
Theoretical Computer Science 108 (1993) 271-290
Elsevier

271

The complexity of matrix
transposition on one-tape off-line
Turing machines with output tape*

Communicated by R.V. Book

Received June 1989

Revised Aprrl 199 1

Abstract

Dietzfelbinger. hl. and W’ hlaass. The complexity of matrrx transposition on one-tape off-line

Turing machines with output tape, Thcorettcal Computer Scrence 108 (1993) 271-290.

A series of existing lower bound results for deterministic one-tape Turing machines is extended to

another, stronger such model suttable for the computatton of functions: one-tape off-line Turing

machines wtth a wrote-only output tape. (“OfT-line” means: havmg a two-way input tape.) The

following optrmal lower bound is shown: Computrng the transpose of Boolean ix i-matrrces takes

R(1”‘)=Rtt1”~) steps on such Turing machtnes. ()I= 1’ is the length of the input.)

1. Introduction

During the last few years lower bound arguments for a sequence of restricted

Turing machines (TMs) of increasing power have been developed. Techniques have

Correspotnfmce 10: M. Dietzfelbmger. Fachbereich Mathematik, Informatrk. Universitht-GH-Paderborn.

W-4790 Paderborn, Germany. Email addresses of the authors: martind,# uni-paderborn.de and

maass@igi.tu-grar.ac.at.

*A preliminary version of thts paper appeared in: T. Lepisto. A. Salomaa. eds.. Pro<. 15th ICA LP.

Lecture Notes in Computer Science. Vol. 317 (Springer, Berlin. 1988) 188-200.

**Partially supported b\ NSF Grant DCR-8.504247 and DFG Grants Me 872/l-l and We 1066,‘1-2.

***This work is based on a part of the first author‘s Ph.D. Thesis at the University of Illtnois at
Chicago, Chicago, Illinois, USA.

****Partially supported by NFS Grants DCR-8504247, CCR-8703889 and CCR-8903398.

0304-3975/93/$06.00 6 1993..-Elsevier Sctence Pubhshers B.V. All rights reserved

been devised that make it possible to prove optimal superlinear lower bounds on the

computation time for several concrete computational problems on one-tape TMs

without input tape [4], on one-tape TMs with a one-way input tape (“on-line

one-tape TMs”) [9, 141, and finally on one-tape TMs with a two-way input tape

(“off-line one-tape TMs”; this is the standard model for the definition of space-

complexity classes). For this model an optimal lower bound of Q(n3’2/(logn)“2) for

the matrix transposition function [lo, 33 and a barely superlinear lower bound of

Q(n log n/log log n) for a related decision problem [111 have been established.

In this paper we consider the next more powerful type of restricted Turing machine

(for which the preceding lower bound arguments do not suffice): off-line one-tape

TMs with an additional output tape. Whereas the addition of the output tape

obviously makes no difference for solving decision problems, it was already noted in

[lo], respectively, [3] that these machines can perform matrix transposition in

O(n 514) steps, as opposed to Q(n”‘2/(log n)‘:‘) steps for the previously considered

version without output tape, where the output has to appear on the worktape.

This stronger model is also of some interest from a technical point of view, because

it exhibits a feature that is characteristic for TMs with several worktapes (which are so

far intractable for lower bound arguments): the extensive use of the worktape as an

intermediate storage device. This feature played only a minor role in the analysis of

matrix transposition on one-tape off-line TMs without output tape, because one could

easily show that any use of the worktape as an intermediate storage device is

inefficient for this model: Once some bits have been written on the worktape, they can

be moved later only by time-consuming sweeps of the worktape head. During each

sweep at most log II bits can be moved, where n is the length of the input. (The number

of bits that can be moved during one sweep is about log II rather than constant since

the input tape can be used as a unary counter, thus can store up to logn bits. This

feature of one-tape TMs with two-way input tape can be used to show that such

machines can simulate ,f(n)-time-bounded k-tape TMs in O(f(n)‘/log n) steps,

see [2].)

In this paper, we prove an optimal lower bound of Q(n’l”) for the transposition of

Boolean matrices on one-tape off-line TMs with output tape. This result also separ-

ates such TMs from k-tape TMs with k 3 2: as is well known, 2-tape TMs can compute

the transpose of an 1 x I-matrix in 0(j2. log I) = 0(n log n) steps. (For a short proof of

this fact see [3].) The lower bound argument employs Kolmogorov complexity to

enable us to analyze the possible flow of information during the transposition of

a suitably chosen matrix on such a machine. (For other lower bound proofs using

Kolmogorov complexity see 16, 7, 121. For a survey of the use of Kolmogorov

complexity in lower bound proofs see [S].) This analysis differs from previous lower

bound arguments with Kolmogorov complexity by its emphasis on the time-dimen-

sion of the computation: it is not enough to watch which information aer reaches

a certain interval on the worktape, rather it is essential to note which information may

be present in such an interval at specific time points. In particular, the argument

exploits the fact that in certain situations the same information may have to be

One-tupe Turing machines with output tape 213

brought into the same tape area several times (because after it was first brought there,

it had to be overwritten to make space for some other information).

Moreover, the Kolmogorov complexity lemmata (Lemmas 4.1 and 5.10) employ

a new trick (from Cl]), which allows us to prove optimal bounds for matrix transposi-

tion even in the case where the entries of the matrix are single bits. (The technique of

[lo] could only handle the case with entries of length at least log n. In [3] the results of

[lo] are extended to entries of all lengths.)

The following notions and definitions are used in this paper. The definition of

Turing machines is standard (see, e.g., [S]). A k-tape TM is a TM with k (read/write)

worktapes. The worktape alphabet is assumed to be {0, 1, B}. (If larger worktape

alphabets r were allowed, the lower bound in this paper would change by the

constant factor l/log((TI).) The output tape (if present) is initially blank. It is

a two-way write-only tape, i.e., the output tape head can move in both directions but it

cannot read. When positioned on some cell on the output tape, the head can write

a 0 or a 1 or not write at all. If an output tape cell contains bE { 0, 1 } at the end of the

computation, then b must be written to this cell at least once, may be several times, but

no symbol different from b must ever be written to this cell.

Remark 1.1. This restriction on the capabilities of the output tape is slightly more

general than the more natural requirement that the output tape head can move only

from left to right. Thus, this simpler model is also covered by the proof in this paper.

There is an even more general convention for output tapes, namely, where it is

permitted to overwrite symbols already written by different symbols. Although it is

not clear if it really is stronger, the latter model is not covered by our lower bound

proof, as we explicitly use the property that if the output tape head writes a symbol

then it is the correct one.

