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There are some good reasons for studying recursion theory on inadmissible
structures. First the study of degrees in a-recursion theory (« is always admissible
in this paper) leads naturally to questions about inadmissible structures. A typical
example is the minimal a-degree problem, where one wants to construct a
minimal a-degree which is recursive in 0’ (a minimal a-degree cannot be a-r.e.).
The natural framework for this construction is the structure (L, C) where C is a
regular complete 2; set. This structure is inadmissible if « is not 3,-admissible
(see [5], [10]).

Further the study of degrees in recursion in higher types is closely connected to
degree theory on inadmissible structures: for a normal functional F**?(n=1) the
crucial structure (M, (F), F), which contains all computations in F and a type n
object, is inadmissible (see [3], [8]).

A third reason is the conjecture that “3;-admissibility is a crude global
hypothesis which obscures the finer points of recursion theory” (Sacks [8]). This
conjecture became very convincing because Sy Friedman [2] solved Post’s prob-
lem for many B which are not admissible. So it seems to be the casé¢ that recursion
is really not that important in order to prove the basic theorems of recursion
theory (the recursion scheme fails in general if the considered ordinal is not
admissible). The program is then, to study recursion theory on every limit ordinal
B. For this program the results of Jensen about the fine structure of the
constructible hierarchy turned out to be of crucial importance. In fact 8-recursion
theory can be considered to be that part of the fine structure theory of L which
deals with questions that are inspired by recursion theory.

Finally, inadmissible recursion theory is interesting from the conceptual point of
view. Several definitions which are equivalent in admissible structures define
different classes in inadmissible recursion theory. Further, inadmissible structures
are a good field for studying those effects which are potentially contained in the
basic notions of recursion theory but which can’t be studied in admissible
structures because they are too “‘special”.

* This paper was written at MIT, Cambridge, MA U.S.A., where the author was supported by the
Deutsche Forschungsgemeinschaft.
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Inadmissible recursion theory was first considered by Sy Friedman [2]'. He
introduced several definitions of “recursively enumerable” which are equivalent
in admissible structures but give rise to different classes in inadmissible structures.
We follow Friedman in taking the weakest one (3;-definability) as the definition
for “r.e.”. The classes which are defined by the stronger definitions (tame r.e.,
strongly r.e.) are interesting because their elements have more of the properties of
an r.e. set in an admissible structure. A characterization of these smaller classes
makes it possible to get an idea of those objects which are really new (e.g. sets
which are r.e. but not tame r.e.). We would like to compare this situation with the
step from ordinary recursion theory to admissible recursion theory. It turned out
there, that the study of those w«-r.e. sets which are regular respectively hyper-
regular (properties which every r.e. set in ordinary recursion theory has) was a
good way to find those effects which are new in admissible recursion theory.

Results and methods of this paper show that it makes sense to divide inadmissi-
ble structures into weakly and strongly inadmissible structures. The 3,;-cofinality
of B,3%;-cf B (which is defined by considering only those functions cofinal in B8
which are B-recursive) is a good measure of the remaining ‘“admissibility” of an
inadmissible 8. We call B weakly inadmissible, if 3;-cf 8 is large enough so that
one can project 3 B-recursively into this ordinal, we call B strongly inadmissible
otherwise.

As the main tool for the study of weakly inadmissible structures we introduce in
Section 1 the “admissible collapse”. This technique makes it possible to reduce
many questions about weakly inadmissible structures to questions about admissi-
ble structures.

Concerning the investigation of tame r.e. and strongly r.e. sets in strongly
inadmissible B it turns out that it is useful to consider “tame projections”, a
concept which is introduced in Section 2.

In Section 3 we are going to speculate about the interpretation of some
definitions in recursion theory.

The paper is largely self contained but some basic knowledge about constructi-
bility is useful (see Devlin [1] for details).

0. Preliminaries and a remark about gaps in the constructible hierarchy

We follow Friedman in using Jensen’s version (J,) of the constructible hierar-
chy, but if the reader doesn’t like this hierarchy he may always read L, ., for J,
and L; for Sg in the following (except for the remark about gaps). More details
about the (J,) hierarchy can be found in [1].

Every rudimentary function (pairing, etc.) can be obtained as the composition

1[2] will be contained in Friedman’s forthcoming papers “B-Recursion Theory”, “Post’s Problem
Without Admissibility” and “Forcing in 8-Recursion Theory”.
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of special rudimentary functions F,, ..., Fg. Then the function

Y(U):=(Uu{U})U<L8J F’:(UU{U»)

i=0

is a rudimentary function as well. Define the hierarchy (S, | y€On) by S,=9,
S,.1=%(S,) and S, = J,<, S,

Define for any transitive set U:rud(U) = the smallest X o U U{U} such that X
is closed under rudimentary functions. If we define then J,=§,, ., for every vy, we
get the Jensen hierarchy which has the following properties: J,=@, J ., =
rud (J,), J, = U,<i J,- This hierarchy is closely related to the (L,) hierarchy. We
have J,=L,=@ and forall y L,,, =V, ,NJy,, hence J, =L, iff w - y=1 (for
example if y is admissible). Every S, is transitive, we have y<8— § < S, and
rank (S,,.,)=OnNS, ., =w - v. Further (S, | v<w - y) is uniformly 2,S,,., (ie.
uniformly definable over S, ., by a 3;-formula).

For the rest of the paper B is always a limit ordinal.

A total function from B onto Sg, n+—>K,, is A,;-definable over every S, (though
not uniformly). A total 1-1 onto pairing function B X 8 — B is A;-definable over
every Sg as well. We are going to reserve the letter K for B-finite sets, i.e.
elements of S,.

Let B< S, be regular over S, i.e. Yo <B (BN S, €S;). We always write B for
the structure (Sg, B) (or more exactly, (Sg, €, B)).

A set AcSg is defined to be B-recursively enumerable (B-re.) ifft A is
3,,-definable over B. A < S, is B-recursive iff A and S;— A are B-r.e. A (partial)
function f:Sz — Sg is called B-recursive iff the graph of f is ¥B-r.e. (a function
g:M— N is always totally defined on M if we don’t say that g is partial). We
write r.e., recursive etc., if it is clear which B we mean.

3.,-cf B, the 3;-cofinality of B, is the least ordinal y < 8 such that a B-recursive
cofinal function f:y — B exists. B*, the X,-projectum of B, is the least y < g such
that a B-recursive 1-1 function f: B — vy exists. B is called admissible, if 3.,-cf B
=B. If B is inadmissible and 3-cf B=B* we call B weakly inadmissible, if
3,-cf B <B* we call B strongly inadmissible.

