Acta Informatica 26, 93-122 (1988)

© Springer-Verlag 1988

Motion Planning Among Time Dependent Obstacles*

K. Sutner! and W. Maass?

! Stevens Institute of Technology, Hoboken, NJ 07030, USA
? University of Illinois at Chicago, Chicago, IL 60638, USA

Summary. In this paper we study the problem of motion planning in the
presence of time dependent, i.e. moving, obstacles. More spectfically, we will
consider the problem: given a body B and a collection of moving obstacles
in D-dimensional space decide whether there is a continuous, collision-free
movement of B from a given initial position to a target position subject
to the condition that B cannot move any faster than some fixed top-speed
c. As a discrete, combinatorial model for the continuous, geometric motion
planning problem we introduce time-dependent graphs. It is shown that
a path existence problem in time-dependent graphs is PSPACE-complete.
Using this result we will demonstrate that a version of the motion planning
problem (where the obstacles are allowed to move periodically) is PSPACE-
hard, even if D=2, B is a square and the obstacles have only translational
movement. For D=1 it is shown that motion planning is NP-hard. Further-
more we introduce the notion of the c-hull of an obstacle: the c-hull is
the collection of all positions in space-time at which a future collision with
an obstacle cannot be avoided. In the low-dimensional situation D=1 and
D=2 we develop polynomial-time algorithms for the computation of the
c-hull as well as for the motion planning problem in the special case where
the obstacles are polyhedral. In particular for D=1 there is a O(nlgn) time
algorithm for the motion planning problem where n is the number of edges
of the obstacle.

1. Introduction and Definitions

The classical piano movers’ problem is to plan the movement of a body B
in two or three dimensions from a given initial to a target position avoiding

Offprint requests to: K. Sutner

* During the preparation of this paper the second author has been supported in part by NSF
grant DCR-85-04247

94 K. Sutner and W. Maass:

collision with an obstacle 4 that remains fixed throughout the movement. A
variety of motion planning problems in various dimensions have been studied
extensively, see e.g. [SS1, SS2, R]. The moving object B may be a disk, a
rigid polygon, many jointed (see [R, HIW]) or indeed consist of several indepen-
dent parts as in [SS3, SY, Y]. In all these situations the obstacles are assumed
to be static, ie. they do not change position or shape as the object moves
from its initial to its final position. For any fixed B and sufficiently simple
obstacles polynomial time algorithms are known for the motion planning prob-
lem. It becomes intractable if the moving object is allowed to have unbounded
degree of freedom; e.g. it is shown in [HSS] that the coordinated motion plan-
ning problem for arbitrarily many rectangular bodies amidst polygonal obstacles
in PSPACE-hard, see also [R, SY].

In this paper we will study motion planning in the presence of time dependent
obstacles. We restrict our attention to the “robot navigation” problem where
an object B (the robot) moves autonomously among the obstacles. Furthermore
we will assume that the speed of B cannot exceed some arbitrary but fixed
constant ¢>0. The problem of steering a vehicle in the midst of other moving
vehicles provides a typical example for this type of motion planning problem.
In this case the obstacles are themselves physical bodies with fixed shape and
move along certain paths. We do not wish to restrict ourselves to this situation
through: more generally a time dependent obstacle may be viewed as any con-
straint on the set of allowed positions of B that varies in time. A traffic light
for example can be modelled by a forbidden line that occurs periodically. Our
model assumes complete information, i.e. all the obstacles are completely speci-
fied and thus all the forbidden positions are known from the beginning.

One should notice that a dynamic motion planning problem with time depen-
dent obstacles involving D spatial dimensions is quite different from a D+ 1-
dimensinal classical movers’ problem with static obstacles: movement along
the additional time axis is forced and irreversible. This leads to a new phenome-
non: B may be in a position where it does not even touch an obstacle (a so
called free position), yet it is doomed to collide with it at some later moment.
The collection of all such positions will be called the c-hull of the obstacle.
The boundary of the ¢-hull corresponds to the manifold of semi-free positions
in the classical problem: it is the set of all positions where a collision can
just barely be avoided.

There are two basic possibilities concerning the descriptions of the obstacles.
First one can specify an obstacle in two pieces:

— its geometrie shape, expressed as a D-dimensional subset of space,
— 1its placement in space as a function of time.

Alternatively one can describe a moving obstacle as a D + 1-dimensional point-
set in space-time. This includes changes in the shape as well as the location
of an obstacle. We will give algorithms for the special case where the obstacles
the polytopes (for D=1, 2) that are polynomial in the number of vertices of
these polytopes. The first approach is of interset in particular for periodic move-
ments that occur e.g. in rotating objects. It is rather difficult to measure the
complexity of the corresponding point set in space-time: even for very simple
rotational movements this set fails in general to be algebraic.

Motion Planning Among Time Dependent Obstacles 95

As one might expect, the problem becomes intractable if one allows a concise
description of obstacles in terms of their shape and some periodic movement.
In order to prove PSPACE-hardness we will introduce a combinatorial, discrete
analogue of the geometric, continuous motion planning problem. We will refer
to these combinatorial analogues as time dependent graphs (td-graphs). A td-
graph models the following simple case of a motion planning problem with
time dependent obstacles:

— only finitely many locations exist,
— some of these locations are periodically occupied by an obstacle,
— movement between locations is limited and carries a time cost.

Using td-graphs our PSPACE-hardness proof proceeds in two steps: first we
will simulate linear bounded automata acceptance by a path existence problem
for td-graphs. The crucial idea in the simulation is to encode tape inscriptions
by time. A configuration of the machine then corresponds to a vertex in a
td-graph and a computation can be construed as a path in that graph. Accep-
tance is thus reduced to the existence of a path from a certain source vertex
to a target vertex. In a second step one can then simulate path existence in
td-graphs by a concrete motion planning problem in two dimensions. The obsta-
cles will have very simple rectangular shape and either be stationary or only
move parallel to the axes. In particular no rotational movement will be required.

The discrete problem is also of interest in its own sake: motion planning
for a train in a railroad network for example is readily expressed as a reachability
problem for a td-graph. We hope to present a more thorough discussion of
td-graphs in a future paper.

As an underlying computational model will use a real RAM, i.e. a random
access machine that can handle real numbers as basic objects and has primitive
operations such as k-th roots and trigonometric functions available at unit-cost.

The paper is organized as follows: in Sect. 1 we give the necessary definitions
and derive some basic properties of the c-hull and the collection of reachable
points. Then we introduce td-graphs in Sect. 2 and prove PSPACE-completeness
of a suitable path existence problem in td-graphs. Section 3 is devoted to a
simulation of the discrete problem by a dynamic motion planning problem
in two dimensions. This establishes PSPACE-hardness of a very simple form
of the motion planning problem. For the one-dimensional problem we prove
NP-hardness. Lastly in Sect. 4 we give polynomial time algorithms for the one-
dimensional situation — which unlike the classical movers’ problem is not trivial
— in the case where the obstacles are given as polyhedra in space-time. We
also give an outline of the solution for the two-dimensional case.

Upon completion of a draft of this paper we learned that J. Reif and M.
Sharir had independently achieved similar results at about the same time; see
[RS]. In particular their paper contains a direct simulation of linear bounded
automaton acceptance in terms of a motion planning problem in three-dimen-
sions.

Motion planning problems are most conveniently expressed and studied
in space-time. For our purposes space-time is the D + 1-dimensional real vector-
space R? x R. Space-time will be construed as having D space dimensions and

96 K. Sutner and W. Maass:

one additional time dimension. A point p in space-time is a position; thus
p=(x, t)eR” xR where x is the location of p. Let T((x, t)):=t be the natural
projection from space-time into time. For two positions p and q ray(p, q) denotes
the one-sided infinite ray that starts at p and passes through q; [p, q] denotes
the line segment with endpoints p and q. K, (p) denotes the closed sphere of
radius ¢ around p.

Let H.:={(x, 7)|xeRP”} be the hyperplane perpendicular to the t-axis with -
t-axis intercept t=1. For any subset X of space time let X (1):==X nH, be the
projection of X at time 7. As usual clos(4) will be the closure of A, int(A)
its interior and 04 its boundary. S”:=0K,(0)=RP*! stands for the surface
of the unit sphere in space-time. For eeS? let ray(p:e) be the ray starting at
p in direction e, thus ray(p:e)={p+ae|a=0).

Lastly let N be the set of natural numbers and N the set of positive natural
numbers. For neN set [n]={1,2, ..., n}.

