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Abstract. We analyze the fine structure of time complexity classes for RAM's, in

particular the equivalence relation A:c B (A and B have the same time complexity")

++ (for ali time constructible / : Ae DTIMEn,cM(Í) ë B e DTIMEaa¡a(/))' The

-c-equivalence class of A is called its complexity type. 'We prove that every set X can

be partitioned into two sets ,4. and B such that X :c A :c B, and that the partial

order of sets in an arbitrary complexity type under C* (inclusion modulo finite sets) is

dense. The proofs employ a nerv strategy for finite injury priority arguments.

We consider the following set of time bounds:

T :: {f : N --+ N I /(") ) n and / is time constructible on a RAM},

where / is called time constructible on a RAM if some RAM can compute the function

1' ¡+ 1/(') ltr OU@D steps. TVe do not allow arbitrary recursive functions as time

bounds in our approach in order to avoid pathological phenomena (e.g. gap theorems

[HU], [HH]). In this way we can focus on those aspects of complexity ciasses that are

relevant for concrete complexity (note that all functions that are actually used as time

bounds in the analysis of algorithms are time constructible). 'We use the random access

machine (RAM) with uniform cost criterion as machine model (e.g. as defined in [CR];

see also [AHU], [MY]) because this is the most frequently considered model in algorithm

design, and because a RAM allows more sophisticated diagonalization - constructions

than a Turing machine. One defines DTIMERAMU),: {A g {0,1}*l there is a RAM
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of time complexity O(/) that computes A). We write DTIM E(f) fot DTIM En¿,uU)

in the follorving.

For sets .^1, B q {0, 1}. rve define

A:c B("A has the same det. time complexity * B")

:<+ V/ e T(A e DTItvIE(/) <+ B e DTIME(f)).

A. complerity type is an equivalence class of this equivalence relation :c.

l\¡e n'rite O f.or DTIXIE(n), which is the "minimal" complexity type. Note that

:'or every complexiti, type C and every f e f one has either C ç DTIL,IE(f) or

C.DTI)IE(f):(t.
In this paper rve investigate some basic properties of the partial order

PO(C):: ({xlX € C}, Ç.),

where C is an arbitrary complexity type and C* denotes inclusion modulo finite sets

(i.e. J( ç* Y:<+ X - )/ is finite).

This work is part of the long range project to study the relationship between exten-

sional properties of a set and its computational complexity. Among other rvork in this

direction rve rvould like to mention in particular the study of the complexity of sparse

sets (see e.g. [\4a]), and the investigation of the relationship between properties of re-

cursively enumerable sets under C* and their degree of computability (see e.g. Chapter

XI in [So]). Our approach differs from this preceding work insofar as it also applies to

"actuallv computable" sets (i.e. sets in P). Therefore it provides an opportunity to

develop finer construction tools that can be used to examine also the structure of sets of

small complexity. In this paper we introduce a ne\4/ strategy for a finite injury priority

argument that allows us to prove splitting and density theorems for sets of arbitrarily

given complexity type C (for example sets of time complexity O("')). Further results

about the structure of complexit¡r types can be found in [MS].

Tlreorem 1. Every set ,{ can l¡e split into two sets A,B of. the same compiexity type

as f (i.e. .Y : .'LUB. --t À B : Ø, X -c A:c B).
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In order to proue this result one needs a technique for controlling the complexity

t¡rpe of the constructed sets A, B. This is less difficult if X has an "optimal" time bound

fx eT for which i/ e flf e DTI'tvIE(/)) : {f efl¡: f¿(/x)} (in this case we say

that f is of. principøl compiexity type). However Blum's speed-up theorem [B] asserts

that there are for example sets X € P such that

{r er I r e DrIxrEUll : {i er l=ie N(i(') : "(#))}
Note rhal this effect occurs even if one is only interested in time constructible time

bounds (and sets .Y of "lorv" complexity).

In order to prove Theorem 1 also for sets X whose complexity type is non-principal,

rve show that in some sense the situation of Blum's speed up theorem (rvhere tve can

characterize the functions / rvith f e DT I I,t E(/) with the help of a "cofi.nal" sequence

of functions) is already the rvorst that can happen (unfortunately this is not quite true,

since rve cannot ahvays get a cofinal sequence of functions /¡ where /;+, (r) - O (4t+l-\c(n)J
for a fixed function g rvith g(n) - oo for r¿ -+ oo, as required for the proof of the

speed-up theorem).

Definition. (ú;);er.¡ Ç N is called a characteristic ?-sequence if ú : i *+ t; is recursive

and

a) Vi e N({t;} ef and program ú; is a witness for the time-constructibility of it¡})

b) vt, n € N(iúi+' )(") s {¿r}(")).

