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SPEED-UP OF TURING MACHINES WITH ONE WORK TAPE
AND A TWO-WAY INPUT TAPE*

WOLFGANG MAASS* aAND AMIR SCHORR{

Abstract. In this paper we consider the next more powerfu! restricted type of Turing machine, which
cannot be handled by the existing lower bound arguments: Turing machines with one work tape and a
two-way input tape. We show that one can simulate a deterministic Turing machine of this type with time
bound O(n’) by a 2,-Turing machine of the same rwpe with time bound O(n?- log? n). This implies the
new separation result 2, TIME, (n) 2 DTIME, (n® - ‘log® n). Further, we improve Kannan's separation
result NTIME (n) g DTIME, (n"'*™) to NTIME (n; = DTIME, (n"*?). Finally we show that with Turing
machines of the considered type that use 2k alternations, the achieved speed-up increases and for large k
" approximates t'/2(n). In view of the close relationship between spacebounded Turing machines and
time-bounded Turing machines with unboundedly many alternations, this refinement provides a link between
our speed-up result and the well-known space-compression result for offline 1-tape Turing machines.
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1. Introduction. A major goal of machine based complexity theory is the separation
of complexity classes that arise from Turing machines with different control structures:
deterministic, nondeterministic, and alterfiating. Since an alternating Turing machine
may be viewed as a model for a highly parallel computer, such separation results are
relevant for the comparison between sequential and parallel computational models (in
addition to their interest for the P versus NP problem). With regard to such separation
results one is currently in the following situation. On one hand one can separate
deterministic linear time and nondeterministic linear time for the most powerful types
of Turing machines: multi-tape Turing machines. But the demonstrated difference
between deterministic and nondeterministic complexity classes is “infinitesimal”:
NTIME (n) £ DTIME (n - (log* n)'"®) (Paul, Pippenger, Szemeredi and Trotter [11]).
On the other hand more significant time differences between determinism and nondeter-
minism have been demonstrated for restricted types of Turing machines: a quadratic
difference for 1-tape Turing machines without input tape by Hennie [3], and for 1-tape
Turing machines with an additional 1-way input tape by Maass [7].

Since the more abstract methods that yield the separation result for multi-tape
Turing machines can probably not be used to prove more significant time differences
(see the discussion in [11]), it appears reasonable to look for more concrete arguments
that yield larger time differences for increasingly more powerful restricted types of
Turing machines (the goal is to approximate the power of 2-tape Turing machines
from below). In this paper we attack the next more powerful restricted type of Turing
machine that cannot be handled by previously developed concrete lower bound
arguments: Turing machines with one work tape and a two-way input tape.

In § 2 we show that one can speed up deterministic Turing machines of this type
by Turing machines of the same type (i.e. one work tape and a 2-way input tape) that
use a bounded number of alternations. In particular we show that

DTIME, (1(n)) < 32, TIME, (1" *(n) - log® t(n)) for t(n)= n?,
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and more generally, that
DTIME, (¢(n)) € 2, TIME, (t'**V/**Y(n) . log? t(n))
fork=z1and t(n)=n**"k

(see below for definitions).
In §3 we derive from this speed-up result two new separation results for the
considered type of Turing machine:

3.« TIME, (n) g DTIME, (n***"%**Y/10g® n) forallk=1,
and
NTIME (n) 2 DTIME, (n'?).

The following definitions are used in this paper. A k-tape Turing machine (TM)
is a TM with k work tapes (each with one head) and an additional 2-way input tape.
This 2-way input tape is an extra read-only tape that is occupied by the input together
with a left and a right endmarker. The associated (read-only) input head can move in
both directions (‘‘2-way’").

Alternating TM’s were introduced by Chandra, Kozen and Stockmeyer [2]. Each
state of an alternating TM is either existential or universal. One calls a node v in the
computation tree of an alternating TM M for some input w accepting if

—either M is at v in an existential state and there exists a son of v that is accepting,

—or M is at v in a universal state and all the sons of v are accepting,

—or M is at v in an accepting final state.

M accepts w if the root of this computation tree is accepting. M is called a 3,,-TM
if for all inputs w the computation tree of M starts with an existential state and
alternates along each computation path at most m —1 times between existential and
universal states. Thus 2,-TM’s are just nondeterministic TM’s. Deterministic TM’s
(=2,-TM’s) may be viewed as special cases of nondeterministic TM’s, where the
transition function is single-valued.

