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ON THE COMMUNICATION COMPLEXITY OF GRAPH PROPERTIES
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Abstract.

We prove 8(nlogn) bounds for the deterministic 2-way com-
munication complexity of the graph properties CONNECTIV-
ITY, s-t-CONNECTIVITY and BIPARTITENESS (for arbitrary
partitions of the variables into two sets of equal size). The
proofs are based on combinatorial results of Dowling-Wilson and
Lovisz-Saks about partition matrices using the Mdbius function,
and the Regularity Lemma of Szemerédi. The bounds imply im-
proved lower bounds for the VLSI complexity of these decision
problems and sharp bounds for a generalized decision tree model
which is related to the notion of evasiveness.
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1. Introduction.

The communication complexity of Boolean functions is a
complexity measure corresponding to the amount of information
transfer necessary to compute the function. Let f be a Boolean
function and (X3,X,) be a partition of the variables. Assume
that I and II are two processors such that I knows the values
of variables in X; and II knows the values of variables in X3.
Then COMM(f, X1, X2) is the number of bits that have to be ex-
changed by the processors to compute f. COMM(f), the (deter-
ministic, 2-way) communication complexity of f is the minimal
communication complexity taken over all equal size partitions of
the variables.

The model for a fixed partition was defined by Yao [14] (a
related model was considered by Abelson [1]). The variable par-
tition model is discussed in Yao [15].

This paper is concerned with the problem of proving lower
bounds for COMM(f) for particular functions. Yao [15] proved
a Q(n?) lower bound for graph isomorphism and raised the prob-
lem of proving lower bounds for other graph properties, noting
that this “seems to be a difficult problem in general.” Ja’Ja’
[6] proved a 8(nlogn) bound for the CONNECTED COMPO-
NENTS function (given G, output the connected components of
G). As it is remarked in [6] his methods do not seem to work for
decision problems. Other lower bounds are obtained in Lipton-
Sedgewick (7], Mehlhorn-Schmidt (9], Papadimitriou-Sipser (10]
and Yao [15].

In this paper we consider the commurication complexity of
the decision problem: given G, decide whether G is connected.
For the (7) variable function CONNECTIVITY, that decides
connectivity for graphs on n vertices we prove a §(nlogn) bound
for COMM(CONNECTIVITY ).

An important aspect of lower bounds on comraunication
complexity (for arbitrary equal size partitions of the input vari-
ables) is that they provide lower bounds for VLSI complexity.
If A is the area and T is the time required by a VLSI cir-
cuit to compute f then AT? = Q(COMM(f)?) (Thompson [121,
Lipton-Sedgewick [7], Yao [15]). Our lower bound of Q(nlogn)
for COMM(CONNECTIVITY ) (Theorem 10) implies an
(n?log® n) lower bound on AT? for the decision problem
CONNECTIVITY,. Apparently the best known upper bound
(for the VLSI bit-model) is O(n® log’ n) (Hambrusch [4], see also
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The proof of the lower bound on COMM(CONNECTIVITY,)
is based on two important combinatorial results: a theorem of
Dowling and Wilson [3] (see also [13]) which uses M&bius func-
tions to determine the rank of partition matrices, and the funda-
mental Regularity Lemma of Szemerédi [11] about the structure
of dense graphs.

Recently, Lovasz and Saks [8] proved a result analogous to
the Dowling-Wilson theorem about another kind of partition ma-
trix (also using Mébius functions). Using the proof method of the
lower bound for CONNECTIVITY this result implies 6(nlogn)
bounds for s-t-CONNECTIVITY (given G and vertices s and ¢,
decide whether there is a path from s to ¢ in G) and for BIPAR-
TITENESS (given G, decide whether it is bipartite).

Thus, in conclusion, our approach seems to provide a general
method to prove lower bounds for the communication complexity
of graph properties.

In section 5 we will consider applications of these lower
bounds to decision tree complexity. There are several well-known
results about the decision tree complexity of graph properties
(see Bollobds [2]), centered around the concept of evasiveness
and the Aanderaa-Rosenberg conjecture. CONNECTIVITY is a
standard example of a graph property that is evasive, i.e., in any
decision tree where one can only test whether a certain edge is
present one has to test in the worst case each of the (’2') possible
edges. In section 5 we will consider a more powerful decision tree
model which allows tests of the form “Is any edge in X present?”
where X is an arbitrary set of edge slots. It is easy to see that
only O(nlogn) tests are needed to decide CONNECTIVITY,, in
this generalized model. The lower bound on the communication
complexity of CONNECTIVITY,, implies that this bound is in
fact optimal.

