Theoretical Computer Science 82 (1991) 113-129 113
Elsevier

The complexity of matrix
transposition on one-tape off-line
Turing machines

Martin Dietzfelbinger**
FB Mathematik/Informatik, Universitdt-GH-Paderborn, D-4790 Paderborn, Germany

Wolfgang Maass™

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,
Chicago, IL 60680, USA

Georg Schnitger

Department of Computer Science, Pennsylvania State University, University Park, PA 16802,
USA

Communicated by R. Karp
Received November 1986
Revised July 1988

Abstract

Dietzfelbinger, M., W. Maass and G. Schnitger, The complexity of matrix transposition on one-tape
off-line Turing machines, Theoretical Computer Science, 82 (1991) 113-129.

This paper contains the first concrete lower bound argument for Turing machines with one
worktape and a two-way input tape (“one-tape off-line Turing machines™): an optimal lower
bound of Q(n- I/ [(log(!)/ p)"/*]) for transposing an !X I-matrix with elements of bit length p on
such machines is proved. (The length of the input is denoted by n.) A special case is a lower
bound of Q(n*?/(log n)*/?) for transposing Boolean Ix I-matrices. (n=1I%) on such Turing
machines. The proof of the matching upper bound (which is nontrivial for p <log /) uses the fact
that one-tape off-line Turing machines can copy strings slightly faster than if the straightforward
method is used. As a corollary of the lower bound it is shown that sorting n/(3 log n) strings of
3 log n bits each takes Q(n*?/(log n)"/?) steps on one-tape off-line Turing machines. Further
corollaries give the first non-linear lower bound for the version of the two-tapes-versus-one problem
concerning one-tape off-line Turing machines, and separate one-tape off-line Turing machines
from those Turing machines with one input tape, one worktape, and an additional write-only
output tape.

* Supported in part by NSF Grants DCR-850424 and CCR8703889.
** Supported in part by DFG Grants ME872/1-1 and WE 1066/1-2.

0304-3975/91/%03.50 © 1991—Elsevier Science Publishers B.V.

114 M. Dietzfelbinger et al.
1. Introduction

This paper is part of the project to develop lower bound techniques for increasingly
powerful types of restricted Turing machines (TMs).

The current state of affairs with regard to lower bound results for multitape TMs
is as follows. Besides the well-known hierarchy theorems for several types of
complexity classes (see [6]) and the separation of DTIME(n) and DSPACE(n)
by Hopcroft, Paul and Valiant [7] (they showed that DSPACE(n)g
DTIME(o(n log n))), Paul, Pippenger, Szemerédi and Trotter [17] showed more
recently that DTIME(n) # NTIME(n) (in fact, they showed that NTIME(n) &
DTIME(o(n(log* n)"/*))). The last two results are consequences of relatively abstract
graph-theoretical facts. Although these methods are very elegant, there are some
indications that such methods will not yield substantially larger lower bounds for
multitape TMs (in particular not beyond the Q(n log n) range). Therefore it is
desirable to develop in addition more concrete lower bound techniques that analyze
the progress of a TM-computation on a specific computational problem. However,
if one attempts such a fine structure analysis of computations on two-tape TMs,
using only the methods available at present, one is paralyzed by the enormous
number of diverse strategies that the TM might pursue. Furthermore, there are
restricted types of TMs (for example, those where one of the two tapes is a read-only
input tape) for which no lower bound argument for a concrete computational
problem is available. Thus there is little hope of succeeding at this state of knowledge
with a concrete lower bound argument for two-tape TMs.

On the other hand, during the last two decades increasingly clever lower bound
methods for restricted types of TMs have been developed. These techniques appear
to be cumulative, that means, lower bound methods for more primitive types of
TMs have often provided essential ingredients for subsequently developed lower
bound arguments for more complex types of restricted TMs. Essential steps in this
development were the following. An optimal quadratic lower bound for TMs with
one worktape (no input tape) was shown by Hennie [5] (key tool of this argument:
crossing sequences). Subsequently, Paul [16] and Duris, Galil, Paul and Reischuk
[3] proved a number of lower bounds for “on-line simulation” by TMs. Here very
powerful types of TMs are considered, but, by the definition of ““on-line simulation”,
the simulating TM has to output specified intermediate results before it can read
the next input bit (this restricts the types of simulation algorithms it can employ).
These papers introduced and developed a powerful new tool: Kolmogorov complexity.
This notion makes it possible to keep track of the flow of information in the
computation on a single (suitably chosen) input. Although the use of Kolmogorov
complexity could (in principle) be eliminated, by replacing it by direct counting
arguments, this notion simplifies the presentation so much that arguments that would
otherwise be infeasible can now be carried out. In a further step the second author
showed an optimal quadratic lower bound for the simulation of two-tape TMs by

Matrix transposition on one-tape off-line Turing machines 115

TMs with one worktape and a one-way input tape [9, 10, 11]. Besides the tools
mentioned previously, this proof used additional combinatorial arguments. (For
related results see Li, Longpré, Vitanyi [8]; cf. also the remark at the end of the
Introduction.)

In the present paper, we carry this development one step further: we present the
first concrete lower bound argument for TMs with one worktape and a two-way
input tape, in short “‘one-tape off-line TMs”. In Section 2 we prove an optimal
lower bound of Q(n- I/ [(log(I)/p)"*]) on the number of steps needed by such a
TM for the problem of transposing an I x I-matrix whose elements are bitstrings of
length p. (The length of the input is always denoted by n. In the input the matrix
is given in row major order; it is to be output in column major order.) A special
case (p=1) of this result is an optimal lower bound of Q(n*?/(log n)'’?) for the
problem of transposing quadratic Boolean matrices.