The function MATRIX TRANSPOSITION is induced by the operation of transposing

a matrix: given an input XE{ 0, 1 >“, n = I ‘, regard x as the representation of a Boolean

matrix AE{O, 1) lx’ in row-major order, and output the transpose AT in row-major

order (or, equivalently, A in column-major order). That means, if the input is

x=blb2...bn with b,c(O, l}, for 1 dmdn, then the output is y=b,(,,b,,,,...b,(,,,

where the permutation rc of { 1,2, . . . , n} is defined by rc((i-l).l+j)=(j-l).I+i, for

1 <i, j < 1. (A variation of this function was used in [10, 1 l] for separating two-tape

TMs from one-tape off-line TMs without output tape; before that, it had occurred in

[13] as an example of a permutation that is hard to realize on devices similar to

Turing machines.)

Remark 1.2. For the sake of simplicity, we do not specify MATRIX TRANSPOSITION on

inputs of length n, where II is not a square, and ignore such n in the following. It is easy

to extend the function MATRIX TRANSPOSITION to nonsquare n, so that both the upper

and the lower bound hold for all n. (For example, ignore the last n - (L&I)’ bits of

the input.)

274 M. Dietzfelhinyer, W. Mams

The Kolmogorov complexity of a finite binary string is defined as follows. Let an

effective coding of all deterministic Turing machines (with any number of tapes) as

binary strings be given and assume that no code is a prefix of any other code. Denote

the code of a TM hil by r Ml. Then the Kolmogorov complexity of XE{O, 1 } * (with

respect to this fixed coding) is K(x) := min {) [Ml U/ 1 UE { 0, 1 } *, M on input u prints x).

A string XE { 0, 1 } * is called incompressible if K(x) 2 1 x I. (A trivial counting argument

shows that for each n there is an ~~10, 1 j” with K(x)>n=ixj.)

The paper is organized as follows: in Section 2 we state the theorem, sketch the

proof of the upper bound, and give a detailed outline of the lower bound proof. In

Sections 336 we prove the lower bound. (The proofs of the Kolmogorov complexity

lemmata are given in Section 6.)

2. Main result and outline of the proof

Theorem 2.1. The time complexity qf‘ MATRIX TRANSPOSITION on one-tape oflline

Turing machines with a one-way output tape is @(n5i4). (Here n = 1’ is the length of the

input, which is a Boolean 1 x l-matrix given in row-major order.)

Proof of the upper bound (sketch). (This was already noted in [lo, 31.) Let the input

x~(0, 1 }” represent the Boolean 1 x l-matrix A =(aij)r 6i, jsl, i.e.,

x=all...ar[u2r . ..Q.,...Ul,...Ul,.

Split A into submatrices Ak, 1 <k<l ‘I’, where Ak consists of the columns

(k-1).11’2+1 ,..., k.11’20fA.Fork=1,2 ,..., 1 II2 compute and output the transpose

AZ of A, as follows: first, write A, in row-wise order on the worktape (this takes one

sweep over the input, hence O(1’) steps); then, output A, column by column (this

takes 1 Ii2 sweeps over the representation of Ak on the worktape, which consists of 13’2

bits, hence O(1”) steps). Altogether, A is printed column by column, and
0(j5/2)=O(n5’4) steps are made.

One may ask how the TM orients itself on the input tape so that it is able to pick

out those entries of each row of A that constitute A,. But this is easy, once it has

placed markers at regular distances of 1 ‘I2 cells on the worktape and has constructed

one “yardstick” of length 1, which is done once and for all at the beginning of the

computation. The markers at distance I’!’ can be used to measure the length of the

rows of Ak and to carry the “yardstick” along during the copying procedure at

(almost) no extra cost; the “yardstick” itself is used to measure the distances between

the left ends of successive rows of A, on the input tape. Further, the markers at

distance 1 ‘I2 are used for printing out Al row by row. We leave it to the reader to work

out the details. 0

As the proof of the lower bound is long and quite involved, we will outline its

overall structure in the remainder of this section. In the course of this description, we

will also indicate the meaning of and motivation for most of the notation used in the

formal development of the proof.

One-tupe Turing machines with output tupe 215

The proof is indirect: We fix an incompressible input .X = b 1 . . b, of length II = 1’ and

assume that M makes fewer than C. n5j4 = C. 15j2 steps on this input, for some

constant C62-‘s. The goal is to reach a contradiction. In principle, the whole

argument is one big case analysis-each of the cases leads to a contradiction. As some

of the cases are trivial, we choose a slightly different way of developing the argument:

based on the assumption that fewer than C. nsj4 steps are made, we identify more and

more features that must be present in the computation. At one point we actually

distinguish between two cases (Section 4 versus Section 5) and show that both of them

lead to a contradiction.

In the course of identifying more and more properties of the computation of M we

introduce more and more notation, and restrict our attention to smaller and smaller

sets of input bits (these sets are called Bi, B2, B3, . ..). Sometimes the structure

identified and given a name is quite natural (e.g., the “printing times” in Definition 3.1

or the concept of “visibility” in Definition 3.6), others may at first seem artificial (e.g.,

the “early” and “late” bits in Definition 5.3). All the structure we will deal with will

concern the position of the worktape head at certain time steps, namely when some

output bit is printed or some input bit is read. In the following, descriptions of the

notation we use will be set off by paragraphs numbered A, B, C, etc.

(A) (Definition 3.1) Each bit b,, 1 <rn< n, is associated with a printing time t,,Jm)
(the first step at which b, is printed to the n(m)th output tape cell).

(B) (Definition 3.2) Printing times come in clusters: We may identify iL312 disjoint

time intervals P, (where ;j~ G1, for some index set G, of size fl 3’2), the printing phases,

so that each of the printing phases has length at most I steps and contains 1 ‘I2 printing

times tp,(m). The set of those +n bits whose printing times lie within one of these P,‘s is

called B1.

Each y is regarded as a “color”; a bit b, with printing time r,,(m) in P, is also

colored with color ;‘. Thus, B, is partitioned into i/3/2 color classes of size 1’j2.

(C) (Definition 3.4) Next, we force an additional structure upon the computation:

worktape interds. We partition the worktape into disjoint blocks W (of length 41)

with center V(of length 21). If the position of these intervals on the worktape is chosen

properly, we may identify a set G2 L G1 of colors of size 1 G2 (= $1 G1 1 so that for each

yeG2 the printing phase P, fits within the block structure: during P,, the worktape

head stays within the center V;. of one of the blocks WY. The set of $j2 bits that are

printed during these “well-aligned” printing phases is called B2.