2. Preliminaries.

In this section we summarize the definitions and the com-
binatorial results that are used. Furthermore, we- outline the
strategy for the proof of the main theorem (Theorem 10).

Let f : {0,1}™ — {0,1} be a Boolean function and let
(X1,X2) be a partition of the variable set X into two parts of
equal size (i.e., ||X1| - [Xol| £ 1). By M‘;f(hx,‘ we denote the
olX1l x 21Xzl matrix describing f.

A deterministic two-way communication protocol 7 to com-
pute f given the partition (X1, X?) is of the form

= {gh, g3, hk, b} 1ok : {0,112 x {0,131 — {0,1}
g% {0,13%21 % {0,1}* — {0,1}
hL: {0,131 %1 x {0,1}*"! < {0,1}
BE : {0,1}1 %l x {0,1}* — {0,1},
k>1}

where g1,g? give the k-th message of the processors computed
from their input and the messages received; and h}, k% are partial
functions which whenever defined give the value of f. We do
not formalize further the requirements guaranteeing that = is a
correct protocol (see e.g., [14]).

187

C(r,z) is the number of bits exchanged by = on input z.
C(x) = max{C(r,z) : z € {0,1}"} is the complexity of m.
COMM (f, X1,X2) = min{C(7}): = computes f given the parti-
tion (X, X2)} is the complexity of f given the partition (X, X2)
and COMM (f) = min{COMM(, X1,X2) : (X1,X2) is a parti-
tion of X into two parts of equal size} is the deterministic 2-way
communication complexity of f.

Theorem 1. (Mehlhorn-Schmidt [9]).

COMM(f, X1,Xz) > logy(rank(M%, x,)) - 1.

Let Py,..., P, be an enumeration of all partitions of § =
{1,...,s} (into arbitrarily many sets), where t = B, is the s-th
Bell number.

P,V Pj is the finest partition P such that both P; and P;
are refinements of P. By M?® we denote thez xt 0-1 matrix
given by M3 = 1 if and only if P; vV P; is the trivial partition
1 consisting of the single set {1,...,s}. By N° we denote the
t xt 0— 1 matrix given by NJ; =1 if and only if elements 1
and 2 are in the same subset in the partition P; V P;.

Theorem 2. (Dowling-Wilson [3], [13]).

rank(M?®) = B,.

Theorem 3. (Lovdsz-Saks [8]). ’
rank(N®) = By — By-1.

a

Corollary 4. log(rank(M?*)) = Q(slogs) and log(rank(N?®)) =

Q(slogs). o

Undirected graphs G = (V,E) with V = {1,...,n} can
be described by z5 € {0,1}(;) corresponding to the adjacency
matrix of G. CONNECTIVITY, is the (;)-varia.ble Boolean
function for which CONNECTIVITY(zg) = 1 ¢ G is con-
nected. Variables correspond to edges of the complete graph K™
on {1,...,n} and a partition of the variables will be given in the
form (R, B) (“red” and “blue” edges), where ||R| - |Bl| <1l

In order to motivate the proof of the lower bound on COMM
(CONNECTIVITY ) we first consider the special case where the
(’2‘) variables have been partitioned in the following way.

Assume that the vertex set is partitioned into 3 disjoint sets
A,B,C of size nf3. Consider the special partition of the edges
where processor I has all edges from A X B and processor II has
all edges from B x C (other edges are distributed arbitrarily).
Let P = (S1,...,Sk) be a partition of B. '

Define the bipartite graph Gb = (A, B, Ep) as follows: for
every subset S; choose a vertex »; € A and connect it to all
vertices in S; (if i # j then v; # v;); connect all vertices in
A= {vy,...,vx} to some vertex in B.

Define G% similarly with A replaced by C.

Then for two partitions P and P’ of B, Gp UG} is con-
nected if and only if PV P’ = 1, thus the matrix of the con-
nectivity function corresponding to this partition of the variables




contains M ™3 as a submatrix and therefore in this case the com-
munication complexity is (n log n) (by Corollary 4 together with
Theorem 1).

What remains is to prove that every partition of the variables
contains a configuration similar to the above and thus M can al-
ways be embedded into the matrix corresponding to the partition
(for some s = Q(n)). We will show in the rext section that this
can be derived from the Regularity Lemma of Szemerédi, which
is stated below. In fact it appears that the Regularity Lemma
provides a general method to deduce lower bounds for arbitrary
partitions from a lower bound for a special partition.