For any such TM, we say that M is of time complexity t(n) if for every accepted
input w of length n the computation tree for input w stays accepting if it is pruned at
depth t(n) (see Paul, Prauss and Reischuk [9]). This definition is convenient insofar
as one does not have to worry too much about the time-constructibility of t(n)
(otherwise one might demand instead that the depth the depth of the computation tree
of M on input w is bounded by t(n)).

We define for arbitrary functions t(n)zn X, TIME, (¢(n))={L< {0, 1}*|L is
accepted by a k-tape X,,-TM of time complexity O(t(n))}.

Among related results, we would like to mention (besides the already discussed
paper [11]) those by Paul, Prauss and Reischuk [9], [10] and Kannan [5]. It is shown
in [9] that every nondeterministic 1-tape TM without input tape, of time complexity
t(n), can be simulated by an alternating 1-tape TM of time complexity O(n +t'/*(n)),
which uses an unbounded number of alternations. Kannan [5] shows that any deter-
ministic 1-tape TM with two-way input tape of time complexity n*' (I =1 integer) can
be simulated by a multitape 2,-TM of time complexity O(n'**/*""log n). This implies
the separation result NTIME (n) 2 DTIME, (n''™), which we improve in this paper
to NTIME g DTIME, (n"?*).

Compared with the preceding results on the speed-up of deterministic TM’s by
alternating TM'’s, we use in this paper a somewhat different strategy in order to speed



up the considered restricted type of deterministic TM by a TM of the same restricted
type, which uses only a constant number of alternations. This allows us to separate
complexity classes that arise from restricted TM’s, which differ only in their control
structure.

Our speed-up from t(n) to (/A D) Cog? t(n) with 2k —1 alternations
approximates 1'*(n) (for 2k -1- o). This fits nicely together with the known time-
space tradeoff for the considered restricted TM's. Space-bounded TM's are closely
related to TM’s which use an unbounded number of alternations (it follows from [2]
and [9] that ATIME, (t(n)) < DSPACE, (1(n)) < ATIME, (1’(n))). Thus the well-
known result DTIME, (1(n)) € DSPACE, (1"/%(n)) of Paterson [8] (see Ibarra and
Moran [4] and Kurtz and Maass [6] for some recent refinements) as well as the
mentioned result from [9] may be viewed as limit cases of the speed-up result in this

paper.

2. Speed-up by bounded alternation.
THEOREM 2.1. For every function t(n)=n

DTIME, (1(n))c 3, TIME, (£**(n) - log? t(n)+1'3(n) - n).
In particular for every function 1(n) = n®
DTIME, (1(n)) € £, TIME, (**(n) - log® 1(n)).

Proof. Let M be a deterministic TM of time-complexity ¢(n) with one work tape
and a two-way input tape. We construct a 3,-TM M with one work tape and a two-way
input tape, that accepts the same inputs as M and is of the desired time complexity.

For any fixed input w of length n that is accepted by M, the simulating TM M
guesses a suitable separator for the computation graph of M. Subsequently M verifies
in parallel that for each component of the remaining graph the associated guesses are
consistent.

We first describe the design of the separator. One partitions the work tape of M
into blocks B of length 1/*(n) in such a way that the work head of M crosses at most
1*’*(n) often a block boundary. Such partition exists, since there are t'?(n) different
partitions into blocks of length 1*(n). Further, the sum of the number of crossings
of block boundaries for all t'/*(n) partitions is bounded by #(n) (since at every step
the work head of M crosses for at most one partition a block boundary).

For each of those blocks B of the fixed partition of M’s work tape such that M’s
head spends altogether at least 1*(n) steps in B or leaves and re-enters B at least
1'*(n) often, one partitions the sequence of steps where M’s work head is inside B
into time blocks T. Each time block T} is chosen as large as possible, subject to these
two constraints:

1) Ty consists of at most t**(n) steps.

2) Tp contains at most t'(n) steps where the work head of M leaves B at the
next step (note that in such a case the next element of Ty is the first subsequent step
where the head re-enters B—unless we have reached the end of Ty).