The “buffers” of 1 cells that separate K, from the outside of W:, play the following

role. Since the bits of color 5’ in B2 are printed “from V,” (i.e., while the worktape head

is in 1’7), the information necessary for printing them must in some sense “be

contained in” I’;, at the beginning of the printing phase P,. Intuitively, if (part of) the

information necessary for printing the bits of color y is not even present in the bigger

interval Wj, at a certain time step t before P, and cannot be transported into W,

between t and P;, by reading these bits off the input tape, then this information must be

“carried” across the two “buffers” by worktape head movements, which costs

R(r/logn) steps if r bits of information are to be transported into V;,.

216 M. Dietzfi#~inyer, W Mauss

Next, we must clarify how information about the bits of color 7 may reach WY. This

is the purpose of the following, quite natural, definition.

(D) (Definition 3.6) A bit b, is visible from a worktape interval W at step t if at this

step the input tape head scans b, and the worktape head is in W.

Assume that b, is a bit in B, of color 7. Informally, there are two possibilities for

M to get b, from the input tape to its destination on the output tape:

(2) b, is visible from w; before tPr(m). (Thus, there is an opportunity to copy b,

from the input tape to some place in W, before t,,(m), so that this information is

available when b, is printed from V;. during P,.)

(p) Otherwise, i.e., b, is never visible from W, before t,,(m). (Thus, 6, has to be

carried into V, by movements of the worktape head.)

As either the majority of bits satisfies (c() or the majority of the bits satisfies (p), at

least one of the following two cases applies.

Case 1: For at least half the colors in ‘/ at least half the bits in color class y are

treated as in (fi).

Case 2: For at least half the colors in ?/ at least half the bits in color class “J are

treated as in (a).

In Section 4 we deal with Case 1, the case of many “underinformed” intervals.

(E) Suppose Case 1 applies. We choose a set G3 LG, of size &1G21 so that for all

LEG, there are $111* bits of color ;’ as in (p). The collection of these a/B2 I= 1*/32 bits is

called B3.

In Section 4 it is shown via a Kolmogorov complexity argument that this situation

entails that M makes R(13/log n) steps. (Of course, this contradicts the initial assump-

tion on the running time of M.) Here, we give a simple informal argument why this

lower bound should be expected to hold. Note that here the role of the “buffer” of

length 1 around V, within WY is evident.

First “pebble aryument”. Imagine that the input bits b, are identifiable, atomic

objects (“pebbles”), which are to be transported from their original position on the

input tape to their final position on the output tape. Whenever the input tape head

visits b,, this bit may be copied to the place on the worktape where the worktape head

is positioned. Similarly, whenever the worktape head visits a cell, any bit stored in this

cell may be printed to the output cell currently scanned by the output tape head.

Finally, the worktape head has the capability to carry bits from one place of the

worktape to another; however, it may carry at most logn bits at the same time. (See

Section 1 for the reason for this convention.) Now consider some bit from B2 that

is never visible from its interval IV;,, but printed from V;,, the central 21 cells of W,.

The following must happen: first, b, is copied from the input tape to some cell

outside of W,.; then, it is carried by the worktape head across the I cells that

separate the outside of W,. from K,; finally, it is printed from P’). Overall, the worktape

head spends R(13/log tr) steps for carrying each of these 1*/32 bits across a distance

of 1 cells.

In Section 5 we take care of Case 2, the case of many “overburdened” intervals, which

is much more difficult to deal with than Case 1.

One-tape Turing machines with output tape 277

(F) If Case 2 applies, we have a set G,cG, of size i1G21 so that for all YEG~ there

are +/‘I2 bits of color ?/ as in (a). The collection of these al B2 I= 1 2/32 bits is called Bq.

We will show that also in this case M makes R(13/10gn) steps, contradicting the

initial assumption. However, this is not intuitively clear at all: We are dealing with

a set of 12/32 bits that all may be copied to some tape interval W, and later printed

from the center V, or W;,. Why should this cause problems?

We need to introduce more notation.

(G) (Definition 5.2) Each bit h, in B4 is associated with a tiisihiliry time t,i,(m)

(which perhaps should more properly be called “last-visibility time”). If b, has color “J,

then t,i,(m) is the last time step before the printing time t,,(m) at which b, is visible

from W;,.

Visibility times of bits of the same color are relatively far apart, namely at least

1 steps. This is the essential consequence of our computational problem being matrix

transposition: bits that are closer together than 1 cells on the output tape have

preimages on the input tape that are further than 1 cells apart. Let us look at the bits in

a color class LEGS in the order of their visibility times.

(H) First, consider those ~1 1 ‘I2 =$~~I’~’ bits in the color class whose visibility times

come first. They are called the “earlll” bits; the set of all “early” bits is B~sB,.

The “early” bits may be copied into W, at their respective visibility times; but,

if this recording is to be of any use they have to be kept stored in this interval

over a long period of time, namely at least $.+l”” steps, since the printing phase P,

has only I steps and cannot end before the last of the il ‘I2 visibility times. The reader

may already have a vague idea that this may not work well, as the storage capacity

of each worktape interval WY, measured in bits, is bounded (by [log, 31 .41< 81).

However, to really get a handle on this, we must impose another structure on the

computation.

(I) (Definition 5.3) For each color ycG,, we consider the third quarter of the fl”’

visibility times of bits of color ;J in their natural order in time. We call the correspond-

ing bits the “lute” bits of color 7. The set of all these bits is called B$.

There are three properties of the visibility times t,i,(m) of these “late” bits that we

will exploit: at tvis(m),

(i) the visibility times of the $1 1,‘2 “early” bits of color 7 are over (intuitively, these

bits should now be stored in WY);

(ii) the printing phase P, has not yet started;

(iii) the worktape head is in W,..

As there are many (namely lB;i = 1’1128) late visibility times and the overall

computation time is shorter than 1 5’2 .2- ‘*, the “late” visibility times come in large

clusters, just as the printing phases.

(J) We may identify 1 3/2. 2- ” disjoint time intervals Pi (where 6sD, for D some

index set of size /3/2 . 2- “), the visibility phases, so that each of the visibility phases has

length at most il steps and contains 512.1 ‘I2 “late” visibility times. (These visibility

phases concern only last-visibility times of “late” bits.) The set of 1 2/256 “late” bits b,

in Bi with visibility time in one of these short visibility phases is called B\.

278 M. Dier$#Cyer, W. Maass

At this point, we may pin down the effect that makes it impossible for M to store all

the “early” bits in their respective tape interval W, over the long period of time

mentioned above. Consider an arbitrary visibility phase Ph. The 512.1’12 “late”

visibility times within Pb belong to bits of different colors, as Pi is so short. Further,

property (iii) of “late” visibility times from above entails that at most two neighboring

tape intervals Wi, and W;,. can belong to the colors that occur in the visibility phase.