If G = (V,E) is a graph and V;, V; are disjoint subsets of V
then e(V4, V2) denotes the number of edges of G between ¥; and
Vi. G|(V1,V2) is the bipartite graph induced by G on (¥4, V).
If H = (A, B, E) is a bipartite graph, A’ C A and B’ C B then
§(A',B"Y = e(A',B")/(|4'} - |B'|) is the density of (A',B'). H
is e-regular if for every A’ C A, B' C B it holds that |4'| >
elAl, |B’| > €|B| imply {6(A’,B') — 6(A, B)| < e.

Theorem 5. (Szemerédi Regularity Lemma [11]).

For every € > 0 and m € N there are numbess M = M(e,m)
and N = N(e,m) such that for all graphs G = (V,E)onn > N
vertices the following holds: there is a partition V = Co U Cy U
..U Ck such that

(1) m<k<M,
(2) |Co| < €N,
(3) |Cil = ... = |Ckl,

(4) with the exception of < ek? pairs, for all pairs (C;,C;) the
bipartite graph G|(C;, C;) is e-regular.

3. The Application of the Regularity Lemma.

Let H = (A, B, E) be an e-regular graph with |[A| = |B| =r
and assume that every degree is ar least ér, for some § > ¢. Two
paths connecting vertices » and w are disjoint if they have no
common inner vertices.

Lemma 6. Ifv € A and w € B then there are at least (5 —€)ér
pairwise disjoint paths of length at most 3 connecting v and w.

Proof: Let N, (resp. Ny) be a set of 87 neighbors of v (resp.
w). As |E| > §r% and H is e-regular, H|(Ny, Ny) has density
> & — € and therefore > (8 — €)|N,| | Nw| = (§ — €)62r? edges.

Now H|(N,,Ny) contains > (6 — €)é7 independent edges.
To see this, select edges one by one. After ¢ edges are selected,
these exclude < 2i6r edges sharing an endpoint with these edges.
Hence we can continue as long as 2i67 < (6 — €)6%r?,

These edges can be completed to disjoint paths of length < 3
connecting v and w. m}

Lemma 7. Ifvand w are different vertices of A then there are at
least £(6 ~ €)ér pairwise disjoint paths of length < 4 connecting
v and w.

Proof: Let N, be any set of ér neighbors of v.

Then there are > 1(6 — €)8r paths of length < 3 connecting
N, and w such that any two of these paths have only w as a com-
mon vertex and none of them contains v. Indeed, after selecting
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i such paths, these exclude < 3i + 1 paths between w and any
vertex of NV, not contained in these paths. Lemma 6 implies that
we can continue as long as 3i + 1 < (6 — €)6r.

These paths can be completed to pairwise disjoint paths of
length < 4 connecting v and w. o

If F C E then it induces a partition Pr on A obtained by
intersecting the connected components of H' = (4, B, F) with
A.

Lemma 8. If § C A and |S| £ (6 — €)6r then every partition
of S is induced by some F C E.

Proof: Let P = (Sy,...,5k) be a partition of §, where S;
{Vigy ooy Vi r Ti = 1Sil,i=1,...,k.
k

We construct F = U E; C E, where the E;’s are the con-

nected components of F':l}ld Si=V(E;)NS.

In order to construct E; we select for every j € {1,...,ri—1}
a path P;; of length < 4 between v;,; and v;,j4+1 so that the inner
vertices of P; ; are disjoint from V(E;)U...UV(E;-1)U S. Such
path P, ; exists for every j by Lemma 7, because

V(B U...UV(Eii)U S| < 4IS| - 1< %(5 el

We define E; to be the union of these paths P; ;. u]

Lemma 8 requires H to have large minimal degree besides ¢-
regularity. The next lemma, which is a direct consequence of the
Szemerédi Regularity Lemma, shows that for graphs with 3(3)
edges such bipartite graphs can be found, simultaneously in the
graph and its complement. The constructed sets V1, Va nvg,
V, will play a similar role in the proof of the main theorem as
the sets A, B,C in the sketch of the proof (for a special case) in
section 2,

Lemma 9. If ¢ is sufficiently small then there is an a (0 < a <
1) and an no € N such that for every graph G = (V, E) with
n

n > ng vertices and }(}) edges, and for every y(2¢ <7 < 1) the
following holds: there are subsets Vg, Vi, Vi, Vo C V such that

a) each set has size r > an,

b) Vi, V¢, Vi and V4 are pairwise disjoint,

c) (y=2¢)r < |V NI < 29,

d) G|(Vit, i) is e-regular with all degrees > 3,

e) G|(VE, V) is e-regular with all degrees < 3r.
Proof: Apply the Szemerédi Regularity Lemma for some ¢ and
m to be specified later, If G has n > N(¢',m) vertices, we get a
partition (Co,C1,...,Ck) of V, where m < k < M(e',m). Put
t=|Ci|=...=|Ckl : .