The matrix transposition function requires the TM to permute the elements of
the input matrix according to the permutation 7 of {1, .. ., I*} defined by 7((i—1) - I+
j)=(j—1)+1+i for 1=<i, j<I This permutation 7 is well suited for our purposes
since it “scatters” the elements of its domain particularly well: the images of adjacent
elements in the domain are ! =+/n positions apart, as are the preimages of elements
adjacent in the range (since 7=7""). The main effect of this fact is that it takes a
TM with two heads Q(I?) steps to “realize” 7. (This is proved and used implicitly
in the proof of the lower bound. We say that a TM with I? tape cells on each of its
two tapes “realizes” 7 during some sequence of moves if for each me{l,..., I’}
there is a time step ¢ at which the first head scans cell m and the second head scans
cell 7(m).) Already Paul [14] and Stoss [18] made use of this special property of
7 in the context of lower bounds for a computational model with a storage structure
similar to that of two-tape Turing machines.

The lower bound argument in Section 2 is a combination of two different strategies.
In the case where the TM constructs the transpose of the input matrix in a straightfor-
ward manner, the combinatorial structure of the problem (that is, the “well-scat-
tering” property of the permutation 7 mentioned above) allows us to show that
either the worktape head or the input tape head has to make Q(n- I) moves (for
p =log I, say). (In fact, there are algorithms for matrix transposition on TMs of the
type considered here where the worktape head makes only O(n) moves.) In the
other case we can show via Kolmogorov complexity that the TM can realize the
required flow of information in the computation only if the worktape head makes
Q(n- 1) moves (again, for p =logI).

Remark 1.1. The main result of the present paper (Section 2, Theorem 2.4) is
essentially the same as the main result of the preliminary version [12]; however, by
using methods from [2], the lower bound argument has been simplified and shar-
pened, to work for a wider range of matrix transposition functions, in particular,
to apply to the transposition of Boolean matrices.

116 M. Dietzfelbinger et al.

It is obvious that the lower bound of Section 2 is optimal for p =Q(log /). For
the case of smaller p (which was not considered in [12]), the matching upper bound
is presented in Sections 3 and 4. (These new sections have been added to the
preliminary version.) In Section 3 it is shown that the time required for copying
short strings on the worktape of one-tape off-line TMs lies strictly between the time
required for the same operation on one-tape TMs with a one-way input tape and
on two-tape TMs. This fact indicates that one-tape off-line TMs are more powerful
than one-tape on-line TMs, that is, those with a one-way input tape, even after the
input has been read. (This phenomenon is discussed further in [1].) In Section 4
this “fast-copying trick” is employed to speed up the transposition of matrices with
entries of length p <}log ! (Theorem 4.1).

Using the fact that matrix transposition can be reduced to sorting, we obtain as
a corollary of the main result a lower bound of Q(n*?/(log n)"?) for sorting on
one-tape off-line Turing machines (Section 5, Theorem 5.1). Moreover, the lower
bound of Section 2 can be applied to make further progress with regard to the
two-tapes-versus-one problem, which was solved completely in [10] for deterministic
TMs except for the case of one-tape TMs with an additional two-way input tape.
No nonlinear lower bound for the simulation of two-tape TMs on one-tape off-line
TMs was previously known; the best known upper bound has been O(n?). (In [1]
an upper bound of O(n?/log n) is shown.) In Section 5 we show that some variant
of the matrix transposition function can be computed in O(n) steps on a two-tape
TM, but requires time Q(n**/log n) on one-tape off-line TMs (Theorem 5.2).

In Section 6, we use the main result in order to exhibit a significant difference
between the computational power of one-tape off-line TMs and the variation of this
model which has an additional write-only output tape (Theorem 6.1).

A key point in the lower bound argument is the fact that the “realization” of the
permutation 7 of the I? matrix elements induced by the matrix transposition function
requires () sweeps of at least one of the two tape heads. It is quite tempting to
try to prove stronger lower bounds for sorting by considering other permutations
r that possibly require even more sSWeeps. We show in Section 7 that this approach
is not feasible: there is no permutation 7 that requires more sweeps for its realization
than the permutation 7 considered here. For this observation, we use a combinatorial
result by Erdds and Szekeres [4].

The following definitions and conventions are used in this paper. An input tape
for a TM is a read-only tape (with one head) that contains the input (with endmarkers
at both ends of the input). We call the input tape one-way or two-way, according
as the input head may move in one direction only or has no restriction on the
direction of its movements. If the TM has a two-way input tape, it is also called
“off-line”.

In order to define the Kolmogorov complexity K(X) of a string X €{0, 1}*, we
assume that all deterministic Turing machines (with any number of tapes) are coded
by binary strings in some fixed, effective way, so that no code is a prefix of another

-

Maitrix transposition on one-tape off-line Turing machines 117

one. Denote by [M] the binary sequence that codes the TM M. Then define

K(X):=min{|[M]™ u||M a TM, u a binary string
so that M on input u gives output X}.

A string X is called “incompressible” if K(X)=|X|. Obviously, for every natural
number n there is an incompressible string X of length n.

Remark 1.2. Since the preliminary version [12] of this paper has appeared, some
further progress has been made in the general program outlined at the beginning
of the Introduction. In [13] it was shown that two-tape TMs are more powerful
than one-tape off-line TMs with regard to decision problems. (The decision problem
considered there is closely related to matrix transposition.) However, the lower
bound achieved there is only Q(n log n/loglog n). Furthermore, a lower bound
argument for one-tape off-line TMs with output tape has been developed [2] which
shows that the upper bound of O(n**) for computing the matrix transposition
function on such machines (see Theorem 6.1) is in fact optimal.

