Logic Colloquium 88
Ferro, Bonotto, Valentini and Zanardo (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1989 79

Some Problems and Results in the
Theory of Actually Computable Functions

(preliminary abstract)

WOLFGANG MAASS* AND THEODORE A. SLAMAN**

We consider subsets A of {0,1}* (the set of all finite binary strings x).

According to Church’s thesis A is computable (meaning that there is an algorithm
for deciding “z € A?”) if and only if A is recursive. Because of the advance of
computing machinery it has also become of interest to find a precise mathematical
definition which captures the intuitive notion that A is actually computable (meaning
that there is an algorithm for deciding “z € A?” so that this computation can actually
be carried out if |z|, the length of z, is not “too large”). It has become common in

computational complexity theory to consider the class

P:= | J DTIME(n*)
kEN

as an adequate mathematical model for the class of “actually computable” sets (to be
more precise: if one considers not only deterministic algorithms but also randomized
algorithms whose output may be incorrect with an exponentially small probability,
then one may replace P by the potentially larger class BPP; e.g. PRIMES is known
to be in BPP but it is open whether PRIMES € P).

The complexity classes DTIM E(t(n)) that occur in the definition of P are some-
what dependent on the considered computational model (although P isn’t). For the

*Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, Chicago, IL. 60680. Written under partial support by NSF-Grant CCR
8703889, while visiting the Department of Computer Science at the University of
Chicago.

*+*Department of Mathematics, University of Chicago, Chicago, IL. 60637. Written
under partial support by Presidential Young Investigator Award DMS-8451748 and
NSF-Grant DMS-8601856.

80 W. Maass and T.A. Slaman

random access machine (RAM), the model on which we focus in this paper, one defines

for arbitrary functions ¢ : N — N+:

A € DTIMERapm(t(n)) <>there exists a (deterministic) RAM R that decides
“r € A?” so that R is of time complexity O(#(n))
(i.e. there is a constantK > 0 s.t., for every input

z € {0,1}*, R executes at most K - t(|z|) instructions).

The RAM is the model of choice for most algorithm designers because its instructions
and its computation time (= number of instructions that are executed) correspond
quite well to those of a real machine (see e.g. Aho, Hopcroft, Ullman [AHU]). Turing
machines are somewhat less realistic because they are confined to specific data struc-
tures (the tapes) which have artificially large access time (because in order to read
a bit far away on a tape the respective head has to travel over all cells in between).
Very roughly one can view a RAM as a stronger version of a Turing machine where
the “head” may jump in one step to an arbitrary “cell” (called register on a RAM)
whose address has been specified. Furthermore in order to allow that such address
be stored in a single register, one allows that a register may hold an arbitrary integer
(however one linits the allowed arithmetical operations on register contents so that
after ¢ computation steps all integers stored in registers of the RAM have bit length
< t). For a more detailed definition of a RAM we refer to [CR], [AHU], [MY], [P]. A
reader who is more familiar with Turing machines should note that the only deviating
feature of RAM’s that we will exploit in the subsequent analysis is the fact that a RAM
allows more sophisticated diagonalization-algorithms with regard to computation time
(in particular a fine hierarchy theorem is known for computation time on RAM’s (see
below), whereas the corresponding statement for multi-tape Turing machines is still
open - because for k > 3 it is not known whether every k-tape Turing machine can be
simulated by a Turing machine with k — 1 tapes in linear time.

As supporting evidence for this thesis (that P is the class of actually computable
sets) we would like to point to

— the mathematical simplicity of this definition

— its robustness with regard to changes of the computational model (e.g. Turing ma-

chines, random access machines, uniform circuit families)

The Theory of Actually Computable Functions 81

— the "test of time” (about 20 years of intensive work in computational complexity
theory and algorithm design have so far not provided strong arguments against this
thesis).

Among the problematic points of this thesis we would like to mention:

— constant factors in front of the considered polynomial time bounds (as well as the
size of the programs) are ignored (consequently theory and praxis disagree about
the feasibility of certain algorithms; however it appears to be very hard to take
these aspects into account and still preserve the simplicity and robustness of the

mathematical definition).

