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ON MINIMAL PAIRS AND MINIMAL DEGREES
IN HIGHER RECURSION THEORY

Wolfgang Maass

Universitdt Miinchen

Priority arguments are the hallmark of recursion theory, so it is natural to ask how
far they can be generalized to higher recursion theory. As it turns out, many priority
constructions of recursion theory on w can in fact be carried out in a-recursion
theory for admissible & and a few of them generalize to recursion in higher types as
well.

The common method of generalization is, to avoid crude assumptions about the
underlying domain which are true for w but not for all admissible « (for example full
replacement holds in L,) by using a more sophisticated construction, for which
weaker closure properties of the domain are in fact enough. So these generalizations
are neither trivial nor uniform.

The two constructions which are considered in this paper are of special interest
because they obstinately resist generalization to all admissible . Lerman and Sacks
constructed in [6] a-r.e. non a-recursive sets A, B which form a minimal pair for
those admissible o, which are not refractory (i.e.each C Cawith C< Aand C< Bis
in fact a-recursive). They called o refractory, if p2oe =gca <tp2a Za, recently Shore
covered the case tp 2a = o (see [ 13]). We show here, that using an appropriate choice
of priorities, the minimal pair can be made hyperregular. We further show that the
Lerman-Sacks construction works for the open case gca < tp2a <o if L, is the limit
of X, substructures L, with p2p“ =p. The reasons for the interest in hyper-
regularity are philosophical and technical due to the fact that, for a hyperregular a-
r.e.set A, the following notions are the same: <, A (a-rec. in 4), <,,, A (weakly a-rec.
in 4),<_, A (a-finitely calculable from A), 2, (L, A (see [9] for details). We apply
the construction of a hyperregular minimal pair to construct a-r.e. sets 4, B, C for
the same o such that C is not a-rec. and a nontrivial glb of {4, B}, generalizing a
construction of Lachlan [5] for w. Applying Harrington’s translation, we further
get a minimal pair for recursion in higher types and a nonzero branching functional.
Concerning minimal degrees Shore constructed [12] a set B <,0’ for Z,-admissible
o such that no C Ca exists with 0 <,C <,B. We generalize his construction to yield
minimal degrees for those admissible a where p 2 « < ¢f2a which includes the case
s3p(a) = cf 20

Finally we apply a technique from [8] and show that both constructions succeed for
some o that are not admissible. Thus one is in the situation where admissibility is
neither sufficient (on the basis of the known constructions) nor necessary for these
constructions. So it is tempting to assume, that the appropriate condition for « to
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yield a suitable a-recursion theory is formulated in terms of projecta and
cofinalities, rather than in terms of mere admissibility.

This paper was written during a stay at MIT, Cambridge, Massachusetts, USA.
Thanks to to Gerald E.Sacks for help and stimulation during this time and
Sy Friedman for introducing me to inadmissible recursion theory. We also thank
the DFG, Boon, for financial support.

§ 1. Hyperregular Minimal Pairs

o is always assumed to be admissible.

The notations for projecta and cofinalities are the same ones used in Lerman-Sacks
[6]. We assume that the reader is familiar with the basic notions and facts of a-
recursion theory (see Shore [15] for an excellent introduction and bibliography).
Partial function [e]* weakly recursive in A with index e are defined as usual:

[e]*(y)=6<3K, HeL (7,6, K, H) e W, AKCAAHCo— A),

writing [e]*(y)1 if several values & occur [where (W), is a simultaneous
enumeration of the a-r.e. sets]. One needs further an approximation [e]# of [e]4,
using only computations {y,d, K, H)e L, which are enumerated in W, before stage

o, such that [e]*(y) = lim [e]#°(y) for any enumeration of a regular a-r.e. set A and
any y (we always write A” for the part of 4 enumerated before o). It is tempting to
define [e]Z exactly as [e]* by simply replacing W, by W2nL,, writing again
[e]2(y) 1 if several values 6 occur. However the approximation might fail then,
because for unboundedly many a[e]4°(y) might have several values, and therefore
[e]2°(y) T even if [e]*(y) is well defined. We take therefore [e]4(y) | even if several
values occur, in which case we search for the least © < o such that [¢]#(y) has a value
and set [e]?(y) equal to the least of these values at stage 7. We call the
neighborhoods K and H, leading to this least value at stage t, respectively the
positive and the negative neighborhood of the computation [e]4(y). It is easy to
verify the desired approximation property for this definition.

The strategy of Lerman-Sacks [6] to construct a minimal pair A4, B (going back to
Lachlan [ 5]) is roughly as follows : A and B are simultaneously enumerated. During
the construction one tries to satisfy the requirements {e}+c, and {e}+cg in
order to make A, B non-a-recursive [({e}),., is an enumeration of the partial o-
recursive functions, ¢, and ¢, are the characteristic functions of A4 and B
respectively, equalling 0 for elements in the set]. These requirements, which are
abbreviated R4, RE, are treated according to their priority. Let us assume that at
stage o all requirements of higher priority than a certain R are discharged (i.e. they
don’t receive attention at a stage T =¢). We consider then the computation {e} (o)
and try to make {e} (¢) + c,(0) by putting ¢ into A if {e} (¢) = 1 and leaving it out of
A otherwise. The problem is that the computation of {e} (¢) might be very long [we
write {e}*(g) = J iff the computation {e} (¢) has length < t] or might not converge.
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So in general we can’t do any more at stage ¢ than appoint ¢ as an unrealized
follower for R and wait until a stage t > g, where {e}*(0) | (o is a follower of RZ, if
we try to satisfy {e} +c, at the point ¢, is unrealized as long as we don’t know
whether it should be in or out of 4 for this purpose). If {e}(s) |, ¢ is a realized
follower at 7 and we know then at stage t what we have to do with o. Nevertheless
we can’t always do what we want, because we have to satisfy further requirements
Q;, which insure that in the case where f=[j,]*=[j,]® is a total function, f is in
fact a-recursive. This is essentially done in the following way. If at stage ¢ an
equality [j,]4e(0) = [jI]ge(é) occurs, we try to preserve these two computations by
avoiding putting elements in 4 or B, which are in the negative neighborhood of the
respective computation. If we can do this, at least from some stage g, on, we can in
fact compute f a-recursively: we just take the value of the first equality with
argument ¢, occuring after g, to be the value f(6). However we can’t preserve all
these equalities, if we want to satisfy all requirements RZ, R? as well. So we are a
little more liberal and allow the computation on one side of the equality to be
destroyed in order to satisfy a RZ or R%. We can afford to do so because the
remaining computation still preserves the right value and, if it is really the case that
[ol#(8)=[};15(9) |, the destroyed side of the equality will be reestablished anyway
(due to the approximation property). But we have to enforce strictly, that the
remaining computation not be destroyed by any requirement of lower priority than
Q;, until the other side of the computation is reestablished. Therefore a follower ¢ of
a requirement R of lower priority, whichwoulddestroy the remaining computation
by getting into A, is put on a waiting list (we say: ¢ is associated with Q), where ¢
remains until the equality is established again and g is therefore allowed to destroy
one of them. Of course, ¢ may have a stroke of bad luck and the equality may never
be reestablished (it may happen that [j,]4(6) 1 or [;,]%(5) 1) and thus it may end up
waiting forever. In order to satisfy R? anyway, we always appoint at a stage a new
unrealized follower of RZ, if all the other followers of R4 are associated with some
Q;, hoping that one of them eventually comes through.

