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ABSTRACT

We present lower bound arguments for two general computational
models: linear decision trees (LDT's) and random access machines (RAM's).
Both proofs use (besides combinatorial and geometrical arguments) the
method of constructing "hard" instances (xl,...,xn) of the considered
problems, where the distances between some of the Xy are chosen so
large that from the point of view of a fixed computational model the
larger numbers are "inaccessible” from the smaller ones. In §2 we fur-
ther refine this technique: there we have to satisfy at the same time
equalities between certain sums of input numbers in order to allow a
"fooling argument”, The mentioned techniques allow us to derive sharper
lower bounds for a variety of computational problems, including KNAPSACK,
SHORTEST PATH and ELEMENT DISTINCTNESS.

§1. Introduction

A linear decision tree (IDT; often also called LSA: linear search
aieorithn) is a rooted tree where esch internal nede is labelled by a
certain linear test 121 X, :oag. .(xl...:.xn) 1s the input for the
IDT -~ consisting of n numbers x, from N (er @, er R, depending
on the context). The edges from such nede to its three sons are labelled
by <&, =, and >; and depending on whether 1}1 a,x, < ag» 1:,'1 ax, = a
or i °1xi > “o one follows the corresponding edge to the next node,
Each leaf is labelled "accept” or "reject" (we consider here only deci-
sion problems, lower bound arguments are more interesting for this type
of problems), The complexity of the LDT is measured in terms of n (the
"dimension" of the problem instance (xl""”h”' not in terms of the
number of input bits,

Most lower bounds on the depth of IDT's T for decision problems
P are "conneativity - arguments" (see [2],{3]), where one exploits that
for each leaf ¢ of T the set of all inputs (xl,...,xn) € R:_‘ that
lead to leaf ¢ forms a connected subset of R" (it is an intersectior
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of halfspaces and hyperplanes). Therefere the number eof leafs in T
aust be at least as large as the number of connected components of the
considered problem P respectively its coaplement l‘tn-P. Unfortu-~
nately KNAPSACK and the other common NP - complete "nuaber problems"”
have only 0(20(“2)) many connected components (see [12]) and we get
in this way at best a lower bound that is quadratic inn, The (simpli-
fied) version of the KNAPSACK problem that one considers in the cited
literature (and which we will study in this paper) 1s defined by

KNAPSACK = [ K(n), where
K(n) = ((x),...,X,) €R | I8¢ (L.l % = ).

Actually one usually focuses instead on the dlscrete version of KNAPSACK,
where K(n) 1s restricted to Q. This version of the problem is NP -
complete,

In order to achieve a larger than quadratic lower bound for KNAP-
SACK one has to undertake a finer analysis of the mathematical structure
of this problem, Dobkin, Lipton [4] and Ukkonen [16] made some progress
in this direction: they exploited a geometrical property of the KNAPSACK -
problem in order to prove an exponential lower boundnror KNAPSACK on a
very restricted class of IDT's (only linear tests o5 94Xy * a, with
ay € (2,1} are allowed)., Unfortunately their restriction is so severe
that one isnot even able to sort the n input numbers XyseoesX, O
an IDT of this type. This entalls that one gets on such a model also
exponential lower bounds for a variety of problems that are in fact
eemputationally trivial, but which require to compare the size of some
of the input numbers Xy (e.g. for the problem of deciding whether
x 2 1 for some set S & (1,...,n) of size n/2).

In this paper we use nontrivial combinatorial and geometricel ar-
guments in order to achieve a sharper lower bound for KNAPSACK on a
quite general class of I.m"'ls. We consider 1LDT's where the coefficients
ay in the linear tests 1}1 Xy : a, Bay be arbitrary real numbers.
We show r’in Theorem 1 that if f(n) > | (1 ] ay < o} | for all linear
tests 1;::1 ayx, i G in the tree then the depth of the tree is at
least 2n/2f(n), This implies an exponential lower bound for KNAPSACK
on IDT's where the coefficlents ay in each linear test 121“1"1 T a,
may be arbitrary real numbers provided that |{i | a; < o}| = o(n/logn!}
(1t 1s known that this restriction on the number of negative coefficients
can not be totally eliminated: without this restriction the upper bound
on thedepthof IDT's for KNAPSACK 1s known to be polynomial in n, see
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{11]. 1In this way one gets an exponential lower bound for KNAPSACK on
a computational model that 1s substantially more powerful than the re-
stricted LDT's of Dobkin, Lipton (4] and Ukkonen [16]: There is no
restriction anymere on the nonnegative coefficients, PFurthermore
linear tests with o(n/log n) negative coefficients do not only aliow
to sort the Xy (for a comparison of two input numbers Xy» X one
only needs a single negative coefficient 1n the respective linear test),
but also to sort sums X, + Xy Xy + Xy + Xy,... where up to o(n/log n)
many of the input numbers x4 occur in a term. In fact, in spite of
its restriction on the number of negative coefficients, this type of
IDT appears to be one of the more powerful computational models on whicn
superpolynomial lower bounds for NP - complete problems have been achieved.