Obstacles and the Moving Body

Throughout this paper we will not allow B to rotate. Furthermore we will
insist that B is a D-dimensional closed polyhedron. A (compound) obstacle is
a finite collection A=A, ..., 4, of atomic obstacles; an atomic obstacle is a
(D + 1)-dimensional closed polyhedral subset of space-time. An atomic obstacle
is described either

— explicitly as a polyhedral pointset in space-time or
— Iimplicitly as a D-dimensional compact polytope C that represents the shape
of the moving object plus a description of its movement.-

Again we disallow any rotational movement. An implicitly defined obstacle
will frequently be identified with its trajectory, ie. the set of positions in space-
time occupied by it. Note that this trajectory forms a closed subset of space-time.
We do not require the trajectories of different atomic obstacles in a compound
obstacle to be disjoint.

c-Paths

A path P is a curve in space-time parametrized by time; thus P:] - RP*!
where I <R is a possibly infinite interval and T(P(t))=t. It may be construed
as the world-line of a particle moving through space. Throughout this paper
a path will always be continuous and piecewise continuously differentiable. Now
fix a positive constant ¢ once and for all. ¢ denotes the maximum speed of
the moving object B (though not of the time-dependent obstacles). A path P
is called a c-path iff the speed of a particle whose world-line is P never exceeds
c.

Note that the movement expressed by a c-path is not required to be smooth
(ie. speed may change discontinuously).

Motion Planning Among Time Dependent Obstacles 97

As body B is restricted to purely translational movement and not allowed
to rotate its movement in space-time can be completely described by

— a fixed orientation B and one fixed base point of B
— the path for trajectory of the base point (which is of course a c-path).

Let us agree that B<RP is given in the proper orientation and contains the
origin which will serve as base point. We let B(p) denote the set of positions
occupied by B when placed at position p; thus pe B(p)= {p+b|beB}.

Implicitly defined obstacles are handled in the same way. However, unlike
with body B obstacles will be allowed to disappear and reappear. Therefore
the path for an obstacle may have as domain a collection of closed intervals
I=UI,.

We will need a little bit more terminology. Let y:= atn (c) be the maximum
slope of a c-path. For a straight line L in space-time let its inclination incl(L)
be the angle between L and the time-axis, 0 <incl(L) < n/2. For an affine subspace
K let incl(K):= inf(incl(L)| L= K). Also let S, := {eeSP]incl(e) <y}.

Lastly define cone(p):= cone, (p) U cone _ (p) where

cone, (p):= U{ray(p:e)|eeS.} and cone_ (p):= U{ray(p: —e)|eeS,}.

Observe that for any c-path P: R—R?*! and any time © the whole path P
is contained in cone(P(t)).

Free Positions & Admissible Paths

Now let A be a compound obstacle, A=A4,,...,A,, and B a body to be moved
about. A position p in space-time is called free with respect to A iff B(p) does
not intersect any of the 4, ..., 4,,. A position p in space-time is called semi- free
with respect to A and B iff B(p) does not intersect the interior of any of the
Ay, ..., A,. A position that fails to be semi-free is called forbidden. A c-path
is said to be A, B-admissible (or simply to avoid A) iff P contains no forbidden
positions with respect to A and B.

Hence if B moves along a path that avoids A it may touch the obstacle
but will not collide with it. Using the “inflate-and-shrink” method described
in [LPW] one can expand the obstacles and shrink B to a point B,. The inflated
obstacle Ay has the same properties with respect to motion planning for B,
that A has with respect to B: c-path P is A, B-admissible iff P is A 8> Bo-admissible
iff P does not intersect the interior of A. Note that A is again a polyhedral
set of positions in space-time.

To simplify notation we will assume from now on that, unless explicitly stated
otherwise, B is a point.

One way to determine whether B can move from some position p to p’
avoiding obstacle A is to compute the set of all positions that can be reached
from p:

R(p; A):={q|there is an A-asmissible c-path from p to ¢}.

98 K. Sutner and W. Maass:

Then p’ can be reached from p iff p'eR(p, A). For the empty obstacle 4=0
clearly R(p; @)=cone. (p). See Sect.4 for an explicit computation of R(p; A)
for polyhedral obstacles using plane and space sweep techniques.

The c-Hull

Consider the following rudimentary form of a motion planning problem: Given
an obstacle A and a source position p=(x, t) is it possible for B to start moving
at position p and avoid collision with A indefinitely?

In other words, is there an A-admissible c-path P: {teR|t>t} - R”*!. Any
such a path will be called an escape-path from p. The collection of points that
fail to have an escape-path will be called the c-hull of A :

c-hull(4):= {peRP*!|there is no escape-path from p}.

Figure 1 shows the c-hull of an obstacle in one dimension for ¢=1. Notice
that for infinite speed c=o00 the c-hull of a convex open obstacle coincides
with the (interior of the) obstacle.

One can use time-inversion to define dual notions like co-reachability,
co-R(p; A)={q|peR(q; A)}, so-escape-path, co-c-hull and so forth. A position
in the co-c-hull for example can be reached only from positions within the
co-c-hull. The arguments for all these dual notions are exactly the same as
for the ordinary notions and will therefore be omitted.

Suppose the top-speed ¢ is fixed once and for all. There is a variety of
decision and search problems associated with motion planning in the presence

Space

Time

Fig. 1. The c-hull of a compound obstacle in one dimension

Motion Planning Among Time Dependent Obstacles 99

of time dependent obstacles. We will here focus on reachability problems: given
an obstacle A, a source position p=(x, t) and a target position p’=(x’, t') decide
whether there is an admissible c-path from p to p’. Similarly one might specify
only a target location x’ and ask whether for some ¢ >t there is an admissible
c-path to p":= (x/, t'). A deadline T can be imposed so that one has to determine
the existence of an admissible c-path to p':= (x/, t') for some time ¢/, t<t'<T
Formally these motion planning problems are defined as follows.

Position-to-Position Reachability Problem

Instance: An obstacle A, source and target positions p=(x, t) and p’'=(x', t).
Question: Is there a c-path from p to p’ that avoids obstacle A?

Position-to-Location Reachability Problem

Instance: An obstacle A, a source position p=(x, t) and a target location x'.
Question: Is there a time ¢ >t and a c-path from p to p'=(x, t') that avoids
obstacle A?

Position-to-Location Reachability Problem with Deadline

Instance: An obstacle A, a source position p=(x, t), a target location x’ and
a deadline T=t.

Question: Is there a time ¢, t<t'<T, and a c-path from to p'=(x/, t') that
avoids obstacle A?

Beyond deciding whether a position or location can be reached one would
naturally like to construct an appropriate c-path. For example one might wish
to construct the shortest or safest c-path leading from one position to another.
We will not address these problems at this point. However, we will study the
problem of computing the c-hull:

Hull Problem

Instance: An obstacle A.
Output: The c-hull of A.

Note that a solution to the Hull Problem also provides a solution to the Escape
Problem which is to determine whether there exist an escape path from a given
position.

In the remainder of this section we will derive simple topological properties
of the set of reachable points and the c-hull that are implicit in our definitions.
For example the fact that we allow c-paths to have speed less than or equal
to ¢ (rather than just less) and our choice of obstacles and B as closed sets
have the consequence that R(p; A) is a closed set in space-time. The results
in this section do not use our assumption that A is a collection of polyhedral
sets.

Lemma (1.1). Let A be an obstacle, p a position. Then R(p; A) is a closed set
in space-time.

Lemma (1.2). Let A be an obstacle. Then the c-hull of A is an open set in space-
time.

100 ’ K. Sutner and W. Maass:

Proof. We will only show that R(p; A) is closed. the argument can easily be

modified to provide a proof of Lemma 1.2. Let P =(Xo, to) be the given position

and assume that (9));20 is a sequence of positions in R(p; 4) that converges

against some position g=((x, t)=lim g;. It is safe to assume that p=+q, whence
J=

t>ty. For every j=0 pick a c-path P, from p to q; that avoids obstacle A.
In general there are globally different c-paths from a source to a target position,
therefore the sequence (B);s o may fail to converge. However, by the theorem
of Arzela-Ascoli (see e.g. [DS, IV.5.7]) there is a uniformly convergent subse-
quence (F);» . Define a path Q: [1,, {]— R?*+! by Q:=1lim P, .

Then Q is a c-path, Q(to)=p and Q(t)=gq. Furthermore Q must avoid A,
for otherwise we would have that B, intersects int(A) for some i >0, contradicting
the fact that P, is A-admissible. Thus q is reachable from p and we are done. O

The following lemma shows that escaping from one convex obstacle is either
trivial or impossible: if there is an escape-path at all, then there actually is
a straight escape-path of the form ray(p: e) for some eeS,.

Lemma (1.3). Let A be a convex obstacle and p a position such that there exists
an escape-path from p. Then there actually is a straight escape-path from p.

Proof. Case 1: A is bounded in time.

Lett,:= max(T(q)|geA)+1. Let Q be an escape-path starting at p,=(x,, t,)
that exists by our assumption, Q: {reR|t21,} »RP*! For ¢ on Q, g*p,,
consider the ray ray(p,, q). We will show that for some ¢ ray(p,, q) does not
intersect the interior of obstacle A.

For the sake of a contradiction suppose otherwise. Define two maps:

£ g {teR|t>t} > RP*1,

J(z):= first point in ray (p, O(1)NA,
g(t):= last point in ray (p, O(1))NA.