Requirements HZ, H2, which make the constructed sets hyperregular, are well
known. A is not hyperregular, iff there is an e and a § <a such that [e]* maps §
unboundedly into «. In order to avoid this, computations [e]?*(y) for y <& are
preserved from some stage on by cancelling followers of requirements R of lower
priority which might destroy the computation later by coming into 4. [e]* can then
be computed a-recursively as the previous function f and is therefore bounded.
Adding these requirements to the minimal pair construction, the following
difficulty occurs: One shows in the Lerman-Sacks construction inductively that
requirements R, from a short priority list of requirements of length less than x
(where « is a regular a-cardinal) receive attention less than x times (because their
followers only run through a short waiting list of Qs of length < «). If we now place
the H, between the R, on the priority list, the H, may disrupt this process, because
they may receive attention x many times (if § =« for the § above). We would
nevertheless succeed, if we had no more than c¢f 2« many H_’s on the priority list,
arguing as before for R,’s between two H, , H, and using the definition of ¢ f 2« for
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limit points. But we can’t expect to always be able to press the H, into such a short
list. We place therefore ¢f 2o many blocks of H,’s rather than single H,’s on the
priority list, observing that it is essentially not more difficult to satisfy a whole block
of H,’s than it is to satisfy a single H,.

It is easy, to verify that ¢ f2¢ =cf2(tp2¢) see Lemma 2.15 in Chong-Lerman [1]).
Further the cofinal X, function g:cf2a—tp2e can be defined as strictly increas-
ing and continuous, such that for y<f<cf2a Yo(q(y)+d=q(y+1)—q(B)+o
* <q(B+1)). According to Chong-Lerman [1], Lemma 2.17 we have tp20= p2a or
tp2o.= p2a-cf 20 (0bserve that this implies that for no admissible o p2a <gca <tp2a
<) so for the latter case we may define g(y) =p2a-y. For the case tp2u = p2a we
define g such that g(f + 1) = g(B) + q(B) for all § < cf 2a. A simple way to see thata g
with these properties has a X,-definition is to define g B-recursive in the structure B
={L,, C) with a complete X C, which is in general inadmissible, but where a B-
recursive function may be defined by recursion of length ¢ f 2« (see [8]). One can
further find an a-recursive g’ :a X ¢ f 2a — o such that for all 7 ¢'(z, -) is increasing and
continuous and q is the tame limit of ¢'.

We define now priorities for the requirements P? = R4, P! = P? P> =HZ P} =H?.
P! gets the priority p(PL): = p(we + i) where p:a— tp2a accomplishs the blocking as
follows: Let f:a—tp2x be a one-one tame 2, function with an a-recursive tame
approximation f’ and q as before. For f(we +n)=q(y)+J <q(y +1) we set

q(2y)+9, if n<2

p(we+n)={q(2y+n)+(5, if nz2.

pis obviously Z, and one-one. An a-recursive tame approximation p:a x ¢ —>a of p
is defined by setting

sup ¢'(r,y) if f'(t,we+n)= sup q'(z,y)
y<ef2u y<ecf2a
q'(t,2y)+ 06 if q'(t,y)+6=/f"(r,we+n)<qg(r,y+1)and n<2
qgT,2y+1)+6 if n=2.

p'(r,we+n)=

According to Lerman Sacks an a-recursive ¢’ :a x o — o is a tame approximation of
q:o—pif

(*) Vz<pIaV¥xVrza((g(x) Sz (1, %) =q(x) A(g(x)>z—-4(7, %) > z2)).

If g is one-one then we can always change ¢’ slightly so that in addition ¢'(z, -) is one-
one for all <.

We define the blocks B; by B; = {y|q(d) <y <q(6 + 1)} for § <cf2a. Speaking of a
block B; of requirements we mean the set of requirements P! with p(P})e B,. By our
definition this block of requirements consists only of R, for § =27y and only of H,
for 6=2y+1.

The requirements H# assure that [e]*Ih(e) is bounded, if it is total on h,(e).
h,:0—o and a tame approximation k' :o x x—a are defined by:

he)=HW,(t,e)=e forall t,e if gca=u.
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If gco =o* <o and gca is a singular a-cardinal we take an increasing cofinal X,
function r:cf20—a* [which exists because ¢f2a =cf2(a*)] with an a-recursive
tame approximation " :a x ¢f2a—a. For g(6) Z plwe+2)<q(0+1) we then set
h,(e)=r(0) and

, if p'(r,we+2)= sup ¢'(z,y)
hA(T e) y<cf2a
r(t,0) if ¢'(r,0)Zp'(r,we+2)<q'(r,60+1).

For the other cases h, and A, are constant with value gca. hy and hj are defined
analogously.

Theorem 1. Assume that either T1gca <tp2a <o or gea <tp2a <o and o satisfies
the following property (L): sup{f|Ly<; L, A p2B"7=p} =a. Then there exist a-
r.e. hyperregular sets A, B such that A, B are not a-recursive and that every C Ca
with C< A4 and C< B is a-recursive.