For the previously described partition of space and time M writes (during the
3-space of the accepting subtree of its computation on input w) the following “guessed”
data on its work tape. These data are arranged in a particular way, to support the
subsequent “verification” during M’s V-phase. For the fixed n =|w| we write from
now on f instead of (n).
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Starting with the leftmost tape block B that is visited by M’s work head, M writes
from left to right for each block B the following guessed data associated with B on
its work tape.

If those Steps, where M’s work head is inside B, have been partitioned into time
blocks Ty, M writes from left to right for each time block Tj the inscription of B at
the beginning and at the end of Ty on two tracks of a tape segment S of length '3,
On two additional tracks M marks on tape segment S the position of M’s work head
at the beginning and end of Ty together with the state of M and the position of M’s
input head (represented by a number from {1, -, n} in binary code) at these two
steps. To the left and right of the considered segment S of M's work tape M writes
those entries of the crossing sequence of M at the left and right ends of block B, that
are associated with steps in time block Tz. By our choice of the length of Ty there
are at most t'? such entries.

Each entry in a crossing sequence for a boundary b on M's work tape consists
in the present construction of the current state and input head position of M, together
with the number of preceding crossings of this boundary b (represented by a number
between 0 and ¢ —1 in binary code). The latter number will be useful in the subsequent
verification phase, where we have to verify in particular that the guessed crossing
sequence for the right end of a tape block B agrees with the guessed crossing sequence
for the left end of the next tape block B’ to the right of B. The bit-length of a segment
of a crossing sequence with up to t'3 entries is of the order o'’ -log ¢).

After M has written on its work tape the described guesses associated with
time block Ty, it writes to the right of it the analogous guesses for the next time block
T's for the same tape block B. After all time blocks for tape block B are handled, M
writes to the right of these guesses those guesses that are associated with the next block
B’ to the right of B. .

In the case that the steps where M’s work head is inside B have not been partitioned
into time blocks Tj, M guesses, instead of the preceding, just the crossing sequences
for the left and right ends of B. M also places markers in distances of "> along the
guessed string (to provide a tape segment that has exactly the same length as B for
the subsequent simulation of the computation inside B). If the work head of M happens
to be inside B during the first or last step of M's computation, M guesses in addition
the state and head positions of M for these two steps. Note that for the blocks B
considered here, M does not guess the initial or final tape content of B (in order to
keep the total length of its guesses sufficiently short).

For the chosen partition of M’s work tape there are at most 1™ crossings of block
boundaries. Thus all guesses of segments of crossing sequences together require
O(t?*” - log t) bits on the work tape of M.

It is also easy to see that there are altogether at most O(¢'/?) many time blocks
T, since every time block either consists of +*/? steps, or involves '/ crossings of a
boundary of B, or is the last one of at least two time blocks for the same tape block
B. To verify this estimate, we observe that there are altogether at most ¢t'/? time blocks
Tp that consist of t*/? steps (because M uses only ¢ steps), and altogether at most ¢'/°
time blocks T} that contain t'/? steps where M’s head leaves B at the next step (because
at most t¥? crossings of block boundaries occur).

The preceding implies that the guessed initial and final inscriptions of blocks B
for time blocks T, occupy together at most O(t*?(n)) cells on the work tape of M.
Thus the total guessing phase of M requires no more than O(t*” - log t) bits.

We would like to point out that M’s work head may visit during its computation
up to t*?(n)+2 many different tape blocks B. Therefore M could not afford to guess



initial and final tape inscriptions for all these blocks B. This explains why blocks B
with and without time blocks T, were handled differently in the preceding.

In the following V-phase the 3,-TM M verifies in parallel the following facts
about the guessed data:

Fact 1. For each time block Ty the following guessed data are consistent: the initial
and final inscriptions of block B, the initial and final state and head positions of M, and
the associated segments of the crossing sequences for the left and right boundary of B.

To verify this consistency, M 51mulates the corresponding computation steps of
M, sweep by sweep. Each time when M simulates another sweep over B, its work
head moves first to the next entry of the corresponding crossing sequence. The length
of this move can be estimated by the bit length of the segments of the two crossing
sequences associated with Tz: O(1'/3. log t). Once M’s work head has arrived at the
next entry of the crossing sequence, M brings its input head into the position that is
prescribed by the corresponding binary number between 1 and n in this entry of the
crossing sequence.