One of the two intervals, which we will call WA, has to handle the majority of the

colors, i.e., at least 256.1 ‘I2 many. By property (i) and (ii) of “late” visibility times

above, there are 256./‘;2.($11’2) = 321 bits (namely, the “early” bits of colors occur-

ring in Pi) whose visibility times come well before Ph but whose printing phase starts

only after Pi. That is, all these bits should be stored in Wh at the time of P&. But this

cannot work, since the storage capacity of Wb is smaller than 81.

The situation can be formulated more precisely as follows.

(K) (Definition 5.8 and Lemma 5.9) For each CUED there is a time step ts (in Pi),

a worktape interval Wi (with center Vi), and a set B,sBf with IBal = 321 so that

(a) for all 6~0 and all ~GB,? we have that h, is printed from VA after td, but b, is

never visible from Wh in the time interval (ta, t,,(m)];

(b) each bit in B: occurs in at most h/1/2 of the B,‘s.

We have just described how our setup leads us to identifying many situations where

a tape interval W, is “overburdened”. We now must combine these many situations in

one closed argument that proves the time bound of Q(/3/lag n) we are aiming at. It is

easy to combine lower bounds for the time the worktape head spends in different

worktape intervals, since these are disjoint. But many of the W$ may coincide, and

many of the bits in Bz may occur in many B,)‘s. We will once more use our “pebble

model” of the TM computation (see above) to intuitively explain why the lower bound

should be expected to hold.

Second “pebble argument”. We concentrate on one tape interval W and consider

Do G D such that Wi = W for all LED,. In the “pebble model”, we may regard the

interval Was a box, in which pebbles (the bits) are deposited (at their visibility times)

and from which they are retrieved (at their printing times). This box can keep at most

81 pebbles at the same time. Once a pebble is deposited in the box, it may be kept there

until it is retrieved again, or it may be thrown away. In the latter case, however, we

have to pay a “penalty” of I/log II steps when the pebble is claimed. (This corresponds

to the idea that a bit may be kept in W from its visibility time until its printing time, or

that it may be erased to make place for other information. In the latter case, it has to

be “carried into” V again from outside W, at the cost of I/log n steps-recall that the

worktape head must be assumed to have a storage capacity of logn bits).

We consider only bits in B:= U jBd 1 finds}. Statements (a) and (b) in (K) translate

into the pebble model as follows: For each time step ts, there is a set B, of pebbles that

have been deposited before step 6 but not yet retrieved; each Bd has size at least 321.

Further, each pebble occurs in at most $I”’ of the Bd’s. The dynamics of pebbles

entering and leaving the box may be quite complex. Still, we may show via a simple

counting argument that the total penalty paid is 0(1 Do I .13/2/lag n) (which is exactly

One-tupe Turing machines with output tape 219

what is needed to obtain the overall bound Q(/3/logn)). Namely, let i denote the set

of pebbles from B thrown away in the course of the game. It suffices to show that

1 i I= 12 (1 Do / I ‘12). First, note three simple inequalities. Since every Bs has at least 321

elements, we have

By the capacity constraint on W, for all BEDS all but 81 pebbles from B6 are thrown

away, i.e., IB,-B^(< 81; this entails that

Since removing one pebble affects at most min { ID,I,Ql ‘12} many Bd, we finally have

that

Adding up these three inequalities, we obtain

Obviously, this implies that l~l=R(ID01.1’/2) no matter whether I Do / is smaller or

larger than i1 1’2. This finishes the second “pebble argument”.

It is easy to see that these estimates for distinct tape intervals Wean be combined to

yield the overall time bound 0(13/log n), which is the desired contradiction for Case 2.

Note that in a rigorous proof we may not use the concept of single, distinguishable

bits being stored in an interval W, since the “meaning” of the inscription of a work-

tape interval is not accessible to analysis. Instead, we have to exploit the fact that the

input is incompressible and find a way to push the argument through with sets of bits

that have no individual identity. This is done in Section 5 via another Kolmogorov

complexity argument.

3. Printing phases, worktape intervals, and visibility

This and the following three sections contain the details of the proof of the lower

bound. In this section, we give some basic definitions and note some basic facts.

Sections 4 and 5 contain the analysis of the two main cases.

Fix a one-tape off-line TM M with output tape that computes MATRIX TRANSPOSI-
TION. Choose 1 large enough (how large I has to be can be seen from the proofs of the

Kolmogorov complexity lemmata in Section 6) and fix an incompressible string

XE{O, l}“, where n=12. (Assume for simplicity that /‘j2.2-18 is a natural number.)

Consider the computation of M on x as input, consisting of, say, T steps. We want to

show that T3C.15j2, for some fixed C (e.g., C=2-18). The input x=h1b2...b,

represents A=(aij)l<i,jsl~fO, l}‘“‘,whereaij=h~i~l,.l+j.Theoutputy=b,l,h,2,...h,,,

represents AT.

Definition 3.1 (Printing times and printing phases). For 1 <m<n, let

tpr(m):= the first time step at which the output tape head prints

a symbol to the rc(m)th output cell.

(By the definition of our model, the symbol printed equals 6,; note that n=z-‘.)

Clearly, tpr(m) # tpr(m’) for in # m’. Split { 1,2, . , T} into j3” disjoint intervals P, (the

printing phases), so that each P;. contains exactly 1’:’ of the printing times t,,(m).

Informally, we talk of 7 as the “color” of printing phase P,. The bits b, whose printing

times belong to P, inherit the color: if t,,(m)EP,, both copies of b, (the mth input bit

and the z(m)th output bit) are said to have color 7.

We are only interested in short printing phases, because of their nice properties given

in Lemma 3.3 below. Obviously, if Tis to be smaller than C. 15j2, then M cannot print

too slowly, i.e., there must be many short printing phases. More precisely, we can

assume w.1.o.g. that at least 31 3’2 of the P, do not last longer than I steps. (Otherwise,
M makes at least t/%2. -1 5.2 I - 2 I steps, and we are done.) Thus, the following sets are

well-defined.

Definition 3.2. Let G1 denote some subset of { 1,2,..., 13;2} of cardinality IG, 1=*1312

so that for all ~‘EG~ the printing phase P, lasts fewer than 1 steps. Further, let

B1:=(mlt,,(m)~P, for some ;‘EG~J

denote the set of bits with color in G1. (It is obvious that IB,I=i12.)