Remark. In the case gca<tp2a<o we always have a*=o and therefore
sup{B|Ly <y, L,} = Anexample for a with gca < tp2a <a and property (L) is the
following: Let (L;, ), be the first w X substructures of Lyr after Lyr with p2fLen
=3, and define a= sup B, Such a sequence exists, because if L;< Lz, then p2"?

= f (one needs some further basic facts about L, see Devlin [2]). Property (L) is
immediate for « and ¢f 20 = w, gca =R %, therefore tp2a < a. It is not the case that
tp20 <N% (look at the images of the B,), therefore gca < tp2a <.

Proof of Theorem 1. We give an exact description of the construction because we
need a variation of it for Theorem 2. On the other hand we don’t repeat arguments
concerning this construction which can be found in Lerman-Sacks [6].

We need not look at the case p2a=gca<tp2u=0, since the minimal pair
constructed by Shore is automatically hyperregular.

Let p,:a—p2a be Z,, one-one and p):axa—a an a-rec. approximation with

Rgp} € p2a. L(o,j):= px(not[(j)e]7"(x) = [(),15" (x) |). M(a,j):= sup L(t,).

o satisfies Q;, if L(0,j) = M(a, j) or Q; is not persistent at o (i.e. pi(o,j) * lim p] (r,j)) )
R#issatisfied at o, if at some T < ¢ a follower p of R4 was realized and either pe A or
{e}'(p) = 0.

RZ requires attention at g, if R is not satisfied at ¢, e < g, and one of the following
cases holds

1) R is not persistent at o.

2) R" has at ¢ a realized follower p which is not associated with any Q.

3) R{ has at ¢ a follower p which is associated with Q; and ¢ satisfies Q

4) RA has at ¢ an unrealized follower p and {e}’(p)|.

5) R;" has no unrealized follower at stage o.
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H* requires attention at o, ife < ¢ and for somey <1 4(5) the negative neighborhood
of [€]2°(y) contains a follower of some RZ with p'(a, RZ\)>p'(e, H ol

I4(0) : = inf({K(0, &)} U {5I[e];" (4) 1}

Construction. Stage ¢ >0: Let P! be the requirement of highest priority at ¢ which
requires attention at ¢ (i.e. p'(o, P%) is minimal). Cancel all followers of requirements
with lower priority at o.

a) PL=R?

If Case 1) holds, cancel all followers of R4, If RZ requires attention through some
follower p according to Cases 2)—4) choose the case such that pis of highest order (p
is of higher order than q at g, if p and g are follower of R# at ¢ and p was appointed
before g was).

Case 2): Well order o x o by {y, n> <<, my:<>n<mor n=mand y <4. Take ¢y,
nd e p'(a, R4) x w minimal with respect to < such that {y, n)>><4, m) for all (&, m)
through which p was associated with some Q; before ¢ and such that 3j < a(p', (s, j)
=~ and no follower of any requirement is still associated with Q; at ). If this {y, n),
Q; exists, associate p with Q; through (y, n). Otherwise put p into A and cancel all
followers of RZ.

Case 3): Cancel the association of p with Q;. Proceed as in Case 2).

Case 4): p becomes now a realized follower of RZ. If not {e}’(p)=1 cancel all
followers of R4 and do nothing further. If {e}°(p)=1 proceed as in Case 2).

If R# only requires attention by Case 5), appoint ¢ to be an unrealized follower of
R,

b) PL=HZ. Do nothing further.

For BC tp2a we say that B is discharged at o, if at no t = ¢ a requirement P. with
p'(t, Pi)e B receives attention.

Lemma 1. Let A <cf2« be a limit ordinal and assume, that each B, with 6 <1 is
discharged at some a. Then B_,: = | B, is discharged.
<A

Proof. Define a X, function g : A —>o such that for each § < A B; is discharged at g(3).
A <cf2u=Rg(g) is bounded by some g. B_, is then discharged at ¢.

In order to prove that each Bj is discharged, it is now enough to show that for each 6
<cf2a(B_, is discharged=-B; is discharged). So assume that B_, is discharged at
0, and that (x) is satisfied for p, p" and z=¢q(6 + 1) at a,.
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a) gea<tp2o<a and 6=2y
B, is then a block of requirements R,. Since no R, ¢ B, is injured by any requirement
H,. after ¢, the arguments of Lerman-Sacks [6] show that B, is discharged.

b) 1gea<tp2o <o and =2y +1

We may assume that forall HA, H8e B;and allt = o, h,(e) = h, (1, €), hg(e) = hy(z, e).
Define T, : = {1 = g,| a requirement P! with p'(z, P{) = x receives attention at 7} for
x€ B;. Then (T,),.p, is simultaneously a-r.e. If H € B, receives attention at some <
=0, for each ¢<IX(7) [e]?(0)] and the negative neighborhood of this com-
putation contains only followers of requirements R4 e B _; after stage © and by the
choice of ¢, the computation is therefore never destroyed. It follows, that if HA
receives attention again at some t' > 7, we must have I (') > IZ(z). By the definition
of h, and hy we have further that for some constant §, h,(e) =5, and hy(e)= 4,
respectively for all HZ, HZe B;. Putting this together we get that T, has order type
<4, for all xe B,

i) a¥=gca <o with gco singular or gcax=o.
In these cases we have §,, < gco. Take a regular a-cardinal k < gca such that 6, <x
and q(6 + 1) <x. Applying the Sacks-Simpson-Lemma (Lemma 2.3 in [10]) with

respect to k we get that () T, is a-finite.

xeBgs

ii) Otherwise. We have then §,=gca. If «* =a we argue in the following way:
Define M : = {{f,x)[A1 = 6,(H e B; receives attention at 7 and p'(r, H,)=x and
I,(t)=B}. Misa-r.e.and M Cgca x q(6 x 1), therefore M € L,. The a-finite function
g:M— L, which maps {f,x)> onto the 7 from the definition of M, has bounded

range equal to U T.. If a* = gca, gco is regular in this case. Observe that if T, has
xeBs
order type gco for some x = p(H%), x€ B;, we can find a t = o, such that I (t) =gca.