— its focus on worst case time bounds, as opposed to the practically more important
average case analysis (this point can be addressed in a mathematical model if one

can specify which input distribution is “realistic”).

Let us assume then that P is an adequate model for the class of “actually computable
sets”. There are several aspects of P that can then be studied: we can compare it
to other complexity classes (e.g. NP, EXPTIME, PSPACE); we can examine specific
problems to see if they are in P; we can look for internal structure in P; we can
compare the structure of P with familiar recursion theoretic classes (recursive sets,
r.e. sets, arithmetical sets, sets recursive in objects of higher types, a- and f-recursive
sets). Our intention is to look for the fine structure of P, which may shed light on its
other aspects as well. In this abstract we focus on one facet of the fine structure of
P, the classification of sets in P according to their exact time complexity. Of course
quite a bit is known already about the fine structure of P. Thus before we describe
our results we would like to give for non-experts in complexity theory an idea of the

type of results that have been achieved so far.

i) Immerman and Moschovakis have shown that

A € P & A is uniformly inductively definable over

finite structures with linear order.

This equivalence leads to results about the fine structure of P from the point of
view of definability ([F], [I], [M], [R]).

ii) Hierarchy Theorems.

The first hierarchy theorem was proven by Hartmanis and Stearns [HS] for Turing

82 W. Maass and T.A. Slaman

machines. For random access machines (RAM's), the model on which we will focus
in this paper, Cook and Reckhow [CR] have shown: Let f,g : N — Nt be functions

such that f(n),g(n) > n, sup m = 00, and f is time constructible on a RAM

9(n)

(i.e. the map 1™ « 1¥(") where both the input n and the output f(n) are given in

unary representation, can be computed in time O(f(n)) on some RAM). Then
DTIMERam(f(n)) € DTIMERam(g9(n)).

It turns out that all explicitly defined functions that are actually used to estimate
the computation time of algorithms are in fact time constructible on a RAM. For

example the hierarchy theorem implies that
DTIMERAM(TL) g DTIMERAM(TL . log* n) g .

C DTIMEgam(n -loglogn) g DTIMEgap(n -logn)

7(

C...C DTIMEgapm(n?) C ... C DTIMEpam(n®)
s 7 7 F

C...CP

77

NOTE: It has been shown that the hierarchy theorem does not hold for arbitrary

recursive f, i.e. the time-constructability-assumption for f is essential [HH].

iii) Concrete positive results, e.g.

ADDITION € DTIME(n),
MULTIPLICATION € DTIMEgan(n - loglogn) [SS],
LINEAR PROGRAMMING € P [K]

Of course, there exist an enormous number of results of this type.

iv) Comparisons between computational models, e.g.

DTIM Eryring machine(t(n)) €
DTIMERgam(t(n)/logt(n)), for t(n) > n-logn [P].

On the other hand one has not been able to show that A ¢ DTIMEgranm(n) for
any “natural” set A € P (in fact not even for any “natural” set A € NP), which
is perhaps the most prominent gap in our knowledge about the fine structure of P
(“natural” means here that A should have some independent mathematical significance
(MULTIPLICATION is a good candidate), in particular A should not just be the result

of a diagonalization-argument.)

The Theory of Actually Computable Functions 83

Remark. In the following we wiil only consider time complexity on RAM’s and we
write DTIM E(f) instead of DTIM Ep ap(f).

The preceding points indicate that an important structural property of P (which has
no analogue in the more traditional structures of recursion theory) is the fact that we
have a natural hierarchy for sets A € P, given by the complexity classes DTIM E(f)
for f bounded by a polynomial. We can classify the sets A € P according to their

time complexity, i.e. according to their associated set of time bounds
{f | A€ DTIME(f)}.

Thus we define A <¢ B (“A has time complexity less or equal to the time complexity
of B”) by:

A <¢ B:&Vf e T(B € DTIME(f) = A € DTIME(S))

and A =¢ B (“A has the same time complexity as B”) is the induced equivalence

relation:

A=c B:&Vf e T(Ae DTIME(f) & B € DTIME(S)).

We will refer to the equivalence classes of =¢ as complezity types.

