 <rn< n, is associated with a printing time t,,Jm) 
(the first step at which b, is printed to the n(m)th output tape cell). 

(B) (Definition 3.2) Printing times come in clusters: We may identify iL312 disjoint 

time intervals P, (where ;j~ G1, for some index set G, of size fl 3’2), the printing phases, 

so that each of the printing phases has length at most I steps and contains 1 ‘I2 printing 

times tp,(m). The set of those +n bits whose printing times lie within one of these P,‘s is 

called B1. 

Each y is regarded as a “color”; a bit b, with printing time r,,(m) in P, is also 

colored with color ;‘. Thus, B, is partitioned into i/3/2 color classes of size 1’j2. 

(C) (Definition 3.4) Next, we force an additional structure upon the computation: 

worktape interds. We partition the worktape into disjoint blocks W (of length 41) 

with center V(of length 21). If the position of these intervals on the worktape is chosen 

properly, we may identify a set G2 L G1 of colors of size 1 G2 ( = $1 G1 1 so that for each 

yeG2 the printing phase P, fits within the block structure: during P,, the worktape 

head stays within the center V;. of one of the blocks WY. The set of $j2 bits that are 

printed during these “well-aligned” printing phases is called B2. 

The “buffers” of 1 cells that separate K, from the outside of W:, play the following 

role. Since the bits of color 5’ in B2 are printed “from V,” (i.e., while the worktape head 

is in 1’7), the information necessary for printing them must in some sense “be 

contained in” I’;, at the beginning of the printing phase P,. Intuitively, if (part of) the 

information necessary for printing the bits of color y is not even present in the bigger 

interval Wj, at a certain time step t before P, and cannot be transported into W, 

between t and P;, by reading these bits off the input tape, then this information must be 

“carried” across the two “buffers” by worktape head movements, which costs 

R(r/logn) steps if r bits of information are to be transported into V;,. 
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Next, we must clarify how information about the bits of color 7 may reach WY. This 

is the purpose of the following, quite natural, definition. 

(D) (Definition 3.6) A bit b, is visible from a worktape interval W at step t if at this 

step the input tape head scans b, and the worktape head is in W. 

Assume that b, is a bit in B, of color 7. Informally, there are two possibilities for 

M to get b, from the input tape to its destination on the output tape: 

(2) b, is visible from w; before tPr(m). (Thus, there is an opportunity to copy b, 

from the input tape to some place in W, before t,,(m), so that this information is 

available when b, is printed from V;. during P,.) 

(p) Otherwise, i.e., b, is never visible from W, before t,,(m). (Thus, 6, has to be 

carried into V, by movements of the worktape head.) 

As either the majority of bits satisfies (c() or the majority of the bits satisfies (p), at 

least one of the following two cases applies. 

Case 1: For at least half the colors in ‘/ at least half the bits in color class y are 

treated as in (fi). 

Case 2: For at least half the colors in ?/ at least half the bits in color class “J are 

treated as in (a). 

In Section 4 we deal with Case 1, the case of many “underinformed” intervals. 

(E) Suppose Case 1 applies. We choose a set G3 LG, of size &1G21 so that for all 

LEG, there are $111* bits of color ;’ as in (p). The collection of these a/B2 I= 1*/32 bits is 

called B3. 

In Section 4 it is shown via a Kolmogorov complexity argument that this situation 

entails that M makes R(13/log n) steps. (Of course, this contradicts the initial assump- 

tion on the running time of M.) Here, we give a simple informal argument why this 

lower bound should be expected to hold. Note that here the role of the “buffer” of 

length 1 around V, within WY is evident. 

First “pebble aryument”. Imagine that the input bits b, are identifiable, atomic 

objects (“pebbles”), which are to be transported from their original position on the 

input tape to their final position on the output tape. Whenever the input tape head 

visits b,, this bit may be copied to the place on the worktape where the worktape head 

is positioned. Similarly, whenever the worktape head visits a cell, any bit stored in this 

cell may be printed to the output cell currently scanned by the output tape head. 

Finally, the worktape head has the capability to carry bits from one place of the 

worktape to another; however, it may carry at most logn bits at the same time. (See 

Section 1 for the reason for this convention.) Now consider some bit from B2 that 

is never visible from its interval IV;,, but printed from V;,, the central 21 cells of W,. 

The following must happen: first, b, is copied from the input tape to some cell 

outside of W,.; then, it is carried by the worktape head across the I cells that 

separate the outside of W,. from K,; finally, it is printed from P’). Overall, the worktape 

head spends R(13/log tr) steps for carrying each of these 1*/32 bits across a distance 

of 1 cells. 

In Section 5 we take care of Case 2, the case of many “overburdened” intervals, which 

is much more difficult to deal with than Case 1. 
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(F) If Case 2 applies, we have a set G,cG, of size i1G21 so that for all YEG~ there 

are +/‘I2 bits of color ?/ as in (a). The collection of these al B2 I= 1 2/32 bits is called Bq. 