On the other hand if I (7) = gca for some = g, then HZ receives attention at most
once after 7. Define M : = {xe B,|3t = 7,(I (t) = gca for some H, with p'(t, H,) = x}.
M is again a-finite and we can map each x e B; onto such a 7 by an a-finite function
g. Let g be a bound on the range of g. It follows that T, — has order type < gca for
all xe B;. By the Sacks-Simpson-Lemma U {T,—¢|xe B;} must therefore be o-
finite.

¢) gea <tp2o <, o satisfies (L) and  =2y. Take f <a such that L;<; L, p2pLe
=f,0,<p, p” ' [Bs]1< B, tp2o < ff and L, contains all other parameters which are
involved in the construction. In this case B; has the simple form {x|gca-2y <x
<gca-(2y+1)}. We show by induction on y < gca, that we can find a 7 < § for R,
with p(R,)=gco-(2y)+v such that R, does not receive attention in f after .
Assume this holds for all v' <v. Define a 2, L, function g:v— f such that g maps
each v onsuch a 7 < . Rg g is bounded before f by some 7, < 8, because ¢f 2% =
(it is gcp™ =gca because L;<; L,; if ¢f2p" <f then p2p" <tp2p™ <gca
-cf 2% < B, a contradiction).
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For all stages  the followers of R, at T are well ordered by the stages of their
appointment. Here we call the ordinal which is represented by some follower p of R,
at 7 in this well ordering the number of p.

We are finished, if R# is satisfied before f. So assume that this is not the case. y:
=sup{d + 1|37 =1, (r < B and R has a realized follower p at t with number 6 and p
remains a follower of R2 in [1, 8)}. Further for each § <y we can find a 7’ < f§ such
that the follower p of R4 with number § is always associated through the same {g, n>
with some Q; in [', f). This is immediate for 6 + 1 <. Assume therefore that § + 1
=y and pis a follower of RZ with number § in [, f). We look at the initial segment
(with respect to <) S of p2a x w which is covered by p in [z, #). We map each (g,
n)>e S on the minimal ¢ € [7, B) such that p is associated at ¢ with some Q; through
some {¢',n'y with {g,n)<{g,n'). Since SeL,, this can be done by a p-finite
function which is bounded by some 7 < f. p is associated through some <{g, n) with
some Q; at  and p doesn’t leave this association in [z, ) by the definition of S.
We observe further that y < f, for if y = we can map each é <y on the unique ¢
such that the follower of number & is finally associated through some {g,n) in . We
would get a one-one map ff— p2a which is 2, Ly, contradicting p2B~ = . Because y
< f and ¢f 23%# = B, it follows that there is a 7, < f such that R does not receive
attention through some follower of number <y in [1,, f). By construction R has a
follower p of order y at the end of stage 7, which by definition of 7, is never cancelled
in [7,, B). Further p is never realized in [, 8) by definition of y. Therefore p remains
unrealized in [t,, ) and R does not receive attention in (z,, f).

We now have that for each R, e B, there exists a T < f such that R, does not receive
attention in [7,B) and therefore not in [7,«) because L;<y L, Hence B, is
discharged at f.

d) gea <tp2a <a, a satisfies (L) and 6 =2y +1.
Choose B as before. If HA¢ B, receives attention at some t =g, with some I7(z)
<gca, then 7 < since L;<;, L, Bj is therefore discharged at f.

The proof that each B, is discharged is now complete. It follows as in Lerman-Sacks
that 4, B are regular and not a-recursive.

Lemma 2. 4, B are hyperregular.

Proof. Assume that A is not hyperregular. It follows that there is a regular a-
cardinal x and an e such that f: = [e]*| xis total on x and unbounded. There is an
unbounded set of indices e such that [e]4 | «is the same function, so we may choose
e such that h(e)=x. Choose a, such that for t2a, p'(tr, HY)=p(HZ) and no
requirement of higher priority at t receives attention at 7. Define an a-recursive
g:x—a such that [e]4°(5)| for t=g(8)=0,. As a result of the presence of the
requirement H# and the definition of g, these computations at stage g(d) yield the
final value f(5). Therefore f is a-recursive and in particular bounded.

Finally one can prove as in Lemma 3.10 of Lerman-Sacks that each C weakly o-
recursive in A and B is a-recursive.
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Remark. In fact Lemma 3.10 of Lerman-Sacks seems to work without changes only
if A, B are hyperregular. Otherwise for c. = [j,]4 = [j,]® it is not clear, that we can
find a stage T = o, for each x such that L(z,j)= M(z,j)> x. In this case M. Lerman
suggests changing the proof as follows: One proves for f < o inductively that c.n f8
is a-recursive, using for the induction step the arguments of Lemma 3.10 and the fact
that an a-recursive bounded set is an element of L, so that an a-recursive initial
segment of ¢ can be computed by a single computation from A and B respectively
(it is assumed that C is a-recursive, not only weakly «-recursive, in 4 and B). M (z, )
has to be defined slightly differently for this proof.

§ 2. Nonzero Branching Degrees

Theorem 2. Let « be as in Theorem 1. Then there exist a-r.e. sets 4, B, C such that Cis
not a-recursive, C<,A+C, C<,B+C and C=glb(A+ C, B+C) (i.e. each D o-
recursive in 4 + C and B + C is a-recursive in C). Further all these sets can be made
hyperregular.

Remark. As we point out at the end of the proof, it seems to be necessary to make at
least C hyperregular, even if one doesn’t care to get hyperregular sets.

Proof of Theorem 2. We have the following requirements: RZA=[e]?*C+ 4,
RE=[e]*"*C+B,S,=a—C+ W, H2"“=([e]*"CI h,,(e)is bounded ifit is total
on hy, () and HZ*C (analogous). For A4, BCa we define A+ B:= {x|(x
=29 Ayed)v(x=2y+1AyeB)}. The priorities for requirements R, §, are
analogous to those for the previous R, and the requirements H, and functions h are
handled in exactly the same way.

R4 is satisfied at o, if at some <o a follower p of R¥ was put into 4 and the
computation [e]?**€"(p) was not destroyed in (z, o) or if at some t < o a follower p of
R4 was realized and the computation [€]2"*¢* was not destroyed in (z, ¢) and has
value 1.