Both 3,-cf B and B* are B-cardinals, i.e. BF(3,-cfB is a cardinal) and BF(B*
is a cardinal) unless 3;-cf B or B* equal B. The following property of B-cardinals
is proved in a way similar to LFGCH. If p is a B-cardinal, K€ Sz and K< S, for
some o <p then K€ S,. (The usual argument is dubious in the case where B has
the form y+ w. But in this case we can apply the uniformization theorem to the
set S,.) Friedman [2] proved that every B-cardinal p > w is 2;-stable, i.e. S, <5, Sp
(S, is a 2;-elementary substructure of S,). This shows that for all inadmissible sets
Ss a largest B-cardinal less than B exists (this result is in general not true for
inadmissible structures B). An easy stability argument shows that g*<g for all
inadmissible sets S; which implies that every B-cardinal is admissible.

Reducibility relations for sets A, D € S, are defined as follows:
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A <y D o there exist B-r.e. sets W,, W, such that for all K e Sg
Kc A<3H,, H,eS; (K,H,H)e W,AH,c DAH,c S; — D),
KcS;-—A<3H,,H,eS; (K,H,, H,)e W,.AnH,c DAH,< S;— D).

A<,y D< there exist B-r.e. sets W,, W, such that for all xe S,

xe A<3H,, Hye S; ((x, H,, Hy)e W,AH, € DAH,< S, — D),
x€Sg—A<3H;, Hye S, ((x, Hy, Hy)e W,AH = DAH,< S; - D).

One usually reads “A <g D” as “A is recursive in D” and “A <, D” as “A is
weakly recursive in D” (see Section 3 below for some problems concerning this
interpretation).

B-degrees are the equivalence classes on p(S;) which are generated by the
relation “=g”. We always write Og for the degree of the empty set and 0 for the
degree of a universal ®B-r.e. set. We say that a degree has certain properties
Py, ..., P, iff there exists an element of the degree which has all the properties
Py,...,P,.

Remark 1. Observe that the notions of B-recursion theory are suitable for proving
very easily most of the results about the length of gaps (see [7]) for the
(J,)-hierarchy, using facts from above and Jensen’s uniformization theorem.

As an example we consider Theorem 4.4 from Marek—Srebmy [7]. Letp, y € o' be
given such thaty > p. Let § be the first ordinal greater than y which starts a gap of length
=p. Thenthis gap hasexactlylength p. (By definition d starts a gap of length p iff

Vo <8 (Js=J)Np(@) FOAUs1,—Jo) NP(0) =PAU51p01— I5) Np(0) $0).)

Proof by contradiction. Define B:=w - (6 +p +1). Let k € 8 be the B-cardinality
of w - (8 +p). By our assumption and the Uniformization Theorem we have k > w
and in fact k=8 (since § starts a gap). Consider the following 2; formula @:

P:=Fo,T(c>yAT=0+pAVo' <o (J, - T, )Npl0) F DA, =T )Np(w)=0).
We have S;F @, therefore by the 3;-stability of , S F®, a contradiction.

Other results about the length of gaps are derived in a similar fashion, using
appropriate 8 and 3, formulae @.

Results about partial gaps follow as well. Devlin proved in [7]: if v is not a gap
ordinal, then y+1 is not a A;-gap ordinal (i.e. (A, —J, ) Np (@) +0).

A proof in B-recursion theory goes as follows. Consider S with 8= « (y+1).
B is inadmissible, therefore B*< B and of course B*<w - y. Further w is the
B-cardinality of w - y because vy is not a gap ordinal (Uniformization Theorem),
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therefore B* = w =3,-cf B. Then there exists a 1-1 B-recursive projection from B
onto w (see Section 1) which implies that y+1 is not a A,-gap.

1. The admissible collapse of weakly inadmissible structures

Itis obvious that the 2,-replacement Axiom holds in inadmissible structures B for
functions which have a B-finite domain of 8-cardinality less than 3,-cf 8. Further
3-cf B determines, how much “recursion” we have in 8.

Lemma 2. 3,-cfB+1 is the least ordinal v, such that the following scheme of
definition by recursion over vy fails:

If G:SsXy— Sz is a total B-recursive function then there exists a total B-
recursive function F:vy— S, such that

Vo<y(F | 8eSsAF(8)=G(F | 8,8)).

Proof. Obvious. Observe that one doesn’t really need that G is totally defined on
Sg Xy for y<3;-cf®B. It is enough to know that dom G is such that a total
function F:y— S, exists somewhere in V which satisfies the recursion equation
for all 8§ <.

By Lemma 2 we can assume that the cofinal B-recursive function q:3;-cf 8 —
B is in addition strictly increasing and continuous. We are going to write q for
such a function in the following and we always write « for 2,-cf 8.

Friedman proved that one can always define a B-recursive projection of 8 onto
max (2;-cf B, B*). For the case that B is weakly inadmissible one has another
proof of this fact. Let f: 8 — B* be a B-recursive projection. Define P: g — 3;-
cf B by P(8)= (o, 7)< (o is minimal such that SionEf(8) = 7). Since rg P is A,B
we can define by Lemma 2 a 1-1 onto B-recursive map g: 3;-cf 8 — rg P. Define
then P:=g™ - P.

For the rest of this paragraph we assume that 8 is weakly inadmissible and we
fix a B-recursive projection P of 8 onto k. We assume for convenience that P has
the property that Vxe « (P(x)=2"- x).

The following predicate T< B for B is defined similarly to Kleene’s T-
predicate: (x, y, z),€ T<>(S,, S, N B)E®(y, z), where &(y, z) is a 3; formula
which defines the universal 3, predicate over 8. We always write (-, -, -), if we
want to emphasize that set theoretic pairing is used.

We collapse T to the predicate Tck by defining (x,y,z)eT
< (P7'(x), P"Xy), P"X(z))e T. T is, as well as T, A, definable over B. We call
the structure A:=(S,, T) the admissible collapse of B. T is regular over S,,
because TNye S, for every y<« and « is a B-cardinal.

If Ack is 3,9 then A is 3,8. Let ¥ be the 3, formula which defines A over
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A. Then
xeAoBFI ek IK, H(Kc TAHcs k— TAKUH = AA(S,, K)F¥(x))

and by using the definition of « this can be written as a 3; formula.

On the other hand A3,%B implies A2, for A €« because then for some e€
we have x € A ©»%F3y (y, P(e), x)e T). This implies that A is admissible and that
A-recursive (A-r.e.) is the same as B-recursive (B-r.e.) as far as subsets of S, are
concerned. ‘

Remark 3. Harrington defined in [3] (see also {8]) a collapse which used a
similarly defined predicate T. His collapse makes it possible to reduce some
questions about degrees of type n+2 objects which are r.e. in some fixed
functional F***(n=1) to questions about sets which are 3, definable over an
admissible structure (L [T], T) (T is there not regular over L, ). The main purpose
of Harrington’s collapse is the elimination of the gaps between subconstructive
stages of the computation hierarchy.