We will focus on these bits in the following (and regard the other bits as “uncolored”).

We list some simple observations.

Lemma 3.3. Let ;‘EG,. Then

(a) on the output tape, the bits qf color 7 are contained in an interval of length 1;

(b) OH the input tape, the bits of color y haw distance at least l from one another;

(c) during P;., the worktape head visits at most 1 cells.

Proof. (a) and (c) follow immediately from the fact that P:, lasts no more than I steps.

(b): We use the fact that M computes MATRIX TRANSPOSITION: Because of (a), and

since on the output tape the matrix A is represented in column-major order, all bits

of color 7 belong to two consecutive columns of A, but no two of them to the same

row. Hence these bits are at least 1 cells apart if A is represented in row-major

order. q

We now turn to the tape intervals (of length at most 1) that the worktape head scans

during different P,‘s. Intuitively, at the beginning of P, this interval must contain all

the information necessary to print the l”2 bits of color 7. (By Lemma 3.3(b) and (c), at

One-tape Turing machines with output tape 281

most one bit of color y on the input tape can be inspected during P,. The incompressi-

bility of the input x entails that the other bits of the input inspected during P, will not

contain any information useful for printing the bits of color >j.) In order to have

a clearer picture, we want these tape intervals to be either identical or disjoint for

different y . For technical reasons, we moreover need a “buffer” of length 1 on each side

of these tape intervals. This can be achieved as follows, without reducing the number

of useful (colored) bits by more than a constant factor.

Definition 3.4 (Worktape intervals). Split the worktape into blocks of 1 cells each. For

YE G, , let V, be an interval consisting of two adjacent blocks such that during P, the

worktape head is always in I$ (such an interval exists by Lemma 3.3(c)). Let W, be V,

augmented by the block to the left and the one to the right of V,. (WY has 41 cells.)

We may split the set of all W.,,‘s into 4 classes such that the WY’s within each class are

disjoint. One of these classes contains the WY’s for at least one quarter of all YEG,.

Thus, the following sets are well-defined.

Definition 3.5. Let G2 be a subset of G1 with 1 GZI =$I Gr 1 =Q1312 such that for y, Y’EG~

the intervals W, and WY, are either disjoint or identical. Let

I&:= { rn~B, 1 t,,(m)~P, for some LEGS}

denote the set of bits with color in G2. (Obviously, lB21 =alB, I =$I’.)

We focus on the colors in G, and bits in B, from here on. Virtually all information

needed for printing the bits of color y are stored in V, at the beginning of P,. There are

several ways for M to get the information about the bits of color 7 into P”;, before P,.

The most natural possibility motivates the following definition.

Definition 3.6 (Visibility). Let W be any interval on the worktape, and b,, 1 dmdn,

any input bit. We say that b, is uisiblefrom W ut step t, if at step t the input tape head

scans b, and the worktape head scans a cell in W.

For b, a bit of color ;‘, we know that M prints b, to cell z(m) “from Kj”, that is, while

the worktape head is in V,. Intuitively, it seems reasonable for M to make such bits b,

visible at least from W, at some step before tpr(m), to allow for a “direct” transfer of b,

from the input tape to W, and from there to the output tape. For each such bit, there

are two cases:

(cx) b, is visible from WY before the printing time tpr(m).

(p) b, is not visible from W;, before t,,(m).

We may use this to distinguish two cases regarding the overall strategy of M: either

the majority of the bits b, in B2 behave as in (a) or the majority of these bits behaves as

in (p). Thus, the following two cases cover all possibilities.

282 M. Diet@lhinger, W Maass

Case I: For at least half the colors y in G2 half the bits in color class y are treated as

in (8.
Case 2: For at least half the colors y in G2 half the bits in color class y are treated as

in (~1).

Case 1 (which is easier) is treated in Section 4; Case 2 is dealt with in Section 5. Both

cases will lead to the conclusion that M makes Q(13/logn) steps.

4. The case of many “underinformed” intervals

In this section we assume that Case 1 (see end of Section 3) applies. That is, there are

at least $lB2) =12/32 bits h, in B2 so that b, is never visible from W, before &(m),

where y is the color of h,. We have to show that in this situation M makes Q(13/log n)

steps. The core of this proof is the following technical lemma, which will be proved

later by a Kolmogorov complexity argument.

Lemma 4.1 (The “underinformed” interval). Let M, 1, n, and x he as above, 1 large

enough. Assume that W is an interval of length 41 on the worktape, and that V consists of

the 21 cells in the center of W. Let r>$1”2, and assume that there are r bits b, that are

printed ‘yfrom V” (i.e., at tPr(m) the worktape head is in V) hut are never visible from

W before tpr(m). Then the worktape head spends at least r. I/(16. log n) steps in W.

Proof. See Section 6. 0

As we are assuming that Case 1 from above applies, we may make the following

definition.

Definition 4.2. Let G3 be a subset of G,, with 1 G3) =+I G2 (= 1 3’2/ 16, and let B, be

a subset of B2 with (B3/=$IB2J=12/32 such that for each LEG, there are exactly 31112

indices mEB, so that b, has color 1/ and b, is never visible from W,, before t,,(m).

Then, for each yeG3 there are at least

bits b, that satisfy the hypothesis of Lemma 4.1 with W= W,, V= V,, namely all bits

with a color y’ such that I+‘;, = II<,. From Lemma 4.1 it follows that M spends at least

ry. l/(16. log n) steps with the worktape head in II$. By summing up these bounds for

a family of LEG, that form a set of representatives for the equivalence relation over G3

defined by I&= W,., we see that M makes at least

IG3i.+/1:2. 1/(16.10gn)=13/(512~logn)

steps altogether, which is more than C. 1 5!2, for 1 large enough. This is the desired

contradiction for Case 1.

One-cape Turing machines with output tape 283

5. The case of many “overburdened” intervals

In this section we assume that Case 2 (see end of Section 3) applies. That is, many

bits are visible from their tape interval before they are printed. In the following

definition. we fix one set of such bits.

Definition 5.1. Let G4 be a subset of Gz, with 1 G41 = 13’*/ 16, and let B4 be a subset of

B2 with IB41 =$1B21 =1*/32, such that the following is satisfied: for each LEG, there

are fl ‘I2 indices rn~B, so that b, has color y and b, is visible from WY at some step

before t,,(m).

We focus on the 1*/32 bits in B, and “uncolor” all the other bits and printing

phases. As all the bits in B4 are visible from “their” tape interval, the following

definition is quite natural.

Definition 5.2 ([Last-] Visibility times). For YE G4 and me B4, where b, has color y , we

let

t,i,(m) := the largest t d t&m) such that b, is visible from WY at step t.