We will show that also in this case M makes R(13/10gn) steps, contradicting the 

initial assumption. However, this is not intuitively clear at all: We are dealing with 

a set of 12/32 bits that all may be copied to some tape interval W, and later printed 

from the center V, or W;,. Why should this cause problems? 

We need to introduce more notation. 

(G) (Definition 5.2) Each bit h, in B4 is associated with a tiisihiliry time t,i,(m) 

(which perhaps should more properly be called “last-visibility time”). If b, has color “J, 

then t,i,(m) is the last time step before the printing time t,,(m) at which b, is visible 

from W;,. 

Visibility times of bits of the same color are relatively far apart, namely at least 

1 steps. This is the essential consequence of our computational problem being matrix 

transposition: bits that are closer together than 1 cells on the output tape have 

preimages on the input tape that are further than 1 cells apart. Let us look at the bits in 

a color class LEGS in the order of their visibility times. 

(H) First, consider those ~1 1 ‘I2 =$~~I’~’ bits in the color class whose visibility times 

come first. They are called the “earlll” bits; the set of all “early” bits is B~sB,. 

The “early” bits may be copied into W, at their respective visibility times; but, 

if this recording is to be of any use they have to be kept stored in this interval 

over a long period of time, namely at least $.+l”” steps, since the printing phase P, 

has only I steps and cannot end before the last of the il ‘I2 visibility times. The reader 

may already have a vague idea that this may not work well, as the storage capacity 

of each worktape interval WY, measured in bits, is bounded (by [log, 31 .41< 81). 

However, to really get a handle on this, we must impose another structure on the 

computation. 

(I) (Definition 5.3) For each color ycG,, we consider the third quarter of the fl”’ 

visibility times of bits of color ;J in their natural order in time. We call the correspond- 

ing bits the “lute” bits of color 7. The set of all these bits is called B$. 

There are three properties of the visibility times t,i,(m) of these “late” bits that we 

will exploit: at tvis(m), 

(i) the visibility times of the $1 1,‘2 “early” bits of color 7 are over (intuitively, these 

bits should now be stored in WY); 

(ii) the printing phase P, has not yet started; 

(iii) the worktape head is in W,.. 

As there are many (namely lB;i = 1’1128) late visibility times and the overall 

computation time is shorter than 1 5’2 .2- ‘*, the “late” visibility times come in large 

clusters, just as the printing phases. 

(J) We may identify 1 3/2. 2- ” disjoint time intervals Pi (where 6sD, for D some 

index set of size /3/2 . 2- “), the visibility phases, so that each of the visibility phases has 

length at most il steps and contains 512.1 ‘I2 “late” visibility times. (These visibility 

phases concern only last-visibility times of “late” bits.) The set of 1 2/256 “late” bits b, 

in Bi with visibility time in one of these short visibility phases is called B\. 
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At this point, we may pin down the effect that makes it impossible for M to store all 

the “early” bits in their respective tape interval W, over the long period of time 

mentioned above. Consider an arbitrary visibility phase Ph. The 512.1’12 “late” 

visibility times within Pb belong to bits of different colors, as Pi is so short. Further, 

property (iii) of “late” visibility times from above entails that at most two neighboring 

tape intervals Wi, and W;,. can belong to the colors that occur in the visibility phase. 

One of the two intervals, which we will call WA, has to handle the majority of the 

colors, i.e., at least 256.1 ‘I2 many. By property (i) and (ii) of “late” visibility times 

above, there are 256./‘;2.($11’2 ) = 321 bits (namely, the “early” bits of colors occur- 

ring in Pi) whose visibility times come well before Ph but whose printing phase starts 

only after Pi. That is, all these bits should be stored in Wh at the time of P&. But this 

cannot work, since the storage capacity of Wb is smaller than 81. 

The situation can be formulated more precisely as follows. 

(K) (Definition 5.8 and Lemma 5.9) For each CUED there is a time step ts (in Pi), 

a worktape interval Wi (with center Vi), and a set B,sBf with IBal = 321 so that 

(a) for all 6~0 and all ~GB,? we have that h, is printed from VA after td, but b, is 

never visible from Wh in the time interval (ta, t,,(m)]; 

(b) each bit in B: occurs in at most h/1/2 of the B,‘s. 

We have just described how our setup leads us to identifying many situations where 

a tape interval W, is “overburdened”. We now must combine these many situations in 

one closed argument that proves the time bound of Q( /3/lag n) we are aiming at. It is 

easy to combine lower bounds for the time the worktape head spends in different 

worktape intervals, since these are disjoint. But many of the W$ may coincide, and 

many of the bits in Bz may occur in many B,)‘s. We will once more use our “pebble 

model” of the TM computation (see above) to intuitively explain why the lower bound 

should be expected to hold. 

