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Sonre Problems and Results in the

Theory of Actually Computable f\nctions
(preliminary abstract)

Wor,rcn¡¡c Mn¡.ss* .A,ND THEoDonp A. Sr,nu.lN**

\Me consider subsets ,4 of {0, t}- (the set of all finite binary strings ø).

According to Church's thesis ,4. is computable (meaning that there is an algorithm

for deciding "x e A?") if and only if ,4 is recursive. Because of the advance of

computing machinery it has also become of interest to find a precise mathematical

definition which captures the intuitive notion that ,4. is actually compulable (meaning

that there is an algorithm for deciding "t e A?" so that this computation can actually

be carried out if lø1, the length of ø, is not "too large"). It has become common in

computational complexity theory to consider the class

P:: [J DTrME(nk)

I

È€N

as an adequate mathematical model for the class of "actually computablett sets (to be

more precise: if one considers not only deterministic algorithms but also randomized

algorithms whose output may be incorrect with an exponentially small probabilit¡

then one may replace P by the potentially larger class BPP; e.g. PRIMES is known

to be in BPP but it is open whether PRIMES e P).

The complexity classes Df I M E(t(n)) that occur in the definition of P are some-

what dependent on the considered computational model (although P isn't). For the
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ra¡rdom access machine (RAM), the model on which we focus in this paper, one defines

for arbitrary functions ú : N + N*:

A e DTIMEneu(t(n)) <+there exists a (deterministic) RAM ,R that decides

"x e A?" so that ,R is of time complexity O(t(n))

(i.e. there is a constantl( ) 0 s.t., for every input

c € {0, 1}*, -R executes at most K .t(lrl) instructions).

The RAM is the model of choice for most algorithm designers because its instructions

and its computation time (: number of instructions that are executed) correspond

quite well to those of a real machine (see e.g. Aho, Hopcroft, Ullman [AHU]). Turing
machines a¡e somewhat less realistic because they are confined to specific data struc-

tures (the tapes) which have artificially large access time (because in order to read

a bit far away on a tape the respective head has to travel over all cells in between).

Very roughly one can view a RAM as a stronger version of a T\rring machine where

the "head" may jump in one step to an arbitrary "cell" (calted register on a RAM)
whose address has been specified. Furthermore in order to allow that such address

be stored in a single register, one allows that a register may hold an arbitrary integer

(however one linits the allowed arithmetical operations on register contents so that
after Ú computation steps all integers stored in registers of the RAM have bit length
< f). For a more detailed definition of a RAM we refer to [CR], [AHU], [MY], [P]. A
reader who is more familiar with TLrring machines should note that the only deviating
feature of RAM's that we will exptoit in the subsequent analysis is the fact that a RAM
allows more sophisticated diagonalization-algorithms with regard to computation time
(in particular a fine hierarchy theorem is known for computation time on RAM's (see

below), whereas the corresponding statement for multi-tape Turing machines is still
open - because for k ) 3 it is not known whether every k-tape Turing machine can be

simulated by a Turing machine with ,t - 1 tapes in linear time.

As supporling eaid,ence for this lhesis (that P is the class of actuaJly computable

sets) we would like to point to

- the mathematical simpliciiy of this definition

- its robustness with regard to changes of the computational model (e.g. T\rring ma-

chines, ra¡rdom access machines, uniform circuit families)
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- the "test of time" (about 20 yea.rs of intensive work in computational complexity

theory and algorithm design have so far not provided strong arguments against this

thesis).

Among the problemøtic points o/ få,is thesis we would like to mention:

- constant factors in front of the considered polynomial time bounds (as well as the

size of the programs) are ignored (consequently theory and praxis disagree about
the feasibility of certain algorithms; however it appears to be very hard to take

these aspects into account and still preserve the simplicity and robustness of the

mathematical definition).

- its focus on worst case time bounds, as opposed to the practically more important
average case analysis (this point can be addressed in a mathematical model if one

can specify which input distribution is "realistic").

Let us assume then that P is an adequate model for the class of "actually computable

sets". There a¡e several aspects of P that can then be studied: we can compa^re it
to other complexity classes (e.g. NP, EXPTIME, PSPACE); we can examine specific

problems to see if they are in P; we can look for internal strueture in P; we can

compare the structure of P with familiar recursion theoretic classes (recursive sets,

r.e. sets, arithmetical sets, sets recu¡sive in objects of higher types, o- and B-recursive
sets). our intention is to look for the fine structure of P, which may shed light on its
other aspects as well. In this abstract we focus on one facet of the fine structure of
P, the classification of sets in P according to their exact time complexity. of course

quite a bit is known already about the fine structure of P. Thus before we describe

our results we would like to give for non-experts in complexity theory an idea of the

type of results that have been achieved so far.

i) Immerman and Moschovakis have shown that

A e P +,4. is r¡niformly inductively definable over

finite structures with linear order.