See Fig. 2 for an illustration. Both [and g are well-defined as ray(p, Q(t))n A
is closed and bounded. For all 1>ty we have T(f(1))< T(g(1)). Also observe
that t<T(f (7)) for © very close to to and T(g(z;))<t,. Hence by continuity
thereis a ¢, t,<t'<t,, such that T(f(t)=SYZT(g(@)).

Now set ¢':= Q(t'). Note that ray(po, q') is a c-path. To obtain a contradiction
it thus suffices to show that ray(po, q') is admissible, i.e. it fails to intersect
int(A4). This follows from the next claim.

Claim. ray(p, q') is tangent to A.

Proof of claim: First let gq,:=f (t) and g,:=g(t'). By the definition of f. g and
the convexity of A we have (41, g:]=ray(py, ¢') n A. Now suppose ray(py, q')
intersects int(A), say in point re[q,, q,]. We may assume without loss of general-
ity that ¢’ lies between q; and r, the other case being entirely similar. Then
for some positive ¢ K,(r)cint(A). By the convexity of A the cone with apex
9. generated by the line segments [g,, r'] as r’ ranges over K,(r) is a subset
of A. But ¢’ is contained in the interior of this cone, hence q' lies in the interior
of A, contradiction.

Motion Planning Among Time Dependent Obstacles 101

Space

Time)
Fig. 2. Escaping from a convex obstacle

Case 2: A unbounded in time.
Assume for the sake of a contradiction that there is no straight escape path.
Define a map

f: S, —»RP*! by f(e):= thefirst pointinray(p:e)n A.

f(e) exists by our assumption and is clearly continuous. Recall that S, is compact,
so f[S.] is compact. Now let ¢, == max(T(f[S.])) and truncate A at time ¢, + 1.
The truncated obstacle is again convex as the intersection of two convex sets,
it is bounded in time and does not admit any straight escape paths. This contra-
dictscase 1. [

Using Lemma 1.3 we will show in a moment that the c-hull of a convex
obstacle is again convex: it is the intersection of all open half-spaces whose
boundary hyper-planes contain escape-paths. Note that contrary to the classical
movers’ problem one now has to deal with the difficulty that some of the surface
patches of A may not contain any c-paths (even if the surface patch is planar).

Consider for example in one dimension an obstacle of length 1 that moves
perpetually at speed, say, 2¢. Then A is a strip in space-time whose boundaries
are parallel lines L, and L, of slope larger than y. Suppose L, precedes L,
with respect to time. Then every admissible c-path that contains a point of
L, ends there. Hence the c-hull of A is the half-plane defined by L, that contains
L.

For a point p on the surface of A to lie on the boundary of the c-hull
it is clearly necessary that locally around p there is a c-path starting at p.
We will show in Theorem 1.4 that this condition is also sufficient if A is convex.

To this end suppose A is a convex obstacle. A hyper-plane H that does
not intersect the interior of A is said to avoid A. For any hyper-plane H that
avoids A let us introduce the following terminology. H _ denotes the open half-

102 K. Sutner and W. Maass:

space defined by H that contains int(A) and H, is the complement of H_,
H,:=RP*'—H_. Thus H, nAcdA. Also let e be the unit normal vector
for H oriented in such a fashion that, for all p on H, the point p+ey lies
in H. H will be called posterior iff T(ey)>0:

A typical example of a posterior plane is H,.={(x, 1)|xeRP} provided that
A contains no positions with time component larger than 1. The next proposition
follows readily from the definition of a posterior hyper-plane.

Proposition. Let H be a hyper-plane that avoids A and p=(x,t) a position in
H_ . Then:

(1) H posterior implies that ray(p:0) in an escape-path for p

(2) if H is not posterior then for t,=t: p,:= (x, t1) lies on H.

Theorem (1.4). Let A be a convex obstacle. Then the c-hull of A is the intersection
of all open half-spaces H_ that contain its interior and whose boundary hyper-
plane H has inclination at most y or in posterior:

c-hull(A)=N{H_|H avoids A, H posterior or incl(H) < 7}

Proof. Let 3 denote the collection of all the half-spaces as in the statement
of the theorem. We will first show that any point p=(x, t) in the c-hull must
also lie in N 3.

Let H be an arbitrary hyper-plane H in 3. Suppose for the sake of a contra-
diction that peH,. By (1) of the proposition H cannot be posterior. Hence
we must have incl(H)<y. Let p,=(x, t,), t, =1, be a position on H as in part
(2) of the proposition. Then there exists an escape-path for p: combine [p, p,]
with any c-path on H starting at pi1; the latter exists as incl(H)<y. Hence p
is in the c¢-hull, contradiction.

For the opposite direction suppose p=(x, t) does not lie in the c-hull of
A. By Lemma 1.3 p has a straight escape-path P of the form ray(p:e). As A
and P are both convex there must be a hyperplane H that separates them,
ie. PcH, and int(A)c H_. This follows from the Hahn-Banach theorem, see
[DS, V.1.12]. Suppose H fails to be posterior and in addition incl(H)>y. We
are heading for a contradiction, so it suffices to show that under these assump-
tions P must intersect H _. To see this let us assume, without loss of generality,
that the origin lies on H. Thus H={xeR”*'|xoey=0}. Furthermore, P=
{p+aela=0} for some ecS,. Now (p+ae)oey=poey+oa-eoey and poey=0
as peH .. On the other hand ecey <0 as H is not posterior and has inclination
larger than y. Thus for sufficiently large =0 the position p+ae lies in H_
and we are done. []

The following two corollaries show the similarity between c-hull and convex
hulls. ;

Corollary (1.5). The c-hull of a convex obstacle is again convex.

Corollary (1.6). If obstacle A is convex then the c-hull of A is the intersection
of all open half-spaces H_ where H is a hyper-plane tangent to A that is posterior
or has inclination at most 7.

Motion Planning Among Time Dependent Obstacles 103

In particular if A a convex polyhedron then the c-hull of A is again a convex
polyhedron. Exactly those faces of A that belong to posterior planes or have
inclination at most y are also faces of the c-hull. Our next result provides a
description of the c-hull in the general situation in terms of escape-paths.

Lemma (1.7). Let A be an obstacle and p a position not in its interior. Then
p lies on the boundary of the c-hull of A iff there exists an escape-path from
p and every such escape-path has initial speed c. Indeed, there is an escape-path
that has an initial segment of the form [p, p'] of inclination y where p’ lies on
the boundary of A.

Proof. Let C:= c-hull(A) and p,=(x,, t,) a position on the boundary of C but
not in int(4). By Lemma 1.2 C is open, so p, must be have an escape-path
P:{teR|t=t} >RP?*!. Set

I:={t=ty|Ye[ty, t]([po, P(r)] is admissible)}.

Claim. For all te! the inclination of [p,, P(¢)] is equal to y. As P is a c-path
sois [pg, P(t)], whence incl([p,, P(t)]) £ 7. So assume that for some ¢, €I incl([p,,
P(t,)])<y. Then for some point p, on [p,, P(t,)] sufficiently close to p, there
is a positive ¢ such that K,(py)=cone_(p,). But then every position g in K,(p,)
not in int(A) has an escape-path: combine [g, p,] with [p,, P(¢,)] and the
remainder of P.

Hence if I is unbounded then P is really a ray and we are through. If
on the other hand I is bounded then there must be a t,e€l, t, >t,, such that
p1==P(t,) lies on the boundary of A. For otherwise an argument similar to
the one used in the proof of the claim could be used to show that for some
1>0: sup(l)+71€l. As [py, p1] and GA are closed, they intersect in some first
point p" and the proof is finished. [

The first position g, where an escape path for p touches A will be called
the escape-point for p. Note that the escape-point is in general not unique,
e.g. the position corresponding to the tip of the c-hull displayed in Fig. 1 has
two escape-points associated with it. However, the collection of all positions
with more than one escape-point forms a set of measure O.

The boundary of the c-hull of A can now be described as follows: it consists
of surface patches of A and portions generated by line segments [p, q,]. Again
in the special case where A is polyhedral and, say, D=2 one can show that
escape-points are always interior points of the edges of A or non-convex vertices.
In Chap. 4 we will use this description of the c-hull to given polynomial time
algorithms for its construction.