Second “pebble argument”. We concentrate on one tape interval W and consider 

Do G D such that Wi = W for all LED,. In the “pebble model”, we may regard the 

interval Was a box, in which pebbles (the bits) are deposited (at their visibility times) 

and from which they are retrieved (at their printing times). This box can keep at most 

81 pebbles at the same time. Once a pebble is deposited in the box, it may be kept there 

until it is retrieved again, or it may be thrown away. In the latter case, however, we 

have to pay a “penalty” of I/log II steps when the pebble is claimed. (This corresponds 

to the idea that a bit may be kept in W from its visibility time until its printing time, or 

that it may be erased to make place for other information. In the latter case, it has to 

be “carried into” V again from outside W, at the cost of I/log n steps-recall that the 

worktape head must be assumed to have a storage capacity of logn bits). 

We consider only bits in B:= U jBd 1 finds}. Statements (a) and (b) in (K) translate 

into the pebble model as follows: For each time step ts, there is a set B, of pebbles that 

have been deposited before step 6 but not yet retrieved; each Bd has size at least 321. 

Further, each pebble occurs in at most $I”’ of the Bd’s. The dynamics of pebbles 

entering and leaving the box may be quite complex. Still, we may show via a simple 

counting argument that the total penalty paid is 0( 1 Do I .13/2/lag n) (which is exactly 
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what is needed to obtain the overall bound Q(/3/logn)). Namely, let i denote the set 

of pebbles from B thrown away in the course of the game. It suffices to show that 

1 i I= 12 (1 Do / I ‘12). First, note three simple inequalities. Since every Bs has at least 321 

elements, we have 

By the capacity constraint on W, for all BEDS all but 81 pebbles from B6 are thrown 

away, i.e., IB,-B^( < 81; this entails that 

Since removing one pebble affects at most min { ID,I,Ql ‘12} many Bd, we finally have 

that 

Adding up these three inequalities, we obtain 

Obviously, this implies that l~l=R(ID01.1’/2) no matter whether I Do / is smaller or 

larger than i1 1’2. This finishes the second “pebble argument”. 

It is easy to see that these estimates for distinct tape intervals Wean be combined to 

yield the overall time bound 0(13/log n), which is the desired contradiction for Case 2. 

Note that in a rigorous proof we may not use the concept of single, distinguishable 

bits being stored in an interval W, since the “meaning” of the inscription of a work- 

tape interval is not accessible to analysis. Instead, we have to exploit the fact that the 

input is incompressible and find a way to push the argument through with sets of bits 

that have no individual identity. This is done in Section 5 via another Kolmogorov 

complexity argument. 

3. Printing phases, worktape intervals, and visibility 

This and the following three sections contain the details of the proof of the lower 

bound. In this section, we give some basic definitions and note some basic facts. 

Sections 4 and 5 contain the analysis of the two main cases. 

Fix a one-tape off-line TM M with output tape that computes MATRIX TRANSPOSI- 
TION. Choose 1 large enough (how large I has to be can be seen from the proofs of the 

Kolmogorov complexity lemmata in Section 6) and fix an incompressible string 

XE{O, l}“, where n=12. (Assume for simplicity that /‘j2.2-18 is a natural number.) 

Consider the computation of M on x as input, consisting of, say, T steps. We want to 

show that T3C.15j2, for some fixed C (e.g., C=2-18). The input x=h1b2...b, 

represents A=(aij)l<i,jsl~fO, l}‘“‘,whereaij=h~i~l,.l+j.Theoutputy=b,l,h,2,...h,,, 

represents AT. 



Definition 3.1 (Printing times and printing phases). For 1 <m<n, let 

tpr(m):= the first time step at which the output tape head prints 

a symbol to the rc(m)th output cell. 

(By the definition of our model, the symbol printed equals 6,; note that n=z-‘.) 

Clearly, tpr( m) # tpr( m’) for in # m’. Split { 1,2, . , T} into j3” disjoint intervals P, (the 

printing phases), so that each P;. contains exactly 1’:’ of the printing times t,,(m). 

Informally, we talk of 7 as the “color” of printing phase P,. The bits b, whose printing 

times belong to P, inherit the color: if t,,(m)EP,, both copies of b, (the mth input bit 

and the z(m)th output bit) are said to have color 7. 

We are only interested in short printing phases, because of their nice properties given 

in Lemma 3.3 below. Obviously, if Tis to be smaller than C. 15j2, then M cannot print 

too slowly, i.e., there must be many short printing phases. More precisely, we can 

assume w.1.o.g. that at least 31 3’2 of the P, do not last longer than I steps. (Otherwise, 
M makes at least t/%2. -1 5.2 I - 2 I steps, and we are done.) Thus, the following sets are 

well-defined. 

Definition 3.2. Let G1 denote some subset of { 1,2,..., 13;2} of cardinality IG, 1=*1312 

so that for all ~‘EG~ the printing phase P, lasts fewer than 1 steps. Further, let 

B1:=(mlt,,(m)~P, for some ;‘EG~J 

denote the set of bits with color in G1. (It is obvious that IB,I=i12.) 