Although we have shown so far that we can represent B-1.¢. sets A by U-r.e.
sets in the admissible U (consider the projection P[A] of A), this doesn’t help
much if we want to get information about degrees in %8 by considering degrees in
9. The reason is the following. If A, B < k and A <y B, this doesn’t imply A <y B
because the reduction procedure in ¥ doesn’t reduce questions K< A, Kk~ A
for K € S;— S, to questions about B. Analogously A <¢B doesn’t imply A <y B
for A, B<S k because the reduction procedure for A <gB might ask questions
K< B, K< k—B for KeS;—S, in order to answer questions K'c A, K'c k- A
for some K'eS,. We call sets A<k B-immune, if they are “immune” with
respect to those sets K<k with K& S; — S, which cause this trouble.

Definition. A c « is B-immuneo>VKeS; (Kc AvKck—A— KeS,).

A B-immune set A has the property that for every B <«
A<yB—> A<=gB
and

Especially if B is B-immune as well we get A<qB<> A<gB.

Although B-immune seems to be a strong requirement, the following construc-
tion shows that every degree in ¥ contains a B-immune set. The idea is the
following. We construct a partial ¥-recursive characteristic function x, of some
(partial) set M c k. We insure that the order type of x-dom xy is « and that for
any set M'< k the following holds. If xa S xar (Xar is the characteristic function
for M') then M’ is B-immune. For any set A < k we can find then a 8-immune set
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A of the same -degree by inserting x, into k-dom x,. This defines the
characteristic function of some set A with xu S X4-

We do this formally by defining a function f:k — « such that f has only values
of the form (0,0), (0,1), (1,x) with xe«. If f(a)=(0,0) or f(g)=(0,1) then
xam(o) is defined and has value 0 or 1 respectively (we define yp(o)=1 for
elements o € M). f(a) = (1, x) simply says that o is the xth element of x-dom x,.

The function f is constructed as follows. We take a ¥-recursive enumeration G
of all sets K< k such that K€ Sg— S, where dom G = k. We define by recursion
over k a B-recursive function F:x — Sg such that for every o<« F(o) is the
graph of an initial segment of f which is defined on an ordinal 7 where o<1 <«.
We write F(<a) for J,<, F(p). In the recursion step we take

F(o)=F(<a)U{dom F(<o),{1, ") if o=3-0,
= F(< a) U{(r, (0, 0)) | dom F(< o)< 7= pux(x =dom F(<o)rx e G(a')}
if o=3-0'+1,
=F(< a)U{(r, (0, 1)} | dom F(< o)< r=< px(x =dom F(<o)rxe G(o))}
if o=3-0"+2.
This construction succeeds because dom F(<ag)<«k for all o<k due to the
definition of k as 3;-cf 8.
For any set A < k we define A by setting
xa(o)=0 it f(a)=(0,0),
=1 if f(a)=(0,1),
=xalx) it flo)=(1,x).
It is obvious that -recursive ~functions 8 h can be defined such that for any
Ackand xek, xe A < g(x)e A and, ifA~¢¢and A#k, xc A o h(x)e A. This
implies that for any Ack, A=¢A. We further have that A is

S, UALAA, N iff A is ¥, AT, A, A, %) for every n=1 and A is regular over
S, iff A is regular over §,.
We are now in the position to determine the relations between some stronger

notions of “r.e.” in B. At the same we find out which $B-r.e. degrees are
represented by B-immune U-r.e. sets.

First we recall some definitions from [2]. Let 8 =(Sz, B) be any structure.
AcS, is tame re. (tre) in Bo{KeS; | K< A} is B-r.e. For Ac S, let Aj(A)
be the set of those first order formulae with parameters from Sg, which consist of
a string of bounded quantifiers followed by a matrix in which (beside the predicate
B) the predicate A occurs, but A occurs only positively. We identify these
formulae with ordinals in 8 by some fixed coding.

Definition. A is strongly r.e. (s.r.e.) in B < the formulae of Aj(A) which are true
in (8, A) form a B-r.e. set.
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Definition. A is n-r.e.<>the true sentences of Aj(A) involving (n—1) alterna-
tions of quantifiers form a B-r.e. set.

For later use we further introduce:

Definition. A is n'-r.e. < the true sentences of AJ(A) involving exactly n quan-
tifiers form a B-r.e. set.

Observe that for admissible B all these notions give the same as B-r.e. Further
for any B we have that t.r.e. +regular implies s.r.e., s.r.e. implies n-r.e. and n'-r.e.
for all n and 1'-r.e. implies t.r.e. ([2]).

Theorem 4. Assume B is weakly inadmissible. Then for any degree b in B the
following are equivalent:

(1) b contains a t.r.e. set,

(2) b contains a B-immune U-r.e. set,

(3) b contains a t.r.e. regular subset D of B such that every K < D has an order
type less than k and such that VC< S; (D <, C— D<y5C),

(4) b contains a recursive set,

(5) b contains a set which is recursive, t.r.e. and regular.

Proof. (1) (2). Let Ac S, be tr.e. We first construct a t.r.e set A* such that

(a) A =3 A*
and

(b) VCc S (A*<,9C—> A*<4 ().

Define A’:={n|K,NA#@} and take A*:=q[P[A']]. Then we have
Kc S;—AeIn (K=K, Arq(P(n))eSs— A%)
which shows A<y A* since A is t.r.e. We further have
KcS;—A*o3o, K, n(Kcq(o)AK' ={rea|q(r)e K}
K,=U{K, | P(n) e K}nq(P(n)) € Sz — A*).
A* is t.re. because A* is B-r.e. and every K< A* has an order type less than .
This establishes (b). Since A*=_u A, we have (a).

We define then C:= P[A*] and take a B-immune set C out of the %- -degree of
C as described prev1ously Then A*=<,4 C is obvious and we get A*¥<y , € by the
property of A*. Since € is B-immune we have to consider only sets K € S, for the
proof of C<u A*. Since € is reducible to C by the ¥-recursive function h (except
for trivial cases), we may reduce questions K< €, K< Sg— C to questions K'c C,
K'c k- C with K'e S,. For these sets K’ we have P~'[K']€ S, so that the latter

questions can be reduced to P'[K']le A*, P'[K'l=S;—A*. This shows
C<pA*.
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(2)— (3). For A B-immune and r.e. we take an r.e. set D'c« such that
A=¢D’ and D’ is regular over S, (apply the Regular Set Theorem in %). We
proceed then to D’ which is again of the same U-degree as A, regular, r.e. and in
addition B-immune. Define D":={ne x| K, N D' # (), using an A-recursive map
n— K, from « onto S,. Then we take D :=g[D"]. D is B-r.e. and because every
K e S; with K< D has an order type less than « D is in fact t.r.e. D is regular
over S, because D’ and D" are regular over S. We have further that for any
KeS,

KcS;—De30,K',1(q(0)>KAK' ={reo|q(r)e K}
nexAK,=U{K,|reK'}rq(n)eS; — D).