2. Time Dependent Graphs

We now introduce a discrete combinatorial model for motion planning in the
presence of time-dependent obstacles. Suppose body B can be placed at only
finitely many locations. It is convenient to think of these locations as the vertices
of a direct graph H where an edge (x, y) indicates the possibility to move from

104 ' K. Sutner and W. Maass:

location x to location y. For an application of this idea to the static motion
planning problem see [SS1]. In a dynamic environment where obstacles move
about and the movement of B is subject to a speed limit H can be augmented
in the following way. Every edge (x, y) has a positive cost associated with it,
corresponding to the amount of time needed to travel from x to y. Furthermore,
a vertex may be in state 0 or 1: a vertex in state 0 at time ¢ represents a
location that is currently occupied by an obstacle and therefore cannot be used
by B. Similarly a vertex in state 1 at time ¢ represents a location can be used
by B. The augmented graph will be called a time-dependent graph, or td-graph
for short. Motion planning can now be expressed as a path existence problem
in a td-graph: one has to find a path from source vertex to a target vertex
of prescribed total cost that uses only vertices in state 1. More formally define
a td-graph as follows:

Definition. Time-Dependent Graph (td-graph). A time-dependent graph H®
={(H, 4, ¢) consists of:

— a finite direct graph H={V, E), possibly containing self-loops, called the
static graph of H®,

— an edge labeling A: E— N, called the delay function of H®,

— a periodic function ¢: Vx N — {0, 1}, called the status function of H*. Period-
ic here means that for some positive integer = and all t=0, veV: a(v, t))=
o(v, t+m).

H®” can be interpreted as a locally finite, infinite directed graph H® =

(V*, E*) where vertex set V' and edge set E* are defined as follows:

Ve={(x,t)eVx N|o(x,t)=1} and
E*:={((x,1),(y,)eV® x V®|(x,y)eE As—t=A(x, y)}.

We will usually write v' instead of (v, t) for the t-th copy of vertex v in H®,
t=0. The vertices in H® will be called nodes (to distinguish them from the
vertices in H). The least =1 such that o(v, t)=0(v, t+n) for all =0, veV,
is called the period of H.

With a view towards the Position-to-Location motion planning problem
introduced in the last section let us define the following node-to-vertex path
existence problem for td-graphs:

Path Existence for Time-Dependent Graphs (PETD)

Instance: A td-graph H*={H, 4, o), a source node x* in V* and a target
vertex y in V.
Question: Is there a directed path in H* from x® to)’ for some t 2 s?

Similarly one can introduce note-to-node and note-to-vertex with deadline path
existence problems. For our purposes here the node-to-vertex version is most
convenient, therefore we will focus on PETD as defined above. All our arguments
are easily modified to deal with the other two versions. To assess the computa-
tional complexity of PETD one has to agree on a way of coding the status
function. We will here assume that o is given as list 6 =<{o,: ve V) of component
functions ¢, : N — 2 with the understanding that o (v,) =0, (). Component func-

Motion Planning Among Time Dependent Obstacles 105

tion o, in turn is represented by a simple on-line program using only statements
of the following form:

Z,=a
Zy=2Z,

2117 =2Zy+ 25
Zyi=Zy;— 23

Zl==22 mOda

z,:=if z,=0 then z;elsez,.

Here aeN is a constant and all the variables z; are supposed to range over
the natural numbers. Clearly ¢,(t) can be computed in time polynomial in the
size of o, and lg ¢ (for our purposes it actually suffices to insist that o,(t) be
computable in polynomial space).

The size of td-graph H® is then the total number of bits needed to specify
H, A and o and thus O(n*-Ig Ay +n-L-1g K) where n:=|V|, 4,:=max(4(e)|ecE),
L in the maximum number of instructions in any of the programs describing
o,, veV, and K is the largest constant occuring in these instructions. Thus
o,(t) can be computed in O((L+1g K +1gt)?) steps. Also note that a node v*
of H® can be specified in O(lg n+1g 1) bits.

Hence, given two nodes u" and v”, one can test whether edge (v, vP) is in
E® in time polynomial in the size of H®, " and v?. It follows that PETD
i1s in PSPACE, in fact PETD can be solved in non-deterministic linear space
and thus in PSPACE by Savitch’s theorem as the following algorithm shows:

ui=x
while u %)
do

non-deterministically pick a new node v? in H*®
verify (u”, vP)e E*
u =0’

od

return(YES)

We will see that path existence in td-graphs is actually PSPACE-complete even
for very simple status functions. The remainder of this section is devoted to
a proof of the following theorem.

Theorem (2.1). The Path Existence Problem for time-dependent graphs is
PSPACE-complete.

Proof. We have already shown that PETD is in PSPACE. To prove PSPACE-
hardness we will give a polynomial time transformation from linear bounded
automaton (LBA) acceptance to PETD. The basic idea is to construct a td-graph
H, for all n= 1, whose vertices v* can be construed as an instantaneous descrip-
tion of a LBA M during a computation on some input of length n: the current
tape inscription is coded by time t and vertex v in H, codes the current state
and head position. H, consists essentially of n copies of a graph H that represents

106 - K. Sutner and W. Maass:

the finite state control of M, interconnected in a suitable fashion. The whole
computation of M then corresponds to a path in Hy starting at a node that
represents the initial configuration with input x.

So let M=<0Q, q;, gy, qn» 0y be a deterministic linear bounded automaton
with tape alphabeth X ={0, 1}; here g, is the initial state, gy and gy are the
accepting and rejecting final states respectively and ¢ is the transition function.
Our notion of Turing machine for this proof will be slightly non-standard;
however, it is easy to see that any Turing machine in the sense of a standard
definition can be converted into one of our machines (in fact the conversion
could be effected by a polynomial time transducer). For the rest of the argument
we will assume that M has the following properties:

1) The set of states Q —{qy, gy} is partitioned into five classes
QT: the set of pure transition states
OR: the set of read states
QW,: the set of “write-a-zero” states
QW,: the set of “write-a-one” states
OM,: the set of “move-head-to-the-left” states
OMy: the set of “move-head-to-the-right” states.

In a single step M can either perform a pure transition, a read/write operation
or move the tape head but not two at a time. Further we insist that M accepts
or rejects only with its head positioned at cell number one; the machine then
goes into an infinite loop and stays in the same state gy or gy forever.

2) The only time M uses information on the tape is during a read transition.
Therefore the transition function 6 can be assumed to have the following format:
8=06,u0, where 8,: QRxZ—Q and &,: Q—QR—{qy, qn} = Q. To simplify
notation let g,:= d;(g, i) for every read state g and ie X. Let Q':={q;|qe QR nie X}
be the target states of all read transitions. It is safe to assume that for g&=peQR
we have g;#p; for i, jeZ.

3) A write state shall occur only if the currently scanned tape cell contains
a symbol different from the desired one. This can be insured by a read transition
preceding the write transition (here peQW)):

Jo— D

{ l write 1

q—0

This completes the description of M.

Now suppose M=<Q, q;, gy, dn» 0y is @ LBA as specified. A computation
of M on an input xeZ* of length n will be simulated by a path in the following
td-graph H?X =(H,, 4,, 0,):

(1) First define the transition diagram of M to be H:=<Q, E) where

E:={(q,65(q)|q¢ QR U {qy, qn}} v {(4: 40). (9, 91)1a€OR} U {(4, 9)| g€ {qy, qn}}-

Introduce a labeling A: E— {—1, 0, 1} as follows:

Ag,p)=0 for g¢OMrUQM,
Ag,p)==+1 for qgeQMy and A(q,p):==1 {for geQMy.

Motion Planning Among Time Dependent Obstacles 107

Now let H, be the product graph (V,, E,> with vertex set V,:=Q x [n] and

edge set
E,={((p,1),(@)|(p,9)€E Ai,je[n] Aj—i=A(p, q)}.

Thus H, consists essentially of n disjoint copies of H; however, edges starting
at a “move-right”/“move-left” vertex q in the i-th copy end in the appropriate
vertex p in copy number (i + 1)/(i—1). A vertex in H, thus naturally corresponds
to a state p of M together with a head-position i, 1 Sisn.

(2) Now suppose e=((p, i), (¢, j)) is an edge in H,. Our objective is to code
tape inscriptions by time. More explicitly, for xe2" let val(x) be the natural
number whose binary expansion is x; 0<val(x)<2". Then tape inscription x
can be coded by all moments t such that ¢ =val(x) (mod 2"). Thus edge e should
have a delay of 2" unless p is a “write-a-zero” or “write-a-one” state. Writing
a 1 into the i-th tape cell for example can be accomplished by assigning a
delay of 27! (recall our proviso that we only write a 1 if the cell currently
contains a 0, ie. if the i-th digit in the binary expansion of ¢ is 0). Hence 4:
E,— N7 is defined as follows.

2" pEQW, L QW Uedy, qn}
p Lol cOW,
4 (= o peQW,
n 2 —Z peQWO
1 p=q€{dy, qn}-

(3) It remains to define the status function g,: V,xN — {0, 1}. 0, is used
to model read operations of M: suppose time ¢t codes some inscription with
a 0 in the i-th cell and q is read state. Then ¢, must be blocked at time t+2",
for otherwise a path could go from (g, i)' to (qy,i)"*". For all other vertices
(g, i) with g¢Q’ o, is constant 1. Here is the full definition of ¢, :

q¢Q’

t mod 2P <2' 71
271 <t mod 2*
t mod 2 <271
2i=1 <t mod 2

0,(g, i), 1) =1 q=p, forsome peQR

q=p, forsomepeQR

P—‘OO»—A»—:

To see that this is well-defined recall our convention that g; must be different
from ¢; whenever g+ ¢/, g, ¢ €QR. Also note that H> has period n=2".