We will focus on these bits in the following (and regard the other bits as “uncolored”). 

We list some simple observations. 

Lemma 3.3. Let ;‘EG,. Then 

(a) on the output tape, the bits qf color 7 are contained in an interval of length 1; 

(b) OH the input tape, the bits of color y haw distance at least l from one another; 

(c) during P;., the worktape head visits at most 1 cells. 

Proof. (a) and (c) follow immediately from the fact that P:, lasts no more than I steps. 

(b): We use the fact that M computes MATRIX TRANSPOSITION: Because of (a), and 

since on the output tape the matrix A is represented in column-major order, all bits 

of color 7 belong to two consecutive columns of A, but no two of them to the same 

row. Hence these bits are at least 1 cells apart if A is represented in row-major 

order. q 

We now turn to the tape intervals (of length at most 1) that the worktape head scans 

during different P,‘s. Intuitively, at the beginning of P, this interval must contain all 

the information necessary to print the l”2 bits of color 7. (By Lemma 3.3(b) and (c), at 
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most one bit of color y on the input tape can be inspected during P,. The incompressi- 

bility of the input x entails that the other bits of the input inspected during P, will not 

contain any information useful for printing the bits of color >j.) In order to have 

a clearer picture, we want these tape intervals to be either identical or disjoint for 

different y . For technical reasons, we moreover need a “buffer” of length 1 on each side 

of these tape intervals. This can be achieved as follows, without reducing the number 

of useful (colored) bits by more than a constant factor. 

Definition 3.4 ( Worktape intervals). Split the worktape into blocks of 1 cells each. For 

YE G, , let V, be an interval consisting of two adjacent blocks such that during P, the 

worktape head is always in I$ (such an interval exists by Lemma 3.3(c)). Let W, be V, 

augmented by the block to the left and the one to the right of V,. ( WY has 41 cells.) 

We may split the set of all W.,,‘s into 4 classes such that the WY’s within each class are 

disjoint. One of these classes contains the WY’s for at least one quarter of all YEG,. 

Thus, the following sets are well-defined. 

Definition 3.5. Let G2 be a subset of G1 with 1 GZI =$I Gr 1 =Q1312 such that for y, Y’EG~ 

the intervals W, and WY, are either disjoint or identical. Let 

I&:= { rn~B, 1 t,,(m)~P, for some LEGS} 

denote the set of bits with color in G2. (Obviously, lB21 =alB, I =$I’.) 

We focus on the colors in G, and bits in B, from here on. Virtually all information 

needed for printing the bits of color y are stored in V, at the beginning of P,. There are 

several ways for M to get the information about the bits of color 7 into P”;, before P,. 

The most natural possibility motivates the following definition. 

Definition 3.6 ( Visibility). Let W be any interval on the worktape, and b,, 1 dmdn, 

any input bit. We say that b, is uisiblefrom W ut step t, if at step t the input tape head 

scans b, and the worktape head scans a cell in W. 

For b, a bit of color ;‘, we know that M prints b, to cell z(m) “from Kj”, that is, while 

the worktape head is in V,. Intuitively, it seems reasonable for M to make such bits b, 

visible at least from W, at some step before tpr( m), to allow for a “direct” transfer of b, 

from the input tape to W, and from there to the output tape. For each such bit, there 

are two cases: 

(cx) b, is visible from WY before the printing time tpr(m). 

(p) b, is not visible from W;, before t,,(m). 

We may use this to distinguish two cases regarding the overall strategy of M: either 

the majority of the bits b, in B2 behave as in (a) or the majority of these bits behaves as 

in (p). Thus, the following two cases cover all possibilities. 
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Case I: For at least half the colors y in G2 half the bits in color class y are treated as 

in (8. 
Case 2: For at least half the colors y in G2 half the bits in color class y are treated as 

in (~1). 

Case 1 (which is easier) is treated in Section 4; Case 2 is dealt with in Section 5. Both 

cases will lead to the conclusion that M makes Q(13/logn) steps. 

4. The case of many “underinformed” intervals 

In this section we assume that Case 1 (see end of Section 3) applies. That is, there are 

at least $lB2) =12/32 bits h, in B2 so that b, is never visible from W, before &(m), 

where y is the color of h,. We have to show that in this situation M makes Q( 13/log n) 

steps. The core of this proof is the following technical lemma, which will be proved 

later by a Kolmogorov complexity argument. 

Lemma 4.1 (The “underinformed” interval). Let M, 1, n, and x he as above, 1 large 

enough. Assume that W is an interval of length 41 on the worktape, and that V consists of 

the 21 cells in the center of W. Let r>$1”2, and assume that there are r bits b, that are 

printed ‘yfrom V” (i.e., at tPr(m) the worktape head is in V) hut are never visible from 

W before tpr( m). Then the worktape head spends at least r. I/( 16. log n) steps in W. 