This equivalence leads to results about the fine structure of P from the point of
view of definability ([F], [I], [M], [R]).

ii) Hierarchy Theorems.

The fi¡st hierarchy theorem was proven by Hartmanis and stearns [HS] for Turing
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machines. For random access machines (RAM's), the model on which we will focus

in this paper, Cook and Reckhow [CR] have shown: Let f , g : N --+ N+ be functions

such that f(ù,5@) ) n, sup f,Jl!^: oo, and f is time constructible on a RAM
n 9\n)

(i.e. the map 1" <- 1-f('), where both the input n and the output /(n) are given in

nnary representation, can be computed in time O(f (")) on some RAM). Then

DT I M E pn¡a (f (")) I DT I M E n¡u(s(")).

It turns out that all expliciily defined functions that are actually used to estimate

the computation time of algorithms are in fact time constructible on a RAM. For

example the hierarchy theorem implies that

DTIMEpa¡aØ) C DTIMEntu(n.log. n) C ...

C DTIMER¡u(r' loglogn) C DTIMEnA¡a(n'Iogn)
l/
C ... C DTIM EaeuØ') C -.. C DTIMEn¡u(n")
ltll
c... c P.t/

NOTE: It has been shown that the hierarchy theorem does not hold for arbitrary

recursive /, i.e. thJ time-constructability-assumption for / is esseniial [HH].

iii) Concreie positive results, e.g.

ADDITION e DTIME(n),

MU LTI P LIC ATION e DTIM ERAv(n' loglogn) [SS],

LIN EAR PROGRAM M ING € P [K]

Of course, there exist an enormous number of results of this type.

iv) Comparisons between computational models, e.g.

DT I M Eau,ins machine(t(n)) C

DTIMEp¡¡a(t(n)llogt(n)), for J(n) > n'logn [P].

On the other hand one has not been able to show that A ( DTIMEnen'r(n) for

any "natural" set A € P (in fact not even for any "natural" set .4 € NP), which

is perhaps the most prominent gqp in our knowledge about the fine structure of P

("natural" means here that A should have some independent mathematical significance

(MULTIPLICATION is a good candidate), in pa.rticular A should not just be the result

of a diagonalization-argument. )
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Remark. In the following we wiil only consider time complexity on RAM's and we

wnte DTIM-Ð(/) instead of. DTIME¡AMU).

The preceding points indicate that an important structural property of P (which has

no analogue in the more traditional structures of recu¡sion theory) is the fact that we

have a natn¡al hierarchy for sets A e P, given by the complexity classes DTIMEU)
for / bounded by a polynomial. we can classify the sets A e P according to their
time complexity i.e. according to their associated set of time bounds

{flAeDrrME(f)}

Thus we define A 1ç B ("A has time complexity less or equal to the time complexity

of B") by:

A <c B :<+ V/ € T(B €. DrIME(f) + A € DrIME(f))

and .4 :c B (A has the same time complexity as B") is the induced equivalence

relation:

A :c B :<+ v/ € T(A e DTTMEU) ë B e DrrME(f)\

We will refer to the equivalence classes of :c æ complexitg types.

The set ? of considered time bounds is defined as follows:

N --+ N+ I /(") > n, / is time constructible on a RAM,

f (.'"): o(.f(")) for everv c € N+,

except for finitely many arguments

/ agrees with a function 9 that is concave

i.e. Vn ) *(s@)> Ls@D\.

Remark. This definition of I has been chosen so that it is large enough to contain
all functions that are actually used to estimate the time complexity of algorithms, on

the other hand it is not too large in order to avoid some pathological phenomena (e.g.

gap theorems [HU], [HHj and non-closure of time complexity classes under linear time
reduction). Note that ? is closed under variation on finitely many arguments, i.e.

f eT, f :* g and g(n) ) n implies g C ?.

T:: {f
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Deffnition. we say that .4 is linear time reducible to B (A (r¡" B) if there is a RAM

with oracle B that decides "x e A?" in time O(ltl)'
'we assume here that a RAM with oracle B has a sepa,rate infinite array of query-

registers into which it can write a.ny string y € {0, 1}* (one bit per register) for which

it wants to find out whether y € B. After each execution of the additional instruction

oRAcLE QUERY the answer to this question can be found in the first register (and

all query registers are erased).