Bo+Co
a

As before one defines when R requires attention at g, using [e] instead of

{e}

S, is satisfied at o, if C7’A W0

S, requires attention at o, if S, is not satisfied at o, e <o, and
1) S, is not persistant at g or

2) S, has a follower p and pe W? or

3) S, has no follower at o.

Requirements S, have at most one follower p at the same time and one tries to make
p a witness for CnW, £ 0. L(o,j), M(0,j) are defined as before, writing A+ C, B+ C
instead of A, B.
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Construction. Stage ¢ > 0: Take the requirement with highest priority at ¢ which
requires attention at a. Cancel all followers of requirements with lower priority at o.
a) Requirements R,, H, are treated as before.

b) S,.1fS, requires attention according to Case 1), cancel the follower of S,. In Case
2) put pinto C and cancel p as follower of S,. In Case 3) appoint ¢ to be a follower of
S

o

The requirements S, can be treated together with the R,. In fact they are much more
well behaved. If o, is such that S, is persistent after o, and no requirement of higher
priority receives attention after g, then S, receives attention at most twice after o,,.
It follows as before that 4, B, C are regular, A + C, B+ C (and therefore A, B, C) are
hyperregular and neither A <, B+ C nor B< A+ C holds. Further C is not «-
recursive due to the requirements S,. It remains only to show:

Lemma3. Assume f=c,=[j,]*"“=[j,]?*“ is total. Then f<,,C.

Proof. Go to a stage g, such that Q; is persistent after ¢, and no requirement of
priority < p,(j) receives attention after o,. We show that for all x,y f(x)
=y<{(L,, C>l=¥(x,y) with the following 2,-formula ¥: ¥(x,y)= 31¢LKH(o,
<1=0 A L(1,j) =M(1,j) > x A L= {p|pis follower of some requirement S, at t} A L
=KUHAKCCAHZa—CAKECC?A(no computation [j,14(2), [,151¢(2)
with z < L(z,j) is destroyed in [7,0]) A [jo 4" €7 (x) = p).

We observe first that for all x there exists an y such that {L,,C>}= ¥(x,y): Because 4
+ C, B+ C are hyperregular there exists t' such that [j, 14 “(2), [j, 12+ “(z) converge
for all z<x+1. Take 121" such that A"+ C'nt'=A+Cn1 and B"+C'n7' =B
+ Cn 7. Then the computations [,]4°* < (2), [j; 12" "(z) with z<x +1 give the
final value and are never destroyed, so we just have to wait for a stage ¢ where
LnCgccCe.

To prove that {L,,C)= ¥(x,y)=f(x)=y we proceed as in Lerman-Sacks. One
shows that the computation on one side of the equality for argument x is only
destroyed for the n-th time by a follower of some R, at stage 7,>¢ if the
computation on the other side is already reestablished. Then we have to eliminate
the possibility that this argument collapses because at some stage > 7, a follower of
some S,, coming into C, destroys the computation on either side of the equality
which was reestablished at 7, (this is possible because C occurs on both sides). But
this can’t happen, because one can prove inductively that all followers of any
requirement R, or S, at some 7, are in fact <. Now a follower <7 of some S, if it
ever comes into C, comes into C before g, which is less than z,.

Remark. It is tempting to use Lerman’s trick from the end of §1 to avoid the
assumption that the sets are hyperregular. But in this case it is not possible to prove
by induction on f <« that ¢;,n f is a-recursive in C and therefore an element of L.
In fact for every a-r.e. non-complete set C which is not hyperregular, there exists a
bounded set M which is a-recursive in C (not only 4, {L_, C>) and not an element of
L, (see [8]).
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§3. Minimal Pairs of Functionals

We use here the notation of Harrington [4], Sacks [11]. Let F**? be a given normal
functional where n= 1. We want to construct functionals G"*2, H** 2 r.e. in F and
some subindividual "~ ! which form a minimal pair.
In order to translate a solution to Post’s Problem from a-recursion theory into
recursion in higher types, Harrington [4] introduced the following admissible
structure A: Let o: = AF_ | be the order type of the set S of ordinals subconstructive
in F and 7:¢— S the isomorphism. Define TC w x o x o by T={<e, f, 0 |e is Godel
number of a 2, formula &(x) and M, (F)= @(z)} where M(F) is the constructible
hierarchy relativized to F. 2 is then defined to be the admissible structure
(LT),&, T>. For any A Ca (tA)" is the type (n+2) object {HZ|o =1y for some
ye A} (H is the Harrington hierarchy). Harrington proved that for each CCa,
which has the properties that C is regular and hyperregular over U and tC
subgeneric over F, the following holds: D Cais 4, (U, C)<=(tD)* < (F,tC)", H)
for some o subconstructive in F (we write < for “Kleene-recursive in”).
We assume for the following that there is a well ordering < of the subindividuals
SI:=tp(n—1) which is recursive in F. So in ZFC we restrict our attention to
functionals F which are “strong enough” whereas with V= L we can already find a
well ordering < which is recursive in each normal F.
With the help of < we can code the subindividuals by subconstructive ordinals:
Define
{Z’} (En+ 1’ _<, XO, e 1, " 1)

{x}(E,<,s) if s<r and x is a Kleeneindex of the appropriate form
{0 otherwise.
The recursion theorem gives us a z such that {z} (E"*',<, " H~E"*'(As" 1 {z'}
(E,<, z, 1, 5)). One shows by induction over<< that for all r {z} (E,<, r)| and O(r):

=|{z} (E,<, r)|== (which is the length of this computation) is the desired code for r.
The function O: SI—On is strictly increasing and continuous. RgOis bounded by

~

0o:=|E"" Y (Ar" {2} (E, <, 7)== which is<k§.
We can define 2| formulae @,, ¢, such that O(r)=6<M,;  (F)=®,(5,r) for
reSI, § <xf_, (obvious) and such that for 6 <xf_,
(0¢RgO=M, 5 (F) [ D,(9)).
We take @,(8): =620,V (0 <0y A" Ls" 1By
(@,B,NAP, (1) AP<Ed<y A" Hr<tAt<5)))

where 131" 1(r<t A t<s) is recursive in F as a predicate of r, s and therefore
expressible by a X formula in M,y  (F).
It follows that for each 7"~ ! we can find a subconstructive ¢ such that r < (F, HF) :
Take o:=0(r), then

r(x"" ) =me>M, g ey (F, Hiyl=35""102(6 = O(s) A z=HJ A z=H} A s(x)=m)
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where the latter can be written as a X, formula with parameters F, H. It follows
by Harrington [4] that the graph of r is r.e. in F, H, so that r itself is recursive
in F, H, (by Gandy-selection).