The set T of considered time bounds is defined as follows:

T:={f:N o> Nt | f(n)>n,f is time constructible on a RAM,
f(c-n) = 0(f(n)) for every c € N1,
except for finitely many arguments
f agrees with a function ¢ that is concave

ie. Vn > m(g(n) > %g(m))}

Remark. This definition of T has been chosen so that it is large enough to contain
all functions that are actually used to estimate the time complexity of algorithms, on
the other hand it is not too large in order to avoid some pathological phenomena (e.g.
gap theorems [HU], [HH] and non-closure of time complexity classes under linear time
reduction). Note that 7" is closed under variation on finitely many arguments, i.e.

f€T, f="gand g(n) > n implies g € T.

84 W. Maass and T.A. Slaman

Definition. We say that A is linear time reducible to B (A <ja B) if there is a RAM
with oracle B that decides “z € A?” in time O(|z]).

We assume here that a RAM with oracle B has a separate infinite array of query-
registers into which it can write any string y € {0,1}* (one bit per register) for which
it wants to find out whether y € B. After each execution of the additional instruction
ORACLE QUERY the answer to this question can be found in the first register (and
all query registers are erased).

Note that <j;, is transitive. One calls the equivalence class of =jn linear (time)

degrees.

Remark. The main interest in linear time reductions arised from the fact that A <j,
B implies that A <¢ B (i.e. the time complexity of A is less or equal to that of B). This
implication has provided the only successful means to compare the time complexity
of sets A and B. We will also use it in this way, for example to show that every
complexity type C contains a sparse set (Corollary 8). (On the other hand we are
forced to provide in Theorem 1 a different method to show that A =c B when we
given an example of sets A and B of the same time complexity but incomparable linear
time degree.)

In this way one can show for example that the time complexity of deciding whether
an undirected graph has a path from a distinguished vertex s to a distinguished vertex
t is less or equal to that of the corresponding problem for directed graphs. Similarly
one can show that the circuit value problem (CVP) with the requirement that the
gate records in the input are sorted according to gate numbers has exactly the same
time complexity as CVP without this requirement (the reduction from the latter to
the former version exploits that a RAM can sort in linear time).

Less obvious linear time reductions have been constructed for example by Dewd-
ney [D] (he shows in particular that SATISFIABILITY =), 3 — COLORABILITY
=jin SET-SPLITTING and that BIPARTITE MATCHING =, VERTEX CONNEC-
TIVITY (“are there > k disjoint uv-paths in G, for u, v, k given”); note that the latter
problems are known to be in P) and Grandjean [G1], [G2] (he shows that some nat-
ural N P-complete problems B are not in DTIM ETuring machine(r2) by showing that
A <jin B for every A € NTIME(n)).

Theorem 1. Every complexity type C # 0 contains incomparable linear time degrees.

In order to prove this theorem we construct for an arbitrary given complexity type

The Theory of Actually Computable Functions 85

C # 0twosets A, B € C with A [;;,B (i.e. A £jin B and B £y A). The only nontrivial
part of this construction is to find suitable requirements whose satisfaction implies that
the constructed sets 4, B are of the given complexity type C. It is quite easy to find
such requirements if C is a principal complezity type, where we call a complexity type

C principal if there exists a time bound f¢ € T s.t. for any A € C
{f € T|A € DTIME(f)} = {f € T|(f = Q(fe)}

(ie. fc is an “optimal time bound” for sets 4 € C).

The Cook-Reckhow construction of a diagonalizing RAM [CR] provides, for every
f €T, aset A whose complexity type C is principal and where f¢ := f is an “optimal
time bound” for C.