Case 1. There is a non-exceptional pair (C;,C;) with density ¢
such that L +6¢' <6< % —6¢.

Let C},C} C Cy, C'}-,CJ? C C; be sets of size ¢ := [t/2] such
that C} N C? = 0 and |C} N C}| = [$t].

Consider the bipartite graphs Gy := G|(C},C}) and Gy i=
G|(C,-2,CJ2-).

The sets required by the lemma are obtained by excluding



vertices of small and large degree. In particular we will remove
the sets D} and D} of vertices that have too small degree in G,
where

Dl:={veC}:dg(v) < (% + 5¢')q} and
1
Dj:={ve C}:dg,(v) < (-5 + 5¢')q}.

We will a.lsd remove the sets
large degree in G2, where

D? and D? of vertices that have too

D?:={v € C} :dg,(v) 2 (% —5¢)g} and

2
D? ={v e C? : dG,(‘U) > (5 - 55’)(1}.
Each of these sets has size < ¢ -t. Assume that e.g., |D}| >
¢ - t. Then applying the ¢'-regularity of (Ci, Cj) to (D},C}) we
get

e(D},C})
|DHIC; ~

(1 +5¢)|CHICH
ICHIC]

1 1
§+5£’$6—e< =§+5€’,
a contradiction. The other inequalities follow in the same way.

Now choose V& C CI\(D} u D¥), V@ ¢ C\(D}u D?),
Vi C CA\D}, V2 C C2\D? to be sets of equal size 7 such that
q—Ze’tSTSqand

24 - 2¢1 < 1% NV2l < [;Lq.

Such a choice is
deleted.

possible by the bounds on the sizes of the sets

We claim that these sets satisfy the conditions of the lemma.
Straightforward calculations give that if tis sufficiently large then
r > (1=3¢)t, [Vg nVg| 2 (y—4€)r, all degrees in G|(Vg, V1) are
> Lr and all degrees in G|(V,V2) are < 4r. Furthermore, if ¢ =
HrEso then G|(Vi, Vi) and G|(V#, V2) are e-regular. Observing

¢ < £ for ¢) and putting o :=(} — 3¢')(1 - ) frcay completes
the proof for Case 1. .

Case 2. Every non-exceptional pair is either sparse (has density
< 1 +6¢') or dense (has density > 2 —6¢).

We show that there are classes C;,C; and Ck such that
(C,Cj) is a dense non-exceptional pair and (Cj,C%) is a sparse
non-exceptional pair. If this is true then for these classes the
construction of Case 1 can be repeated and the same bounds
hold.

Let 3 (resp. d) denote the number of sparse (resp. dense)
non-exceptional pairs. Then

) (S5 1)

This means that if ¢’ is sufficiently small and m is sufficiently large
then there are > Lk? sparse non-exceptional pairs and > 1k
dense non-exceptional pairs (since the coefficient of k% in the

hence
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second inequality tends to % for e/ — 0). But for C = {Ci :
C;isin 26k exceptional pairs } it holds that |C} < k/3.
Assume there are no classes Ci,Cj,Ch as claimed. Consider
a class C; ¢ C contained in a sparse non-exceptional pair (as
() < 3k* there is such a class). There are > (1 - ')k — 1
classes C; such that (Ci,C;) is a sparse non-exceptional pair.
Considering a class Cx & C contained in a dense non-exceptional
(since we can find a class C; that
a

pair, we obtain a contradiction
works for both Ci and Ck).

4. The bounds for communication complexity.

We consider the (})-variable Boolean functions
CONNECTIVITY, s-t-CONNECTIVITY" and
BIPARTITENESS.. Partitions of the variables are denoted by

(R, B).

Theorem 10. COMM(CONNECTIVITY,) = 8(rnlogn).