The existence of< < F implies further that p12l (the 2| projection of « in ) is
less than a: Let Q £ S x S be defined by Q(5, 7)1 (6 =|r[F A y=0(r)). Then Q is
obviously X', over M,y (F)andVéeS3yeSQ(d,y).Sot~ '[Q]is X, Aand the X, A
uniformization of this yields a projection of « into t~ *(g,) which is less than a.
Since p1A <o we can be sure that A is a nonrefractory structure so that Theorem 1
gives us a minimal pair 4, B in A of A-r.e., hyperregular sets which has then the
property that CCa, CA4,<{UA, 4>, CA, (N, By= CA,N. Further one can easily
insure that (tA)?, (tB)! are subgeneric in F by adding requirements to the
construction in A which are treated in a similar manner to the requirements H, (sce
[4]). Since CZ, A implies that (rC)? is r.e. in {F,r) for some r"~! we may take G:
=(A)¥ H:=(tB)" and get:

Theorem 3. Assume that a well ordering < of tp(n— 1) is recursive in the normal
object F"* 2, Then there exist functionals G"*2, H"*2 both r.e. in (F, r) for some
=1 but not recursive in (F, s) for any s"~! such that: Any L"*2C{Hf|s
subconstructive} where L <{F, G, r,> and L <<F, H, r,> for some rj~ 1, ¥i~ ! is
recursive in {F, s> for some s"~ 1.

Using a weaker reducibility we get rid of the restriction L"*?C{Hf|¢
subconstructive}. We define relative to the fixed functional F:

G'{+2 éwng+2<:‘—>E|€0S"_1VjOV"71(Gl(/ly"{j} (F’ GZ, ya r))g {e} (GZ, F: S’ .ja r))s

which is a restriction of “weakly Kleene-recursive in” to subindividuals (assuming
stronger axioms than ZFC Normann proved in [9] the existence of a minimal pair
for “weakly Kleene-recursive in”).

Writing {j}, for a standard indexing of primitive recursive functionals we define for
any G"*2,

Mg:=1{<8, y, D16, yeSnief{0, 1} Adjmr(d =I<mr)|F Ay=0({, m, 1)) A f"+1:
=Ay"ux’({j},(H}, , y, x)=0) is total A G(f"*!)=i} and

Mg:={<y,6,>[<ty, 16, DeMg}.

Lemma 4. Assume that ACAY_, is X, U, regular, hyperregular and (tA)? is
subgeneric over F. Then, for any G"*2, the following holds

a) G, (tAF=Mjis 4, (W, A,

b) My is 4, A=>G <, F.

Proof. a) Mg is 4, M, (F, (tA)">. To show it “X,” we use the fact that (t4)"
subgeneric over F implies (because of <) k(™™ <«f_ . For “Il,” we use the fact
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that “6¢ Rg” is £, M, (F) (it was for this part of the proof that we coded the § in
M,). As in Harrington [4] it follows that M is 4, (U, 4).

b) One can show easily that K:={{° ', i®IGQAY"{}(F, y, r)=i} is
2 M,s (F)and therefore r.e. in F together with some s" L. The result follows by
Gandy-selection.

Remark. It is obvious that for any G"*2, H"*2, s""! G=(F,H, s)=G=<,H.
Because “re O A f"*1= H|F,|” is as predicate of f, r recursive in F one gets further
that G, H=G < (F, H, s) for some s"~ ! if G is of the special form G =(zA)",
ACa.

From Theorem 1 and Lemma 4 we get

Theorem 4. Assume that a well ordering < of tp(n— 1) is recursive in the normal
object F"*2. Then there exist G"*2, H"*2 both r.e. in (F, r) for some "~ ' but not
recursive in (F, s) for any s"~! such that for all functionals L"*?: L< G A L
= wsH:L = ws F.

The analogous reasoning applied to Theorem 2 gives

Theorem 5. Assume that a well ordering < of tp(n— 1) is recursive in the normal
object F"* 2. Then there exists G"*2, H"*2, K"* 2 r.e. in F and some r"~* which are
not recursive in {F, s> for any s"~ ! such that: K <, G, K <, H and forall L, ,:

L, GALS, H>LZ, K.

§ 4. Minimal a-degrees for some X, -admissible o

We assume for this chapter that the reader is acquainted with Shore [12], so we
merely have to describe the changes which make Shore’s construction work for a
larger class of o (x always admissible).

We are going to use in this and the following chapter some simple facts of weakly
inadmissible recursion theory, see [3], [8]: Let  be any limit ordinal and A C ff be
regular over Ly, B: =Ly A). Assume k: = 2, cf B=B*: =X projection of B.
Then there is a one-one onto projection P:B—x which is 4,%8. We can further
define a predicate TCxk, TA,B, T regular over L, such that W:=(L,, T, the
“admissible collaps of B”, is admissible and for any BCx:BX (4,) U<BX,(4,) B.
Assume now that o is X, -admissible and p2o < ¢f 2o Let 4 S a be a regular complete
a-t.e. set and define B: = (L, A>. When ¢f 2o <o we have that B is inadmissible, so
we have to overcome the following difficulties : First if the construction proceeds by
recursion in B in o many steps, the construction need not be B-recursive. Second the
Sacks-Simpson Lemma might fail in B (see [3, 8]).

For any partial f:e¢—a we have fX, L, <fZ, B,so B is weakly inadmissible which
means that k:=c¢f20=2,¢fB=B*=poa= 7.
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Let A =L, T) be the admissible collaps of B (in the special case where o is X,-
admissible, U is essentially the same as B). Take g:xk—« to be cofinal, increasing,
continuous and X, B. For §,: =tp2A there is a X, A function h':x x §,—x such
that VY < 8,30, <kVx < Vo 20,(h (0,x)=h(04,x) and h= lim k'(s, -) maps d,

a—K

onto k. We define k:x x §,—a by k(c, e)=P~ (W (0,¢)). Then kis 2, B and a tame

approximation for the function k, = lim k(a, -) where k, maps d, onto «. A slight
twist as in Shore [12] assures that for each e<d, k(-, &) settles down at its final
value at some ¢ < which is not a limit ordinal.