This completes the description of H,’.

An instantaneous description (ID) of M is a triple C={gq, i, x)€Q X [n] x 2"
As mentioned above, we use time modulo m=2" to encode tape inscriptions.
ID C={gq, i, x) thus is represented by any vertex (g, i) in Hy with t=val(x)
(mod 2"). For two IDs C,; and C, let C,F*C, denote the fact that machine
M moves from ID C, to ID C, in exactly k steps. Now define

next(x, t):=min(z >t |t = val(x) (mod 2")

where xeZ" is a tape inscription and any time te N. Thus next(x, t) is the next
moment in time after ¢t that codes inscription x. Clearly next(x, t)<t+2" It

108 ‘ K. Sutner and W. Maass:

follows from our definition of H;? that

(q.5,x)F <p.Jsyy iff
(g, i), (p,j)"") isanedgein HY for all te N such that t = val(x) (mod 2").

Now consider the source node (q;, 1)'** in HP and the target vertex (qy, 1)
in H. Clearly

M accepts input xe 2™
iff <{q;,1,x>F¥{qy, 1, y)> for some ye 2", N=0
iff there exists a path in H® from (gq;, 1)"*** to (qy, 1)’ for some t = val(x)

iff H®,(gqy, 1)"%,(q,, 1)is a YES-instance of PETD.

Note that for any input x of length n the corresponding td-graph H;° and
target vertex are the same, only the source node varies according to x. Instance
H?®, (q;, 1)), (qy, 1) has size 0(|Q|*n®) and can thus be constructed from
the LBA M and input x in polynomial time. Therefore PETD is PSPACE-hard
with respect to polynomial time reductions and we are through. [J

Remark. (1) The proof of the last theorem can easily be modified to establish
PSPACE-completeness of the node-to-node version of the path existence prob-
lem: decide whether there is a path in H* from node v* to node u'. Let H,°
be defined as above and set d:=[Ig|Q|]+ 2. Then there are |Q|-n-2" < 2" different
ID’s of length n of M. Hence M has time complexity O(2%"). Now consider
the computation C,, C,, Cy, of M on input xe X", say C;=<q;, ji, X;p, iSN <2
To code the tape inscriptions x=x,, X, ..., Xy that occur during the computa-
tion set
tor=val(x) and t;,,=next(x;;,,t) for i<N.

Clearly ty<2"-2%41,<2"-2%"42"=:f(n).
Then M accepts input xe 2™
iff there exists a path in HZ from (q;, 1)"*'™ to (gy, 1)'™.

This shows that the node-to-node version of the path existence problem is
PSPACE-hard. In fact, the same argument also establishes PSPACE-hardness
of the node-to-vertex version of the problem with deadline: pick source node
(q,, 1)"™), target vertex (qy, 1) and deadline f'(n). This is indeed a polynomial
time reduction as f(n) can be specified in polynomially many bits.

(2) A very similar construction can be used to simulate a non-deterministic
LBA and indeed any Turing machine with a polynomial space bound S,,(x)
<p(x]). The underlying graph H, then has vertices Q x [p(n)] and the delays
are of the form 2! for i < p(n). Contrary to the deterministic case Hy here contains
vertices of out-degree larger than one and the (directed) sub-tree of H,;° with
root (g;, 1)"*® corresponds to the tree of all possible computations of M on
input x.

Motion Planning Among Time Dependent Obstacles 109

3. The Simulation

This section is devoted to computational hardness results. Our first objective
is to show that one can express the path existence problem for periodic time-
dependent graphs introduced in Sect. 2 in terms of a motion planning problem
with time-dependent obstacles, thus proving that motion planning is PSPACE-
hard. The simulation presented here is in two-dimensional space and uses only
rectangular obstacles that are restricted to translational movement. Suppose
H®=(H, 4, 0¢) is some td-graph. The vertices of the static graph H can be
represented by rectangular boxes in the plane that are connected via channels
corresponding to the edges of H. Body B moves from box to box through
these channels tracing a path in H*. The argument hinges on the fact that
time dependent obstacles moving inside the channels can force B to exit a chan-
nel after a certain fixed number of times steps upon first entering it.

Theorem (3.1). Motion planning in the presence of time-dependent obstacles in
two dimensions is PSPACE-hard even if the obstacles and the moving body are
rectangular and restricted to translational movement.

Proof: Let H®*=(H, 4, ¢) be a td-graph with, say, period n. we will show
how to translate the reachability problem for H® into a motion planning prob-
lem. The obstacle A to be described below depends only on H*. The reader
will find it useful to consult Figs. 3 through 5. We begin by describing the
stationary part of A. Let n be the number of vertices in H. A vertex v of H
with degree d, will be represented by a rectangular box called box, that has
d -many gaps of unit width at the top. The n boxes are lined up along the
x-axis and positioned parallel to the axes; the distance between two boxes is
n. The width of box, is 1, its length 2-d,— 1. The gaps of box, lead into d,-many

N
AN L

box,,

. Fig. 3. A vertex in H and the corresponding box

A B D Vi

Fig. 4. Movement of a fast obstacle and a safe position for B

y-axis

110 K. Sutner and W. Maass:

Delay

Intersections

Boxes

X-axis
Fig. 5. Global arrangement of boxes, channels and intersections

channels C, corresponding to edges e of H with source or target v. All channels
have width 1 and run paralle] to the axes. Boxes and channels are stationary,
Le. they never change position or shape. The horizontal extension of the boxes
and channels is thus O(n®). Body B is a square of length slightly less than
1 and is confirmed to move entirely within the boxes and channels.

One should think of time as being partitioned into slices S, S,, ..., S,, ...
of equal length 6; thus S,=[t0, (t+ 1) 6] where te N. During time slice S, box,
represents the node v’ in H®. At every gap of a box there is a time-dependent
obstacle that appears and disappears once during each time slice, thus closing
and opening the gap. The gaps together with their time-dependent obstacles
will be called gates. The gates in box, corresponding to in-edges of v are all
closed whenever gates corresponding to out-edges of v are open and vice versa.
If vertex (v, t)=0 then an additional obstacle will block box, during time slice
S, so that any collision free path has to avoid box, during the whole slice
S;. Furthermore, at the end of each slice, the whole box is blocked by an obstacle.
The interaction of gates and blocking obstacles is intended to force B during
each time slice to either enter, pass through and leave a box or to move a
little bit further down a channel. As every box has length less than 2n we
may choose c=3n to guarantee that B can pass through a box during one
time slice. Movement within the channels is forced: if B enters channel C, during
slice S, it will have to exit (at the opposite end) exactly during slice S+ 8e)-

Here J(e) is the delay caused by time dependent obstacles moving inside channel
C..

Motion Planning Among Time Dependent Obstacles 111

There are three major difficulties with this approach:

_ First one cannot always choose d(e)=4(e): for some edges e=(u, v) in H
the delay 4(e) may be less than the geometric distance between box, and
box,. To handle this situation set d(e) = A(e)+n-4n* where n is the period
of H®. Note that as far as PETD is concerned one may alter the delay
A(e) of an edge e by adding multiples of = without affecting the answer.
To be more precise, let H*=(H, 4, ¢) be a td-graph with period m. Define
a new delay function 4’ by 4":==A4(e)+k. 7 where k, is an arbitrary natural
number. Then H®, v* and u is a Yes-instance of PETD iff (H, 4',0), v’
and u is a Yes-instance of PETD. The geometric distance between box,
and box, is strictly less than 3n?, thus our choice of &(e) makes sure that
B can move from box, to box, in time o (e).

_ Second let 4,:=max(4(e)|ecE)= 1 denote the maximal delay associated with
any edge in H. 4, is in general exponential in the size of instance H*.
Thus one may have to achieve an exponential delay 4, in some channel
C, using only polynomially many atomic obstacles. This can be done by
moving O(1) obstacles so quickly that from the point of view of body B
(which cannot move faster than ¢), it appears that there are indeed exponen-
tially many obstacles moving down the channel slowly. See Fig. 4 for the
movement of a fast obstacle. The length of the channels as well as the speed
of the fast obstacles is O (4, +n-4n?) and can thus be specified in polynomial-
ly many bits.

— Lastly the channels will in general cross each other, even if H happens to
be planar. In order to make sure that B cannot skip from one channel
to another there will be four gates at every intersection of two channels,
allowing B to move along either channel but not to skip from one to the
other. The gates will be open in direction of the x-axis during the first
half of every time slice and in direction of the y-axis during the second
half. Intersections occur exclusively in the lower part of the arrangement,
see Fig. 5 for the global layout of boxes, channels and intersections. Note
that this last difficulty does not exist in three dimensions where one could
avoid intersections altogether.