Proof: The upper bound is easily seen even using 1-way com-
munication only (I transmits to II a list of the vertices in each
connected component of (V, R)). To prove the lower bound, let
(R, B) be a partition of the edges into two sets of equal size.
Let V* C V be a set and let Py,..., P bean enumeration of
all partitions of V*. Assume that there are graphs GR = (V, EFY),
GB = (V,EP) with Ef C R, EP C Bfori=1,...,tsuch that
for every i and j, GRUG?T is connected if and only if PV P; = 1.
Then the partition matrix M? is a submatrix of Mg'%NN" for
s = |V If [V*] = Q(n) then Theorems 1, 2, and Corollary 4
can be applied to prove the theorem. Hence what remains is to
find V™ and graphs GR, GP with the above properties.
be numbers suitable for Lemma 9, and assume
(V,R) with v = me(k—¢ to
is small enough so that

Let €, a,m0
n > ng. Apply Lemma 9to G =
obtain sets Vg, V¢, Vi, Va (we assume €
4 > 2¢ holds).

Put V* = V¢ NV and let Pp,..os Pt be the partitions of
V*. Note that by Lemma 9¢ [V*| = Qn).

As [V*| € 2qr = L
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v* c V¢ and H = Gl

(-9 L1r we can apply Lemma 8 to
Vi, V4) with § := g to get for each
partition P; of V" a set FR C R of edges between V¢ and Vi that
induces P;. Similarly, Lemma 8 can be applied to G|(V{, V2) and
Pj of V* to obtain FJ-B C B inducing P;.

Now consider all vertices outside of V* that occur

an arbitrary partition
as end-
point of an edge in some FRor FP:

Ve ={ve iU (Vg\V7) v is an endpoint of an edge of
F,-R for some i,1 <1 < t}

Vy ={veW U (V2\V"):visan endpoint of an edge of
Ff’for some j,1 <j < t}.

Let v~ be a fixed vertex in V.

When we construct GR and GjB, all vertices outside V* U
Vi U V" (these are “guperfluous” vertices) will be connected to
»* by an edge which is always present. We set E={(v,v):ve€
V\(V-uVruv)), ER=En R.E? = EnB.

We also need “helping” edges from vertices in V;*UVy which

guarantee that these vertices are never isolated. For v € V', let



ey € R be any edge joining v to V" is v € V'\V* and any
edge joining v to V* if v € V; (there exists such an edge by the
definition of V{*). Similarly, for v € V", let e, € B be any edge
joining v to V5 if v € V@Z\V™* and any edge joining v to V* if
v € Vs,

Finally: define Gff = (V, Ef), G? = (V, EP) by

ER=FFy ERy {ey : v € V{ is isolated in F{'} and
EB = FPUEP U {e,: v € Vy is isolated in FP).

Then G'ﬁ U G? is connected if and only if P, v P; = L
Indeed, if P;v P; =1 then FRUFF isa connected edge set and
all other vertices are connected to it using £ and the edges e,,.
If PV Pj # 1 then F?U FP is a disconnected edge set and the
other edges will not connect it as they form paths of length 1 or
2 “hanging” from Ff U FP. This completes the proof. O

Theorem 11. a) COMM(s-t-CONNECTIVITY,) = 8(nlogn),
b) COMM(BIPARTITENESS,) = 6(nlogn).

Proof: a) Similar to the proof above, using Theorem 3 instead
of Theorem 2.

b) This is another consequence of Theorem 3. In order to
show for some s = Q(n) that N? is a submatrix of
NONBIPARTITENESS,, one defines edges sets E,-R,EJB similarly
as in the proof of Theorem 10, but with the additional property
that connected vertices of V* are only connected by paths of even
length in (V, E,-RUEJB). This can easily be accomplished with the
help of the fact that one can get in Lemma 7 at least (6 ~€)6r—1
paths of length ezactly 4 connecting v and w. Finally one adjusts
ER,EP by adding the edge {s,t} for the special vertices s,¢ in
V* (corresponding to the special points 1,2 in the definition of
matrix N?). In this way one gets edge sets E';R,Ef so that 1,2
are in the same connected component of P; V P; if and only if
(v, E{‘uﬁf) has a cycle of odd length (note that by construction
such cycle of odd length would have to go through edge {s,t}).0

5. Application to generalized decision trees.

Let f be a Boolean function. Assume we want to compute
f by asking questions of the form “does any variable in Y have
value 17”7, where Y is any subset of the variable set X. Thus the
model we are considering is a binary decision tree with tests of
the above form. This is a generalization of the standard decision
tree model here a test is of the form “is the value of z; equal
to 177, where z; is any variable, i.e., Y| = 1. Let GD(f) be
the complexity of f in the generalized model. E.g., a simple
adversary argument shows that GD(PARITY,) = n.