On the other hand Blum’s speed-up theorem ([B], [MY]) implies that there are sets
A € P whose complexity type C is non-principal, e.g. one can construct a set A for
which

{flA € DTIME(f)} = {f[Eii € N(f = Q(%))}

In order to construct sets A of an arbitrary given complexity type C (principal or
non-principal) we use as a tool characteristic T-sequences (which are certain effective
sequences of indices). We will show in Lemma 2 that one can associate with every

complexity type C a characteristic T-sequence (t:)ien s-t.
{f € T|A € DTIME(f)} = {f € T|3i € N(f(n) = Q({t:}(n)))}

for every A € C (we say then that “(t;)ien is characteristic for C”). This fact is
complemented by Lemma 3, where we show that for any characteristic T-sequence
(t:)ien there is a complexity type C s.t. (t;);en is characteristic for C. Furthermore
the construction method of Lemma 3 reappears in the proof of Theorem 1 to ensure
that the constructed sets A, B are of the given complexity type C. We arrange that
their sets of time complexity bounds are characterized by the same T-sequence that is
characteristic for C. Thus, we avoid the usual device of achieving 4 =¢ B via showing

that A =, B.

Definition. (t;)ien C N is called a characteristic T-sequence if ¢ : ¢ — £; is recursive

and

a) Vi € N({t;} € T and program ¢; is a witness for the time-constructibility of {t:H

86 W. Maass and T.A. Slaman

b) Vi,n € N({tit1}(n) < {t:}(n)).

Lemma 2. (“inverse of the speed-up theorem”). For every recursive set A there exists

a characteristic T-sequence (t;)ien such that
Vf € T(A € DTIME(f) & 3 € N(f(n) = Q({t:}(n))))-

Lemma 3. (“refinement of the speed-up theorem”). For every characteristic T-

sequence (;)ien there exists a recursive set A such that
VfeT(Ae DTIME(f) & di € N(f(n) = Q({t:}(n))))

Remark. The proof of Lemma 3 is somewhat more delicate than the usual proof of
the speed-up theorem because {ti4+1} need not be a strictly slower growing function
than {t;} (in fact we have in general that for many : both functions are the same, and
{ti41} may even have a larger time-constructibility-factor than {¢;}). In both lemmata
we exploit that our concepts are rather concrete (in particular that we consider only

time constructible functions and a specific machine model).

Idea of the proof of Theorem 1. Let (t;)ien be a characteristic T-sequence for
the given complexity type C. Construct sets A, B s.t. both AlinB and for all fEe
T the set A (or the set B) is in DTIME(f) iff f(n) = Q({t:}(n)) for some 7 €
N. Use the priority method to handle conflicts between the resulting two types of

requirements. 0

Remark. Although it is the main goal of our approach to study the fine structure
of P, it also yields some new results (and open problems) about polynomial time
reductions. In particular it allows to make the “upper bounds” of the constructed
sets more precise (instead of making the sets just recursive). As a sample we give the

following result, which is proved with the same arguments as Theorem 1.

Theorem 4. A complexity type C contains sets A, B that are incomparable w.r.t.

polynomial time reductions if and only if C € P.

One may ask whether it can happen that two sets A, B of the same complexity type
have “no common information”, i.e. that they form a minimal pair w.r.t. linear time

(resp. polynomial time) reductions.

The Theory of Actually Computable Functions 87

Theorem 5. There are recursive sets 4, B of the same complexity type C such that

A, B form a minimal pair w.r.t. linear time (resp. polynomial time) reductions.

The proof of this result combines methods from Cohen forcing and from the proof
of Lemma 3 in a finite injury priority argument. It is not known whether such a pair
of sets exists in every complexity type.

It would be of some interest to characterize the structure of the linear time degrees
inside a given complexity type. The following result shows that these structures are
not all isomorphic (it also shows that linear time degrees play a significant role in the

analysis of complexity types).

Theorem 6. A complexity type C has a largest linear degree if and only if C is
principal (in fact if C is non-principal then it does not even contain a maximal linear

degree).

Finally we would like to mention briefly two other concepts that are of interest for
the fine structure of P (although they have no direct analogue in classical recursion

theory): sparse sets and the padding operator.
Definition. A C {0,1}*is sparseif n — card(AN{0,1}") is bounded by a polynomial.

Definition. For arbitrary functions s € T we associate with every set A C {0,1}*
the s-padding P,(A) := {z#0°1=D|z € 4} of A.