D’ is tr.e. and for any K€ Sg:

KcS;~D'oanexIK'eS, (K'=KN«kAK,=K'rq(n)eS; - D),
which shows D'<gD. We have D <4 D' since

xeS;—~Deo3do (q(a)<x<q(a+1)v(x=q(a)AKogs,,—ﬁ').

Since this implies D <g D' and A =y D' implies A =g D’ the proof of this step is
complete.

(3) = (1). Trivial.

(2) = (5). Take a set A eb according to (2) and let @ be a 3; formula which
defines A over Y. According to the proof of (2) — (3) we may assume that A is
regular over S,.. We define

A':={{a,m), | ce kAT ek (q(8) = A(S,, S, N T)ED(3))}.
A' is obviously regular and A’ is t.r.e. because we have for any K e S,:
KcA'oBEIK' (K'={neOn|Ioek (o, n)e K}AKc kX K'A
JK"eS, (K'=q[K"IAK"c A
V6 K3rek ({S,, S, N THYE[P(8)]A
Voek (o, q(8))e K — 1< 0)))).

Using that g is continuous we get that A’ is recursive. We get A <y A’ because
for any K€ S;:
KcS;-Ae3IK'eS, (K'=KNkakXq[K]e S —A').

Finally we have A’y A because for any K€ S,:
KcS;—A'oBEIoy(KeS,,y,AIK' (K ={8€0,|To e« (g, q(8)) € K)}

/\EKI, K2€ SK (K’: KIUK2/\KIQA/\K2g SB _A

AV8e K, Arek (S, S,NTHE[P(8)]

AT <7((S,, S, NTHF1D(5)

AVaek (o, q(8))e K— a<1)))))

(we use here that A is regular over S,).
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(4)— (1). Let A €b be recursive. Define A'c {0, 1}x S, by
A:={0,K)| KNA#U{1, K)| KNS, — A+ 0}

and take D :=q[Py{A']] (Py is a recursive projection of S; onto ). Then D is
r.e. and A <D is obvious, because for any K€ S5:

KcA<(1,K)eS;— A’ q(Py({(1,K))e S —D
and
KcS;—Ae(0,K)eS; —A'— q(Py((0, K))) € Sy — D.
In addition we have for any K€ Sg:
Kc Do 3K'eS, (K=4q[K'|A3K,, K €S, (K, ={K|(0, K)e PL'[K'T} A
K,={K|(1,K)e PF[KIAK,;UK,=Py[K]A
§ VReKax (xe Raxe A)AVK e K, 3x (xe Kaxe Sg— A))).

We can express this by a 3,; formula over 8, which shows that D is t.r.e., because
K, and K, have in ¥ cardinality less than «.
Finally D<gxA follows from

KcS;—Do3g, (Ke Sy yA3K'(K'= {oea,|q(o)eK}n
3K, K, (K, = U{K |0, K)e PI[K'TAK, S S~ AN
K,=U{K {1, K)e PF[K'IA K, € A))).

Remark 5. All steps in the preceeding proof except (2) —> (3) and (2) — (5) are
obviously uniform, i.e. we can define for these steps 8-recursive functions f.; such
that f,; computes for a given index e of a set W, e b with property i the index of a
set W;, )€ b with property j. The steps (2) = (3) and (2) — (5) are not obviously
uniform but nevertheless uniform, because the Regular Set Theorem for U (which
is applied for these steps) is now available in an uniform version ([6)).

Remark 6. Theorem 4 contains the following (uniform) Regular Set Theorem for
weakly inadmissible structures 8B: for every t.r.e. set C we can find (uniformly) a
regular t.r.e. set D= B with C=g4D.

A first step toward a regular set theorem in inadmissible recursion theory was
taken by Friedman [2]. He proved that for inadmissible B with gcf (:=the
greatest B-cardinal) not greater than max (3,-cf B, B*) the following holds. Every
s.r.e. set has the same B-degree as some s.r.e. regular set. The restriction for gc 8
was not mentioned in [2], but is needed at point d), p. 47. The restriction to s.r.e.
sets is essential, because we only know through the regular set theorem for t.r.e.
sets above that t.r.e. and s.r.e. degrees are the same in weakly inadmissible 8. A
regular set theorem for s.r.e. sets in strongly inadmissible is of no interest
because we have there A =4@ for every s.r.e. set A (see Section 2 below).
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Remark 7. There are weakly inadmissible 8 such that the t.r.e. degrees coincide
with the degrees containing regular B-r.e. subsets of B (see Example 18 below).

Let R be the set of those B-degrees b for which we gave equivalent characteri-
zations in Theorem 4. The structure of R is determined by

Theorem 8. Assume that B is weakly inadmissible. Let S be the set of r.e. degrees
in the admissible collapse % of B. Then there exists an isomorphism I:S — R, i.e. I
maps S 1-1 onto R and for all a, a’e S we have a <y a "o I(aysgI(a).

We have that 0g <g I(04) <g 0% and for any B-degree b we have that C=< wabe
1(0%) <@ b, where C 0 is the universal %, setin 8.

Further, there is a choice function F, which picks out of every degree bin R a t.r.e.
regular set F(b)€ b such that for all a,a’€ S

a<ga'oF(I(a)<g F(I(a")) F(I(a))<.s F(I(a),

which implies that F(I(a)) is recursive iff a =0y.

Proof. We pointed out before Theorem 4 that every a € S contains a -immune
9-r.e. set A. I(a) is then defined as the degree of A in B. Observe that every
B-immune set is trivially t.r.e. in 8. The definition is independent of the choice of
the B-immune r.e. set Ac€a and I is 1-1 because A=gA'6 A=A’ for
B-immune sets A, A’. Theorem 4 tells us that I maps S onto R.

It is easy to see that C<,uI(0%), therefore I(0%)<pb— C<,pb for any
9B-degree b. For the other direction take a recursive set A€ I(0%). Define

A:={0,K)| KNA#PU{L, K) [ KNS —A# i}
We have then that for any K€ S,:
KcAe(l,K)eS;—A'e(e,(1,K)e S, —C
and
KcS;—Ae(0,K)eS;— A'e(e, (0, K)eS;—C,
where e is some fixed index.
Friedman ([2], Theorem 2.4) showed that C is not recursive in any recursive
B-degree (because the complete 2., set is weakly recursive in C and any set which

is weakly recursive in a recursive set is A,%B), therefore we have 1 C =g I(0%).
The choice function F is given by Theorem 4.

