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ON THE COMPLEXITY OF NONCONVEX COVERING*

WOLFGANG MAASSt

Abstract. We study the problem of covering given points in Euclidean space with a minimum number
of nonconvex objects of a given type. We concentrate on the one-dimensional case of this problem, whose
computational complexity was previously unknown. We define a natural measure for the “degree of
nonconvexity” of a nonconvex object. Our results show that for any fixed bound on the degree of nonconvexity
of the covering objects the one-dimensional nonconvex covering problem can be solved in polynomial time.
On the other hand without such bound on the degree of nonconvexity the one-dimensional nonconvex
covering problem is NP-complete. We also consider the capacitated version of the nonconvex covering
problem and we exhibit a useful property of minimum coverings by objects whose degree of nonconvexity
is low.
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1. Introduction. In this paper we study the problem of covering given points in
Euclidean space with a minimum number of nonconvex objects of a given type. We
concentrate on the one-dimensional case of this problem, whose computational com-
plexity was previously unknown. We further restrict our attention to rings—arguably
the simplest nonconvex objects (it is not difficult to extend our algorithms to other
types of nonconvex objects).

A number of researchers (see the discussion and references in Johnson [6, p. 185])
have shown that the following problem is NP-complete: Decide whether n given points
in the Euclidean plane can be covered by k discs of a given radius w. We now look
at a nonconvex variation of this problem. In the following, a ring (or annulus) of size
(r,w) is the set of points that are enclosed by two concentric circles of radius r
respectively r+w (r and w will always be nonnegative integers in this paper). If we
substitute in the two-dimensional covering problem the discs by rings of given size
(r, w), the resulting nonconvex covering problem is still in NP. Thus the extension to
nonconvex covering objects (rings) does not change the computational complexity of
the problem: In two dimensions both the convex covering problem (with discs) and
the nonconvex covering problem (with rings) are NP-complete.

In contrast to the preceding observation we show in this paper that in the
one-dimensional case significant differences arise between the complexity of the convex
and the nonconvex covering problem. In the one-dimensional case we assume that n
points on a line are given. We assume that the covering rings have their centers on the
same line. Thus the intersection of a ring of size (r, w) with this line consists of two
closed intervals of length w which are separated by an (open) interval of length 2r in
between. In the following discussion we will refer to such a pair of intervals as a
“one-dimensional ring of size {r, w)”. The one-dimensional ring cover problem is the
problem of computing for n given points on a line the positions of a minimum number
of one-dimensional rings of given size (r, w) so that all given points are covered. This
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problem contains, for r =0 as a special case, the one-dimensional convex covering
problem. A very simple algorithm (see the beginning of § 3) shows that this one-
dimensional convex covering problem can be solved in linear time. In contrast to this
we show in § 2 that the one-dimensional ring cover problem is strongly NP-complete.
This intractability result comes somewhat unexpectedly insofar as almost all geometrical
problems become tractable when they are restricted to one dimension.

In § 3 we close the gap between the previously mentioned two results. We identify
the quotient r/w (which may be viewed as a natural measure for the degree of
nonconvexity of a ring of size (r, w)) as the key parameter that determines the complexity
of the problem of covering with rings of size (r, w). Theorem 3.1 shows that not only
for r/w=0 (convex case) but also for any fixed bound on this parameter r/w the
corresponding one-dimensional ring cover problem can be solved in polynomial time.
In § 4 we exhibit in addition a threshold for this parameter r/w (at r/w=1) where
qualitative changes in the structure of minimum coverings by rings of size (r, w) take
place.

Finally we consider in § 5 a capacitated version of the one-dimensional ring cover
problem. We assume here that the number of points that may be “served” by each
ring is bounded by a given capacity b. We show that for any fixed bounds on b and
r/w this problem is also in P.

It is obvious that our algorithms can be generalized to cases where one covers
with other nonconvex one-dimensional objects. We mention further generalizations at
the end of § 3.

Finally we would like to mention two possible practical applications of the
considered problems. In scheduling theory one may interpret the line as a time axis
on which particular time points are given. If resources (for example work shifts) are
to be scheduled so that all given time points are covered, one arrives at a one-
dimensional covering problem. In certain realistic models where resources are only
intermittently available (for example due to lunch breaks for workers or preventive
maintenance of machines) this covering problem is nonconvex. For example one covers
with one-dimensional rings of size (3, 4) if every eight-hour work shift is interrupted
by a one-hour break in the middle. We refer to Bartholdi IT1I [1] for a further discussion
of this application.