Note that the visibility times of bits of the same color are at least 1 steps apart from

each other, by Lemma 3.3(b).

For each color class y, we consider “early” and “late” visibility times. The basic

relation has to be that all “early” visibility times come before all “late” visibility

times. These two subsets serve two different purposes: Intuitively, bits with “early”

visibility times should be kept stored in IV.. for a long period of time, so they take up

storage space in W,; on the other hand, “late” visibility times mark time steps at

which

(i) bits of color y with “early” visibility times will not be visible again before P,;

(ii) the printing phase P, has not yet started;

(iii) the worktape head is in IV,.

In order to keep the “late” visibility times way before P, and to have as many “late”

as “early” bits, we declare the first quarter of the visibility times (in their chronological

order) as “early”, and the third quarter of the visibility times as “late”, separately for

each color.

Definition 5.3. (a) Bf:= { mEB4 I tvis(m)< tvis(m’) for bi.(i1”*) bits b,,

of the same color y as b,)

(the bits with “early” visibility times),

(b) Bi:={rn~B~(t”is(m’)<tvis(m) for >t.(fl”‘) bits b,,,, and

t,i,(m)<t,is(m’) for >$.(3/‘“) bits b,. of the same color y as b,}

(the bits with “late” visibility times).

284 M. Dietzfelhinger, W. Mums

Clearly, / Bf I= 1 Bk I= il B4 I= I’/ 128. We are interested in identifying time periods in

which many “late” visibility times cluster together. By (i)-(iii) above this immediately

leads to a situation where one tape interval WY is “overburdened”, i.e., should store

many more bits than its capacity. Finding such time periods is easy, by a simple

averaging argument just like that used for identifying short printing phases (cf.

Definitions 3.1 and 3.2).

Definition 5.4 (Visibility phases). Partition { 1,2, . . , T} into 1312. 2- l6 disjoint inter-

vals Pi, 1 <6613/2.2-16, so that each Pi contains exactly 512.1’!’ time steps tVis(m)

with m~Bk. The Pk are called the visibility phases.

Just as in the case of printing phases there cannot be too many long visibility

phases. The total number of steps is at most C. j5j2 < 1512. 2-18; as the visibility phases

are disjoint, there can be at most /3”. 2-l’ many that are longer than 41 steps. This is

at most half of all visibility phases. Thus, the following set is well-defined.

Definition 5.5. Let D be a subset of (1,2, ...,13’2.2m16} with 1Dl=5.(13’2.2-16)=

13j2. 2Y”, so that for LED the visibility phase Pi consists of fewer than $1 steps.

For the rest of the argument, it is crucial that each of the short printing phases

Pi marks a point in time td and a tape interval I+‘$ so that W, is “overburdened” at

step tg. The following simple lemma gives the basic reason for this to be true.

Afterwards, we develop precise notation for this situation.

Lemma 5.6. (a) If m, m’EBk are such that m#m’ and &(m), t,i,(m’)EPb for some

SED, then b,, b,. hatIe different colors.

(b) If tvin(m), tviS(m’)cPbfor some SED, m, rn’cBi, and y, ?/’ are the colors qfb,, b,,,

respectively, then W:, und W,,, are either adjacent or identical.

Proof. Note that during Pi both worktape head and input tape head can move at

most ii cells, and that at t,i,(m) the worktape head is in IV, and the input tape head

scans b,, and accordingly for b,,. By choice of G2, the intervals W, and W,, are either

identical, adjacent, or at least 41 cells apart; clearly the last alternative is impossible.

For (a) recall Lemma 3.3(b). 0

In order to have a clearer picture, we want each short visibility phase to correspond

to only one worktape interval IV). By Lemma 5.6(b), there are at most two such

intervals that can be touched during a visibility phase. We choose that one to which

the majority of colors occurring in PX belongs.

Definition 5.7. For each find, we choose 256. 1’!2 bits b, with rnEB$ and t,i,(m)EPb

so that all the bits chosen have the same W,. We then call this interval Wh, its central

21 cells Vi. The subset of Bi consisting of all the bits chosen is called Bk. (Clearly,

IB;I=+lB:I=12/256.)

One-tape Turing machines with output tape 285

Definition 5.8. For LED, define

(a) td:= the first step of Pi, and

(b) B6:= { rn~Bt 1 for some m’~Bi, tYi,(m’)~P> and

b,, b,. have the same color ‘J}

(the set of “early” bits whose colors “occur” in Pi).

The crucial properties of the bits b, with rn~B~ are summarized in the following

lemma: at t,, all these bits should be “stored” within Vb. Lemma 5.9(c) is a technical

property; its significance will become clearer below.

Lemma 5.9. (a) For all SED and all mEB, we have that b, is printed from Vi after ts,

and b, is never visible,from Wg in the time interval (ta, tJm)].

(b) For all LED we have that 1 Bdl = 321.

(c) Each rnEBz occurs in at most $1’12 of the B,‘s.

Proof. (a): Let LED, rnEBd, and let y be the color of b,. There is a bit b,,, where

m’EBk, of color ; with tvis(m’)EPb, by Definition 5.8(b). It is immediate from the

definitions that Vk= V;, and Wg = W;,. So we must show that t,is(m)< fg< tpr(m). By

the definition of “early” and “late” bits, there are at least $1 1/2 visibility times of other

bits of color ;I between r,,,(m) and tvis(m’) and, hence, by Lemma 3.3(b), t,is(m) and

tvis(m’) are at least (al’!’ - 1). 1 steps apart. Since tvis(m’) - t6 < il, this implies that

tvi,(m) < td. On the other hand, there are at least $1 ‘I2 visibility times of other bits of

color y after tvis(m’) and, hence, tvi,(m’) precedes the last visibility time tPr(m”) for

some bit b,.. of color 7 by more than (41 1/2 - 1). 1 steps. Since P, has fewer than 1 steps,

tvis(m’) precedes the first step of P;., and hence tJm), by at least (il”2 -2). 1 steps.

Thus, t6 < t,,(m).

(b): There are 2561’12 bits b,., rn’EBk, with t”i,(m’)EPb, all of different colors, and

Ql ‘j2 bits b,, rnEBf, belong to each of these colors.

(c): Let y be the color of b,. Then there are at most $1’12 bits b,, of color y with

rn’EB?c Bf;, by Definition 5.3(b) and, hence, at most $11j2 many 6 with meB,, by

Definition 5.8(b). q

The following technical lemma is the core of the argument. It will be proved later,

by a Kolmogorov complexity argument.