Proof. See Section 6. 0 

As we are assuming that Case 1 from above applies, we may make the following 

definition. 

Definition 4.2. Let G3 be a subset of G,, with 1 G3 ) =+I G2 ( = 1 3’2/ 16, and let B, be 

a subset of B2 with (B3/=$IB2J=12/32 such that for each LEG, there are exactly 31112 

indices mEB, so that b, has color 1/ and b, is never visible from W,, before t,,(m). 

Then, for each yeG3 there are at least 

bits b, that satisfy the hypothesis of Lemma 4.1 with W= W,, V= V,, namely all bits 

with a color y’ such that I+‘;, = II<,. From Lemma 4.1 it follows that M spends at least 

ry. l/( 16. log n) steps with the worktape head in II$. By summing up these bounds for 

a family of LEG, that form a set of representatives for the equivalence relation over G3 

defined by I&= W,., we see that M makes at least 

IG3i.+/1:2. 1/(16.10gn)=13/(512~logn) 

steps altogether, which is more than C. 1 5!2, for 1 large enough. This is the desired 

contradiction for Case 1. 
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5. The case of many “overburdened” intervals 

In this section we assume that Case 2 (see end of Section 3) applies. That is, many 

bits are visible from their tape interval before they are printed. In the following 

definition. we fix one set of such bits. 

Definition 5.1. Let G4 be a subset of Gz, with 1 G41 = 13’*/ 16, and let B4 be a subset of 

B2 with IB41 =$1B21 =1*/32, such that the following is satisfied: for each LEG, there 

are fl ‘I2 indices rn~B, so that b, has color y and b, is visible from WY at some step 

before t,,(m). 

We focus on the 1*/32 bits in B, and “uncolor” all the other bits and printing 

phases. As all the bits in B4 are visible from “their” tape interval, the following 

definition is quite natural. 

Definition 5.2 ([Last-] Visibility times). For YE G4 and me B4, where b, has color y , we 

let 

t,i,(m) := the largest t d t&m) such that b, is visible from WY at step t. 

Note that the visibility times of bits of the same color are at least 1 steps apart from 

each other, by Lemma 3.3(b). 

For each color class y, we consider “early” and “late” visibility times. The basic 

relation has to be that all “early” visibility times come before all “late” visibility 

times. These two subsets serve two different purposes: Intuitively, bits with “early” 

visibility times should be kept stored in IV.. for a long period of time, so they take up 

storage space in W,; on the other hand, “late” visibility times mark time steps at 

which 

(i) bits of color y with “early” visibility times will not be visible again before P,; 

(ii) the printing phase P, has not yet started; 

(iii) the worktape head is in IV,. 

In order to keep the “late” visibility times way before P, and to have as many “late” 

as “early” bits, we declare the first quarter of the visibility times (in their chronological 

order) as “early”, and the third quarter of the visibility times as “late”, separately for 

each color. 

Definition 5.3. (a) Bf:= { mEB4 I tvis(m)< tvis(m’) for bi.(i1”*) bits b,, 

of the same color y as b,) 

(the bits with “early” visibility times), 

(b) Bi:={rn~B~( t”is(m’)<tvis(m) for >t.(fl”‘) bits b,,,, and 

t,i,(m)<t,is(m’) for >$.(3/‘“) bits b,. of the same color y as b,} 

(the bits with “late” visibility times). 
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Clearly, / Bf I= 1 Bk I= il B4 I= I’/ 128. We are interested in identifying time periods in 

which many “late” visibility times cluster together. By (i)-(iii) above this immediately 

leads to a situation where one tape interval WY is “overburdened”, i.e., should store 

many more bits than its capacity. Finding such time periods is easy, by a simple 

averaging argument just like that used for identifying short printing phases (cf. 

Definitions 3.1 and 3.2). 

Definition 5.4 ( Visibility phases). Partition { 1,2, . . , T} into 1312. 2- l6 disjoint inter- 

vals Pi, 1 <6613/2.2-16, so that each Pi contains exactly 512.1’!’ time steps tVis(m) 

with m~Bk. The Pk are called the visibility phases. 

Just as in the case of printing phases there cannot be too many long visibility 

phases. The total number of steps is at most C. j5j2 < 1512. 2-18; as the visibility phases 

are disjoint, there can be at most /3”. 2-l’ many that are longer than 41 steps. This is 

at most half of all visibility phases. Thus, the following set is well-defined. 

Definition 5.5. Let D be a subset of (1,2, ...,13’2.2m16} with 1Dl=5.(13’2.2-16)= 

13j2. 2Y”, so that for LED the visibility phase Pi consists of fewer than $1 steps. 

For the rest of the argument, it is crucial that each of the short printing phases 

Pi marks a point in time td and a tape interval I+‘$ so that W, is “overburdened” at 

step tg. The following simple lemma gives the basic reason for this to be true. 

Afterwards, we develop precise notation for this situation. 