Note that P, is in fact well-defined on complexity types (i.e. A =¢ B implies
P,(A) =¢ P,(B)) and that P, projects complexity classes downwards:

A € DTIME(f) = P,(A) € DTIME(fos™}).
Theorem 7. (“inversion of the padding operator”). Fix any s € T. Then the map
CoAn P,(A)el

from the complexity types into the complexity types is onto.
Corollary 8. Every complexity type C contains a sparse set.

In order to derive this corollary from Theorem 7 one considers the padding function
s(n) = 2™ and exploits that there exists for every set A C {0,1}* some set B € {1}*
(thus B is sparse) with Pyn(A) =), B.

88 W. Maass and T.A. Slaman

Remark. It is interesting to compare Corollary 8 with Mahaney’s result [Ma] that
P # NP implies that there is no N P-complete sparse set.

Finally we would like to point out that there are of course many other interesting
aspects of the fine structure of P which we have not even mentioned here (some of the

other aspects will be discussed in a forthcoming paper).

Some open problems about the fine structure of P:

1. Is there any “natural” A € P s.t. A ¢ DTIME(n)?

2. Are there relationships between the mathematical structure of a set A (e.g. com-
binatorial properties of a set A, or other “extensional” properties) and its time
complexity?

3. What is the structure of linear time degrees inside a complexity type C? In particu-
lar: are those structures isomorphic for all principal (resp. non-principal) complexity
types C?

4. What is the structure of linear time degrees inside a complexity class DTIME(f)?

In particular: does this structure depend on f (for f superlinear)?

5. Are there besides the padding operators any other interesting operators on P? In

particular: is there some interesting notion of a “jump”?

6. Are there sets A, B that are in the same complexity type (i.e. A and B have the
same deterministic time complexity) but which have different nondeterministic time

complexity (or: different space complexity)?

The Theory of Actually Computable Functions 89

REFERENCES
[AHU] A.V. AHO, J.E. HOPCROFT, J.D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley (Reading, 1974).

[B] M. BLUM, A machine-independent theory of the complexity of recursive functions,
J. ACM 14(1967), 322-336.

[CR] S.A. Cook, R.A. RECKHOW, Time-bounded random access machines, J. Comp.
Syst. Sc. 7(1973), 354-375.

[D] A.K. DEWDNEY, Linear time transformations between combinatorial problems, In-
ternat. J. Computer Math. 11(1982), 91-110.

: [F] R. FAGIN, Monadic generalized spectra, Zeitschrift . Math. Logik 21(1975), 89-96.

[G1] E. GRANDIEAN, A natural NP-compléte problem with a nontrivial lower bound,
SIAM J. Comp. 1988 (to appear).

[G2] E. GRANDIEAN, A nontrivial lower bound for an N P problem to automata, preprint
(1987).

[HS] J. HaARTMANIS, R.E. STEARNS, On the computational complexity of algorithms,
Trans. AMS 117(1965), 285-306.

[HH] J. HARTMANIS, J.E. HOPCROFT, An overview of the theory of computational com-
plexity, J. ACM 18(1971), 444-475.

[I] N.IMMERMAN, Languages which capture complexity classes, Proc. of the 15th ACM
Symp. on the theory of computing, 1983; 347-354.

(K] L.G. KHACHIAN, A polynomial algorithm for linear programming, Soviet Math.
Doklady. 20(1979), 191-194.

[MY] M. MACHTEY, P. YOUNG, An Introduction to the General Theory of Algorithms,
North-Holland (Amsterdam, 1978).

[Ma] S. MAHANEY, Sparse complete sets for N P: solution of a conjecture of Berman and
Hartmanis, J. Comp. Syst. Sc. 25(1982), 130-143.

[M] Y.N. MOSCHOVAKIS, Abstract recursion as a foundation for the theory of algo-
rithms, preprint (1983).

[P] W.J. PauL, Komplexitatstheorie, Teubner (Stuttgart, 1978).
/ [R] M. DE ROUGEMONT, Uniform definability on finite structures with successor, Proc.
of the 16th ACM Symp. on the theory of computing, 1984, 409-417.

7 [SS] A. SCHONHAGE, V. STRASSEN, Schnelle Multiplikation grosser Zahlen, Computing
7(1971), 281-292.