The technique that we use in the proof of Theorem 1 provides a
quite general new tool for the analysis of many algorithms that are
based on linear tests, It allows to show for a variety of quite prac-
tical problems that these problems inherently require to compare suas
of many input numbers. For example Theorem 2 exhibits an intrinsic
difference between the computation of a minimal spanning tree (where
the welghts of the edges have to be compared, but no sums of several
edge weights need be compared) and the decision problem associated with
the shortest path problem, respectively the maximum weight matching pro-
blem, for which all familliar algorithms involve the comparison of sums
of many edge weights, Theorem 2 shows that in fact there exist no poly-
nomial time algorithms (based on linear tests) for the latter two pro-
blems where only sums of up to o(n/log n) many weights are compared,
The argument of the proof of Theorem 2 yields in addition a number of
not so obvious refinements of this negative result which may be of in-
terest for the analysis of more practical algorithms, One can show
that even algorithms that are only required to handle particularly
"nice" types of problem instances in polynomial time (e.g. only graphs
that are planar, or where the weights are given by the Euclidean dis-
tance of points in the plane) are forced to compare large sums of edge
weights. '

In 83 of this paper we present another new lower bound technlque,
that allows us to derive sharp lower bounds for random access machines
(RAM's) with any "reasonable” bound on the number of registers that are
used. This lower bound argument is quite different from the one that
is used in §2 and §3, however it also employs the method of construct-
ing "hard" problem instances where the individual input numbers x, are
mutually "inaccessible",

The model of & RAM that we consider in §4 has become the standard



model for the machine - independent analysis of the time and space re-
quirements of concrete algorithas (see [1]). We consider the usual
version of a RAM with unboundedly many registers ro,rl.ra,.... Each
register is capable of holding an integer of arbitrary size. The RAM
can address these registers both directly and indirectly, and it can
perform addition, subtraction and comparison on the contents of regis-
ters. We apply the usual uniform cost criterion, where one unit of time
1s charged for each execution of an instruction, independently of the
size and address of the operands, We assume that the first n registers
hold initially the input numbers xl,...,xn. and similarly as before we
measure the length of the computation in terms of n (not in terms of
the bit lenght of the input).

We analyze in $3 the length of RAM - computations on the following
two well-known decision problems:

ELEMENT DISTINCTNESS = ((X;,...,X ) € | x4 x, for 14 J} and

DISJOINY SETS = (((¥greees¥p)s(2ysenerz)) € B |

[yl""’yn] N [zlp-oopznj = ‘]-

Obviously a RAM can decide both of these problems in O(n) steps
(write x, into the register with address x,). However this algorithm
requires a very large number of registers and the question arises whether
these problems can also be solved in linear time on a RAM with a "rea-
senable” memory size (e.g. polynomially in n many registers)., For this
case the best Xnown upper bound is 0O(n log n) (via sorting).

We show in Theorem 3 that this upper bound of 0(n log n) for
ELEMENT DISTINCTKESS and DISJOINT SETS on space bounded RAM's is in fact
optimal, Furthermore the lower bound of 0(n log n) does not only hold
1f the number of used registers is polynomial in n, but 1if the number
of used registers 1s bounded by an arbitrary function in terms of the
dimension n of the considered problem instance (xl,...,xn).

In this context we would like to mention that to our knowledge
there are no other lower bound results which show that a superlinear
algorithm for a natural decision problem on a RAM is optimal (however
one has already shown that a number of superlinear algorithms for the
computation of certain functions on a RAM are optimal, see [14); in
addition there are superlinear lower bounds for KNAPSACK on a RAM - but
they are not believed to be optimal, see [6], [12]).

At the end of §4 we indicate in Theorem % an extension of Theorem
3, where it 1s shown that the lower bounds of Theorem 3 remain correct




even if the RAM 1s made more powerful by the addition of an arbitrary
"oracle" Q S Rq (the RAM may ask the oracle Q repeatedly during the
computation for arbitrary q-tupels of input numbers (xi veesrXy )
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whether ("11"“'" ) €Q). The proof of Theorem & relies on the fact
that the technique of making the input numbers x, mutually "{nacces-
sible" is compatible with the well known method from model theory where
one chooses with the help of Ramsey's Theorem input numbers that are
"order indiscernible” with respect to a given predicate Q. This appli-
cation of Ramsey's Theorem 1is similar to that by Moran, Smir, and Manber
(9], [10] for decision trees (both applications were found independently,
see our preprint {7]). For more detalled proofs of the results in {2

we refer to Maass [8].

§2. A lewer bound for KNAPSACK on linear decision trees,

THEOREM 1, Let '1‘n be & linear decision tree for inputs X € Bn, for
all n € N, and let £ : N = N be a function such that every test
:aixi a, in T (a € R, possible outcomes: ¢,=,>) satisfies
(121 ] a4 < o]| < f(n) If T, -recognizes the Knapsack problem
b n
K(n) := {x € B+| Is € (1,...,n} (I‘é:s X, = 1)},
then depth (T_) > 2ln/2f(0) ] £or 211 n o€ .