Lemma 5.6. (a) If m, m’EBk are such that m#m’ and &(m), t,i,(m’)EPb for some 

SED, then b,, b,. hatIe different colors. 

(b) If tvin(m), tviS(m’)cPbfor some SED, m, rn’cBi, and y, ?/’ are the colors qfb,, b,,, 

respectively, then W:, und W,,, are either adjacent or identical. 

Proof. Note that during Pi both worktape head and input tape head can move at 

most ii cells, and that at t,i,(m) the worktape head is in IV, and the input tape head 

scans b,, and accordingly for b,,. By choice of G2, the intervals W, and W,, are either 

identical, adjacent, or at least 41 cells apart; clearly the last alternative is impossible. 

For (a) recall Lemma 3.3(b). 0 

In order to have a clearer picture, we want each short visibility phase to correspond 

to only one worktape interval IV). By Lemma 5.6(b), there are at most two such 

intervals that can be touched during a visibility phase. We choose that one to which 

the majority of colors occurring in PX belongs. 

Definition 5.7. For each find, we choose 256. 1’!2 bits b, with rnEB$ and t,i,(m)EPb 

so that all the bits chosen have the same W,. We then call this interval Wh, its central 

21 cells Vi. The subset of Bi consisting of all the bits chosen is called Bk. (Clearly, 

IB;I=+lB:I=12/256.) 
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Definition 5.8. For LED, define 

(a) td:= the first step of Pi, and 

(b) B6:= { rn~Bt 1 for some m’~Bi, tYi,(m’)~P> and 

b,, b,. have the same color ‘J} 

(the set of “early” bits whose colors “occur” in Pi). 

The crucial properties of the bits b, with rn~B~ are summarized in the following 

lemma: at t,, all these bits should be “stored” within Vb. Lemma 5.9(c) is a technical 

property; its significance will become clearer below. 

Lemma 5.9. (a) For all SED and all mEB, we have that b, is printed from Vi after ts, 

and b, is never visible,from Wg in the time interval (ta, tJm)]. 

(b) For all LED we have that 1 Bdl = 321. 

(c) Each rnEBz occurs in at most $1’12 of the B,‘s. 

Proof. (a): Let LED, rnEBd, and let y be the color of b,. There is a bit b,,, where 

m’EBk, of color ; with tvis(m’)EPb, by Definition 5.8(b). It is immediate from the 

definitions that Vk= V;, and Wg = W;,. So we must show that t,is(m)< fg< tpr(m). By 

the definition of “early” and “late” bits, there are at least $1 1/2 visibility times of other 

bits of color ;I between r,,,(m) and tvis(m’) and, hence, by Lemma 3.3(b), t,is(m) and 

tvis(m’) are at least (al’!’ - 1). 1 steps apart. Since tvis(m’) - t6 < il, this implies that 

tvi,(m) < td. On the other hand, there are at least $1 ‘I2 visibility times of other bits of 

color y after tvis(m’) and, hence, tvi,(m’) precedes the last visibility time tPr(m”) for 

some bit b,.. of color 7 by more than (41 1/2 - 1). 1 steps. Since P, has fewer than 1 steps, 

tvis(m’) precedes the first step of P;., and hence tJm), by at least (il”2 -2). 1 steps. 

Thus, t6 < t,,(m). 

(b): There are 2561’12 bits b,., rn’EBk, with t”i,(m’)EPb, all of different colors, and 

Ql ‘j2 bits b,, rnEBf, belong to each of these colors. 

(c): Let y be the color of b,. Then there are at most $1’12 bits b,, of color y with 

rn’EB?c Bf;, by Definition 5.3(b) and, hence, at most $11j2 many 6 with meB,, by 

Definition 5.8(b). q 

The following technical lemma is the core of the argument. It will be proved later, 

by a Kolmogorov complexity argument. 

Lemma 5.10 (The “overburdened” interval). Let M, 1, n, x be as above, 1 large enough, 

and let W be an inter& of 41 cells on the worktape, V the 21 cells in the center of W. Let 

to < tl be time steps. Let r 2 161, and assume thut there are r bits b, that are printed 

‘tfrom V” during (to, tl] but are never visible from Wafter t,, before being printed from 

V. Then the worktape head spends at least r. I/( 8. log n) steps in W during the interval 

(to9 t11. 

Proof. See Section 6. 0 
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The last complication we have to resolve is caused by the fact that there may be many 

~GD with the same Wb. We have already noted in Section 2 that the dynamics of such 

an “overburdened” interval may be quite complex, because the set of bits that 

“belong” to this interval, in the sense that their visibility time is over but that they 

have not been printed yet, changes constantly. The following technical lemma, whose 

proof is based on Lemma 5.9, resolves this problem. It shows that { 1,2, . . , Tj can be 

split into sufficiently many disjoint time intervals to which Lemma 5.10 can be applied. 