Now suppose H®, v* and u is an instance of the node-to-vertex reachability
problem for td-graphs. Let obstacle A and body B be defined as above. If
Bis positioned inside box, at time s then there exists a collision-free path leading
to box, at some time t=s iff there is a path in H® from v* to v for some
t', s<t' <t. The instance of the reachability problem can clearly be computed
in time polynomial in the size of H*, v* and w. With Theorem 2.1 this shows
PSPACE-hardness of the motion planning problem with periodic obstacles. [

Remarks. (1) Note that the non-stationary obstacles all can be assumed to move
parallel to the axes. Similarly body B could be required to move only parallel

to the axes. Hence this restricted version of the motion problem is also PSPACE-
hard.

(2) The obstacles in the last proof fail to have disjoint trajectories — and
are therefore not readily identified with moving physical objects. However, this
can easily be amended: by making the channels and boxes wider one can have
all the non-stationary obstacles move entirely within them.

112 ' " K. Sutner and W. Maass:

(3) There are various alternatives to the given constructions. One could e.g.
code tape inscriptions and head positions by time. Or one could use exponential-
ly many obstacles that all move at speed no more than ¢ and that have a
uniform, polynomial description. However, we feel that the argument as given
is the most natural and straightforward one.

(4) A direct simulation of LBAs using rotating obstacles in three-dimensional
space was described by Reif and Sharir in [RS].

Dimension One: The Street Crossing Problem

We now turn to the one-dimensional situation: B has only one degree of freedom.
Motion planning now resembles the problem of crossing by busy street. Say
B has to be moved from position (0, 0) to (r, t). Then the interval [0, r] may
be construed as a street of width r and B wishes to cross as vehicles pass
by. Here B is of course not allowed to jaywalk. Call a c-path monotone if
its parametrization is non-decreasing as a function of real numbers, i.c. P: R—
[0,] such that for all t,<t,: P(t,) < P(t,). We will show that the street crossing
problem is NP-hard even if B is required to move along a monotone c-path.

Theorem (3.2). Motion planning in the presence of time-dependent obstacles in
one dimension is NP-hard, even if the obstacles are required to have disjoint
trajectories and the movement of B is restricted to be monotone.

Proof. We will embed 3SAT into the one-dimensional reachability problem.
To this end let U={u,,...,u,} be a set of Boolean variables and ¢
=®, A ... AP, be a boolean formula in 3-conjunctive normal form over U.
Thus the clauses @; have the form &;,=z;, v z;,V z; ; where the z; ; are literals
over U. The crucial idea is to code truth asignments by time: time te N will
be interpreted as a truth assignment

a,: U— {true, false} in the following fashion: let b,_,...b; by be the binary
expansion of ¢t modulo 2" and set

OC(u)_{true if b;_,=1
VT Vfalse if b, =0

fori=1,2,...,n

As in the proof of Theorem 3.1 time is partitioned into slices S, of, say,
length 10. It is convenient to set the top speed ¢ of B equal to 1. We will
define a compound obstacle A depending only on @ in such a way that B
is able to reach the other side iff B starts to move at time ¢ — i.e. at the beginning
of slice S, — such that a, satisfies all the clauses in @. To achieve this, our
street will have m+2 lanes L, ..., L,,,,; each lane except the first and the
last consists of five tracks of width 1 each. Lane L, and L, ., have only one
track of width 1. B is initially positioned in lane L, and has to reach lane
L,.,. There are no obstacles whatsoever moving on these two lanes, so B

Motion Planning Among Time Dependent Obstacles 113

Space

Time

Fig. 6. Movement of obstacles in the 5 tracks of one lane

can stay motionless in lane L, for an indefinite amount of time. However, once
B has left lane L, at time t and entered L, it will be forced to cross one
lane during one time slice for the next m time slices until it reaches lane L, + .
In lane L, ., B can again stay motionless forever. Time t will be referred to
as the departure time. Lanes L;, i=1, ..., m, will test whether or not o, satisfies
clause ®,: B can successfully cross lane L; iff o, satisfies @;. Therefore B will
reach lane L, iff o satisfies @.

We will now describe the moving obstacles in lane L;, i=1, ..., m. Every
time slice S, consists of eight sub-slices S, ¢, S;.1, ..., ;7 of equal length 5/4.
Track 1 has an obstacle of width 1 that is present during sub-slices S, ; through
S, ¢ for all teN. In track 5 a similar obstacle is present during sub-slices S, g
through S, 5, again for all teN. An auxiliary obstacle of with 3 blocks tracks
2, 3 and 4 during S, ;. The satisfaction test is achieved by three obstacles of
width 1 each that occur during sub-slice S, ; in tracks 2, 3 and 4. These truth
testing obstacles appear periodically and depend on the literals in clause @;.
They will appear in lane L;, track r during slice S, iff o, =0, —;4 ¢ fails to satisfy
the corresponding literal z; ,_, of clause ®;. If a,_;,, fails to satisfy even a
single one of the literals then all three obstacles will be present and form a
road block that B cannot pass. In any other case there will be a gap and
B will be able to move on to the next lane. To be more precise, in lane L;,
track r (ie[m], re{2, 3, 4}) during slice S, an obstacle is present during all
sub-slices S, ; such that

ré}ér"‘l and OC,_,-+1(Zi,,._1)=faISC.
Otherwise the obstacles are absent. A thus consists of 6m atomic obstacles,

six per lane, whose trajectories are clearly disjoint. Figure 6 shows the atomic
obstacles in one lane during one time slice.

114 K. Sutner and W. Maass:

Let body B be a line segment of length 0.9. Lastly define the source position
p=(0.5, 0) and the target location x':=m+ 1.5. This completes the description
of an instance A, B, p, x’ of the reachability problem.

For any truth assignment o there is a departure time 7<2" such that o, =a.
Hence, if @ is satisfiable at all, lane L,., can be reached (in fact at some
time 7' <2"—1+m+1=2"+m). Hence 4, B, p, x' is a Yes-instance of our Posi-
tion-to-Location motion planning problem iff @ is satisfiable. _

Given a boolean formula & in 3-conjunctive normal form the instance A,
B, p, X' described above can clearly be constructed in time polynomial in the
size of @. Therefore the Position-to-Location Reachability Problem is NP-
hard. []

Is quite straigthforward to modify the last argument to show that the Posi-
tion-to-Position Reachability Problem and the Position-to-Location Reachabil-
ity Problem with Deadline are also NP-hard in the one-dimensional situation;
they remain NP-hard even if B is required to move along a monotone c-path.

4. Efficient Algorithms for D=1, 2

In this section we will describe algorithmic solutions for certain special cases
of the dynamic motion planning problem in low dimensions D =1, 2. Throughout
this section the atomic obstacles will be assumed to be convex, compact poly-
topes in space-time. This includes in particular the case of convex polyhedral
objects moving at constant speed without rotation. B will be assumed to be
point-like throughout this section. As mentioned earlier one can use the tech-
nique of inflating obstacles from [LPW] to reduce the case where B is of polyhed-
ral shape and restricted to translational movement to this situation. Recall that
for the running time analysis of our algorithms we use a model of computation
that allows for real number as basic objects and provides the necessary algebraic
operations such as extraction of square roots, see e.g. [PS].

The One-Dimensional Case

The perhaps most basic approach uses shortest path. Here shortest path is
understood as shortest in the sense of the standard Euclidian metric in space-time
rather than in space alone. It is easy to see that the shortest c-path — if it
exists at all — has to be a polygonal line whose vertices are corners of A. The
problem is thus very similar to that of finding the shortest path between to
points in two-dimensional Euclidian space avoiding polygonal obstacles. This
problem has been studied for example in [LPW, SS, GH] and can be solved
by means of the so called visibility graph whose vertices are the corners of
A and whose edges are those straight line segments that do not pass through
the interior of A. The visibility graph can be constructed in time O(n*) where
n is the number of edges of A (see [GH]); a shortest path can then be found
by, say, Dijkstra’s algorithm again in O (n?) steps.

Motion Planning Among Time Dependent Obstacles 115

Now define the c-visibility graph of A to be the directed subgraph of the
full visibility graph of obstacle A whose edges correspond to c-paths. By [GH]
the c-visibility graph can be constructed in O(n?) steps. Thus the position-to-
position reachability problem can be solved in O (n?) steps where n is the number
of edges of the obstacle. Hence we have the following proposition.

Proposition (4.1). In one dimension the Position-to-Position Reachability Problem
can be solved in time O(n?) where n is the number of edges of the obstacle.
In fact it is possible to find the shortest admissible c-path in O(n?) steps.

We will now describe an efficient way to compute the c-hull (and thus solve
the escape problem). The algorithm is based on the description of the c-hull
afforded by Theorem 1.4 and Lemma 1.5 and uses a plane sweep technique.
See [PS] for background information on this algorithmic paradigm. The con-
struction given in Theorem 4.2 can easily be modified to provide solutions to
the various reachability problems.

Theorem (4.2). There is a time O((n+s) Ig n) algorithm to compute the c-hull of
a compound compact poyhedral obstacle A where n is the total number of edges
of the atomic obstacles of A and s is the number of intersections between these
edges.