E: This lower bound is superpolynomial if f£(n) = o( 02 n)'

8

REMARK: It will be seen from the proof that it suffices to assume that

Th f£inds the correct answer for inpute X € q:‘

PROOF OF THEQREM 1: Fix n and set k := f(n) and p := EnE We show
that depth (T,) > 2P,

Note here that we can assume w.l,0,g that 2k divides n, If this
18 not the case, let n, i= 2k - ‘_QnEJ and consider the m'rn,'r' ob-
tained from T by replacing all test % a,X, i ay by h:bl ax, i a.
Then 1t 1s clear that T' recognizes K%- ) and that for all tests in
T {1 >1]1gn, and a%/gkoll < k. We have 2k|n,, hence by the
special case depth (T') >2 . Since depth (T') = depth (T ) and
\n/2k] = n_/2k, it follows that depth () > ptn/2kj

We shall define a point a € Q+ - K(n), and distinct points
;I € K(n), and distinct sets S(I) £ (1,...,n}, for € (1,...,P),



such that the only "Knapsack hyperplane” 1Es X = 1] (for some
S & (1,....n}) on which i’I lies 18 KI--[xI 1& = 1), Since
Tn gives different outputs for & and .I' there l for each
IS (l,...,p)] & test 12.1 @,X; : a, on the path i.nn T, taken by a
such that the corresponding "test hyperplane" (X | o5 94X, = a ) inter-
sects LI' the ilosed line segment starting at a and ending at q
The cholce of a and ar will ensure that the only "test hyperplane”
which intersects I"I if any, is KI itself. This implies that at
least the 2P  tests corresponding to the Knapsack hyperplanes KI are
executed along the computation path for a. (This is the desired lower
bound,) The analogous task was quite easy in the models of [4], [16],
since there the only "test hyperplanes" that were allowed in T, were
just the Knapsack hyperplanes (therefore in those models one could choose
the components of & to be equal). In our case the definition of a
is more involved: 1its coordinates will satisfy two kinds of "inaccessi-
bility conditions”, together with equalities between certain sums of
coordinates,

To simplify notation later, we note that w,l.0.g., we can make the
following assumption: 1f 6= 1v; + v, + 3 + Ty ¢ o, where vy € (o}
U {v|vy or =r 1is a coefficient in T/}, then [5] > 1. (If this is
not already the case, multiply all coefficients in T by c™1, where
C :=min(|6] | 640, 6= Ty, for vy € (0} U (y]y or = 1is a
coefficient in TnU.) This assumption allows us to prove the following
lemma, which is the first step towards the definition of a.

LEMMA 1, There exists a number b € N such that for all m € N, all

By = Yq1 * Tyo + Viz * Tigs where v, € (o} U (v ly or =« mfi a co-
efficient in T o (1=1,...,m) and all e with |e| <D

ir 12:1 ﬁib-i + € = 0o, then 61 -, .= bn = € » 0, (The powers of b
are mutually "inaccessible"” w,r.t, linear combination with coefficients

from T, .)

PROOF: Choose b € N so that b > max(n + 1, 5.D), where D := max( |y|
| ¥ is a coefficient in T J z 1 Let m be arbitrary, and assume

that € 1s such that |e| gb , and that 6,,...,6 are of the

indicated form. Assume that i-tl 6 b -1 + € = 0, We show that 61 = O,
(Then the lemma follows by mduction on m,) Suppose for a contradiction

that 6 4 o, By the assumption preceding the lemma we even have m+1
-1 -1
|b|21 Hence b~ |51b|-|226b +e|$::i‘.2 ADb 51_1.‘2bb

i. __T <D 1, a contradiction.



For the rest of the proof, we fix some b € N as in Lemma 1,
Now we define a scaling factor B by
-1

P
B:= & b 7,
1=l

and choose 6 > o so small that 2p6 ¢ b P(2P#3)k-2 g ¢ o  oop
1<1igp, let

= - - -1 - -
Note that the point %(b l,b 2....,b p.b »b 2,....b p) lies on the

2P nyperplanes [(yl'“"yp'zl""’z ) € RapligI ¥y + ' Iz1 = 1), for
I¢(,...,p}. It turns out that the point (a.l,...,ap, 1""’bp) lies
strictly inside a polytope which has all these 2P hyperplanes as sup-
porting hyperplanes. This arrangement already allows us to prove the
lower bound for linear decision trees with arbitrary nonnegative coef-
ficlents: For each I € (1,...,p] we consider a vector (a{,...,a;.
b{,,..,bg) where

i

-1-0-%-1)', 101 €1 EEXE

a, = bI ‘= {b1 1 bl
O a » ir1.€1, b § b1-6-§°b , ir 1 ¢ I,

Obviously, (E &f + ;Fb] = L. In the next leasa we show that there 1s
at most one hyperplane in R P definable with nonnegative coefficients
from T which makes a difference between (al,...,ap, bl,....bp) and
(al,....al, b{,...,b;) in the sense that the two points do not both 1lie
on the hyperplane or in the same of the two open halfspaces defined by
it. This hyperplane 1is

2p
sevesy s Zrseeesl € R + - .