The crux of this construction is that (a) for each of these disjoint time intervals 

a sufficiently large set of bits as required in Lemma 5.10 remains (at least 161=SIBsl 

many), and that (b) the total number of such bits, summed over all applications in 

disjoint time intervals, is proportional to ( U6EDo Bdl =R(&EDo IBg(/min( IDJ, ll’*})= 
Q( / D, ( ‘1 ‘I*). Exactly this is expressed in statements (a) and (b) of the following lemma. 

Lemma 5.11. Let Do G D, and let W be such that W= Wb for all FEDS. Let V be the 21 

cells in the center of W. Then there is an integer q and there are time steps 

T=tX>tT> ... >t: with tf,..., t,*E{tsjSEDo} such that for the sets BT,...,B,* 

defined by 

B,*:= rnE u Bd b, is printed from V in (t:, t,*-,] 
i 6eDo / 

and is not visible from Win (tt, &,(m)] 

we have the following: 

(a) IBBl316lfor ldsdq, 

(b) i IB,*/3128.1D01.1”2. 
s=1 

Proof. Wedefine t:,O<sdq, byinductionons.Set t,*:=Tand tT:=max{td/kDO). 

Clearly, t: < to*, and (a) is satisfied for s= 1 by Lemma 5.9(b). Now assume as 

induction hypothesis that tf> ... > t: have been defined, that these steps are in 

{tdI6EDO}, th a t ( 1 a is satisfied for 1, . ., s, and that 

(4 (B6-(BT~...~B%)(<)IB6( for LED,, t,3tB. 

(This is obviously true if s= 1.) We consider two cases. 

Case I: IB,-(BTu...uBd)lk)lB~l for some JED,. 
Let tan be the maximal td with LED, that satisfies this inequality. We let 

By (c), t,*+ 1 < tf , Since, by the definitions, 

B:+, 3Bs0-(BTu...uB;), 
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we have IB,*t I ( 3$lEg,I 3 161, by Lemma 5.9(b). Hence, (a) holds for s+ 1. That (c) is 

satisfied for s+ 1 follows trivially from the fact that ts, was chosen maximal. 

Case 2: IBd-(BTu...u~:)l<flB6/ for all 6gD0. 

We let q:=s and stop the induction. We must check that (b) is satisfied. For this, we 

define auxiliary sets 

Y:= {(m, 6) I rn~B~ and ~ED~}, 

Y*:={(m,G)lm~BTu”‘uB:,meB,,6EDo}. 

We know, by Lemma 5.9(c), that each m occurs in at most &1”’ many Bs. Hence 

(*) IBTu...uB,*I~IY*l/($1”2). 

For every LED, we have by the assumption IB,-(BTu...uBB)l<tlBdJ that 

I~(m,6)lm~B,,(m,~)EY*}l3tlBdl. 

Adding this inequality up for all 6gD0, we get 

(The last inequality follows from Lemma 5.9(b)). Substituting this into (*), we obtain 

IBTu... ~B:I3lD~l.1”~.128, 

and this is (b), as desired. •I 

By applying Lemma 5.10 in the situation of Lemma 5.11, we get the result we need. 

Corollary 5.12. If M, 1, n, x are as in Lemma 5.10, and Do and Ware as in Lemma 5.11, 

then M spends at least 16. (D,, I.1 3/2/lag n steps with the worktape head in W. 

Proof. Let q, t:, for Obsdq, and B :, for 1 ds<q, be as in Lemma 5.11. Since (by 

Lemma 5.11 (a)) I B: ( 2 161, we can apply Lemma 5.10 to each of the intervals 

(tt, t,*_l], for 1 <s<q, to conclude that during (tt, t,*_l] the worktape head spends 

at least I B,* I . l/( 8. log n) steps in W. Since these time intervals are disjoint, we get from 

Lemma 5.11 (b) that altogether M spends at least 

steps with its worktape head in W, as was to be shown. 0 

Using Corollary 5.12, we can finish the proof of Theorem 2.1. Let LED be arbitrary. 

Let Do:= { ~‘ED 1 W,, = Wb}, and apply Corollary 5.12 to conclude that the worktape 

head spends at least 
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steps in Wb. Summing up these lower bounds for a family of LED that form a system 

of class representatives for the equivalence relation on D defined by W;= Wb,, we 

conclude that M makes at least 

steps altogether, and this is certainly larger than C. I ‘I2 for I large enough. This is the 

desired contradiction for Case 2 from Section 3; thus, the proof of Theorem 2.1 is 

finished. 

6. Proofs of the Kolmogorov complexity lemmata 

In this section, we supply the proofs of Lemmas 4.1 and 5.10. We begin with 

Lemma 5.10; the proof of Lemma 4.1 will be a slight variation of that of Lemma 5.10. 