2. The lower bound for matrix transposition

In the following, we consider the matrix transposition function, which transforms
an Ix l-matrix A =(a;),<;;<; With entries a;€{0,1}” into the transposed matrix
AT= (@i)1=i =1, for all natural numbers ! and p. In order to have inputs and outputs
in a format suitable for Turing machines, we need to represent matrices as strings
of symbols. There are two natural ways for this, one “without addresses” and one
“with addresses”. Both list the entries of the matrix in row major order (that is,
sorted according to (I—1) - i+j), but in the latter, each entry a; is preceded by its
“address” (i, j). The lower and upper bounds proved below apply to both representa-
tions. The version without addresses may seem more natural, in particular if p <log [;
on the other hand, the representation with addresses is more convenient for the
applications in Section 5.

Let us describe the two representations more precisely. The representation of
A=(a;),<ij< “without addresses” is the string A’e {0, 1}7P+2*1 consisting of the
string 0”1 followed by the concatenation of the strings a; in row major order. The
representation of A “with addresses” is the string A" {0, 1, B}*'l'°8 H+p+9) 7 of the
strings bin(i) B~ bin(j)~ B a; B, again sorted according to (I—1) - i+ j. (Here
bin(i) means the binary representation of i with exactly |log /] +1 bits.) In either
case, d =d(l, p) denotes the number of symbols occupied by one entry; thus, d=p
(without addresses) or d =2 - |log I] + p+5 (with addresses), respectively. In both
cases, the number n of symbols used to represent a matrix A satisfies Pd<ns
I’d + p +1. The two representations induce two functions on strings that correspond

118 M. Dietzfelbinger et al.

to the operation of transposing a matrix: MATRIX TRANSPOSITION without addresses
(resp. with addresses) maps A’ to (ATY (resp. A" to (AT)") for all matrices A.

Theorem 2.1. The time complexity of MATRIX TRANSPOSITION (with or without
addresses) on Turing machines with one worktape and a two-way input tape is

o(=1/1(%) 1)

where n is the length of the input, | the number of rows and columns, and p the length
of the matrix entries in bits.

Corollary 2.2. (a) The time complexity of transposing Boolean matrices (IX l-matrices
with entries in {0, 1}) on such TMs is ®((I*/log 1)"/?) =0(n*?*/(log n)"/?) (for the
representation without addresses).

(b) The time complexity of transposing Boolean | x I-matrices in the representation
with addresses on such TMs is ©(n- 1/(log 1)/?) = @(n*'*/10g n).

Remark 2.3. The main differences between the proof of Theorem 2.1 and the proof
of the corresponding theorem in the preliminary version [12, Theorem 2.1] are the
following.

(a) The computation of the TM M that one considers in the lower bound argument
(Theorem 2.4) is analyzed “backwards”, separately for disjoint intervals on the
worktape. In this way, the combinatorial lemma in [12], which regarded the overall
structure of the head movements, becomes superfluous.

(b) In the Kolmogorov complexity argument, some new tricks (from [2]) are
employed to save some bits in the short description of the incompressible string X.
In particular, the use of “addresses” of substrings is avoided altogether; this makes
it possible to deal with the case p <log [

(c) The upper bound was trivial in [12], since only the case p=log! was
considered. The new upper bound proof for the case p <log! is given in Sections
3 and 4 (Theorem 4.1).

Theorem 2.4. For every one-tape off-line Turing machine M that computes MATRIX
TRANSPOSITION (with or without addresses) there is an I\, with the following property:
for all 1= l,, and all p there is an input representing an | x I-matrix A with p-bit entries
for which M uses =(nl/ [(log(1)/p)'/*1)/100 steps.

Remark 2.5. Even if M computes MATRIX TRANSPOSITION only for specific values
of I and p, the lower bound applies if = ly,.

Proof of Theorem 2.4. Fix a one-tape off-line TM M that computes MATRIX TRANSPO-
sITIoN (with or without addresses). Fix a value of ! that is sufficiently large. (How

Matrix transposition on one-tape off-line Turing machines 119

large [has to be depends on M; a bound Iy, for I will arise from the calculations
below.) Fix some p. Let d := p (in the case without addresses) ord =2 - [log /| +p+5
(in the case with addresses). Let X be a binary string of length I?p that is incompress-
ible in the Kolmogorov sense, that is, K(X)=|X|=I’p. Split X into I* segments
by, ..., bz of length p each. We analyze the computation of M on the input I of
length n=1*d, where I = A’ (resp. I = A”) for the matrix A=(a;),<; ;< With a;=
bii—1yi+j, for 1<ij<l

Let = [(log(I)/p)"/?]. Fix an arbitrary interval W of length 3a-Id on the
worktape that (at the end of the computation) contains 3a columns of A. We will
see that M spends =1°d /18 = n/18 steps with its worktape head in W. (Since there
are =|1/3a| many disjoint intervals of this type on the worktape, this will show
that M makes >(I’°d/a)/100 many steps altogether, which is what we want to
prove.) Let L, V, R be the left, middle, and right third of W, respectively. Each of
the intervals L, V, R consists of a - Id tape cells.