We can now directly apply results from admissible recursion theory in order to get
information about recursive degrees in 9. For example the following Corollary
follows from Shore’s splitting theorem [9] and the preceding:

Corollary. Let B be weakly inadmissible. Then the following holds.
(a) Take any recursive degree ¢ in %8 and any nonrecursive r.e. set D < Sg. Then
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there exist recursive B-degrees a,b such that c=Ilub{a, b}, " D<,y a and
AD <, b

(b) (Solution of Post’s problem for recursive degrees with respect to <g.) Take
any recursive B-degree d# 0n. Then there exist recursive B-degrees a, b such that
d=1ub{a, b}, "a<uyb and " b<=ga.

(c) (Solution of Post’s problem with respect to <,,5.) Take any recursive B-degree
d# 0y. Then there exist t.r.e. regular sets A;, A, such that A, <, 9 A,, TA, <
wn Ay and d is the least upper bound of the degrees of A, and A,.

Remark 9. Friedman [2] has already proved (by performing a priority construc-
tion in Sz similar to Shore’s blocking proof [11]): in weakly inadmissible ¥ there
exist t.r.e. regular sets A;, A, such that 1 A;<,3 A4, and 7A,<_sA,. Friedman
has further observed in [2] that for any inadmissible 8 we can find a B-recursive
set A such that every t.r.e. and every B-recursive set is recursive in A and such
that 0<g A <g0%.

Remark 10. It is described in [5] how the admissible collapse can be used to
extend Shore’s result about minimal degrees [10] to more admissible o and to
show that minimal degrees and minimal pairs of degrees exist in weakly inadmissi-
ble B for which the corresponding construction succeeds in the admissible
collapse of 8. Observe that it follows from the preceding and Theorem 7 in [5],
that we have in fact degrees a, b € R such that a% 0y and b 0y but glb {a, b} =04
if the admissible collapse is not refractory. Theorem 8 in [5] shows in fact that a
B-degree b exists such that b<g I(04), b# Oy and such that for any B-degree d
we have that d<gb —> d=0pvd=0>b if 2,-cf B=3,-p B. This minimal degree b is
an example of a degree which is recursive in a recursive degree but which is not
recursive (by the preceding Corollary).

The relations between the considered stronger notions of %-r.e. degrees are
now clear for weakly inadmissible ¥ (the t.r.e., s.r.e., n-ree. (n=1), n'-ree. (n=1)
B-degrees are just the B-recursive degrees), but we don’t know yet the exact
relations between these notions for a single B-r.e. set. It is obvious that for any
AcS;: A l-re.— A tr.e, in fact we have A 1'-r.e.— A tr.e. Friedman [2]
asked whether A tr.e.— A 1-r.e. We show after Theorem 11 that this is not the
case. Nevertheless one can find a place for the (more recursion theoretic) notion
tr.e. in the (more syntactical) notion hierarchy n’'-r.e., because we have A
tre.«<> A 1'-r.e. in any B.

We consider formulae of the form Vx e p M(x, A, p) where p, p are parameters
from S; and m does not contain any quantifier and contains the predicate A only
positively. M(x, A, p) is then equivalent to a conjunction M(x, A, A,p)A---A
M, (x, A, p) where every M;(x, A, p) has the form ¥(x,p)vpe Avxe A where
¥(x, p) is a quantifier free and does not contain A. The formulae of the form
Vxep M(x, A, p) which are true in (8, A) can then be enumerated because we
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can split p into two pieces p’, p"€ Sg such that
(B, AYE[Vxep ¥(x,p)AVxep'(xe A)]

(if P,eA is not already true for some parameter p;€p). This shows
A tre.— A 1-re. (there is no problem with existential formulae Ixep
M(x, A, p)).

Theorem 11. Let B be weakly inadmissible and A < B be r.e. Then there exist t.r.e.
sets My, M such that MyN M, =0} and MU M, = A.

Proof. We split A by a simple priority argument in such a way, that for every
KeS,;, K< M, or K< M, implies that K has cardinality (in %B8) less than «. Then
M, and M, are automatically t.r.e. if they are r.e.

let g:k — A be an 1-1 onto recursive function (if such a g with dom g=«
doesn’t exist we have A € Sy and define M,:= A). We take a recursive projection
p of B x{0, 1} into B* and a recursive function n — K, from B onto Sg. q:x — B
is a cofinal function as before.

At step 8§ <k of the construction we choose ne B and i€{0, 1} such that

(a) g(8)e K, and

(b) all elements of g[6]N K, have been put into M; and

(c) if o,=the least o <k where ¢ =48 and

(Sae)» Sa@y N BYE(P((m, D)) ),
then no n'e€ B, i'€{0, 1} exist such that
(St Sa@y N BYE(Un", N L), pUn’, i) <p(n, i), g(8) € K,

and all elements of g[8]N K, have been put into M;.
We say then that (), i) receives attention at step 8. We put g(8) into M;_; and
proceed to the next step.

In order to show that this construction succeeds we assume for a contradiction
that for some n € B, i€{0, 1} we have that K, € M, and K, has cardinality =« in
8. Choose (m, i) with this property such that p({(n, i)) is minimal. Choose §,< «
such that

<Sq(60)7 Sq(So) N B)(p((n, i) ).

Then there exists an unbounded r.e. set of steps 8'> 8, such that g(8)eK,,
g[81NK, =M, and some (n',1-i) with p({(n’,1—-i"))<p((n,i)) receives at-
tention at 8'. This yields a recursive projection of « into p({n, i)), contradicting
p((n, i) <B*.

Corollary 1. The union of two t.r.e. sets is in general not t.r.e.
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Corollary 2. Assume B is weakly inadmissible. Then there exist recursive sets
A c B which are not t.r.e. and there exist recursive t.r.e. sets D < f such that D is
neither 1-r.e. nor 2'-re.

Proof. Take a B-recursive set A’c 8 which is not an element of Og. Then either
A’ or B—A'is not tr.e.

In order to get the set D we use Theorem 11 to split A into two t.r.e. sets
M, M, such that A=M,UM, M,NM;=0. Then we define D:=M,
x{0}U M, x{1}. We are using here the pairing function for ordinals inside S,,
which is of course an element of Sz. D is obviously t.r.e. and the idea is to show
that D 1-r.e. or D 2'-r.e. would imply that A is t.r.e. This is easy to see, because
we have for any K€ S;:

KcAoKcokaVxe{{(y,0),(y, D} yeK}Vye{(y,0)| ye K}
Vze{(y,1)| yeK}(yexrzex)—> (ye DvzeD))

and

KcAoKckaVxe{{(y,0),{y, 1)}| yeK}3yex(ye D).