Proof of Lemma 5.10. This is a refinement of an argument in [lo]. Let L(R) be the 

leftmost (rightmost) 1 cells of W. (So, W is the union of L, V, R.) Choose a cell 

boundary cL to the right of a cell in L so as to minimize the number of times in (to, tl ] 

the worktape head crosses this boundary from left to right, and let the number of 

crossings be # C,. Similarly, choose a cell boundary cK to the left of a cell in R that 

minimizes the number of times in (to, tI] the work head crosses this boundary from 

right to left, and let the number of crossings be #CR. 

Clearly, the worktape head spends at least I. ( # CL + # C,) steps in L and R taken 

together (by minimality) and, hence, in W. Thus, it suffices to show that the worktape 

head enters [ cL, cR] (the interval between cL and cR) at least r/( 8. log n) times in 

(to, tr]. For this, we describe a method for producing the input x as output of some 

Turing machine. 

Suppose we are given 

(i) the program of M, coded as a bitstring in some standard form; 

(ii) the contents of [c,, cR] at time to; 

(iii) the number 1 and the positions of all three tape heads at the first time in (to, tr ] 
at which the worktape head visits [c~, c,]; 

(iv) the position of the input and output tape heads, and the state of M at each time 

the worktape head crosses cL or cR towards V; 

(v) the bits b, that are visible from [cI., cR] during (to, tr] but are not printed from 

CCL.7 cR] during (to, t,] before being visited on the input tape (these bits are given as 

a single string in the order they are visited by the input tape head); 

(vi) the bits b, of the input that are neither visited by the input tape head during 

(to, tI] while the worktape head is in [c,, cR] nor printed from [cL, cR] during (to, tr] 

(these bits are given in one consecutive string in the order they appear in x); 

(vii) the code rM’1 for a Turing machine that works as follows. First, simulate the 

computation of M on input x during all time periods in (to, tr] that the worktape 
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head spends in [c,, cR]: Starting with an empty tape, using the information given by 

(ii) and (iii), start simulating M at the first time step in (to, tl] at which the worktape 

head is in [cL, cR]. Whenever the (simulated) input tape head visits a cell that has no 

bit written to it as yet, copy the next bit given by the string described in (v) to this cell, 

and continue the simulation. Whenever M prints a bit h, to the n(m)th cell on the 

output tape, immediately copy this bit to the corresponding mth cell on the simulated 

input tape. Whenever the worktape head leaves [c L, cR], interrupt the simulation and 

resume it with the step the worktape head enters [c~, cR] again, using the information 

given by (iv). The simulation is finished when the worktape head leaves [c,, cR] for 

the last time in (to, tr], or when M halts. After this happens, fill in the bits still missing 

on the input tape, using the string described in (vi). Finally, output the contents of the 

input tape. 

It is clear that the procedure just described outputs x. (Note that here the conven- 

tion concerning the output tape is used: whenever some symbol is printed to the 

n(m)th cell of the output tape, it is equal to the correct mth input bit b,.) So if we 

estimate the number of bits needed to code the information described in (i)-(vii), in the 

form required by the definition of Kolmogorov complexity (see Section l), we obtain 

an upper bound for K(x). For the different parts of the string, we get the following 

estimates: 

(i) cM bits, for some constant cM; 

(ii) < 41. log 3 < 81 bits; 

(iii) < 4. log n bits; 

(iv) (#CL+ #CR).(2.10gn+cM) bits; 

(v), (vi) d 1’ -r bits (recall that, by the hypothesis of Lemma 5.10, at least r bits are 

printed from V before they are visible from W; at least these bits are printed from 

cc L, cR] during (to, tr] before being visited by the input tape head); 

(vii) co bits, for some constant co. 

Furthermore, O(logn) bits are needed to separate the substrings that belong to 

(i))(vii), when concatenated to a single string. (For example, we can precede each of 

these substrings by its length in binary, with each bit doubled.) We get 

K(x)bcM++sI+( #CL+ #CR).(2.10gn+cM)+12-r+co+cl.logn. 

Since x is incompressible, 1’ < K(x). We get, for 1 so large that log 13 cM, and for some 

constant c h : 

r-Sl-cb.logn<( #C,+ #CR).3.10gn. 

By assumption, r 3 161; hence, r - 812 r/2. This, together with a trivial transformation, 

yields 

r.(4-8c~.log(n)/r)/(24.logn)d #CL+ #CR. 

For 1 so large that 8ch. log n < 161~ Y we get 

rl(8.logn)d #CL+ #CR, 

as desired. 0 



290 M. Dietzfelhinyer, W. Maass 

Proof of Lemma 4.1. This proof is essentially the same as the previous one, excepting 

that we simulate the computation of M for all time periods in { 1,2,. .., T) the 

worktape head spends in [cL, cR], and that in (ii) we just need the number of cells 

between cL and c,-the worktape being initially blank. We get the following estimate 

for K(x): 

hence, for 1 large enough, Y-CL, log n d ( # CL + # CR). 3. log n. As before, we con- 

clude that r/( 4. log n) < # CL + # CR, for 1 large enough; hence, M spends at least 

l.r/(4.logn) steps in M. 0 
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