In particular, if all atomic obstacles have disjoint trajectories then the c-hull
can be computed in time O (n 1g n).

Proof. The core of the algorithm is a sweep procedure that finds the connected
components of the ¢-hull of 4 using a x-structure and a t-structure. The sweep
line H=H, is parallel to the x-axis and moves from the future back into the
past. Let C:=c-hull(A). We wish to compute the intersection H,n C between
the sweep line and the c-hull which is a collection of disjoint intervals I, ..., I,
called active intervals. During the livespan of an active interval its endpoints
move along the boundary of a connected component of C. More precisely,
according to Lemma 1.3, an active interval I evolves during the sweep as follows:
I is created when a new edge outside of the currently active intervals is encoun-
tered. Then its endpoints hi; and lo, either follow an edge of A or they move
inward at speed c. Eventually they meet, i.e. the interval shrinks to a point
and disappears. In the first case endpoint ge{hi;, lo;} is associated with an
edge I(q) of A. In the second case hi, and lo; must be escape-points and can
thus be associated with two rays rt(hi;) and r'(hi,) that start at the endpoints,
have inclination y and point backwards in time towards the center of I. Let
us call these rays and edges of A that intersect H, active lines (at time ¢). Active
lines are stored in the x-structure, sorted according to the x-coordinate of the
point of intersection between H, and the line. Every active line has a status:
it is external if it currently makes up part of the boundary of C and internal
otherwise. Rays are always external. Clearly a change in the x-structure can
occur at time t only if an intersection occurs, a new edge is encountered or
a previously active edge ends at time t. Note that an intersection can occur
only between two adjacent lines in the x-structure. We will refer to such a
time t as a critical moment.

116 ’ K..Sutncr and W. Maass:

The t-structure is initialized to contain T'(p) and T(q) for every edge [p, q]
of A sorted in non-increasing order. During the sweep additional entries will
be made for those times ¢t at which active lines intersect. At a critical moment
the following changes can occur in the x-structure:

(1) A new edge is encountered and added to the x-structure. New edges
are internal or external depending on their location relative to the currently
active lines.

(2) A previously active edge becomes inactive and is delected from the x-
structure.

(3) Two active lines intersect.

Note that these events are not mutually exclusive. For example an edge
parallel to the x-axis will become active and inactive at the same critical moment.
In any case, it is quite straightforward to deal with situation (1) and (2). As
far as intersections of active lines are concerned a ray is always truncated as
soon as it intersects any active line. If that other active line is also a ray we
are necessarily in a situation where rt(hi;) intersects r'(lo,). Whence interval
I 1s deleted at that time. If that other active line is an edge it becomes external.
If both intersecting lines are edges they are switched in the x-structure. If they
are both external there are two possible scenarios: they belong to the same
active interval which is accordingly deleted or they belong to different active
intervals which are accordingly merged. If exactly one of them was previously
external they switch status. If both were previously internal they remain so.
In short the algorithm looks as follows:

initialize t-structure and x-structure

while
t-structure is not empty

do
t:=largest entry in the r-structure
delete t
(possibly) change status of active lines
recalculate critical moments

od

Figure 7 illustrates the stages in the execution of the algorithm on a simple
obstacle A=A,, A,, A3 where 4,=[6,9]x[—2,4], 4,=[0, 10] x[0, 2], 4,
=[0, 4] x[3, 4]. The table shows the t-structure and the active intervals. The
endpoints of active intervals that are associated with rays are indicated by an
arrow T (for a ray associated with r'(lo,)) or | (for a ray associated with r* (hi,)).
All other endpoints are associated with edges of A. Entries in the t-structure
made during the execution of the algorithm are underlined. The speed ¢ is
assumed to be 1. The algorithm terminates at time —5.5 when the t-structure
becomes empty.

A data structure that supports the necessary operations for the x-structure
such as insertion, deletion, find and interchange in logarithmic time is for exam-
ple a dictionary. The status of an active line is indicated by an additional bit.
The t-structure can be implemented as a priority queue. To keep track of the

Motion Planning Among Time Dependent Obstacles 117

Obstacle A
@
8]
o
(=R
)
Time
Time ¢ t-structure Active intervals
initialization 4,3,2,0, -2 empty
4 3,2,0, -2 I1,=(0,4) 1,=(6,9)
3 2,1,0, =2 I,=(01,4]) I,=(6,9)
2 0, -2 I,=(0,10)
0 -1, -2 I,=(01,10])
-1 -2 1,=(11,9)
-2 —-55 I,=(21,9])
—5.5 empty empty

Fig. 7. Computing the c-hull in one dimension using the plane sweep method of Theorem 5.2. Obstacle
A has the form A=4,, 4,, 4, as indicated. The table shows the t-structure and x-structure at
various stages in the execution of the sweep. See the text for an explanation

boundary of the connected components of C as described by the external active
lines one may use mergeable dequeues.

For the running time analysis observe that the total number of active lines
in O(n). Therefore the data structures used inside the while loop all have size
O(n) and the basic operations in the loop take O(lgn) steps. The while loop
is executed O(n+s) times where s is the number of intersections of edges of
the atomic obstacles. Initializing the t-structure takes O(nlgn) steps. Hence
the total running time of the algorithm is O (n+s) lg n) steps. [J

118 K. Sutner and W. Maass:

Remarks. The above algorithm is optimal in the decision tree model: sorting
can be linear-time reduced to the computation of the c¢-hull. Say r,, ..., r, are
pairwise different real numbers. Define A;:==[—b, +b] x[r;, r;+5]<R? for i
=1, ..., n where b is chosen large enough to insure that the c-hull of the com-
pound obstacle A=A4,, ..., 4, is connected, say b:=2-tan(y)-(max r;—min r;),
and ¢ is small enough to make sure that the atomic obstacles A; do not overlap,
say 0:=min(jr;—r;||i=j)/2. It is easy to read off the ordered sequence from
the c-hull of A.

Theorem (4.3). There is a time O((n+s) 1g n) algorithm that solves the Position-to-
Position Reachability Problem for a compound compact polyhedral obstacle A
where n is the total number of edges of the atomic obstacles of A and s is the
number of intersections of these edges.

If in particular the trajectories of all atomic obstacles are disjoint then the
problem can be solved in time O (n 1g n). The same holds for the Position-to-Location
Reachability Problem and the Position-to-Position Reachability Problem with
Deadline.

Proof. Let A be a compound obstacle A4, ..., 4,,, po=(x¢, ty) the source and
pi=(xy, t;) the target position. The algorithm is very similar to the one given
in the last proof: the only difference is that active intervals here represent the
intersection of R(p; A) and the sweep line. Therefore active intervals now expand
rather than shrink, ie. their endpoints move outward with speed ¢ or they
follow an edge of A. The sweep starts at time t, and terminates at ¢,. p, is
reachable from p, iff upon termination of the sweep location x; is contained
in one of the active intervals: for some interval I we must have lo, < x,; £ hi,.
Now suppose we are given a source position p,=(x,, to) and a target location
xy.Set t;:=max(T(p)|peA)+ 1. t, is initially entered into the t-structure together
with the entries described above. Conduct a sweep starting at time ¢, as before
and maintain in the x-structure the intersection of R(p; A) and the sweep line.
Halt and return YES if for the first time ¢t <t, one of the active intervals contains
x, or if t, is reached and there is at least one active interval at time ¢, . Otherwise
return NO. A deadline T is handled by truncating the sweep at time T. [

The Two-Dimensional Situation

We will now briefly describe how to modify the above algorithms in the two-
dimensional situation. One major difficulty is that the intersection between the
c-hull C and the sweep plane H, is now a collection of disjoint regions that
have no nice linear arrangement as the active intervals in the one-dimensional
situation do. Unless the obstacle is convex we now also have to deal with
non-planar surface patches of the c-hull even through A is a polyhedron in
space-time. A typical example is provided by A:=A4, UA, where 4,:=[0, 1] x
[0, 2] x [0, 1]=R? and A4,:=[0, 2] x[0, 1]x[0, 1J<R3. A is L-shaped and
present for one time unit. Positions p=(1—46,, 1—6,, —1) for 0<d,, d,, 7<1
on the boundary of the c-hull all have g,:=(1, 1, 0) as escape-point, so the
c-hull must have a part of cone_ (1, 1, 0) as its boundary.
However, the next lemma shows that this is the only possible complication.

Motion Planning Among Time Dependent Obstacles 119

Lemma (4.4). Let A be a polyhedral obstacle, C its c-hull. Then the boundary
of C consists of planar portions and segments of cones. Thus for any time t
the cross section 0 C N H, consists only of line segments and circular edges.

The same holds for the set of reachable points R(p; A).