Lemma 1. ("inverse of the speed-up theorem"). For every recursive set .4. there exists

a characteristic ?-sequence (ú;);eN such that (t;);eN is characteristic for A (i.e. V/ e

r(A € DTItvI E(f) ç 3i e N(/(n) : a({¿r}("))))).

One can also prove the conuerse of Lemrna 1 and construct for any given cha¡ac-

teristic ?-sequence (1,)¡eN a set ¡l such that

vf e r(.4€ DTItvIE(/) <+ li e N (Í("): f¿({úi}(n)))).

This construction. rvhich is a refinement of the proof of Blum's speed-up theorem, is

one component in the priority-constructions of Theorems 1 and 2. . It is more delicate
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because in our more general situation it is not gua.ranteed that there is a function g with

g(n) - co (or at least g(n) > 2) such that Vi({/¡+r} < {t;}lg) (the existence of such

uniform "gup" g is used in the customary proof of Blum's speed-up theorem). Some

further details of the proof are described in [MS].

Remark. The idea of characterizing the complexity of an arbitrarv recursive set by

a sequence of "cofinal" complexity bounds is rather old (see e.g. [MF], [L], [LY], [SS],

[\,{W]). However none of these results provide the here needed characterization of ihe

time complexity of an arbitrary recursive set in terms of a uniform cofinal sequence of

time constructible time bounds. [L] and [MW] give corresponding results for space com-

plexit¡' of Turing-machines. These results exploit the linear speed-up theorem for space

compiexity on Turing-machines. rvhich is not available for time complexit¡' on RAM's.

Time complexity on RAilI's has been considered in [SS], but oni¡' sufrcient conditions

are given for the cofinal sequence of time bounds (these conditions are stronger than

ours, and they are probabiy not necessary). The more general resuits on complexity

sequences in axiomatic complexity theory ([MFl, [SS]) involve "overhead functions", or

deal rvith nonuniform sequences, rvhich makes the specialization to the notions con-

sidered here impossible. It is an open problem whether one can characterize the time

complexity of any recursive set on Turing-machines in the same rvay as it is done here

for RAIvI's (because of the iack of a fine time hierarchy theorem for multi-tape Turing-

machines).

Idea of the Proof of Theorem 1. Associate with the given set X a characteristic

?-sequence (ú;);e¡,¡ as in Lemma 1. For every e,n€ N and r € {0,1}* define

TItr[E(e,r)'.-- (number of steps in the computation of {e} on input r)

and

IvIAXTIIvIE(e,n):: max{TIME(e,t) I lrl - n}.

It is sufficient to partition X into sets A and B in such a way that for everv e € N the

following requirements .Rt', R?, S-:, S! are satisfied:
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R!:+ (A: {e} + V/ eT(Yn(MAXTIME(",n) < /("))

+ 
=i 

€ N(/(n) : fi({ú;}(")))))

^9j :<+' A e DTI M E({t"}(")).

R?,5! are defined analogousl¡r.

Note that it'is not possible to satisfy R! bV simply setting A(x)::1- {e}(z) for

some r: in order to achieve that .{ C X rve can only place r into A if ¿ e X.

Instead, rve adopt the following strategy to satisf¡ R! (the strategy for Ãf is

analogous): For input z € {0,1}* compute ie}(r).

Case I. If {e}(z) :0, then this strategy issues the constraint "r g A <+ r e X",

Case II. If {"}(r) :1, then this strategy issues the constraint "¡ / A" (which forces

rinto Bif.x €X).
In the case of a conflict for some input c between strategies for different require-

ments one lets the requirement with the highest priority (i.e. the smallest index e)

succeed (this causes in general an "injury" to the other competing requirements).

The interaction between the described strategies is further complicated by the fact

that in the case where Rf is never satisfied via Case II, or via Case I for some r € X,

we have to be sure that Case I issues a constraint for almost eaery input r (provided

bhat the simulation of {e}(z) is not prematurely halted by some requirement .9f with

i 1 e, see below). Consequently the number of requirements whose strategies act on

the same input r grows with lrl (only those R!,R? rvith i < lrl can be ignored where

one can see b¡"'looking back" for lrl steps that they are already satisfied).

The strategr for requirement .9j(S"B) is as follows: it issues the constraint that for

all inputs z with lrl > " the sum of ali steps that are spent on simulations for the sake

of requirements .Rf ,R?,5!,.5f rvith i 2 e has to be bounded by O({t"}(lrl)). One

can prove that in this way S!(S? ) becomes satisfied (because only finitely many inputs

are placed into A or B for the sake of requirements of higher priority). One also has to

prove that the constraint of 5j does not hamper the requirements of lorver priority in

a serlous manner
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This part of the construction is more difficult than its counterpart in Blum's speed-

up-theorem [B], because it need not be the case that {ú¡-'.1} : "({¿i}). A further

complication is caused by the fact that although there are constants.I(¡,.Ii;a1 such that

{¿¿}(") converges in (.Ir.;.{¿;}(") steps and {ú;+t}(") converges in ( 1i;11 .{ú;+t}(r)

steps, we may have that /í¡ (.I(;-.,.1 (and therefore Ii;'{t;}(") < /í;+r.{¿;+tX")).