The construction takes place in B in x many steps and the trees are the same as in
[12]. Since = X, ¢f B we can define a function H:x— L, in B by the scheme H (o)
=G(H! 0,0) with GZ, B such that H is 2 B and each initial segment of H is a-
finite (which carries us through the limit cases of the construction as in [12]). Then

we have to assure that B= | ] S, is regular, which we need for Lemma 6 below. For

this purpose we make lg 8, = g (o) for all ¢ < k, which causes some additional trouble
in the construction.

Construction. Stage0: Set f, =0, T =id, f, =¢.
Stage a =7+ 1: Let 5 be the least e < f'y with ko, e)Fk(y,e) (= fyifsuchae< fy
doesn’t exist).

a) Iflgp, = g(o) we take as in Shore’s construction the least i <# + 1 such that 8,
has no proper extension on T7.

b) If IgB, <g(o) and B,=TI(z) has extensions a,, o; of T7(r+0) and T)(r*1)
respectively on T} which have length > g(a) we take fo=n+1.

¢) Otherwise fo is somei < 7 (see the remark following the construction) such that i
=j+ 1 and a sequence f§ with §,C  and Igf < g(o) exists on T} such that § has no
extension on T7 but for ¢ where T%(z) = , it is the case that T (t+0) and T}(t*1)are
defined and have extensions a,, &, of length>g(s) on T},

Case 1: If fo =75+ 1 we have by definition of fo incompatible sequences a,, o, of
length> g(o) on T} which extend §,. One of them, say a,, is incompatible with
Ry Take B, =0, T{="T? for i< fo and T, = Sp(T7, k(o,n), B,).

Case 2: fo<n. Il 1gf, =g(0) we have fo=j+1 and T?,, =Sp(T}, k(y,)), B) for
some f C f,. Further B, has extensions o, = B;’, oy = ﬂyl on T7. We take one of these,
call it «,, as determined by 1.8 of Shore [12].

Iflgp, <g(o) the definition of fo =j + L in ¢) implies that T%, = Sp(T7, k(y, ), B) for
some 8 C 8, and we have f = T'(t) on T",,, f28,, with extensions T}(z+0), T%(z+1) on
T). We take again one of these, following 1.8 of Shore [12], and then the
corresponding extensions «, 2 T}(z*n) on T7 of length > g(g) which exist by the
definition of fo. We define

B,=0,, T{=T! for i<fo and TG, =Fu(T},a,).
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Stage o, o limit: exactly as in Shore’s paper.

Remark. For ¢) where we defined fo as “some i <# such that...” we have to show
that such an i <y exists and to explain how this choice is made unique. To prove the
existence let i, be the minimal i <7 such that a sequence f exists on T} with §, C B,
lg B < g(0) and B has no proper extension on T?. We can find such an i because i =74
already has this property:

Assume this isn’t true. For some t we have §,=T}(r) and so «j = T;(z+0), &}
= T} (v+1) are defined because we are in the case lgﬁ <g(o). Take for n=0,1 4,
=< g(a) + 1 minimal such that TV(r*n*O )1 where O,isa sequence of O’s of length 5
If this §, <g(o)+ 1 doesn’t exist we get an extension «,: =T (r*n*Og(a)H) of o,
which has length>g(0). If 6, < g(0) + 1 exists it is a successor, say o, +1, and a,
e Ty(r*n*Oa) has length>g(o) (otherwise B =a,, which would contradict the
above assumption). So in any case we get extensions o, of T (t+n) on T} for n=0,1
which have length > g(0). But then fo was already deflned by b), which yields a
contradiction.

We have now shown that the minimal i, £#, which we defined above, actually
exists. Because of its minimality i, has the form j+ 1. Further by definition of i,
there is a sequence f on T; with §,C B,1g 8 <g(s) and f has no proper extension on
T7. We have then f= Tv(r) for some 1 and arguing as before for T} (using the
mlnlmahty of iy) we get extensions a, of T}(r#n) lying on T} with length> glo).
Therefore i, is a witness that an zfn with the propertics demanded in c) exists.

The reason why we didn’t define fo =1, in Case c) is that we needed the quantifier
Va(lgd < g(6)—...in order to express the fact that i, was minimal. But these & might
be spread over all stages of (L,, 4, so the quantification could lead us away from
the blessed path of B-recursiveness. On the other hand we can define a predicate P
whichis X', B, such that P(F I ¢, i)says that i has the properties which are demanded
in Case c), where F :x— L, is the ¥, B function which describes the construction. So
we may leave the choice of i to a 2| B uniformization of the predicate P (see Devlin
[2]). The choice of the sequences f, a,, «, is treated analogously.

Since the whole construction is B-recursive, the regularset B: = | ) B, is recursive
in A. o=x

Lemma 5. I,: = {o|fo <J,} is bounded in x for all £ <4,,.

Proof. The function f:x—k, 0 — fo is £, B, therefore X | A. So we can work for this
proof in the admissible structure 2. Since we use the tame X, projection, we don’t
need skolem hull arguments. If tp2A = §, < gcWand g, <k is such that for a given ¢
<, h(a,d)always gives the final value after o, for all § < ¢, one proves by induction
on § that I;— g, has order type <46 (67 is the next A-cardinal after §). For § =6
+ 1 we use the fact that if I, — o, has order type ¢ then I;— o, has an order type < 3¢
+ 3 (see Shore [12]). For limit stages one applies the Sacks-Simpson-Lemma.

If tp2U > gcW and ¢f 2 =k, we prove in an analogous way that I;— o, has order



184 Wolfgang Maass

type <« for all § <e. The argument is the same for successor and limit stages, using
the fact that ¢f 29U =«.

The remaining case is ¢ f 2 < k, tp 2A > g¢ A which implies that tp2W =0, =gcA
-cf 29 (see § 1). We proceed again by induction. If 6, <k is a bound for I, ,and h
gives the correct values for 6 < gcQI-(g + 1) after o, the standard argument shows
that I ,.,+,— 0, has order type<y* for all y <gc. Define M CgcW x gcA by
(x5, pYeMe3a(e>0,n(fo<geW-o+7y for the x-th time after g,)). M is U-r.e.
and bounded. Therefore M e L (we have A* =k in this case) and we may map each
{x,7>eM onto the ¢ from the definition of M by a map geL,. Becausec Rgg is
bounded below k, I, ., + 1 is bounded below . Finally for the case I, 4 <cf2U
limit, we merely use the definition of ¢f29.