LPMMA 2, (Use of inaccessibility of the "first kind",) Let o ( n < 6,
Let for 1 <1< P, @,y € (v|y or =y 1is a coefficient in T ],
ai,ﬂi > o, but not all ai,ﬂi equal o, Let ¥ € R be such that «
or =y 1s a coefficient in T,. Finally, let I < (1,...,p} be arbi-
trary. Assume that for

yg:-{ai-m ir1 €1 zo:_{bi , if1 €1
a, ir 1§11 1 by,-n, if1§1I

holds

P o P °
:Qy"' T B,z = v,
1m1 171 1=1 1°1



Then n = 8, and Viin-yABino,md VifIa-oA -,
i.e. the hyperplane ((¥yseees¥ seeesZp) € Rz y EB

1 ! g sz 94 1=
= ‘vl equlll [(ylp..-.ypn zll---vz ) R I : yi 1EI 1- 1]

PROOF: The assumption a,¥° + B,20= v means, by the definitions,
PROOF 15 %Yy 1. 124

P 1, -1 - P -1 .
5 “1(3 b "+ b) iEI a,n + 1_1:1 51(%b + 6) 1?1 Byn = 7.

Multiplying by B = 1_:1 b L and collecting summands with the same power
of b ylelds

L -1
1:1(01 + By - Y)b 4+ B. [igl(ai(t&-ﬂ) + By8) + 1?1(016 + 51(5"\”] = 0,

Since o b-n¢ &6 and ai+aigb, the second summand 1is

=1 -p=
SB.p.—%-b-.b<2-b .p-%-b-p-b(bpl,

by choice of b and 6, By lemma 1 we get ai+51--y-o, i.e.
ai-o-pi-'y,for l<1gp and

EI (ai(b-n) + Bib) + 1?]:(“16 + ai(b-n)) = o,

Since the a,,B; are > o and are not all = o, the last equality can
hold only if

Vi €I : By = o (hence ay =),
MEILI:aq =o0 (hence B, = v), and
6= n,

Thus the equation 1:21 °1y1 + 1:!'1 Bi’i = ¢ 18 in fact the same as
;.EI vyt 1?1 vz, = 7. This proves the claim,

An additional effort is needed if the tree 'I‘n uses questions
with both poesitive and negative coefficients., Clearly, tests like
"Xy - X, o" can distinguish (al,....ap. 1,....bp) from (a{,....sI’
b{,...,b )}, 80 lemma 2 does not apply any more directly. To accommodate
for negative coefficients, we are forced to use another "level" of in-
accessible numbers (inaccessibility of the "second kind"): The numbers
a, and b, (L=1,...,p) are aplit into k parts each (e.g.
a = 84 +ooet aik) so that all the 2pk parts we obtain are mutually
"inaccessible” (with regard to the coefficients which occur in Tn).

The vector with all these a.iJ's and bij's as components will be



the vector s € Rn, with the properties indicated at the beginning of
the proof: & does not lie on any Knapsack hyperplane in R", but for
each I S (1,...,p) one can reach from it on a straight line a Knap-

sack-hyperplane KI without intersecting any "test-hyperplanes"” other

than K’I‘
NOTATION: For the following, it is convenient to rename the components

of vectors (xl,...,xn) € Rn. They are split into two groups and given
double indices:

X = (Xlsooo-ﬁl) = (yid' ziJ | 1¢igp, 1T LK)
We write (yiJ’zid)i 3 for such vectors in R",

DEFINITION: For 1= 1,...,p 1let

-p- - -p=-(21+1)k-
o B A S R L N CPE R
1 -1 k k
gil.-i'b -J-2231J+5-&1'J-:251J
1,1k -1
bil =5 b - -S biJ 4+ 0= bi ;2 biJ'
s = (agPygly g

For I {1,...,P}) 1let

k K
Kp = (2090, |2 sh Yag * g fr oh 2y = 1)

(KI is a Knapsack-hyperplane close to a.) "Characteristic vectors"
o - (cL,dL), defined by

I 1, 1r 1€Iand Jml 1 1, ir £ § T and J=1
Cy3 = {o, otherwise s dyy = {o, otherwise,

are needed to define the line segments L; from a to points :I €K;:

Ly := [E-nEI | o< ngB)
O.I = 8 - I*
The following three lemmata verify that a and the Ly, Ky :I
(£ € (1,...,p}) have the desired properties:



- a § K(n) (Corollary to Lemma 5)

- a; €K S K(n) (Lemma 3)

- 1ir LI intersects a test hyperplane, then this test hyperplane
equals K; (Corollary to Lemma 5),

As we have argued at the beginning of the proof, these properties to-
gether with the obvious fact that the KI are all different from each
other imply that the path in the tree T, which 1is taken by a con-
tains > 2P tests, which i1s what we wanted to show,

LD 3; For all I & (1,...,p}: & €K € K(n).