This procedure takes O(n) steps. We assume that the subsequent simulation of
the next sweep of M’s work head over B is simulated on the same tape segment of
Af’s work tape, where it has recorded its guess of the initial and final block content
for Ty (we may use an extra track for this simulation). After the simulation of each
sweep over B, M moves its work head to the corresponding next entry of the crossing
sequence, in order to compare its current state and input head position with the
corresponding guessed data.

Of course M starts the simulation of the first sweep over B that belongs to Ty
with the guessed initial content of B and with the guessed state and head position.
Analogously, after M has simulated the last sweep of Ty over B, it compares the
current content of the track that simulates B and the current state and head positions
with the guessed data for Tj.

It is obvious that the described verificdtion of the consistency of the guessed data
for a time block Ty requires at most

O(t**-logt+1'? - n)

steps.

FacT 2. For each block B without time blocks the guessed data are consistent.

This is verified by simulating all sweeps of M's work head over B, in the same
way as above (initially B is blank). The fact that B has no time blocks implies that
the same time bound as in Fact 1 holds.

FacT 3. For any two consecutive time blocks Ty and Ty for the same tape block B
the guessed final block inscription, state and head positions of Ty agree with the initial
block inscription, state and head positions of T's.

Here M has to compare_two strings of length O(1'?), that are written at most
O(1""" - log 1) cells apart on M’s work tape (only the associated segments of crossing
sequences are written in between). This procedure takes O(1** - log 1) steps.

Fact 4. For any two consecutive tape blocks B and B', each entry in the crossing
sequence for the right end of B agrees with the corresponding entry in the crossing sequence
Jor the left end of B'.

More precisely M checks here the following. If M places markers above any entry
e, in the crossing sequence at the right end of B and any entry e, in the crossing
sequence at the left end of B’, and if M verifies that both entries have assigned the
same running number (in their respective crossing sequence), then e, and e, agree.
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The considered entries e,, e, are located on M’s work tape at most O(t** - log t)
cells apart. The work head of M has to cover the distance in between at most O(log t)
often in the described procedure. Therefore this procedure takes O(+** - log” t) steps.

Fact 5. Consecutive entries in the same crossing sequence have been assigned
consecutive running numbers.

Two consecutive entries may be assigned to two different time blocks. However
they are at most O(t'? - log t) cells apart. Thus for any two consecutive entries M can
verify this in O(¢"? - log’ t) steps.

FAcCT 6. For exactly one block B the computation starts in B (with correct initial
state and initial head positions) and for exactly one block B' the computation ends in B’
in an accepting final state.

M can verify this with O(1) sweeps over the guessed data.

The description of M’s V-phase is now complete.

The preceding arguments imply that if input w of length n is accepted by M with
t(n) steps, M accepts w via a subtree of the computation tree that has depth
0(12/3(n) log? t(n)+t"*(n) - n). On the other hand one constructs M so that whenever
M accepts some input w (with a subtree of arbitrary depth), then M also accepts w.
Therefore M accepts the same language as M, and M is of time complexity
O(£*3(n) - log? t(n)+'3(n) - n).

THEOREM 2.2. For all natural numbers k =1 and every function t(n)=n

DTIME, (#(n)) € 3., TIME, (£**1/Ck*V(p) c1og? t(n)+ ¢V 2 V(n) - n).

In particular for t(n) = n**/¥

DTIME, (t(n)) € 25« TIME, (+**V/@5* V() . log” t(n)).

Proof. The proof is analogous to that of Theorem 2.1. We use the additional
alternations of the £,,-TM M to refine the partition of the given computation of the
deterministic TM M. For a given input w of length n we cut the work tape of M in
such a way into blocks B of length t*/***V that M’s work head crosses in the
computation on input w at most t**V/**D often a block boundary (again we write
¢ instead of t(n)). Further for those blocks B in which M spends t**/@**V steps, or
whose boundary it crosses t*/?**V often, one cuts the sequence of steps where M’s
work head is inside B into time blocks T with =¢**/***" steps and =¢*/®**" crossings.
This can be done in such a way that only O(t"/***V) time blocks arise. Thus M can
afford to guess for all time blocks Ty the intermediate contents of block B. In the
subsequent V-phase M starts to check in parallel that for each time block Ty the
guessed data are consistent. Since a direct simulation of Tz would take too long, M
uses the second 3-phase to cut Ty into smaller time blocks T4 that consist of
=2 1/Ck*D sreps and have =1%7V/**D crossings. Again this can be done so that
each time block T consists of at most O(¢'/®***!) smaller time blocks T% . If necessary,
one has to cut also for those blocks B that have no time blocks the steps that M spends
inside B into smaller time blocks T%’ (of the same maximal size as above).