Note that (¡¡. is tra.nsitive. one calls the equivalence class of :¡. linear (time)

degrees.

Remark. The main interest in linea¡ time reductions a¡ised from the fact that .4 í¡"
B implies that,4. <6: B (i.e. the time complexity of ,4. is less or equal to that of B). This

implication has provided the only successful means to compare the time complexity

of sets A and B. We will also use it in this way, for example to show that every

complexity type c contains a sparse set (corollary 8). (on the other hand we are

forced to provide in Theorem 1 a different method to show that á -6: B when we

given an example of sets ,4. and B of the same time complexity but incomparable linear

time degree.)

In this v/ay one carì show for example that the time complexity of deciding whether

ar¡. und,irecteìl graph has a path from a distinguished vertex s to a distinguished vertex

Í is less or equal to that of the corresponding problem for ilirecleil graphs. Similarly

one can show that the circuit value problem (cvP) with the requirement that the

gate records in the input are sorted according to gate numbers has exactly the same

time complexity as CVP without this requirement (the reduction from the latter to

the former version exploits that a RAM can sort in linear time).

Less obvious linear time reductions have been constructed for example by Dewd-

ney [D] (he shows in particular that SATISFIABILITY :ri^ 3 - COLORABILITY

:r" SET-SPLITTING and that BIPARTITE MATCHING :r^ VERTEX CONNEC-

TIVITY (,,are there > fr disjoint uu-paths in G, for u,u, k given"); note that the latter

problems a¡e known to be in P) and Grandjean [G1], [G2] (he shows that some nat-

ural NP-complete problems B are :rlot h DTIMEro.i.s -'"ti."(n) by showing that

A <1in B for every A e NTIM E(n)).

Theorern 1. Every complexity rypec l0 contains incomparable linear time degrees.

In order lo proae this theorem we construct for an a¡bitrary given complexity type
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c l0twosetsá,8 e cwith AlioB (i.e.,4 lri" B andB lti^ A). Theonrynontrivial
part of this construction is to find suitable requirements whose satisfaction implies that
the constructed sets A,B are of the given complexity type C. It is quite easy to find
such requirements if c is a principal complexity type, where we call a complexity type
C principal if there exists a time bound Íc e T s.t. for any A e C

' {f erge DTIME6)}: {/ € 
"l(/: 

o(.fc)}

(i.". fc is an "optimal time bound" for sets A e C).

' The Cook-Reckhow construction of a diagonalizing RAM [CR] provides, for every

f eT, aset á whose complexity typec is principal and where fc:: f is a.n "optimaJ
time boundt' for C.

on the other hand Blum's speed-up theorem ([B], [My]) implies that there are sets

A e P whose complexity type C is non-principal, e.g. one can construct a set 4 for
which

{ftA e DrrME(f)}: 
{rr=, 

e N(r: "(d;))}
In order to construct sets á of an arbitrary given complexity type c (principal or

non-principal) we use as a tool characteristic ?-sequences (which are certain effective
sequences of indices). \¡y'e will show in Lemma 2 that one can associate with every
complexity type C a characteristic ?-sequence (ú¡)¡.¡ s.i.

{f e rlA € DTIME(f)} : {/ e 
"l3i 

e N(/(") : o({¿¡}(n)))}

for every A e c (we say ihen that "(f;)¡eN is characteristic for c"). This fact is
complemented by Lemma 3, where we show that for any cha.racteristic ?-sequence
(f¡)¡eN there is a complexity type c s.t. (ú¡);ç¡¡ is characteristic for c. Furthermore
the construction method of Lemma 3 reappears in the proof of Theorem 1 to ensure
that the constructed sets,4, B areof the given complexity typec. we a.rrange that

' their sets of time complexity bounds are characterized by the same ?-sequence that is
characteristic for c. Thus, we avoid the usual device of achieving A:c B via showing

i that A:¡n B.

Deflnition. (fr)reN Ç N is called a characteristic ?-sequence if t : i t--+f¡ is recursive
and

a) Vi e N({¿;} € ? and program ú¡ is a witness for the time-constructibility of {t;})
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b) Vi,n e N({f¡11}(n) S {¿¡X")).

Lemma 2. ("inverse of the speed-up theorem"). For every recursive set Á there exists

a characteristic ?-sequence (f¡)¡eN such that

vf er@ e DTIME(f) <+ 3i e N(/(") :O({t¡}(n)))).