Lemma 5.10 (The “overburdened” interval). Let M, 1, n, x be as above, 1 large enough,

and let W be an inter& of 41 cells on the worktape, V the 21 cells in the center of W. Let

to < tl be time steps. Let r 2 161, and assume thut there are r bits b, that are printed

‘tfrom V” during (to, tl] but are never visible from Wafter t,, before being printed from

V. Then the worktape head spends at least r. I/(8. log n) steps in W during the interval

(to9 t11.

Proof. See Section 6. 0

286 M. Diet<fe/binger, W. Maass

The last complication we have to resolve is caused by the fact that there may be many

~GD with the same Wb. We have already noted in Section 2 that the dynamics of such

an “overburdened” interval may be quite complex, because the set of bits that

“belong” to this interval, in the sense that their visibility time is over but that they

have not been printed yet, changes constantly. The following technical lemma, whose

proof is based on Lemma 5.9, resolves this problem. It shows that { 1,2, . . , Tj can be

split into sufficiently many disjoint time intervals to which Lemma 5.10 can be applied.

The crux of this construction is that (a) for each of these disjoint time intervals

a sufficiently large set of bits as required in Lemma 5.10 remains (at least 161=SIBsl

many), and that (b) the total number of such bits, summed over all applications in

disjoint time intervals, is proportional to (U6EDo Bdl =R(&EDo IBg(/min(IDJ, ll’*})=
Q(/ D, (‘1 ‘I*). Exactly this is expressed in statements (a) and (b) of the following lemma.

Lemma 5.11. Let Do G D, and let W be such that W= Wb for all FEDS. Let V be the 21

cells in the center of W. Then there is an integer q and there are time steps

T=tX>tT> ... >t: with tf,..., t,*E{tsjSEDo} such that for the sets BT,...,B,*

defined by

B,*:= rnE u Bd b, is printed from V in (t:, t,*-,]
i 6eDo /

and is not visible from Win (tt, &,(m)]

we have the following:

(a) IBBl316lfor ldsdq,

(b) i IB,*/3128.1D01.1”2.
s=1

Proof. Wedefine t:,O<sdq, byinductionons.Set t,*:=Tand tT:=max{td/kDO).

Clearly, t: < to*, and (a) is satisfied for s= 1 by Lemma 5.9(b). Now assume as

induction hypothesis that tf> ... > t: have been defined, that these steps are in

{tdI6EDO}, th a t (1 a is satisfied for 1, . ., s, and that

(4 (B6-(BT~...~B%)(<)IB6(for LED,, t,3tB.

(This is obviously true if s= 1.) We consider two cases.

Case I: IB,-(BTu...uBd)lk)lB~l for some JED,.
Let tan be the maximal td with LED, that satisfies this inequality. We let

By (c), t,*+ 1 < tf , Since, by the definitions,

B:+, 3Bs0-(BTu...uB;),

One-tape Turing machines with output tape 287

we have IB,*t I (3$lEg,I 3 161, by Lemma 5.9(b). Hence, (a) holds for s+ 1. That (c) is

satisfied for s+ 1 follows trivially from the fact that ts, was chosen maximal.

Case 2: IBd-(BTu...u~:)l<flB6/ for all 6gD0.

We let q:=s and stop the induction. We must check that (b) is satisfied. For this, we

define auxiliary sets

Y:= {(m, 6) I rn~B~ and ~ED~},

Y*:={(m,G)lm~BTu”‘uB:,meB,,6EDo}.

We know, by Lemma 5.9(c), that each m occurs in at most &1”’ many Bs. Hence

(*) IBTu...uB,*I~IY*l/($1”2).

For every LED, we have by the assumption IB,-(BTu...uBB)l<tlBdJ that

I~(m,6)lm~B,,(m,~)EY*}l3tlBdl.

Adding this inequality up for all 6gD0, we get

(The last inequality follows from Lemma 5.9(b)). Substituting this into (*), we obtain

IBTu... ~B:I3lD~l.1”~.128,

and this is (b), as desired. •I

By applying Lemma 5.10 in the situation of Lemma 5.11, we get the result we need.

Corollary 5.12. If M, 1, n, x are as in Lemma 5.10, and Do and Ware as in Lemma 5.11,

then M spends at least 16. (D,, I.1 3/2/lag n steps with the worktape head in W.

Proof. Let q, t:, for Obsdq, and B :, for 1 ds<q, be as in Lemma 5.11. Since (by

Lemma 5.11 (a)) I B: (2 161, we can apply Lemma 5.10 to each of the intervals

(tt, t,*_l], for 1 <s<q, to conclude that during (tt, t,*_l] the worktape head spends

at least I B,* I . l/(8. log n) steps in W. Since these time intervals are disjoint, we get from

Lemma 5.11 (b) that altogether M spends at least

steps with its worktape head in W, as was to be shown. 0

Using Corollary 5.12, we can finish the proof of Theorem 2.1. Let LED be arbitrary.

Let Do:= { ~‘ED 1 W,, = Wb}, and apply Corollary 5.12 to conclude that the worktape

head spends at least

288 M. Dierzfelhinger, W. Maass

steps in Wb. Summing up these lower bounds for a family of LED that form a system

of class representatives for the equivalence relation on D defined by W;= Wb,, we

conclude that M makes at least

steps altogether, and this is certainly larger than C. I ‘I2 for I large enough. This is the

desired contradiction for Case 2 from Section 3; thus, the proof of Theorem 2.1 is

finished.

6. Proofs of the Kolmogorov complexity lemmata

In this section, we supply the proofs of Lemmas 4.1 and 5.10. We begin with

Lemma 5.10; the proof of Lemma 4.1 will be a slight variation of that of Lemma 5.10.

Proof of Lemma 5.10. This is a refinement of an argument in [lo]. Let L(R) be the

leftmost (rightmost) 1 cells of W. (So, W is the union of L, V, R.) Choose a cell

boundary cL to the right of a cell in L so as to minimize the number of times in (to, tl]

the worktape head crosses this boundary from left to right, and let the number of

crossings be # C,. Similarly, choose a cell boundary cK to the left of a cell in R that

minimizes the number of times in (to, tI] the work head crosses this boundary from

right to left, and let the number of crossings be #CR.

Clearly, the worktape head spends at least I. (# CL + # C,) steps in L and R taken

together (by minimality) and, hence, in W. Thus, it suffices to show that the worktape

head enters [cL, cR] (the interval between cL and cR) at least r/(8. log n) times in

(to, tr]. For this, we describe a method for producing the input x as output of some

Turing machine.