By continuing this process of guessing in parallel, one finally arrives in the kth
J-phase at very small time blocks T4 with =¢**"/ @D gteps and =t/ **V crossings.
The consistency of the guessed data for each T’ can be checked in parallel by a
simulation of the corresponding segments of M’s computation.

Similarly as in the proof of Theorem 2.1 several additional facts about the guessed
data have to be verified to make sure that whenever M accepts w (with an arbitrary
number of steps) then M also accepts w. In particular one has to check that for any
two subsequent smaller time blocks T%"" the guessed content of B at the end of the



first one agrees with the guessed content of B at the beginning of the second one. A
straightforward verification of this fact would take too long. Therefore M guesses in
addition a partition of B into mini-blocks of length 1"®**V) Then M can verify the
desired agreement of guessed inscriptions of B in parallel, separately for each mini-
block of B.

3. Application to separation problems.
THEOREM 3.1. For every natural number k = 1

n@k+D/(k+1)
2.« TIME, (n) 2 DTIME, ( )

log® n

Remark 3.2. Note that the TM’s that are considered in Theorem 3.1 differ only
in their control structure, not in their memory or input device.

Proof. This separation result follows from the preceding speed-up result (Theorem
2.2) in combination with an adaption of standard diagonalization and padding tech-
niques to the considered type of TM.

Via diagonalization, one shows that

2+1/k
DTIME, (n**'*) 2 DTIME, ("h*)
log n-log* n

(besides the program of the simulated machine the simulating machine also moves a
step counter along with work head; this causes the factor 1/log n on the right-hand
side). Together with Theorem 2.2 this implies that

2+1/k
X« TIME, (n**"/%. log® n) ¢ DTIME, (-L——*»)
log n-log*n

Via padding, one can derive from this

n @k+1)/(k+1)
2.« TIME, (n) 2 DTIME, (log(6k+4)/(k+l) )

n-log*n

(this is straightforward but not completely trivial: in order to simulate a TM M that
processes the padded input by a TM M that processes the unpadded input, M has to
record the current position of M’s input head via a binary counter). This implies the
claim of the theorem.

The following theorem improves a separation result by Kannan [4], who had
shown that NTIME (n)Z DTIME, (n''%). It is well known that NTIME (n)=
NTIME, (n) [1].

THEOREM 3.3. NTIME (n) 2 DTIME, (n'??).

Proof. We use a method of Paul and Reischuk [10] to convert a computation with
alternations into a deterministic computation. Assume for a contradiction that
NTIME (n) <€ DTIME; (n'?*). With the help of padding one can show that this implies
NTIME (n"**) c DTIME, (n'?%)? - log n). We apply both inclusions to a linear time
2,-TM M with one work tape and a two-way input tape such that

3/2
L(M)e 3, TIME, (n)—DTIME,( — )
log® n
(such TM M exists by Theorem 3.1). For an arbitrary fixed input w of length n one
replaces in the computation tree of M on input w each maximal V-subtree by a
deterministic computation of length O(n'??) (we use here the first inclusion). The
resulting computation tree can be construed as a nondeterministic computation of
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length O(n"**) on a two-tape TM M (it would be nice if we could view M asa TM
with one work tape and a two-way input tape, because then we could replace
NTIME (n) by NTIME, (n) in the claim of the theorem; however the implanted
deterministic TM of time complexity O(n'??) uses both the content of M’s input tape
and the content of M’s work tape at the beginning of the V-phase as its input). Thus
we can apply the second inclusion. In this way one derives

L(M)e DTIME, (n"*?" . log n) < DTIME, (n*"*/log’ n),

a contradiction to the choice of M.
Note that the constant 1.22 that arises in this separation result can be replaced

by any number less than v3/2.
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