PROOF: Straightforward computation, using the facts that
k

1+ J_ﬂz ayy - Jfl lc{d l vl for1e1 and
I 1 . w1 1, P o4
+ 52 bi,j JEI Gd“ b for 1 £ I, and g . Tb =1,

i=1

LEMMA %: (Use of inaccessibility of the "gecond kind") Let o n K &,
Let QU,BU be real numbers which occur as coefficients in 'rn, for
1<1¢p, 1 LIk Let 4 € R be such that ¥ or =y 1is a coeffi-
cient in T,. Let IS (l,...,n} be arbitrary, Assume that

X = (y,402y4)y,y= & - "6y € Ly satisfies

(*) z aijyid + 13:., Bidzi." -,

1,3

Then ag4 = Gy and BiJ =By for 1<1<p, 2K Ik
PROOF: We rewrite (*) according to the definitions:

I
15y C1alty "°13’ * (byy =gyl = v Lee.

1.1 iJ

g .yt a +l5-'nc]:)+pk
o5 %11 J-"z 13 11/ + 15yl 944845 +

+I;:B (l-b'i-ll(:b +6-nd)+% B, ,b

1a1 11\B J=2 4 1=l Jt2 13713 = 7
P - -p= -

Multiply both sides by B = T b 1 and recall that Ba,,=bP 2lk-J

Bb,, = pP=(21+1)k=J eor 11 ¢ p, 2 < § < K; then collect summands

containing the same power of b:



-1 k -p-21ik-
1-%1 (ag; + B84y ~v)0 " + 1}1 3% (agy - apy)o P s

k

* 5= (Byy - °11’b-p-(21+1)k-'1 +

+B - (ié:I(ail(b-ﬂ) +By18) + 1EI (a8 + By,(6-1n))) = o,

The absolute value of the last summand 18 ¢ B.p .2 - % 5 < b'P‘(2P+3)k'1'
by the choice of &6, We apply Lemma 1 to obtain °1J -a; = Si,j '311
=0 for 1L1¢p,2L3LKk

LEMMA 5: Let mn, ayy, ﬂ“ (1<1¢<p,1<I<Kk), v, I be as in
Lemma 4, such that the ay ’BiJ are not all o. Assume that

a - nc. satisfies (*), and that

;’ (yij,zi"j)i,J - I

I[(ilJ) l aiJ < °J| + l[(in’) l Bid < °J' < k.

Then the hyperplane defined by (*) equals K;, and n =5, i.e. Xx= :I'

COROLIARY: 1) If }'13 y BIJ 1.1 ¢y 18 a test in Tn’ and
has a point in coﬁgon with [fi J,z” 1, 1| 15 a4¥qq + 1’:.1 51.1’1.1
=), then this hyperplane equals K;. 1i) & 3 K(h). ’

PROOF OF LEMMA 5: Applying Lemma 4 yields °1J =Gy Bi.‘l = 511’ for
1<£1<p, 2< 1< k. Hence none of the coefficients cen be negative
(otherwise > k of them would be negative, contradicting the assumption).
We now collect summands with the same coefficients in (*) and obtain

5 %10 gk (8gg - megy) + T Byy - g Ty (byy - mayy) = e
By the definition of the a,j, D, c{J, dL, 8,, b,, this 1s the same

b . t b, - nal
(L% ¢ (8 = meegy) 4 E By (by 1) = v

To this equation we apply Lemma 2, and we get

n= 5, V1€I:ulls'yl\ﬁilao,anduﬁl:uil=oAan--y,

v can not be o, since some of the aij'ﬂi,j were assumed to be + o.
By multiplying (*) by -y-l we finally get that (*) is equivalent to



t $y4..4+ ll‘:: -1
1€1 J=1 "4 1§I Jel 1) i

which is the equation defining KI'

PROOF OF COROLIARY: 1) If T ainij + it,j BiJzij ty 1s a test in
T, then w.1l.0.g. not all coedticients are ‘5, and the number of nega-
tive coefficients among the °1J’Bi.1 is less than k by the assump-
tion we made about Tn. So the lemma applies directly. 1i) Let K
be an arbitrary Knapsack hyperplane. In our notation, K has the form

b2 z z =1 rtain
((ygo2sq)g, g | 5 dg¥yg + 45y Pyg%yy = 1) for certaln a, .0,
€ (0,1), not all 5, Suppose that & - n.c; € K for some n, ogng®,
and some I € (1,...,p}. Choose an arbitrary v > o such that v or
~y 18 a coefficlent in Tn. Then X = (3/1_‘1,z1.1)1“1 =2 -n.0c

satisfies

Applying Lemma 5 to this situation ylelds n = 6, i,e, X = :I $a. In
particular, a § K. This holds for all Knapsack hyperplanes K, hence
a § K(n).

This finishes the proof of Theorem 1,

§3. Lower bounds for graph problems on linear decision trees.