There are other possible applications if one interprets the considered line as a
line in space. We would like to mention two examples from robotics. In this area one
might want to cover given points in space by certain geometrical objects that model
the set of points which are reachable by the arm of a robot (for a fixed position of
the base of the robot). This set of reachable points may be nonconvex because of
imperfections in the robot arm (even for the human arm this set of reachable points
forms a ring-like structure). Thus if one wants to compute for a given set of points in
space the positions for 2 minimum number of robot arms so that all points can be
reached by some robot arm, one arrives at a (convex or nonconvex) covering problem.
Alternatively one might want to compute for one mobile robot a tour where each of
a number of given points can be reached by the arm of the robot from some stop of
the (base of the) robot. If the goal is to minimize the number of stops for the (base
of the) robot, the same covering problem as before arises.

The results of this paper serve as a basis for a series of subsequent papers with
Dorit Hochbaum, where we design polynomial time approximation schemes and fast
approximation algorithms for one-dimensional and higher-dimensional covering prob-
lems [3]-[5].
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2. Nonconvex covering in one dimension is NP-complete. We refer to the first section
for a definition of the ring cover problem.

TueoreM 2.1. The one-dimensional ring cover problem is strongly NP-complete.

Proof. We first note that the considered problem is in NP. Here one uses the fact
that it is sufficient to consider positions of rings where one of the four endpoints of
the (one-dimensional) ring coincides with one of the given points.

In order to show that the considered problem is NP-complete we construct a
polynomial time computable reduction from the NP-complete problem 3SAT (see
Garey and Johnson {2]). The strategy is somewhat similar to the strategy of the reduction
from 3SAT to 3-DIMENSIONAL MATCHING. However one has to work harder to
construct suitable problem instances in only one dimension.

Before we define the desired reduction, we introduce an essential tool for the
construction of suitable instances of the one-dimensional ring cover problem. This tool
makes it possible to interconnect the coverability properties of various different clusters
of points in the constructed instances. Consider a sequence W,,: - -, Wy of points on
the line that are spaced 2r+w apart. For example assume that W, has the coordinate
i- (2r+w). Obviously one can cover all points in this sequence with k rings of size
(r, w): The ith ring covers Wi, and W, If W, does not need to be covered by the
considered k rings (because it is already covered by some other ring), we can shift the
k rings over a distance 2r+w to the right. In this case the ith ring covers W and
W,;,,. Further the kth ring covers only one point: Wy, Therefore we can use the other
w-interval of the kth ring to cover some other point in the neighborhood of Wi Thus
we see that a covering advantage at the beginning W, of the sequence causes a chain
reaction in the covering of the sequence W,,- - -, W,, (the possibility of shifting all
k rings to the right), which leads to a covering advantage at the last point Wa: the
kth ring has one interval free. In this sense the sequence W, -, Wy can transmit
covering advantages and therefore we call it a “wire”. In the first situation (where the
kth ring has to cover Wi, and W), we say that the wire transmits the “signal 0.
In the second situation where the kth ring only has to cover the last point Wy, we
say that the wire transmits the “signal 17

So far we have made no use of the nonconvexity of the covering objects. Everything
we have said remains true if we cover with (convex) intervals of length 2r +2w instead
of rings. We now show that the nonconvexity of the covering objects allows us to run
several wires in parallel, so that each can transmit a signal 0 or 1 without mutual
interference. It turns out that the number of wires that we can run in parallel is
proportional to r/w (this is the first indication of the importance of the parameter 1/ w
for the complexity of the ring cover problem). Consider a second wire Vi, -, Vax
where point V; has coordinate i- (2r+ w)+ p. The “‘phase shift” p that occurs here is
some integer with w<p< 2r. Obviously the wire Vi, - -+, V,, has the same covering
properties as the first wire Wy, - -+, W, But in addition the choice of the phase shift
p guarantees that no ring can cover two points that belong to different ones of these
two wires. This implies that the choice of a covering of one of the two wires has no
consequence for the covering of the other wire. Inthe previously introduced terminology
we can say that both wires can transmit a signal 0 or 1 without mutual interference.
In the same way we can run d wires in parallel (for any natural number d = r/w) that
transmit signals 0 or 1 without mutual interference. We merely have to choose for the
d wires phase shifts py, - ", Pa SO that for any i #j we have w <|pi—pl<2r.

We now construct the desired reduction from 3SAT. Let F be an arbitrary instance
of 3SAT, let U ={u;," ", u,} be the set of variables in F and let C ={¢,," " *,Cm} D€
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the set of clauses in F. Each clause ¢; is a disjunction of up to three (negated or
unnegated) variables from U. The conjunction of all clauses in C yields the considered
formula F. In the following we construct in polynomial time a set P of integers (which
are interpreted as coordinates for points on a line) and integers 7, W, M such that all
points in P can be covered by M rings of size (r, w) if and only if F is satisfiable. The
points in P fall into four classes of components according'to their intended function:
“truth-setting”, *“‘satisfaction testing”", “wire" and “wire crossing’’.