Remark 12. Friedman [2] observed that the Sacks—-Simpson Lemma (Lemma 2.3
in [13]), which is an important tool for priority constructions, might fail for
k =3,-cf B in weakly inadmissible B, even if « is a regular cardinal in . If one
takes the admissible collapse U of B in order to analyze this situation, one sees
immediately that this failure occurs iff 3,-cf B <«.

We have 3,-cf B =3,-cf %. The failure defines a function which is %, over %
and cofinal in . If 3,-cf A < k one constructs a failure by applying Lemma 3.1 of
Lerman-Simpson [4].

The failure usually doesn’t bother us if we choose priorities in tp 2 B (the tame
3,-projectum of ) for the priority construction. The reason is that we have
tp2B<p - 3,-cfB in the relevant case where a greatest B-cardinal p <k exists.
This follows because we have tp2 A<gc ¥ - 3,-cf U in the admissible A ([14]),
tp2B<tp2 U and p=gc A.

Remark 13. If M < « is a maximal set in the admissible collapse %, then P~'[M]
is a maximal set in B.

Remark 14. The results of this paragraph can be generalized to a larger class of
weakly inadmissible structures.

If BcL, is not regular over L, we consider the structure 8 =(Lg[B], €, B)
where (L,[B]|yeOn) is the constructible hierarchy relativized to B (see [1D.
Then « :=3,-cf B and B* are still well defined and we assume that k =B*. In this
more general situation we can’t prove that K € Lg[B]JAK < o for some o<
k — K e L [B]. Therefore the predicate T, which is defined as before, need not be
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regular over L [B]. Therefore the admissible collapse is defined to be the
structure A:=(L [T], T). A is again admissible and we can proceed as before
because we have Ke Lg[B]AK c o for some o<k —> KeL [T].

Example 15. If 0 <B<of™ (of<:=the first nonrecursive ordinal), then B is
weakly inadmissible with 3,-cf B = B* = w.

Example 16. If « is admissible and A< a is a-r.e., regular and not complete,
then the structure B:=(L_, A) is not strongly inadmissible ([15]). This example is
relevant because we have that B < « is B-recursive iff B<,, A and we have for
sets B, Cca that B<xC iff B<,A+C (A+C:=Ax{0}U Cx{1}). B is inad-
missible iff A is not hyperregular.

Example 17. If o is admissible and o >3,-cf =3,-p a, then (L,, C) is weakly
inadmissible where C is a complete regular 3, set. A set B a is r.e. in (L, C) iff
B is 3, definable over L,.

Example 18. If 8 has the form p+p where p is a regular cardinal in L, then B is
weakly inadmissible.

Example 19. The following construction shows that gc > max (2,-cf B, B*) can
happen (gc B is the greatest B-cardinal).
Define ay= o} and
ani1i=py(y>a, AL, <5 ., L,

for all n e w and take B:= (lim,.,, a,)+ ». We have then 3;-cf B = , B* = 0] and
gc B=(B*)* = (lim,, a,) (B*)" is the next B-cardinal after B*).

Example 20. We get a weakly inadmissible set S; with gc B> 3;-cf 8= *= e if
we define ay=w and

ayiri=py(y> o ALy <5, Lo1)
and take again B:=(lim,., a,)+ o.

Example 21. If v is not a gap ordinal, then B:=w * y+ o is weakly inadmissible
with 3,-cf B = B* = w (see Section 0).

2. Tame r.e. sets in strongly inadmissible g

So far not much is known about t.r.e. sets in strongly inadmissible g, in
particular one doesn’t know whether t.r.e. sets of nonzero degree exist. This
question is of interest because Friedman [2] showed that for some strongly
inadmissible B every t.r.e. set is of degree 0.
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Neighborhood conditions like “K < A” are usually not considered in the fine
structure theory of L and thus some notions of this theory are not very well suited
for the study of t.r.e. sets. Especially 3, projections are not “tame” enough to
preserve the property “tr.e.” (i.e. if f:*— B is a 3, projection and A is t.r.e.
then f7'[A] is in general not t.r.e.). Therefore we introduce the notion of a tame
projection and define the corresponding notion of a tame projectum of 8 (tp 8). It
turns out (Theorem 22) that this projectum has the same nice properties which
the 2,-projectum of B has for every n according to Jensen’s Uniformisation
Theorem. It is plausible that the tame projectum of 8 was not considered so far
because it is the same as B* if B is admissible or weakly inadmissible. A further
exploration of the tame projectum makes it possible to solve the problem
concerning the existence of nonzero t.r.e. degrees (in Theorem 29). furthermore it
is shown that s.r.e. sets of nonzero degree exist iff B is admissible or weakly
inadmissible (see Theorem 26).

Let B be a limit ordinal and let h:S; — S; be a projection for some §<p (i.e.
h is 1-1 and onto but may be partial). We call h a tame projection if h (i.e. the
graph of h) is t.r.e. and if k | K is B-finite for every B-finite K< dom h.

We write tp 8 for the tame projectum of 8, which is the least § < such that a
tame projection h:S; — S, exists. Analogously as for 2,-projections we further
introduce

pp:=the largest §<p such that all t.r.e. sets BS S; are regular over S; (we
write always t.r.e. instead of B-t.r.e.),

= the minimal § < B such that a t.r.e. set B < S; exists which is not 8-finite.

The letters k and g have in this Section the same meaning as before.

Theorem 22. Let 8 be any limit ordinal. Then we have

a) If h:S; — S, is a tame projection and B Sg is t.r.e. then h'[B] is t.r.e. as
well and we have h™'[Ble Sy — B€ S, for any set BS S,

b) tp B=8 or tp B is a B-cardinal,

c) tpB=pp=my=p",

d) tp B=B* if B is admissible or weakly inadmissible,

e) 3-cf(tp B)% <Z-cf B.

Proof.
a) We have Kch™'[Ble3He S, (Hc hadom H=KArg Hc B) for every
B-finite set K.
b),c) Assume that 7z<f and that 7} is not a B-cardinal. Then there exists a
B-finite function g which maps S, 1-1 onto some S, where y<mj.
By definition of mj there exists a t.r.e. set BS S, such that "Be S,
The set g[B]< S, has the same properties, contradicting the minimality of .
We want to show that tp B<w:=m; Assume that w<pB. Since = is a
B-cardinal, 7 is admissible. For the following definition of the function g we take
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an onto pairing function (,):a X w — m which is 2, definable over S,. We write
po, p1 for the accompanying projections.