Before setting out with the formal argument, let us sketch the intuition behind
it. What are possible strategies the TM M might use to get the information contained
in the a - I entries of A that belong to the columns in V to their destination? First,
there is the straightforward way (cf. Case 1 below): M copies these entries “directly”
into V, that is, for all these entries a;; there is some time during the computation at
which the input head visits a; on the input tape and simultaneously the worktape
head is in V, or at least close to V. Observe the way these entries a; are scattered
over the input tape: in each row of A there are a entries that belong to V. There
are two extreme possibilities how M can realize the necessary head movements:
(a) The worktape head stays in (or close to) V while the input tape head performs
one sweep across the input tape. (b) The worktape head enters and leaves the area
around V about / times; each time the input tape head visits a different row of A
on the input tape. (In both cases, M spends ((n) steps in W.) At the other extreme,
it could be the case that M manages to carry the information about the entries in
V into the destination area without ever realizing a “‘direct connection” between
origin (on the input tape) and target area (cf. Case 2 below). That is, whenever the
worktape head is in W, the input tape head is not reading any of the entries a; with
destination V. In this case, we imagine that M has to pick up the required information
while the worktape head is somewhere outside W, has to store it in its finite control
and possibly in the position of its input tape head, and carry it across L (resp. R)
into V. Only O(log n) bits of information can be carried into V at any one of these
visits. Thus, M needs Q(a - Ip/log n) crossings of L (resp. R) to get all the informa-
tion needed into V, hence M spends Q(a® - I’pd/log n) steps in W, which is Q(n).
Below, we employ a Kolmogorov complexity argument to make this idea precise.

Of course, M may use any mixture of the “pure” strategies just sketched. Thus,
below we split into cases according to the strategy that seems to be predominant.

To start out with the formal proof, we define certain crossing sequences. For each
cell boundary c at the right end of a cell in L we consider the “left-to-right crossing
sequence”, which records the state of M and the position of the input head for

120 M. Dietzfelbinger et al.

every time the worktape head crosses ¢ from left to right. We choose a boundary
¢, for which the number of such crossings is minimal among all cell boundaries in
L. Let #C, be the number of times ¢, is crossed from left to right and let |C,| be
the number of bits needed to code the crossing sequence in binary. Obviously,
|CL|<#C, - (ap +log n) for some constant a,, (which depends on M). Similarly,
consider “right-to-left crossing sequences” in R, choose a boundary cg in R that is
crossed a minimal number of times, and define #Cr and |Cg| accordingly. (As
usual, the intended effect of choosing # C, and # Cg minimal is that the worktape
head spends =a - Id- (#C.+# Cg) steps in Lu R < W.) We consider several cases.

Case 1. There are entries in >1/3 different rows of A that belong to columns in V and
are visited by the input tape head at some time when the worktape head is in [c., cr)

There are two subcases.

Case 1(a): The worktape head enters [c., ck] more than 1/6 times. Then M spends
=(1/6)+ a-ld=1°d/6=n/6 steps with its worktape head in LU R< W, since ¢,
and cp were chosen so as to minimize # C, and # Ckg.

Case 1(b): The worktape head does not enter [c., cr] more than 1/6 times. Then the
input head inspects entries in the intersection of row A; and the columns in V for
several rows A; during one visit of the worktape head to [c,, cg]. If during any one
visit entries in k different rows are inspected on the input tape, this visit lasts at
least (k—1) - Id —a - d steps (the time needed for the input tape head to travel the
distance between these entries). Altogether >1/3 rows are inspected by the input
head, and there are <!/6 visits of the worktape head in [c,, cr], hence the worktape
head spends =(1/3)-1d—(1/6)-1d—(1/6) - a-d=(l/10)-ld=n/10 steps in
[cr, cr]<= W, for I large enough.

Case 2: There are <I/3 rows A, of A so that the input tape head visits entries in A;
that belong to V while the worktape head is in [c., cr].

We show by a Kolmogorov complexity argument that in this case the worktape
head has to enter [c;, cg] many times (intuitively, to “carry in” the information
about the other entries of V). Suppose we are given:

(i) the program of M,
(ii) the length of [¢,, cr];

(iii) the left-to-right crossing sequence at c; and the right-to-left crossing sequence
at cg (input head position and state of M for each crossing);

(iv) I, p, and «; the index of the first and last column in V; the position of V
in [c, cr];

(v) the entries of A outside of V (ordered row by row, concatenated into a
single string);

(vi) those entries in V that are visited on the input tape while the worktape head
is in [c., cr] (these are arranged in the order these visits on the input tape take
place, and concatenated into a single string);

Matrix transposition on one-tape off-line Turing machines 121

(vii) the code [M'] of a Turing machine M’ that takes the string described in
(i)-(vi) as input and works as follows. First, simulate the computation of M on
input I during all time periods that the worktape head spends in [c,, cg]: Set up
the input tape, inserting only the information given in (iv) (for the format) and (v),
and leaving the entries that belong to V blank. Set up a blank worktape of the size
given in (ii). Start simulating M at the first time step at which the worktape head
enters [c., cgk] (the necessary information is provided by (iii)). Each time the
worktape head leaves [c;, cg], interrupt the simulation and resume it at the step at
which the worktape head re-enters [¢;, cg] (using (iii)). Whenever the input tape
head visits some entry that has been blank since the beginning (one of the entries
in the columns that belong to V), interrupt the simulation, and copy the next p bits
from the string given in (vi) to the blank “slot” of length p corresponding to this
entry on the input tape, and then resume the simulation. The simulation is finished
when the worktape head leaves [c., cg] for the last time, or when M halts. After
this happens, fill in the entries still missing on the input tape, using the entries in
V that have been built up on the worktape during the simulation (the position of
V within [c,, cr] is given in (iv)). Output the “information parts™ in I (without
addresses), concatenated into a single string.

It is clear that the procedure described in (vii) outputs X, the incompressible
string from which the input I was constructed. So the number of bits needed to
code the information described in (i)-(vii) is an upper bound for K(X), by the
definition of Kolmogorov complexity. For the number of bits needed for different
parts of the string, we get the following estimates:

(i) ap bits, for some constant ay, ;
(ii) =2 -log n bits;
(iii) s(#CL+#CR) - (ay +log n) bits;
(iv) =6 - log n bits;

(v) Ip- (I—a) bits;

(vi) <a-Ip/3 bits;

(vii) ay, bits, for some constant a,,-.
Thus,

Pp<K(X)<O(logn)+(#C_+#Cg) - (ay +logn)
+Pp—a-lp+a-lp/3,

or, slightly rewritten,

2a- Ip/logn<a§w+(#CL+#CR)-<l+ aM)
logn/’

for some constant a,. For I large enough, this entails
la-Ip/logn<#C_+#Ck.