Proof: Again we will only consider the c-hull, the argument for the set of reach-
able points is quite similar. So let C:=c-hull(A) and consider some position
p=(x,t) in d(CNnH)=3CnH,. If p lies on the boundary of A our claim is
immediate from the fact that A is polyhedral. So assume that p¢JdA and let
4,€0A be an escape-point for p. It is easy to see that g, cannot be an interior
point of a face of A. So g, is either an interior point of an edge L of A or
a vertex of A. Define for edges L and vertices g of A the following surface
patches of C:
C.:={pedC—0dA|q,is an interior pointof L} and

C,={pedC—0Alq,=4q}.

Then dC—0A is the union of finitely many pieces C;, and C,. Now the line
segment [p, q,] lies on cone_(q,) and we have [p, q,]=C,<=0C. The surface
patch C, can therefore be generated by moving the apex g, of cone_(q,) along
the edge L. So C, is planar. In the second case observe that C, is actually
a portion of cone_(q,). O

As a corollary to the proof of Lemma 4.4 we obtain a bound O(n) on the
number of planar and conic surface patches of the c-hull where n is the total
number of edges of the compound obstacle A. Also note that the planar pieces
o that are not part of the boundary of A all have inclination y and are tangent
to an edge [p, q] of A. We will say that [p, ¢q] supports ¢. The cones are all
of the form cone_(p) for some vertex of A, hence any plane ¢ of inclination
v is parallel to a tangent plane of cone_ (p).

Now consider the problem of computing the c-hull C of A. According to
Lemma 4.4 0C consists only of pieces of surface that can be described by algebra-
ic equations of degree at most two. In particular the boundary of these surface
patches is also algebraic and of degree at most two. As a matter of fact there
are only three possible types of boundaries:

— Line segments. These occur as edges of A and more generally at the intersec-
tion of two planar surface patches but also at the intersection of cone_ (p)
and the plane ¢ supported by edge [p, q].

— Parabolas occur at the intersection of a cone cone_(p) and the plane ¢
supported by edge [g,, g,] where pé¢{q;,, g,} as incl(c)=7.

— Hyperbolas arise at the intersection of a cone cone_ (p) and planar surface
patches that are part of the boundary of A.

Recall that we are using a real RAM as a model of computation. Therefore
we may treat all these geometric objects as primitive and charge only one step
for operations such as determining the intersection of a cone and a plane.

Theorem (4.5). Let A be a compound compact polyhedral obstacle. There is an
algorithm to compute the c-hull of A that is polynomial in number of edges of A.

120 K. Sutner and W, Maass:

Theorem (4.6). There is an algorithm that solves the Position-to-Position Reach-
ability Problem for a compound compact polyhedral obstacle with running time
polynomial in the number of edges of the obstacle. The same holds for the Position-
to-Location Reachability Problem and the Position-to-Location Reachability
Problem with Deadline.

Proof. For the sake of simplicity we will focus on the algorithm for the computa-
tion of the c-hull; the decision procedure for reachability is quite similar. The
algorithm is based on a space sweep (or rather a space-time sweep) where the
sweep plane H, is parallel to the x, y-plane and moves from the future into
the past. The intersection of the sweep plane and the c-hull C of A is a collection
of connected mutually disjoint regions, called active regions, that change dynami-
cally as the sweep plane advances. Let R be an active region; its boundary
R is a closed curve on H, consisting of line segments and circular edges, say
OR=I,,...,1,.. A line segment I; will be represented by the plane it lies on
(which is either a face of A or a tangent plane of inclination y supported by
some edge [p, q] of A) and the trajectory of its endpoints (which is a quadratic
curve by the preceding discussion). Similarly a circular edge is represented by
the cone it lies on (which of the form cone_(p) for some vertex p of A) and
the trajectory of its endpoints (which is again a quadratic curve). These bound-
aries are stored in the x, y-structure as are the edges of A that are currently
intersected by H,. Again they will be referred to as active lines. Critical moments
now occur whenever a change in the active lines happens. Again there are
three cases: a new edge of A is encountered and becomes active, a previously
active edge becomes inactive or, lastly and most importantly, the boundary
of an active region changes. The t-structure is initialized to contain the t-compo-
nents of all the vertices of A ordered in non-increasing fashion. As the sweep
proceeds additional entries are made for the critical moments of the last type.
In short the algorithm can now be described as follows:

while
t-structure is not empty

do
t:=largest entry in the t-structure
delete ¢
update active lines in x, y-structure
update boundaries of active regions
re-calculate critical moments

od

Let n be the total number of all edges of the atomic obstacles 4; of A. For
the running time analysis first note that the number of critical moments is
linear in the number of edges of the compound polyhedron A which is o(n?)
as atomic obstacles are not required to have disjoint trajectories. Therefore
the while-loop is executed O(n?) times. The total number of boundary segments
of the active regions at any moment during the sweep is O(n?). Thus one can
compute the next critical moment in O(n*) steps by explicitly determining all

Motion Planning Among Time Dependent Obstacles 121

the possible interactions between these segments. Similarly updating the active
region can be handled in O(n*) steps. Initialization of the t-structure takes only
O(n Ig n) steps, so the whole algorithm runs in time O(n”). [

Remark. A substantial improvement in the running time of the last algorithm
is possible if the obstacle 4 is convex, compact and polyhedral. According to
Corollary 1.6 the c-hull C is then also convex, compact and polyhedral. During
the sweep there is only one active region Cn H, and its boundary consists
of O(n) the segments. Interactions now occur solely between adjacent line seg-
ments. As a matter of fact the projection of the edges of the planar surface
patches of dC that are not part of the boundary of A into the x, y-plane is
a planar graph and even a tree. The c-hull can be constructed in O(nlgn)
steps.

Another special case that allows for a faster solution is when the obstacle
is of the form A=A, x [t,, t,] where 4,=R? is a polygonal region of the plane
(but not necessarily convex). The projection of the boundaries of the surface
patches of dC into the x, y-plane is the generalized Voronoi diagram of A,:
any position p on the boundary of a surface patch of dC, p¢A, has at least
two different points p’, and p’, and p is equidistant to p; and p’, in space-time
as T(p))=T(p,)=tye. As incl([p, p;])=7 for both i=1 and i=2 equidistance
is preserved under the projection. Conversely every point (x, y) of the Voronoi
diagram can be associated with a position p=(x, y, t), t<t,, that lies on the
boundary of a surface patch of dC. The Voronoi diagram of 4, contains straight-
line segments and parabolas and can be constructed in O(n 1g n) time, see [K].

Acknowledgements. We would like to thank the unknown referees for many helpful comments and
suggestions.

References

[DS] Dunford, N., Schwartz, J.: Linear operators. Part [: General theory. New York: J. Wiley &
Sons, 1964

[GH] Guibas, L., Hershberger, J.: Computing the visibility graph of n line segments in O(n?)
time. Bull. EATCS 26, 13-19 (1985)

[HJW] Hopcroft, J., Joseph, D., Whitesides, S.: On the movement of robot arms in 2-dimensional
bounded regions. STAM J. Comput. 14, 315-333 (1985)

[HSS] Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for multiple
independent objects; PSPACE-hardness of the “warehouseman’s problem”. Int. J. Robot.
Res. 3(4), 76-88 (1984)

(K] Kirkpatrick, D.G.: Efficient computations of continuous skeletons. Proceedings of the 20th
IEEE Symposium on Foundations of Computer Science, 1979. pp. 18-27. IEEE Press, New
York

-[LPW] Lozano-Perez, T., Wesley, M.: An algorithm for planning collision-free paths among poly-

hedral obstacles. Commun. ACM, 560-570 (1979)

[PS] Preparata, F.P., Shamos, M.L.: Computational geometry. Berlin Heidelberg New York:
Springer 1985

[R] Reif, J.: Complexity of the mover’s problem and generalizations. Proceedings of the 20th
IEEE Symposium on Foundations of Computer Science, 1979. pp. 421-427. IEEE Press,
New York

122

[RS]

[SS1]

[SS2]

[SS3]

[SY]

[Y]

K. Sutner and W. Maass:

Reif, J., Sharir, M.: Motion planning in the presence of moving obstacles. Harvard Universi-
ty, TR-06-85

Schwartz, J.T., Sharir, M.: On the piano mover’s problem. 1. The special case of a rigid
polygonal body moving amidst polygonal barriers. Commun. Pure Appl. Math. 36, 345-398
(1983)

Schwartz, J.T., Sharir, M.: On the piano mover’s problem. II. General techniques for com-
puting topological properties of real algebraic manifolds. Adv. Appl. Math. 4, 298-351
(1983)

Schwartz, J.T., Sharir, M.: On the piano mover’s problem. IIL Coordinating the motion
of the several independent bodies: the special case of circular bodies moving among polygon-
al barriers. Int. J. Robot. Res. 2(3), 46-75 (1983)

Spirakis, P., Yap, C.: Strong NP-hardness of moving many disks. Inform. Process. Lett.
19, 55-59 (1984)

Yap, C.: Coordinating the motion of several disks. TR-105-84, Courant Institute of Math.
Sciences, New York University, February 1985

Received December 12, 1985 / May 6, 1988