Take a t.r.e. set B < 7 such that 7B € S,. Then there exists a partial recursive
function f:S; — B which is 1-1 onto such that

VKe S, (KcB— 30 (K</[S,])

and such that the function o — fN S, is recursive and maps B into S, (see [2] for
similar enumeration functions). 7B € Sg implies that dom f is unbounded in <g,
(<s, is the natural well ordering of Sg, <g, is uniformly A, definable over Sg, see
[1]). Let P be a recursive projection of Sz into B*. We have 8* <= because Bc
is r.e. and not B-finite. Define g: Sz — S, by g(z) =(f(z"), P(z)) where z'>5,z 1s
<S -minimal such that z’edom f and such that we have for the o€p with
Z’€S,.,—S, that S,.,F3y (P(z)=y). Then dom g =S, and g is 1-1. We want to
show that h:=g ' is a tame projection. Take Ke S, such that K<donrh.

=po[K]e S; — 3o (K' < f[S,]) — the function H with Hc h, dom H=K is
B ﬁmte h, considered as a set of pairs, is a t.r.e. set because we have for K< h
that 3o (p[dom K]< f[S,]). This shows that tp 8 = g (tp B = = g tollows from a)
with B:=Sp).

ps<m} is obvious. In order to show pp= w4, we consider a tr.e. set BS .
For o € k we have BN o € S, due to the definition of ap. This implies BN o€ S,
because mj is a B-cardinal.

d) The claim is trivial if 8 is admissible or if B*<3;-cf B < (consider mg). If
p*=3,-cf B<B we take any B-immune r.. set BSB* such that B is not
recursive and get ¥ = m;.

e) Take a tame projection h:tp B — Sz and a cofinal recursive function q:3,-
cfp— B. Consider k:=h™'-q and assume for a contradiction that Jo <
tp B (rg k= o). Since h[a] is bounded this would imply that rg g is bounded.

Remark 23. The definition of a tame projection has some similarity to the
definition of a tame 3, projection in admissible recursion theory (see e.g. [14]).
Unfortunately the two notions do not fit together. It is essential that the tame
projectum tp B is a B-cardinal if tp 8 <B. On the other hand it is important for
applications of the tame X, projection in priority constructions that we have in
some cases tp 2 a <a even if we can’t project any a-cardinal “tamely” onto o
(i.e. gca<tp2 a). »

Lemma 24. Assume (B is strongly inadmissible and BS S, is t.r.e. and regular.
Then we have B <.

Proof. Take a (partial) function f:S; — B which enumerates B as in the preced-
ing proof. We define Mc k Xk (k:=3;-cf ) by

(n,8)e MoVxe S, (xeB—xe f[S:)s
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where we use pairing in the admissible k. M has obviously a I, definition over S,
and since k — M is bounded below B* we have that M € S,. The function g:k — «
such that g(n) = p6((n, 8)€ M) is therefore B-finite as well. Then we have for any
KeS,;:

which shows B =, §.

Lemma 25. Assume B is strongly inadmissible, tp B < and BS S, 5 is t.r.e. Then
the set {Ke S, 5| KSS,,s—B} is re.

Proof. B is regular over S,,; and there exists a cofinal recursive function
h:x — tp B (by Theorem 22). Take an enumeration f of B as before and a B-finite
function g : k — « analogously as in Lemma 24 such that for all ek, BN S5y <
fIS 4(a(sp)- Proceed then as in Lemma 24.

Theorem 26. Let B be strongly inadmissible. Then we have
a) If Ac S, is t.r.e. then A is recursive,
b) If Ac Sz is 2'-re. (e.g. if A is s.r.e.) then A<,
¢) Si-cf B =3 -cf (tp B)"-.

Proof. a) By Lemma 24 we may assume that A is not regular over S; which
implies that tp B<p. Take a tame projection h:S,,; — S; and consider
B:=h"'[A]. then B is t.r.e. and A is recursive since B is recursive by Lemma 25.

b) Consider A":={KeS; | KNA#@}. Since A is 2'-r.e. we have that A’ is
tr.e.and A=4A" Then A'is recursive and we have that K€ §;— A< 1KeA'.

¢) Assume that tp 8<p and take a tame projection h:tp p— Sz Let g:%-
cf (tp B) — tp B be a cofinal recursive function. Then the function p : 3, -cf (tp 8) —
B which is defined by p(8)= uo(h[g(8)]cS,) is cofinal in B and recursive
because of Lemma 25 (observe that h is always partial).

Lemma 27. Assume that § is strongly inadmissible and let p = B* be a B-cardinal
such that 3,-ct B =3-cf p. Then there exists a recursive function g:xk — S, such
that

VKeS; (Kcg—>3o <k (dom K< o))

(which implies that the graph of g is t.r.e.) and such that the complete %, set C is
weakly recursive in g (which implies that 71g<,0).

Proof. Take a 3, formula @ which defines C over Sg. Let p:k —> p be a recursive
strictly increasing cofinal function and let f: B8 — B* be a recursive projection.
Define g by

g(8):={xe S ‘ Sq(a)': Ay (P(Y)Afly)=x)},
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where q:k — B is cofinal and recursive. Take any K€ Sg such that K< g and
assume for a contradiction that dom K is unbounded in . Then H:= |J(rg K) is
B-finite and we have -1y e C « f(y)€ H which yields the contradiction that C is
recursive. Finally we have C=,;g because

yE€CoIx (f(y)=xArIHeS; (H={KeS, | xc K}AnkxHg Sz - g).
Lemma 28. Assume that B is strongly inadmissible and gc 8> B*. Then we have
tp B=<(B*)* ((B*)*:= the next B-cardinal after B*).
Proof. Take C, @, f as in Lemma 27 and define g:k — S+ by

g(8):={x e B*| Sy FIy (P(y) A f(y) = x)}.
It follows as in Lemma 27, that

VKeS; (K g—>3do <k (dom K< o),
which implies that =g € Sg and that the graph of g is t.r.e. Since g < Sg»+ we get

tp B <(B*)" by Theorem 22.

Theorem 29. Assume that 3 is strongly inadmissible. Then we have

a)
tp B<Be (3;-cf B=3,-cf (B*)% ngec B> B%),
where
tpB=B* iff I;-cf B=3,-cf (B*)%
and

tp B=(B*)" iff Zy-cf B#3-cf(B%),

b) tp B < B <> there exists a t.r.e. set A such that "TA<,4¢,

c) if tp B<p then tp B is the least ordinal & such that a t.r.e. set A< S; exists
which is of nonzero degree,

d) if tp B <P, then there exists a t.r.e. set A< S, such that every recursive set
(especially every t.r.e. set) is recursive in A and such that the complete 3, set C is
weakly recursive in A.