Since we have chosen # C; and # Cgr minimal in L and R, and L and R have length

122 M. Dietzfelbinger et al.

a - Id, we may conclude that M spends =(3a - Ip/logn) - a- ld =3a*- ’pd/log n
steps with its worktape head in W. There are two cases.

Case (i): p=1log [Then itis easy to see that p/log n =3 for I large enough. Further,
a =1 by definition. Thus the worktape head spends =5/°d = n/18 steps in W.

Case (ii): p <jlogl Then the worktape head spends
=1(log(1)/p) - Ppd/log n=31d - log(l)/log n=n/12
steps in W.
This finishes Case 2 and the proof of Theorem 2.4. [J

3. The speed of copying on one-tape off-line Turing machines

In this section we describe a trick that enables one-tape off-line Turing machines
to copy strings from one place on the worktape to another a little faster than one
would expect. This observation will be used in the upper bound proof of the next
section.

The following subtask occurs frequently in programs for TMs: Copy a string (of
s binary digits, say) from one place on a worktape to another place on the same
worktape (which is g cells away). Clearly, executing this task takes O(s+ q) steps
on TMs with at least two worktapes and Q(s- q) steps on TMs with one worktape
and no input tape (see [5]). Under certain circumstances a one-tape off-line TM
can perform this task faster than in O(s- q) steps.

Proposition 3.1. A one-tape off-line Turing machine can copy a binary string of length
s =1log nacross q cellsin O (n"/*+ q) steps, provided that it starts from a configuration
with the input head at the left end of the input tape and the worktape head within the
string to be copied. (As usual, n is the length of the input.)

Proof. We assume that the worktape has sufficiently many tracks to accommodate
counters and markers needed in the following. Regard the string to be copied as a
binary number k{0, 1,...,n"*—1}. Store k in unary in the distance of the input
head from the left end of the input tape. This requires counting from 0 to k on a
binary counter (placed in a track parallel to the string to be copied), which takes
O(k)=0(n"?) steps. Then move the worktape head to the area where the string is
to be copied; this takes O(q) steps. Now translate k back into binary notation, by
moving the input tape head back to the left end of the tape and simultaneously
counting the number of the moves of the input tape head in a binary counter placed
in the cells to which the string is to be copied. This again takes O(k) steps. [

Remark 3.2. (a) The proposition entails that one-tape off-line TMs can copy strings
of length s across g cells in O(g+(s/log n) - n'/?) steps. Thus, this type of TM

Matrix transposition on one-tape off-line Turing machines 123

occupies an intermediate position between one-tape TMs with one-way input tape
or without input tape (O(q- s) steps) and two-tape TMs (O(g+s) steps). (The
observation made in Proposition 3.1 is discussed in more detail in [1].)

(b) Up to now, only the negative side of this feature of one-tape off-line TMs
has been noticed: in the context of lower bound proofs via crossing sequence
arguments (e.g., the proof in Section 2) one always had to include the position of
the input head in the crossing sequence, thus weakening the resulting lower bound.

In the context of Section 4, where this method is to be applied, we need a slight
generalization of Proposition 3.1 to the case where the bits to be copied are not
stored in a contiguous interval but rather are spread out over the worktape, both
the original bits and the copies. More precisely, we consider the following task.

Task. Assume p <3 log n. Givenare r:=(1/2p) - log n equidistantintervals I,, ..., I,
of p cells each and equidistant intervals J,, ..., J, of p cells each on the worktape.
The distance between the leftmost cells of I, and I, (J, and J,4,), 1sp<r, is
called s, (s,). Each interval I, contains a binary string of p bits. The content of I,
is to be copied to J,, 1< p =<r. The distance between I, and J, is g.

Corollary 3.3. A one-tape off-line TM can perform this task in O(q+ (s, +s;) * n'?/p)
steps, provided that it starts from a configuration with the input head at the left end
of the input tape and the worktape head in one of the I,.

Proof (This is a slight variation of the proof of Proposition 3.1). The contents of
I,,..., I, are concatenated and considered as the representation of a binary number
ke{0,1,...,n"?*—1}. The counter in which we count up to k (while the input tape
head is moved to the right) is located in I,, ..., I,, that is, it has r blocks of p bits
each, s, cells apart. It is easy to see that counting up to k takes O(k:s;/p)=
O(n'?- s5,/p) steps. (A counter consisting of 3 log n single bits spaced s,/p cells
apart needs at least as many steps as this “blocked” counter.) Analogously, the
decoding phase takes O(n'/? - s,/p) steps. O

4. The upper bound for matrix transposition

In this section we prove the upper bound claimed in Theorem 2.1.

Theorem 4.1. There is a one-tape off-line Turing machine that computes MATRIX
TRANSPOSITION (with or without addresses) and needs

o(1/1(5)"])

124 M. Dietzfelbinger et al.

steps on_inputs of length n that represent a matrix with | rows and columns and p-bit
entries.

Proof. We describe a TM M of this type that computes MATRIX TRANSPOSITION,
for the case where matrices are represented with addresses. (Thus, d =2 - |log [] +
p+5in the following. Since the addresses are not used at all during the computation,
the case “without addresses” can be treated in exactly the same way.) As in Section
2, we let a = [(log(])/p)"/*]. The machine M begins the computation by copying
the address parts of the input string to the worktape, but replacing each entry a;
by p blanks. (From here on, the address parts are never changed.) This leaves I
“slots” or “positions” of length p bits each. For 1<, j<1I, the entry a;, that is, the
((i—1) - I+ j)th entry on the input tape, has to be inserted in the ((j—1) - I+i)th
position on the worktape.