Theorem 12. a) GD(CONNECTIVITY,) = 8(nlogn),
b) GD(s-t-CONNECTIVITY,) = 8(nlogn),
¢) GD(BIPARTITENESS,) = 6(nlogn).

Proof: The upper bounds are easy. E.g. for CONNECTIVITY,
one uses the fact that for any set of vertices U C V one can find
via binary search with O(logn) tests a vertex v € V — U that is

adjacent to some vertex in U/, provided there exists such. v: One -

divides V — U into two sets W1y, W, of equal size and carries out
tests for Y7 := U x Wy and Yz := U x Ws. If i is minimal so that
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one gets a positive answer for Y; one repeats this process with V'
replaced by W;.

Once one has found a vertex v that is adjacent to U one
repeats the whole procedure with U replaced by UU{v} (in order
to locate another vertex in the connected component of UU {v}).
Initially one sets U = {s} for some arbitrary vertex s.

Note that with the same upper bound (up to constant fac-
tors) one can in fact construct a spanning tree for each connected
component of the considered graph {one just has to find out to
which vertex of U the new vertex v is adjacent in the procedure
above; this can be done in the same way).

The lower bounds can be derived from the lower bounds on
communication complexity (Theorems 10., 11.) with the help of
the following observation.

Lemma 13. For every Boolean function f,

COMM(f) < 2 GD(f).

Proof: Every generalized decision tree gives rise to a communi-
cation protocol for any partition (X1, X3) of the input variables:
for each test set Y processor I tells processor II whether some
variable in Y N X} has value 1 and processor II tells I whether

some variable in Y N X, has value 1. ]

Remark 14. In the same fashion one can derive somewhat weaker
lower bounds for more powerful versions of the generalized deci-
sion tree model. In particular one gets a lower bound of Q(n) for
the case where one allows tests of the form “how many edges in
Y are present?”, and for the case where one allows linear tests

on the ('2') input variables with coefficients of polynomial size.

The following result separates generalized decision trees from
oblivious generalized decision trees. We write OGD(f) for the
complexity of f on oblivious generalized decision trees (with tests
of the form “does any variable in ¥ have value 1?”) where all
nodes on the same level of the tree ask this question for the same
set Y (in other words: the sequence of test sets Y is specified in
advance).

Theorem 15. OGD(CONNECTIVITY,) = Q(n?/log® n).

Proof: Consider an oblivious generalized decision tree T for
CONNECTIVITY, with test sets Y7,...,Y.
that ¢ < n? (otherwise we are done).

We can assume

It is easy to see that for every partition V7,V2 of V' (where
|V| = n) one has for

E(Vi,V3) = {{o,y} 1z € Vi and y € Vi)

that
E(V1, Vo) = U {Y; : Y € E(V4,V2)}

(consider graphs where all edges inside V; and inside V, are
present and potentially one edge of E(V;,V2); note that we iden-
tify edge variables with the corresponding edges).

Thus it is sufficient to show that there is some partition
Vi, Vo of V so that & < |W| < 2n and Y; € E(V4,V2) for all test
sets Y; in T with at least 6logn vertices incident with edges in
Y.



Let Y be any set of edges with s > 6log n incident vertices.
Then there are at most 2n—3/2-1 partitions of V' into sets V;, V4
with ¥ € E(V, V2) (there are 27~* choices for distributing those
vertices that are not incident with ¥, furthermore there are up
to 2*/? ways of distributing the remaining vertices to ¥;, Vs so
that ¥ C E(V4,13)). This implies that there are at most n? -
2n=3logn=1 — on=1/y partitions Vi, Vs so that ¥; C E(W,1h)
for some test set ¥; of T with > 6logn incident vertices. On the

other hand there are > (1 — ). 2" partitions V;, Vs of V with
F<MI< in o

6. Open Problems.

There are some interesting decision problems on graphs for
wh.ich the communication complexity in the here considered model
(with arbitrary input partitions) is still unknown, e.g. planarity,
bipartite matching and Hamiltonian circuits. Furthermore al-
most nothing is known about the complexity of graph properties
in the probabilistic version of this model (in particular the com-
plexity of CONNECTIVITY,, is open for this model).

Finally the complexity of other graph properties in the gen-
eralized decision tree model of section 5 remains to be deter-
mined. Further open questions arise if one wants to determine
the complexity of graph properties in the more powerful decision
tree model that allows linear tests (in particular the complexity
of CONNECTIVITY,, is not known, not even if the weights in
the linear tests are required to have polynomial size).
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