In this section the method of §2 is applied to some languages de-
fined in terms of graphs with weighted edges: the shortest path pro-
blem, the minimum perfect matching problem, and the traveling sales-
person problem, The main result (Theorem 2) says essentially that a
linear decision tree can not solve these problems fast, i.e, recognize
the corresponding languages fast, unless it can compare sums of many
input numbers to each other. Thus the comparisons of lengths of paths
in any of the standard pelynomial time algorithms for the shortest path
problem of the minimal perfect matching problem are essential, This
observation pinpoints a difference between these problems and, say,
the minimum spanning tree problem which can be solved in polynomial
time by linear decision trees which use only comparisons of single
edges,

An equivalent formulation of welghted graph problems as recognition
problems in R® 1s obtained as follows, For m € N consider the com-
plete graph Km on m vertices ViseeasVpe Fix a numbering €1seeerey
of the n = -2]=m(m-1) edges of Km. Then there 1s a one-one correspon-



dence between vectors (xl.....xn) € R" and weight functions
w (el.....enj = R which assign a weight '(°1) to every edge ey
the correspondence being given by w(ei) =X, for 1< 1< n,

The problem SHORTEST PATH as a decision problem, can be formulated
a8 follows: is there a path from A to Vo of total weight < 17
This problem corresponds to the language

SP(n) := (X € l'(nl s < (1,...,n} ([e1 |1 € S) forms a path 1in K,
between v, and Vo and 1& xigl)j.

Similarly, the problem MINIMUM PERFECT MATCHING gives rise to the fol-
lowing recognition problem:

PM(n) := (X € R" |35 € (1,...,n) ((e; | L€5) forms a perfect matching
in and T x 1)).
K 165 X1 <£1))

Finally, the TRAVELLING SALESPERSON problem, i.e., the problem to
declde whether there is a Hamiltonian cycle in Kll of total weight ¢ 1,
glves rise to the language

TSP(n) := (x € R" | IS € (1,...,n)((eg | 1 €S} forms a Hamiltonian
cycle in .and I x 1)}).
T 1es 1 =

There is a geometrical difference between the languages K(n) of
§2 and the languages just defined. K(n) consists of a union of hyper-
planes in R®, whereas SP(n), PM(n), TSP(n) are unions of closed
halfspaces in R". The following variation of Theorem 1 adapts the
results of §2 to this situation,

COROLIARY TO THEORFM 1, Let, for k, p € IN

¢ RePK k
B e (1,ecp) (3 B

<1},

L(p,k) = ((Y49:234)1014p,1¢5¢K

+
1;1.1 1“1

Let T K be a linear decision tree for inputs from R pk which re-
»
cognizes L(p,k), such that all tests in T K contain less than k
»
negative coefficients, Then depth (Tp k) > 2P,
1



PROOF: Consider the points 2 and :I (€ (1,...,p})) in R2PK

as in the proof of Theorem 1., We observe that a € L(p,k):

1, -1 1 -1
£ T a,, + I Eb m= L (b " +8)+ L(5.D "+8)=1+4pb> 1,
1€r4e1 M 1§1 g=1 8 gex B 1¢1 B >

for a1l I € (1,...,p}. But &, € L(p,k) forall IS (1l,...,p), since

b );:(a -bcI)+ T lé(b -de)- L‘(-l--b'1+a odI)+
ter a1 W07 gfr a1 MW g B 1
1 -1 1
+ T(3.-b "+86- 8d;,) =1.
1€1 B 1

Hence on the path in T, . which is taken by & there must be a test
for each I € (1,..,p) which can distinguish & from EI. By the
corollary to Lemma 5 in §2 the hyperplane corresponding to such a test
1s K;. Hence the path in T . taken by % has length > 2P,

The languages Lp,k will be "reduced" to the graph problems we
consider here, Thus we get lower bounds in the following manner: from
a linear decision tree T which solves the graph problem, using few
negative coefficients in its tests, we obtain an IDT of the same
structure which recognizes L(p,k), for certain p, k € N. This implies
that depth (T) > 2P, by the above corollary,

THEOREM 2. Let (Tn)nzl be a sequence of IDT's, £ : N = N a function
such that each test in Tn uses less than f£(n) negative coefficients,
Ir T, recogtﬁ;ag?:)?f the languages SP(n),lm(n), TSP(n), then
depth (T ) 22 » for n of the form ym(m-1), m € N,

NOTE: This lower bound 1s superpolynomial if f(n) = °(fo%_n' )
PROOF: In each of the three cases, we obtain from Tn an LDT Tp K
1 4
of the same depth as T,  which recognizes L(p,k), where k := f£(n)
n
and p := 3f(n)’ and Tp,k uses < k negative coefficients in its
tests, Then, by the above corollary,

depth (T,) = depth (T, ) > 2P . p0/2f(n)  HlVA/2f(n) ]

a) Suppose T. recognizes SP(n). We restrict our attention to a
fixed subgraph Gl of Km as sketched in Figure 1. Gl uses
(2k-1)p+1 < m vertices (among them vy and v2) and 2kp edges.
The variables Xy corresponding to the edges of this subgraph are

T



rensmed ¥, resp. Iz, (1 £1<Pp 1 <J < k), as indicated inFigure

1., We consider only anut vectors X = (xl....,xn) € lﬂ which give
weight 2 to all edges not in @,. Then it 1s clear that such edges

can net occur in a path of length ¢ 1. We change 'rn by fixing the
values ef the xi'l corresponding to such edges to be 2, The result

is an ILDT T' for inputs (yij’zij)lgigp,lggk which accepts

P
[(yid'zid)i..‘] | one of the 2F possible paths from v, to v, in G,

has weight ¢ 1},

This language obviously equals L(p,k). Furthermore, no test in T'
uses > f(n) = k negatlve coefficients, since this was true in Tn'