In a further preliminary phase, M constructs strings of length %, |log 1], [, d, ,
Id, « - d (and some other distances that are needed in the following) on different
tracks of the worktape. Also, M marks off blocks of length d (=entries), a - d, ld
(=columns), |log(l)/p] - Id, etc. on the worktape. All this can easily be done in
O(n) steps. (Recall that in O(t) steps M can count up to ¢ in a binary counter
consisting of [log t] + 1 consecutive bits, and notice that the input tape can be used
as a unary counter, thus as a “yardstick” for marking off blocks on the worktape.)

The machine M acts differently in the cases @ <2 and a > 2. First, we dispose
of the simple case @ <2. Here M directly copies the entry a; of A from the input
tape to the corresponding position (j—1) - I+ on the worktape for 1 =<1, j< L This
is done row by row, processing the input from left to right, and requires / sweeps
over the worktape. (To orient itself, M uses the markers in distance Id on the
worktape, and some other markers as needed.) The number of steps required in
this case is O(n-)=0(n- 1/ a) (since a <2).

Now we turn to the more interesting case a > 2. Here, M can transpose the matrix
A a little faster than the straightforward algorithm, by using the “fast copying
method’’ described in Section 3. We will show that A can be transposed in O(n- I/ a)
steps.

The computation proceeds in two phases. We think of A as partitioned into [/]
submatrices B,, 1<r=< [l/a], consisting of a consecutive columns of A. (The last
submatrix may have fewer than a columns; for simplicity, we disregard this special
case.) We regard the matrix B, as the rth column of an I X [I/ |-matrix A (an entry
of A is a block of a entries of A, that is, a row of some B,). The ordinary matrix
transposition algorithm is applied to A; that is, the a consecutive entries of A that
belong to a block are copied from the input tape to a consecutive “slots” on the
worktape. The rows of A are treated one after another, that is, the input tape is
read once from left to right. (Here M uses the markers in distance a - d to orient
itself.) This results in each submatrix B, being stored on the worktape in row major
order, in positions (r—1) - I- @ +1 through r- I+ a; this is exactly the interval where
the entries of B, eventually have to be written. We may assume that at the end of

Matrix transposition on one-tape off-line Turing machines 125

this phase the worktape head and the input tape head are at the left end of the
respective tapes. The time required for the first phase is the time needed for [I/a]
sweeps over the worktape, that is, O(n - I/ «a) steps.

In the second phase the entries of B, are rearranged so as to appear in column
major order, for each r separately. The contents of the input tape are not used
anymore in this phase (but the input tape is used as a unary counter). Let r be
fixed. We employ the “fast copying method” of Section 3, in the version described
in Corollary 3.3. Consider a fixed column of B,, and split this column into
[1/|log(1)/p]] blocks of [log(l)/p] consecutive entries each. Fix such a block D.
We explain how to get the entries of D to their correct positions. Before the beginning
of the second phase, the entries in D are stored in [log(/)/p] intervals of length p
each that are spaced « - d cells apart, since B, is stored on the worktape row by
row. They are to be stored in |log(l)/p] intervals of length p that are spaced d cells
apart (consecutive positions). Both the source and target areas are contained in the
area occupied by B,, hence are <a - Ild cells apart. By Corollary 3.3, the copying
process takes O(a* ld+1- (a-d+d)/p)=0(a - Id) steps. At the end the input tape
head is again at the left end of the input tape and the worktape head is at the left
end of the area for B,. The total number of blocks D into which the columns of B,
are split is

a- [l/llngIJ] =0(a- (I/a®)=0(l/a).

Thus, getting the entries in B, to their correct positions takes O(l/a) - O(a - ld) =
O(I? - d) =0(n) steps.

Since there are [I/ a] submatrices B,, the second phase altogether takes O(n - I/ a)
steps, just as the first phase. This finishes the proof of Theorem 4.1. [

5. Implications for lower bounds on sorting and the two-tapes-versus-one problem

If the representation of matrices with addresses is used (cf. Section 2), MATRIX
TRANSPOSITION immediately reduces to sorting. Thus, the lower bound of Section
2 implies a lower bound for sorting on one-tape off-line TMs. Since a TM with two
worktapes can transpose binary ! x I-matrices in O(n log n) steps (here, n = I? is the
length of the input), we get lower bounds for the simulation of multitape TMs by
one-tape off-line TMs. (Here “simulation” just means that the same function is
computed.) These observations are discussed in detail in this section.

We consider the following version of the sorting problem:

The inputis x,” B~ x,” B~ ...” B x,, where x,,..., x,€{0,1}* and the output
is x,(l)ABAx,,(z)ABA. . .ABAx,,(,,, where 7 is a permutation of {1,..., r} that
satisfies X,(;, =<' * * < x,(, in the lexicographic sense. As usual, n denotes the length
of the input.

126 M. Dietzfelbinger et al.

Theorem 5.1. Sorting requires Q(n*’?/(log n)"/?) steps on one-tape off-line Turing
machines.