Therefore the requirements ^9f with i > i are not able to "take over" the job of ,5f ,

and ¿/l computations {ú;}(lrl), i < l"l, have to be simulated simultaneously for each

input r.

In order to show that a singie RA\,f -R can carry out simultaneously all of the

described strategies. one exploits in particular that a R.A,M can dovetail an unbounded

number of simulations in such a way that the number n" of. steps that it has to spend

in order to simulate a single step of a simulated program {e} does not grow rvith the

number of simulaied programs (the precise construction of ,B is rather complex).

In order to verify that this construction succeeds, one has to show that each require-

ment.Rf,l?f is "injured" ab most finitely often. This is not obvious, because we may

have for example that -Rf-, (which has higher priority) issues overriding constraints for

infinitely many arguments r according to Case I. However in this case tü/e know that

only finitely many of these r, zlre elements of X (otherwise.Rf-r would have been seen

to be satisfied from some point of the construction on), and all of its other constraints

are "compatible" with the strategies of lower priority (since we make A,B ç X).

Finally we verify that each requirement R!(R?) is satisfied. This is obvious if
Case iI occurs in the strategy for R! for some input ø where ,?f is no longer injured;

or if Case I occurs for such input ¿ with x € X (in both cases we can make ,q I {"}).
However it is also possible that r / X for each such c (and that {e} : A), in rvhich case

^Rf becomes satisfied for a different reason. In this case v¡e have {e}(r) : 0 : X(o) for

each such ¿. Therefore we can use ie) to design a new algorithm for X that is (for every

input) at least as fast as the algorithm {e} for A (it uses {e} for those inputs where {e}

is faster than the "old" algorithm for X of time complexii¡r {ú"}). Therefore one can

prove that X e DTIIvI E(/) for every f e T that bounds the running time of algorithm

{e} for l. Tltis implies that /(n) : fì({l¡}¡n)) for someJ € N (by construction of the

characteristic ?-sequence (ú¡);E¡¡). tl
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Idea of the proof of Theorern 2. Let (ú;);6¡ be a characteristic ?-sequence for X.

It is sufrcient to constmct A such that Y ç Aç X and for all e € N the requirements

R.,5",T",(J, are satisfred, where R"rS" a¡e identical with thd requirements Rf ,Sf in

the proof of Theorem 1 (together they ensure thai .4 :s X) and

T.

u.:

The strategy to satisfy.R" is similar to the strategy for satisfying r1f . However in

Case II (where {r}(r) : 1), unlike in the splitting theorem, .R" does not have the power

to keep r out of A (even if .R" has the highesi priority) because r may later enter Y.

Instead. .R. issues in Case II the constraint ", I A ë r / IZ" (i.e' -R" wants to keep ø

out of ,4 if ii turns out that , øY).
It is easy to see that .R" becomes satisfied if Case I occurs for some r € X, or if

Case II occurs for some r / r' (provided that -R" is not "injured" at ø by requirements

of higher priority). If neither of these events occurs, then we can conclude that {e}(r) :

X(r) whenever the simulation of i")(") can be fi.nished before it is halted for the sake

of some requirement ^S; with i ( e. This information can be used (as in the proof of

Theorem 1) to design an algorithm for X that converges for every input r "at least as

fast" as the computation {.}(t). ¡

Corollary 3. For every complexity type C the partial order PO(C) is dense.

It is easy to see that PO(C) is isomorphic to the countable atomless Boolean algebra

AB if. C : O. Furthermore it was shown lhat AB can be embedded into POo,r(C) for

every complexity type C. However the following corollary suggests that the strucbure

of the partial ord.er PO(C) is substantially more complicated than that oî' AB ilC +O.

Obviously any complexity type C + O is closed under complementation, but not under

union or intersection. However, it could stili be the case that any two sets A. B e C

have a least upper bound in the partial order PO(C). This is ruled out by the follorving

result.

A_Y

x-A
e

e
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Corollary 4. Consider an a.rbitrary complexity type C I 0. Then any two sets .4., B €

C have a least upper bound in the partial order PO(C) if and only if AU B e C. In

particular one can define rvith a first order formula over PO(C) whether A U B €. C

(respectively An B eC) for A, B eC.

Proof. Assume that A, B €C, AUB øC, AUB ç D and D eC. Then (AUB) 1c D

and (A U B)cD. Thus there exists by Theorem 2 a set D' € C with (A U B)CD'CD.

Therefore D is not a least upper bound for .rl and B in PO(C). tr

Remark. This result suggests that the fi¡st order theory of the partial order PO(C) is

nontrivialforClO.
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