Yia ! Yoa oo _J2Kd
YK
Yit Jix 2
v,

Zi2 Zy k-1 Zn 7'1:*-

Figure 1

b) Suppose T, recognizes PM(n). This time we consider only a fixed
subgraph G, of Km of the form given in Figure 2, G, has m = 2pk
vertices and 2pk edges. The variables Xy corresponding to the
edges of this subgraph are renamed Jyg TesP. Zyy (Lg1¢p,

1< J < k), as indicated in Figure 2, We obtain a new ILIT T" from T,
by fixing the values of all other x; to be 2. Clearly, a perfect
matching made up from edges in G2 either contains all edges corre-
sponding to yil"“’yik or all edges corresponding to ByqseeesByys
for 1 ¢ 1 p. Hence the language (which is recognized by T")

[(yi.j'zi;j)i,.j | there is a perfect matching in G, of welght ¢ 1)

equals L(p,k).
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1,K-1
B

Figure 2

¢) Suppose T, recognizes TSP(n). We consider a fixed subgraph G}
of l(m of the form given in Figure 3, Give constant weight 2 to all
edges not contained in G3' and weight % 'le to the edges correspond-~
ing to variables u,, (Lg1<p, 1<I<k). Consider the tree T™
obtained from T by fixing these input variables and renaming the
other ones to .‘/U,zi‘1 as indicated in Figure 3, Then a Hamiltonian
cycle of weight < 1 obviously uses in component ci either the edges
Yypougqe¥gpreeerYqyougy OF the edBes 2y),Uy),2,5,00058y,,uy,  (for

1 <1 ¢ k). Hence the language

[(y“,zi‘1 1,3 | there is a Hamiltonian cycle of length ¢ 1 in GB}

equals
k
»Z ) iIS.[l,...,p] ( T : z ’
[(yid 1.1 1"1 I 1€I J-l iJ ifI iJ S 2)]
a language so similar to L(p,k) that it obviously implies the lower
bound 2P for the depth of T"!
e Wix
Cap ﬂ"q 2\ %
-~ » Z
Ui
Cl. yi.u\-l o zi,l'.—l
t G
Cs P
eX s C,_l
. z.
Jir w i2
- . 2‘5 il

R Flgure 3



REMARK: Application to geometrical instances

The lower bound of Theorem 2 stays valid if the LDT 'I‘n is only
required to solve the respective graph problem for the following re-
stricted class of "geometrical instances": incomplete graphs on m ver-
tices which can be drawn in the Euclidean plane in such a way that the
edges are straight 1lines, no two edges cross, and the weight of each
edge equals its length, (We assume that T, uses an additional type
of test which allows it to find out whether an edge 18 present in the
input graph or not,) To construct "difficult inputs" for an IDT T,
which can decide the graph problem only for instances from this re- .
stricted class, we can use the same subgraphs of & as in Figures
1-3, But we can not use the same weight sets as in the proof of Theorem
2, since there the weights were vastly different from each other (e.g.
8y, i8 very much larger than "12)’ and it 1is not clear if one can
draw graphs in the required way with these weights as edge lengths, 1If,
however, the edge weights Vygr2yy (L<1<p, 1<J k) of the graphs
depicted in Figures 1-3 are all equal, these graphs can be drawn in this
manner, We will exploit in the following that the same is true if the
edge weights are nearly the same, say if Flf(l'e) £ ym, zu £ plk for
all 1,J, for a sufficiently small € = €(p,k). There is an easy way to
obtain such "geometrical” weight sets from arbitrary ones: add a large
constant to all edge weights, then scale down by a constant factor. More
precisely, if any weight set (71.1,2'1‘1)1,J with o ¢ S"i‘,, ;1.1 <1 is
given, the new welght set (yid’zid)i,J defined by

- - ¥y 1;5 e . I;E
Yig = e T Vgt Py T eyt

belongs to & graph which can be drawn in the required manner. This ob-
servation leads to the following "reduction procedure", described here
for the case of SHORTEST PATH, Suppose an 1DT Tn is given which
accepts weight sets for subgraphs of Km which admit a path of length
<1 between v, end v,, but T  does so only for input vectors which
arise from "geometrical instances" in the way described above. We define
k and p as before, and restrict our attention to the subgraph Gl of
Figure 1, renaming variables as in the proof of Theorem 1, Modify Tn
as follows: replace tests

L a,y + I PB,.z HILY by
1,7 13743 1,4 13743
l-e]'

o ~ i
155 g ¥ey * gy Pyytyy gt v - gLy (o + 8yy) - SE



and call the tree so obtained En' Then it is easily checked that for
og 9'“. 'i'“ <1

T accepts (Fyy081)s, 4 1£f  (by definition of T )
o le > 1-e
T, accepts (eyl‘1 + Sk €2yt pk)i.J ire (bi tge)structure
1
k k
1I1<(1,...,p} (T ‘-‘ (eF,, + =) + T : €T, . + )¢l) 1ife
HJ 13 T LT gm1 (1JT$

I < (1,.., T 2 Yyq + 1),

( pl (1€I gm1 13 1 iJ <

Thus 'I" recognizes L{p,k) for inputs from [o,l]apk (the language

L(p,k) was defined in the corollary at the beginning of {3). _The
lower bound proof of §2 uses only inputs in (o, 1]2pk’ hence T has
depth > 2P, and so does The

Similar constructions yield the same result for PM(n) and

TSP(n).