Proof. We restrict our attention to inputs of the form x, B .. "B x,, where
r=1I and x, =bin(j)A0Abin(i)A0Aa,~j for g=(i—1)-1+j and a; {0, 1} loell
1<i, j<I Sorting such an input means nothing but moving x, to position 7(q) =
(j—1)-1+i, for g=(i—1) - I+, which is exactly the same permutation as in the
matrix transposition case. The proof of Theorem 2.4 depends only on the way the
substrings are permuted, and hence the result applies here, too: for [large enough,
a one-tape off-line TM needs =n- [/100=Q(n*'?/(log n)"?) steps to sort r=1I*
bitstrings of length 3 - [log /] +4. O

Theorem 5.2. There are functions that can be computed in linear time on a Turing
machine with two tapes (actually, one tape and one pushdown store are enough), but
require time Q(n**/log n) on a one-tape off-line Turing machine.

Proof. We take as an example the function MATRIX TRANSPOSITION (with addresses)
restricted to binary matrices. That is, the inputs have the form A", where A=
(a;)1=i;=1€{0, 1} (See Section 2 for the definition of A”".) The length of the
input A” is n=1*-(2-log I+6), and from Theorem 2.4 we know that computing
MATRIX TRANSPOSITION for such inputs on one-tape off-line TMs takes
=n-1/100 - (log)"/*=Q(n*'*/log n) steps.

On the other hand, the same function can be computed on a two-tape TM in
linear time, as follows. First, it is checked (in O(n) steps) if the input is of the
correct form A” for a binary matrix A = (a;),<; </, forsome l. Then the “compressed”’
version A’ of A (elements listed row by row, no addresses) is generated on the
worktape; this is a string of length />. By Lemma 5.3 (see below), the representation
(A") of the transpose AT can be constructed in O(I* - log(1*)) = O(n) steps, on one
tape and one pushdown store. The string (AT) can then be expanded to the
representation (A")" with addresses in O(n) steps; for example, one may copy the
bits of AT back into the “information positions” of the input string. [

For completeness, we briefly sketch the (classical) algorithm for transposing
quadratic matrices on two-tape TMs, which was presented (in German) in [14].
(The elements are permuted in log / phases according to the butterfly graph.)

Lemma 5.3. MATRIX TRANSPOSITION for quadratic Boolean matrices (represented
without addresses) can be computed in O(nlog n) steps on a Turing machine with
two worktapes. (In fact, one worktape and one pushdown store are enough.)

Proof. We describe a TM with one worktape and one pushdown store that on input

’2
Qoolor -+« Ao,i—1 + - - A—10A1-1,1++» A—1,11 € {0, 1}

Matrix transposition on one-1ape off-line Turing machines 127

(given on the worktape) produces the output
bOObOI e bO,l-—l e bl—l,Obl—l,l e bl—l,l—l;

where b; = a;; for 0=<i, j</, in O(I* - log !) steps. The algorithm works in r=log !
phases. (Assume that r is an integer.) Denote the content of the worktape at the
end of phase s by
A00a01 -+ - Qg1+« Al—1,0@1—1,1 -+ Al -1

(a}=a;; we want aj;= b, = a;.) For 0< k </, denote by k(s) the sth least significant
bit of bin(k), the binary representation of k, and by k[s] the number obtained by
changing exactly this sth bit in bin(k). We want the action of the TM in phase s
to result in the following:

s {aft_s}j[s] if i(s) # j(s),
Y lag! if i(s) =j(s).

For this, all elements aj' with i(s) =0, j(s) =1 have to be moved (i[s] - I+j[s])—
(i-1+j)=2°"": (I-1) cells to the right, and the elements aj ' with i(s) =1, j(s)=0
have to be moved 2°~' - (I—1) cells to the left. This can be done in O(/?) steps, for
instance, by storing two copies of the worktape in the pushdown store and using
the top copy to insert the elements that have to be moved to the right on the
worktape, and the bottom copy for the elements that are moved to the left. (The
bookkeeping details are easily filled in.) To see that aj; = a;;, note (inductively) that
aj = Ags.ipecsiiy» Where g(s, k, m) denotes the number with binary representation
k(r)k(r=1) ... k(s+1)m(s)...m(1). O

6. Separation of one-tape off-line Turing machines with and without output tape

In this section we consider one-tape off-line Turing machines with an additional
write-only output tape. We show that even if the head on the extra tape can move
only in one direction (that is, the output tape is “one-way”), this type of TM is
more powerful than the type considered so far in this paper.

Theorem 6.1. A one-tape off-line Turing machine with an additional one-way write-only
output tape can compute MATRIX TRANSPOSITION for Boolean |X I-matrices in
O(I*?)=0O(n"'*) steps. (n is the bitlength of the input).

Remark 6.2. (a) Recall that in Theorem 2.4 a lower bound of Q(n*?/(log n)"?)
was shown for this problem on one-tape off-line TMs without output tape.

(b) The upper bound is optimal: in [2] it is shown that TMs of the type considered
in Theorem 6.1 need Q(n**) steps to compute MATRIX TRANSPOSITION.

128 M. Dietzfelbinger et al.

Proof of Theorem 6.1. For simplicity we assume that /'/? is an integer. The permuta-
tion rof {1, ..., I’} that maps (i—1) - [+jto (j—1) - [+i can be writtenas 7 =p ° p,
where p is the permutation of {1, ..., I’} defined by

(i,=1) - PP+ (iy=1) - 1+ (jy—1) - 1'%+,
> (p—1) - P24 —1) - 1+ (ip—1) - IV 4]y,

for iy, iy, j1, ja€{1,..., 1"}

On a two-tape TM this permutation p can easily be realized: the head on the first
tape sweeps across its tape /'/> times while the head on the second tape simul-
taneously performs one (slow) sweep. In this way, a one-tape off-line TM with an
additional one-way write-only output tape can compute MATRIX TRANSPOSITION in
O(1”’*)=0(n**) steps as follows: it applies the permutation p to the I matrix
elements given on the input tape and writes this intermediate result to the worktape
(this takes O(n - 1'?) = 0(n**) steps, by the observation above). Subsequently the
TM applies the permutation p to the I” matrix elements on the worktape and writes
the result to the output tape (again, this takes O(n*'*) steps). Clearly, the output
tape head moves only from left to right. The details of the algorithm (computation
of 1, 1'% synchronization of the sweeps; modifications in the case where / is not a
square) are easily filled in. [