Suppose we are given

(i) the program of M, coded as a bitstring in some standard form;

(ii) the contents of [c,, cR] at time to;

(iii) the number 1 and the positions of all three tape heads at the first time in (to, tr]
at which the worktape head visits [c~, c,];

(iv) the position of the input and output tape heads, and the state of M at each time

the worktape head crosses cL or cR towards V;

(v) the bits b, that are visible from [cI., cR] during (to, tr] but are not printed from

CCL.7 cR] during (to, t,] before being visited on the input tape (these bits are given as

a single string in the order they are visited by the input tape head);

(vi) the bits b, of the input that are neither visited by the input tape head during

(to, tI] while the worktape head is in [c,, cR] nor printed from [cL, cR] during (to, tr]

(these bits are given in one consecutive string in the order they appear in x);

(vii) the code rM’1 for a Turing machine that works as follows. First, simulate the

computation of M on input x during all time periods in (to, tr] that the worktape

One-tape Turing machines with output tape 289

head spends in [c,, cR]: Starting with an empty tape, using the information given by

(ii) and (iii), start simulating M at the first time step in (to, tl] at which the worktape

head is in [cL, cR]. Whenever the (simulated) input tape head visits a cell that has no

bit written to it as yet, copy the next bit given by the string described in (v) to this cell,

and continue the simulation. Whenever M prints a bit h, to the n(m)th cell on the

output tape, immediately copy this bit to the corresponding mth cell on the simulated

input tape. Whenever the worktape head leaves [c L, cR], interrupt the simulation and

resume it with the step the worktape head enters [c~, cR] again, using the information

given by (iv). The simulation is finished when the worktape head leaves [c,, cR] for

the last time in (to, tr], or when M halts. After this happens, fill in the bits still missing

on the input tape, using the string described in (vi). Finally, output the contents of the

input tape.

It is clear that the procedure just described outputs x. (Note that here the conven-

tion concerning the output tape is used: whenever some symbol is printed to the

n(m)th cell of the output tape, it is equal to the correct mth input bit b,.) So if we

estimate the number of bits needed to code the information described in (i)-(vii), in the

form required by the definition of Kolmogorov complexity (see Section l), we obtain

an upper bound for K(x). For the different parts of the string, we get the following

estimates:

(i) cM bits, for some constant cM;

(ii) < 41. log 3 < 81 bits;

(iii) < 4. log n bits;

(iv) (#CL+ #CR).(2.10gn+cM) bits;

(v), (vi) d 1’ -r bits (recall that, by the hypothesis of Lemma 5.10, at least r bits are

printed from V before they are visible from W; at least these bits are printed from

cc L, cR] during (to, tr] before being visited by the input tape head);

(vii) co bits, for some constant co.

Furthermore, O(logn) bits are needed to separate the substrings that belong to

(i))(vii), when concatenated to a single string. (For example, we can precede each of

these substrings by its length in binary, with each bit doubled.) We get

K(x)bcM++sI+(#CL+ #CR).(2.10gn+cM)+12-r+co+cl.logn.

Since x is incompressible, 1’ < K(x). We get, for 1 so large that log 13 cM, and for some

constant c h :

r-Sl-cb.logn<(#C,+ #CR).3.10gn.

By assumption, r 3 161; hence, r - 812 r/2. This, together with a trivial transformation,

yields

r.(4-8c~.log(n)/r)/(24.logn)d #CL+ #CR.

For 1 so large that 8ch. log n < 161~ Y we get

rl(8.logn)d #CL+ #CR,

as desired. 0

290 M. Dietzfelhinyer, W. Maass

Proof of Lemma 4.1. This proof is essentially the same as the previous one, excepting

that we simulate the computation of M for all time periods in { 1,2,. .., T) the

worktape head spends in [cL, cR], and that in (ii) we just need the number of cells

between cL and c,-the worktape being initially blank. We get the following estimate

for K(x):

hence, for 1 large enough, Y-CL, log n d (# CL + # CR). 3. log n. As before, we con-

clude that r/(4. log n) < # CL + # CR, for 1 large enough; hence, M spends at least

l.r/(4.logn) steps in M. 0

Acknowledgment

The authors are most grateful to two anonymous referees for their careful reading of

the paper and their insightful comments, which were very helpful in improving the

exposition of the paper.

References

111

PI

131

[41

c51

161

[‘I

181

c91

[lOI

Cl11

Cl21

1131
Cl41

M. Dietzfelbinger, Lower bounds on computation time for various models in computational complex-

ity theory, Ph.D. Thesis, University of Illinois at Chicago, 1987.

M. Dietzfelbinger, The speed of copying on one-tape off-line Turing machines, Inform. Process. Lett.
33 (1989/90) 83-89.

M. Dietzfelbinger, W. Maass and G. Schnitger, The complexity of matrix transposition on one-tape

off-line Turing machines, Theoret. Comput. Sci. 82 (1991) 113-129.

F.C. Hennie, One-tape off-line Turing machine computation, Inform. and Control 8 (1965) 553-578.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA, 1979).

M. Li, L. LongprB, and P.M.B. VitBnyi, On the power of the queue, in: A.L. Selman, ed., Structure in

Complexity Theory, Lecture Notes in Computer Science, Vol. 223 (Springer, Berlin, 1986) 219-233.

M. Li and P.M.B. VitBnyi, Tape versus queue and stacks: The lower bounds, Inform. and Comput. 78

(1988) 56-85.

M. Li and P.M.B. VitBnyi. Kolmogorov complexity and its applications, in: J. van Leeuwen, ed.,

Handbook of Theoretical Computer Science, Vol. A (Elsevier, Amsterdam, 1990) 187-254.

W. Maass, Combinatorial lower bound arguments for deterministic and nondeterministic Turing

machines, Trans. Amer. Math. Sot. 292 (1985) 675-693.

W. Maass and G. Schnitger, An optimal lower bound for Turing machines with one work tape and
a two-way input tape, in: A.L. Selman, ed., Strucrure in Complexity Theory, Lecture Notes in

Computer Science, Vol. 223 (Springer, Berlin, 1986) 249-264.

W. Maass, G. Schnitger and E. Szemerkdi, Two tapes are better than one for off-line Turing machines,
in: Proc. 19th STOC (1987) 944100.

W. Paul, On-line simulation of k+ 1 tapes by k tapes requires nonlinear time, Inform. and Control 53

(1982) l-8.

W. Paul and H.-J. StoR, Zur Komplexitgt von Sortierproblemen, Acta Inform. 3 (1974) 217-225.

P.M.B. Vitinyi, Square time is optimal for the simulation of a pushdown store by an oblivious

one-head unit, f&rm. Process. Letr. 21 (1985) 87-91.