Lemma 3. (,,refinement of the speed-up theorem"). For every characteristic ?-

sequence (ú¡),e* there exists a recursive set á such that

vf eT(A e DTIMEU) e 3i e N(/(") : fi({t;}(n))))

Remark. The proof of Lemma 3 is somewhat more delicate than the usual proof of

the speed-up theorem because {ú¡+r} need not be a strictly slower growing function

than {ú;} (in fact we have in general that for many i both functions a¡e the same, and

{t;..1} may even have a larger time-constructibility-factor than {f ¡}). In both lemmata

we exploit that our concepts are rather concrete (in particular that we consider only

time constructible functions and a specific machine model).

Idea of the proof of Theorern 1. Let (f¡)¡eN be a characteristic ?-sequence for

the given complexity l:ype C. Construct sets ,4,8 s.t. both,4lti^B and for all / e

? the set á (or the set B) is in DTIME(/) itr "f(tr) : O({t;}(n)) for some i €

N. Use ihe priority method to handle conflicts between the resulting tr'i'o types of

requirements. I

Remark. Although it is the main goal of our approach to study the fine structure

of P, it also yields some new results (and open problems) about polynomial time

reductions. In particular it allows to make the "upper bounds" of the constructed

sets more precise (insiead of making the sets just recursive). As a sample we give the

following result, which is proved with the same arguments as Theorem 1'

Theorem 4. A complexity type c contains sets -4, B that are incomparable w.r.t.

polynomial time reductions if and only if C ç P-

one may ask whether it can happen that two sets .4., B of the same complexity type

have "no common information", i.e. that they form a minimal pair w.r.t. linear time

(resp. polynomial time) reductions.
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Theorem 5. There a¡e recursive sets .4, B of the same complexity type c such that
A,B form a minimal pair w.r.t. linea¡ time (resp. polynomial time) reductions.

The proof of this result combines methods from Cohen forcing a¡d from the proof
of Lemma 3 in a finite injury priority argument. It is not known whether such a pair
of sets exists in every complexity type.

It would be of some interest to characterize the structure of the linear time degrees

inside a given complexity type. The following result shows that these structures are

not all isomorphic (it also shows that linear time degrees play a significant role in the
analysis of complexity types).

Theorem 6. A complexity type c has a largest linea.r degree if and only if c is

principal (in fact if C is non-principal then it does not even contain a maximal linear
degree).

Finally we would like to mention briefly two other concepts that are of interest for
the fine struciure of P (although they have no direct analogue in classical recursion

theory): spa.rse sets and the padding operator.

Definition. -4 g {0, 1}* is sparse if n r+ card(án{0, 1}") is bounded by a polynomiar.

Deflnition. For arbitrary fu¡rctions s € ? we associate with every set ,4. Ç {0, 1}.
the s-paddin1 P"(A):: {rf;Q"(l,l)lx e A} of A.

Note that P" is in fact well-defined on complexity types (i.e. A :c B implies
P"(A) :c P"(B)) a¡¡d that P, projects complexity classes downwards:

A e DTIME(f) + P"(A) e DTIME(f o.-t).

Theorem 7. ("inversion of the padding operator"). Fix any s € ?. Then the map

C)A¿P"(A)eC'

' 
,.o* the complexity types into the complexity types is onto.

r Corollary 8. Every complexity type C contains a sparse set.

In order to derive this corollary from Theorem 7 one considers the padding function
s(n): 2" and exploits that there exists for every set .4 ç {0, 1}* some set B e {l}.
(thus B is sparse) with Pr"(,4) :rin B.
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Rernark. It is interesting to compare corolla.ry 8 with Mahaney's result [Ma] that

P + NP implies that there is no NP-complete sparse set.

Finally we would like to point out that there are of course many other interesting

aspects of the fine structure of P which we have not even mentioned here (some of the

other aspects will be discussed in a forthcoming paper).

Some open problems about the ffne structure of P:

1. Is there any "natural" A e P s.t. A ( DTIME(n)?

2. Are there relationships between the mathematical structure of a set á (e.g. com-

binatorial properties of a set .4, or other "extensional" properties) and its time

complexity?

3. what is the structure of linea¡ time degrees inside a complexity type c? In particu-

Iar: are those structures isomorphic for all principal (resp. non-principal) complexity

types C?

4. What is the structure of linear time degrees inside a complexity class DTIME(f)?

In particular: does this structure depend on / (for / superlinear)?

5. Are there besides the padding operators any other interesting operators on P? In

particular: is there some interesting notion of a 'lump"?

6. Are there sets A,B lhat are in the same complexity type (i.e. A and B have the

same deterministic time complexity) but which have different nondeterministic time

complexity (or: different space complexity)?

I
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