7. No permutation requires substantially more sweeps than matrix transposition

The proof of Theorem 2.4 rests on the fact that matrix transposition corresponds
to a permutation that “scatters” adjacent elements in its domain. This gives rise to
the question whether there are other permutations 7 that are even more difficult to
realize by the head movement of Turing machines of the type considered here (and
thus might yield even larger lower bounds for such machines). We show in Proposi-
tion 7.1 that a well-known result by Erdds and Szekeres implies a negative answer:
every permutation of m numbers can be realized by O(m'/?) simultaneous sweeps
over the input tape and the output area on the worktape of a one-tape off-line TM.
Thus, provided that the machine already “knows” where each element has to be
placed, a one-tape off-line TM can realize an arbitrary permutation 7 of m elements
of bitlength p each in time O(m*?- p)=0(n- m'/?), where n=m- p is the length
of the input.

Proposition 7.1. Any sequence (x,,...,X,) of m pairwise different numbers (in
arbitrary order) can be written as a disjoint union of O(m'’*) monotone (increasing
or decreasing) subsequences.

Proof. According to Erdds and Szekeres [4], every sequence of length i*+ 1 contains
a monotone subsequence of length i+ 1. Thus every sequence of length j contains
a monotone subsequence of length [j/?]. We use this to show that every sequence

Matrix transposition on one-tape off-line Turing machines 129

of length m consists of <2 - [m'/z'l monotone subsequences. We proceed by induc-

tion on [m'/?], the cases m =1, 2, 3 being trivial. The result of Erdés and Szekeres
is applied twice to the given sequence of length m = 4. The first time we remove a
monotone subsequence of length [m'/?] and the second time a monotone sub-
sequence of length [(m — [m'/*])'/?]. Then we have for the length k of the remaining
sequence

k=(m—-[m"?)=[(m=[m")*]<sm-2-m"?+1
for all m, as a simple calculation shows. Thus
|—k1/2-| < |'m1/2_1*| - |'ml/2-| _1;

hence the induction hypothesis can be applied to the remaining sequence of length
k. O

References

[1] M. Dietzfelbinger, The speed of copying on one-tape off-line Turing machines, Inf. Process. Lett.
33 (1989/90) 83-89.

[2] M. Dietzfelbinger and W. Maass, The complexity of matrix transposition on one-tape off-line Turing
machines with output tape, in: T. Lepistdo and A. Salomaa, eds., Proc. 15th ICALP, Lecture Notes
in Computer Science 317 (Springer, Berlin, 1988) 188-200.

[3] P. Duris, Z. Galil, W. J. Paul and R. Reischuk, Two nonlinear lower bounds, in: Proc. 15th ACM
STOC (1983) 127-132.

[4] P.Erdés and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935) 463-470.

[5] F.C. Hennie, One-tape off-line Turing machine computations, Inform. and Control 8 (1965) 553-578.

[6] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation
(Addison-Wesley, Reading, MA, 1979).

[7] J.E. Hopcroft, W.J. Paul and L. Valiant, On time versus space, J. ACM 24 (1977) 332-337.

[8] M. Li, L. Longpré and P.M.B. Vitdnyi, On the power of the queue, in: A.L. Selman, ed., Structure
in Complexity Theory, Proceedings, Lecture Notes in Computer Science 223 (Springer, Betlin, 1986)
219-233.

[9] W. Maass, Are recursion theoretic arguments useful in complexity theory? in: Proc. 7th Internat.
Conf. Logic, Methodology, and Philosophy of Science, Salzburg (1983) (North-Holland, Amsterdam,
1985).

[10] W. Maass, Quadratic lower bounds for deterministic and nondeterministic one-tape Turing
machines, in: Proc. 16th ACM STOC (1984) 401-408.

{11] W. Maass, Combinatorial lower bound arguments for deterministic and nondeterministic Turing
machines, Trans. Amer. Math. Soc. 292 (1985) 675-693.

(12] W. Maass and G. Schnitger, An optimal lower bound for Turing machines with one work tape and
a two-way input tape, in: A.L. Selman, ed., Structure in Complexity Theory, Proceedings, Lecture
Notes in Computer Science 223 (Springer, Berlin, 1986) 249-264.

[13] W. Maass, G. Schnitger and E. Szemerédi, Two tapes are better than one for off-line Turing
machines, in: Proc. 19th ACM STOC (1987) 94-100.

[14] W.J. Paul, Optimales Transponieren quadratischer Matrizen, in: Gesellschaft fiir Informatik,
3. Jahrestagung, Hamburg 1973, Lecture Notes in Computer Science 1 (Springer, Berlin, 1973) 72-80.

[15] W.J. Paul, Kolmogorov complexity and lower bounds, in: L. Budach, ed., Proc. 2nd Internat. Conf.
Fund. Computation Theory (Akademie-Verlag, Berlin, 1979) 325-334.

[16] W.J. Paul, On-line simulation of k+ 1 tapes by k tapes requires nonlinear time, in: Proc. 23rd IEEE
FOCS (1982) 53-56.

[17] W.J. Paul, N. Pippenger, E. Szemerédi and W. Trotter, On determinism versus nondeterminism
and related problems, in: Proc. 24th IEEE FOCS (1983) 429-438.

'[18] H.J. Stoss, Rangierkomplexitit von Permutationen, Acta Inform. 2 (1973) 80-96.