It follows as in [ 12], that for every ¢ < §, there is a last stage o, for which fo,=¢and
that o, < o, for ¢ <¢'. Further his proof that B is not «-recursive works here as well.

Lemma 6. If [¢]? is a representing function than it is either a-recursive or B is a-
recursive in it.

Proof. Take # such that lim k(o, ) =e. Let g, be the last stage where fo,=n+1.
Then we have T, , —hmT,,+1 =T72, and T, =limT7="T7.

a) If T, ., =Fu(T,, B,,), [e]”® is a-recursive.

b) T;,+ 1= Sp(T;p e, Bao)'

For this case we take a closer look at the definition of a splitting tree. Define § to be
partial a-recursive such that g(e,, e, t) is defined iff there exists an tupel {z,, 7,, &,
Gy, X, Yo, V1 WithTxjC 1, {e,} (r)=a;and [e]¥(x)= y;forj=0;1 where y, + y,. If
such a tupel exists, j(e,, e, T) gets one of these as value (by a X, L, uniformization).
Sp(T,, ¢, B,,)is then defined for the tree T, = {e,} by the recursion theorem, using the
function § for the definition at sequences 70, T+ 1.

For 1, where T, (t)=p, lgt =09 we define (with the help of §) an o-recursive
function hy;: 6— L, such that

hﬂ(@):<x,y>©(g(60a e,er) :<TO’T15a07alax’yOsy1> A
(y=yora, EP)V(y=y; A0 CB))).

Since hy is total on d, hy is in fact o-finite. So Rghy is a-finite as well and for any
sequence f on T, we have that f is an initial segment of ¢, iff RghﬂC [e]®.
Therefore K cge> 31P(T,, (1) =B AKEP A Rghy & [€]®) and B is a-recursive in

[e]”.
We have now proved

Theorem 6. Assume that o is admissible and p2o < ¢ f2o. Then a non zero minimal
degree exists which is recursive in 0.

1 Work on this result has been done independently by R. A. Shore.
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Remark. A function f:6— o is called a S, projection if f is onto and there exists a X,

function f":a x d —a such that Vx <d(f(x)=1lim f'(o, x)) (see Lerman [7]).

s3p(a) is the least § such that there exists a S, projection f:0 —o. Assume now that
s3pl@y<cf2a and f:s3p(a)—a is a S, projection with the approximation
[ x s3p(e)—>a. Define h:cf2a x s3p(a) by his, x) = f"(g(0), x) where g:cf2a—u
is cofinal and X, B as before. Then h is 2, B because f”is X, B and we further have
Vyea 3o3x (h(o,x)=y). The Z; B uniformization of h~! yields a B-recursive 1 —1
map g:a—cf 2o which shows that p2a < ¢ f2a. Therefore the theorem includes the
case s3p(a) = cf 20, in particular the case s3p(a) = w where maximal sets exist ([7]).

§5. Generalization to some Weakly Inadmissible Structures

Let =y be alimit ordinal and C C f such that Cis regular over J, (see Devlin [2]
for the definition-of the Jensen hierarchy J). A recursion theory on B:= J,C>is
then defined by taking X, B subsets of § as the B-r.e. sets (see Sy Friedman [3]). The
reducibilities < 4, <, are defined as in a-recursion theory. We consider here the case
where B is weakly 1nadmissible, whichmeans f >«x:=2, ¢cfB = B*=:y(see[8] for
examples). Define the admissible collaps A =<L_, T) as in §4.

We call a set ACk f-immune if VKeJ, (KEAvKCk—A)—»KeL,). The
advantage of f-immune sets 4 is, that for every CCx:C <, g A=C=,, Aand 4
Sy C=>A4=4C. The following holds: For every 4 C k we get umformly aﬁ -immune
set ACk such that 4 MA and A% (AI)QIc»AZ (A) U (see [8]).

Theorem 7. Let B = {J,, C) be weakly inadmissible and assume that the admissible
collaps A of B is not refractory (for example assume that X, ¢ /B >B*or X, cf Bis
not a successor cardinal in B). Then there are B-r.e. sets 4, B which are not B-
recursive such that for every DCf:

D=, 44 and DX ,B=-D is B-recursive.

Proof. Take a minimal pair of hyperregular r.e. sets 4, B in W and A-r.e. f-immune
sets A, B of the same UA-degree. Then A, B is again a hyperregular minimal pair in 2
and it is a minimal pair in B as well: Assume that for some DCB: D< 4,4 and D
<,sB. Then P[D]= waA and P[D] <, 4B (P is the one-one onto X, B projection
B— k). Since A, B are f-immune we write <, instead of <, . Therefore P[D]isdU
which implies that D is 4, B.

Theorem 8. Let B =(J,, C) be weakly inadmissible and assume that cf 28 > p2B.
Then there exists a set B which is not B-recursive but B-recursive in the complete B-
r.e. set such that for every D C f§ the following holds: D <, ,B=B=<,D or D is B-
recursive.

Proof. Take a complete A-r.e. A which is regular over 2 (2 is again the admissible
collaps). Construct BC k in the structure (U, A) as in Theorem 6 (we have cf28
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=cf 29 and p2B = p2%A). Observe that B has in fact the property that for each
DCx,D <, Beither B<,D or Dis U-recursive. Then the f-immune set B<rwith B

=,B has the desired propertles We have B <, 4 and therefore B S@A because B is
ﬁ immune. Further A is 2, % therefore 2 B, and $0 A is B-recursive in the universal
B-r.e. C. This implies that B< ,C. For the completion of the proof one proceeds as
before, using the fact that B< < <,P[D] implies B <,D.
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Added in proof:

1) Sukonick constructed in his thesis (MIT, 1969) a hyperregular minimal pair for the special
case a* =w.

2) Stronger versions of Theorem 7 and Theorem 8 are available by using results from [8]
(see [8], Remark 7).