§3, A lower bound on the time for spacebounded random access machines

We refer to §1 for the definition of the here considered problems
and machine models,

THEOREM 3. Let R be a random access machine (RAM) that recognizes
ELEMENT DISTINCTNESS (respectively DISJOINT SETS). Assume that R
uses for ilnputs from x only its first 2““’ registers, where
£ : N =N 1is an arbitrary function, Then R uses Q(n log n)
computation steps,

SKETCH OF THE PROOF (see [8] for detalls): Fix a RAM R with space
bound 2°'"/ that recognizes ELEMENT DISTINCTNESS (the argument for
DISJOINT SETS 1s similar). Obviously R can generate in t steps,
starting from numbers ¢ b, only numbers of size ¢ 2tv b. Therefore
for computations of length < n log n the numbers in the set

2f(n)+1-nlogn| 1<1i¢n )

are mutually "inaccessible”" from the point of view of R. We consider
the "test set” T & ELEMENT DISTINCTNESS that consists of all n!
permutations of IN and we show that R wuses ) alogn steps for

some input I € T. More specifically, we will show that under the



assumption that R applies < %‘-—n arithmetical operations to each
input from T, R defines for each input I from T a different
binary sequence P(I) that codes the outcomes of all comparison steps
in that computation on input I,

The proof makes use of the following simple fact, which follows
from the inaccessibility of the numbers in IN: every register content
that occurs during the computation of R on input (xl,...,x ) €T
can be written uniquely in the normal form: s, + s1 x,, where
s, €7 and Isgl g2n log n, passume for a contra Tction that there
are two different inputs I = (xl,....xn) and I' = (xl,....xn) in
T with P(I) = P(I'). Let ® Dbe the permutation of (1,...,n} so
that xn(l) < x"(z aoo £ x"(n) Choose ¢ minin:l 8o tl:at

Xa(es1) < X3 (1) Consider the variation I = (X,....X))
of input I where the n(b-o-l)-th component of I has been replaced
by another copy of X, ‘_)(thus x“(u_l) 1,'(” = Xo(e) and I ¢ ELE-
MENT DISTINCTRESS). We will show that since R did not "notice" that
the relative order of the n(t)-th and n(i+1l)-th component 1s dif-
ferent In I and I' (x“(” < x"(wl), but x 5 ) >xn(u—1)’ R will
also not notice that x“(” - xﬂ(H—l)) I and therefore R will
accept T just as it accepted I and 1I'). More precisely one shows
by induction on t Ehat for all t ¢ n logn R executes for all three
inputs I, I' and I the same instruction at step t, and that if some
register r, has at the end orfl itepnt for input I the content
Sy + o8 8% (with |a,| <2 O€ 1) then the same register r,
holds at the end of step t for 1.nput:n I' the number 8, + 1_:1 sixi,
and for input I the number &+ ,T, s, X,. Note that indirect ad-
dressing causes no problem in this argument since o ¢ 8, + 1_1:1 8y Xy
2r(n) implies that 8y = o for 1> 1, The only nontrivial step
in the inductive argument occurs when R compares at step t the comn-
tent of register ¥, :1th o. One h;s to show that the outcome 1is the
game for I, I' and I. Let 5, i_r.l 8y Xy be the content of r, at
step t for input I. By the 1nduction hypothesis we know that
8o + EL six1 (s + 1_1'.1 1 x) are the corresponding contents of r,
at step t for 1nput I'(I) Consider the case where s 1_!‘.1 8, Xy >0,
By assumption we have P(I) s P(I'.)‘ and therefore 8, + 13 8y 1) o.
We have to show that s, + 1=L‘1 8, Xy >o. let J be maximal so that
s“(” 4 o (in the considered case this implies tgat s"(‘” > 0)., If
J>t+1 this immediately implies that so 1:1:1 sy R’i > o, If
jJe<t+1l then s +1§1 Sy Xy =8, + 2 slxi. Thus the only non-
trivial case occurs when J = 0L 4+ 1 and s (L) ¢ 0. However in this
case we get a contradicition to o+ b 8y xi > o since by the



) et =

choice of { we have x".,(l,< <x,',(” and x"'(“l) < x,"(” (fur-
ther l"(“ mo0o for 1> ¢ 4+ 1 by the choice of J). All other
cases are handled analogously.

With the help of Ramsey's Theorem (see [S], [15]) one can derive
the following generalization (here one selects out of a very large
pool IN of mutually "inaccessible” numbers n special numbers that
are "indiscernible" for the oracle Q — except for thelr order).

THEOREM 4: The lower bound of Theorem 3 remains valid if one allows
the RAM R to use an arbitrary oraele Q € re (for any constant

q € N) that answers questions about arbitrary q -tupels of input
numbers,
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