Proof. a) if tp B = B* then we have 3-cf (8*)% =3;-cf B by Theorem 26. If 3;-
cf (B*)% =3,-cf B then Lemma 27 (p:= B*) shows that tp 8 = B*. Further, if 2,-
cf B# 3 -cf (B*)% and gc B> B*, we have tp B# B* by Theorem 26 and therefore
tp B =(B*)* by Lemma 28 because tp 8 is a B-cardinal.

b), ¢), d) Assume tp 8 <B. A tr.e. set A with all the properties which are
required in d) is given by the graph of g in Lemma 27 (if tp B = f*) and by the
graph of g in Lemma 28 (if tp B = (8*)*). That every recursive set is recursive in g
follows from C=<,,g (see the proof of Theorem 8). Finally, if t.r.e. set A exists
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such that 7T A <z, then A can’t be regular by Lemma 24. Therefore there exists
a o< such that ANS, &S, which shows that tp 8 < by Theorem 22.

Remark 30. B:= w]+w is an example for tp B = B. B:= wl+ w is an example for
tp B = B*. Example 19 in Section 1 is an example for tp B =(B*)". If we change
Example 19 slightly (take a,:= w5, consider substructures of w%_, instead of w})
we get an example for gc 8>tp B = B*.

Remark 31. We have proved now, that for every limit ordinal 8 a t.r.c. B-degree
t exists, which is an upper bound for all t.r.e. B-degrees, and that

(i) t=0%, if B is admissible,
(ii) t=the largest recursive B-degree, if 8 is inadmissible and tp 8 <,
(ili) t=0g, if B is inadmissible and tp B = B.

Remark 32. The three classes of limit ordinals (admissible, weakly inadmissible,
strongly inadmissible) can be characterized by the solvability of versions of Post’s
problem. Consider the following three versions.

(P1) There exist regular t.r.e. sets A, B such that TA=<z;B and "B<A.

(P2) There exist t.r.e. sets A, B such that TA<,;B and "B <,;A.

(P3) There exist t.r.e. degrees a, b such that for every Aca, Beb: 1A< B
and "B <A

It follows from Sacks-Simpson [12] and the preceding theorems that (P1) is
solvable for 8 iff 8 is admissible or weakly inadmissible (the same holds for (P2))
and that (P3) is solvable for g iff 8 is admissible.

Remark 33. Friedman [2] showed that for example in the case where B is
strongly inadmissible and B* is a successor cardinal of L we have that every
regular B-r.e. set is of degree 0. On the other hand the preceding theorems show
that t.r.e. sets of nonzero degree may exist in such a 8 (e.g. take Example 19) in
Section 1).

Remark 34. There are examples of strongly admissible 8 where regular r.e. sets
of nonzero degree exist. Assume tp 8= % and take functions g:k — B¥,
q:« — B which are recursive, cofinal, strictly increasing and continuous (k := 2;-
¢f B). Let C be the complete 3; set and let P:S; — B* be a recursive projection.
Define

(0,x)e Ao eck (0=q(8)rng(8)sx<g(8+1)AP (x)e O).
Then A is regular, r.e. and of nonzero degree because C<,zA.

Remark 35. The last two remarks together with Theorem 26a), b) show that
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many conjectures concerning a regular set theorem for strongly inadmissible g are
either trivial or false.

3. On the interpretation of some basic notions

In B-recursion theory the “finite” sets are the elements of S; (respectively Lg).
It is hardly possible to capture in one definition all properties of finite sets in
ORT. For example if one wants to preserve the property in B-recursion theory
that the recursive predicates are closed under quantification over finite sets (this
property is preserved in a-recursion theory) or if one looks at the structure of the
lattice of B-r.e. sets with inclusion this may lead to the consideration of alterna-
tive definitions of “finite” (e.g. elements of Sz with a “small” B-cardinality).

For the following we consider only the usual definition of “finite” because we
want to discuss instead the definition of ““r.e.” and “recursive in”. There is an
alternative concerning the definition of a “r.e. set” A because one has to decide
whether one wants that

(1) the elements x€ A or that

(2) the positive neighborhood facts K< A (with K B-finite)
are enumerable by an enumeration process.

Whereas in ORT and a-recursion theory (1) and (2) lead to the same definition
one has in B-recursion theory the choice between B-r.e. (with (1)) and B-tame r.e.
(with (2)). Friedman and Sacks have chosen alternative (1). With this choice one
doesn’t narrow the view in advance and one can still consider t.r.e sets as a special
class of r.e. sets. In fact the relation between t.r.e and r.e. sets seems to be one of
the most interesting new problems in B-recursion theory.

We want to stress here that after the choice of (1) the reducibility relation splits
into two relations which have to be distinguished carefully. It makes sense to
define “A is recursive in B’ such that this holds iff A and the complement of A
are “r.e. in B”. Now the definition of “r.e. in B should be consistent with the
definition of “r.e.” and should just bring in the additional feature that we may ask
questions about B during the enumeration process. Here the further problem
arises of what sort of questions we should allow about the oracle B during this
enumeration process. A decision concerning this problem seems to be relatively
independent from a decision between (1) and (2), because here we merely want to
describe which “abilities” are required of an oracle. If we have in mind that every
single computation is a B-finite object in B-recursion theory it seems very natural
to allow exactly all questions K < B, K < CB for B-finite sets K. Thus concerning
the definition of “recursive in” we arrive in B-recursion theory at <., with (1)
(with (2) we would arrive at <z and no problem would occur). Of course the
relation <, is more attractive because it is transitive. But we are not required to
throw away this relation with (1) because <, is in any case the canonical
definition for “A can always be replaced by B as an oracle”. Therefore B-degrees
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are equivalence classes of oracles and it makes sense to study these equivalence
classes.

Therefore two different reducibilities are of interest in B-recursion theory:
A < 4B tells us that we can compute A if we assume that B is given. A <gB tells
us that the oracle A can always be replaced by the oracle B.

Both relations are the same in ORT but the split occurred already in «-
recursion theory (nevertheless it is often said that <, is the definition of
“recursive in” in «-recursion theory; an explanation might be that one has
alternative (2) in mind). In B-recursion theory one stumbles immediately upon the
fact that there exist B-recursive sets A such that A %, (. Whereas it is absurd to
say that the “recursive” set A is not “recursive in” the empty set it makes sense
to say that the “recursive” set A is a stronger oracle than the empty set although
this effect could not be demonstrated before B-recursion theory was started.
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