Each truth setting component corresponds to a single variable u; € U (we call it
the u,-component for this variable u;). The points of each u;-component can be covered
in exactly two different ways by minimum coverings by rings of size {r, w). In this way
each u,-component forces any minimum covering of all points in P to make a choice
between these two possible coverings of the u;-component. This choice corresponds
to the choice between setting u; = true or 4; = false in a truth assignment to all variables
in U

Each satisfaction testing component in P corresponds to a single clause ¢ C
(therefore we call it the ¢-component for this ¢;). It is connected by up to three wires
to those three or less u;-components for which u; or & occur in the clause ¢ The
number M of rings that may be used for a covering of P will be chosen so0 small that
a ¢-component can only be covered if one of the three wires transmits the signal 1to
the ¢-component. In this case the last ring that is used for the covering of this wire
can use its “free” w-interval to cover the ¢;-component (while its other w-interval
covers the last point of that wire). According to this plan we just have to make sure
that the wire from a u,-component to this ¢;-component transmits the signal 1 if and
only if the chosen covering of the u,-component corresponds to setting u; =true (in
case that u; occurs in ¢;), respectively, to setting u; = false (in case that #; occurs in ¢).

We set w=10 and r=100w- (dm+ n). According to our outline up to 3m wires
are needed. We fix a numbering of these wires and we reserve for the kth wire the
“track” with phase shift p, =100w - k. In general all points in P with a coordinate z
such that z = p, mod (2r+ w) will belong to the kth wire (the only exceptions are points
from “crossing components” that will be discussed below). For each u;-component
we reserve a track with phase shift 100w- (3m+i). Each point in the u;-component
will have the property that it is within 3w of the u;-track. Finally each ¢j-component
consists of a single point y such that y= 100 - (3m +n+j) mod (2r + w).

We have now assigned to each wire, u,-component and ¢-component a separate
“track”. No ring of size (r, w) can cover points that belong to two different tracks.
Therefore the coverings of the different components are mutually independent, except
for those pairs of components where we force a dependency via a wire. Such a wire
connecting a u;-component with a ¢j-component begins on the track of the u;-component
(this means that the first points of the wire have the same phase shift as the u;-
component). Then it moves to its assigned track (see the assignment above) and stays
on this track until the end, when it moves to the track of the ¢-component. In order
to move a wire from one track to another, we use the fact that the points of a wire
need not necessarily be spaced 2r+w apart. If we choose instead some distance
2r+ w+d with d e [—w, +w] between successive points of a wire, the covering proper-
ties of the wire remain unchanged. However for d <0 the wire moves towards a track
with a smaller phase shift p. If we use this distance several times in the wire, the wire
can reach in this way any other track. Similarly if we choose d >0 the wire moves
towards a track with a larger phase shift p.

If a wire leaves its assigned track and approaches some track that has been assigned
to some other wire, the coverings of both wires may interfere. In order to avoid this
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we use in these situations a special “crossing component” that allows a wire to Cross
the track of some other wire without interference.

“Figure 1 provides a global picture of the construction for the case of the formula
F=(uyvuy) (i v uy) A (uy v uy). The horizontal dimension of the diagram represents
the actual line on which the points of P are located. The vertical dimension of the
diagram is used t0 indicate the different tracks. Of course in reality all these tracks
run along the same line (but with different phase shifts).

crossing-components

tracks for
wires

tracks for
¢,-components

tracks for
u,-components

u,-component

________._-___.,_-._—__-_.-________.-_______—_.

FiG. 1

We will now look at the design of u;-components, ¢-components and crossing
components in more detail.

Figure 2 shows 2 u-component for the simple case where u; Of @i, occur only in
two clauses, say u; occurs in ¢, and %; in ¢y The u;-component consists of the points
P, -, P, whose coordinates are also given in Fig. 2. The figure shows in addition

u,-componenl:

P, p. P P,
P,=z V,=z+2r—w W, =z+4r+4w
Py=z+2r V3=x+4r—£w W,=z+6r+15lw
Py=z+2r+2w Vy=z+6r+iw W,=z+8r+1}w
P =z+artw Vi=z+8r+iw
Py=z+4r+3w V5=z+10r+§w

P6=z+6r+2w
P,=z+6r+iw
Pa=z+8r+4w

FIG. 2
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the initial segments of two wires that are attached to this u;-component: Wire
W,, W,, - - - leads to the c,-component and wire V,, V,, « - - leads to the ¢;-component.
These two wires are not attached in the same way to the u-component. By assumption
variable u; occurs positively in ¢,, therefore, the wire to the ¢,-component has to
transmit the signal 1 to the ¢,-component if and only if the chosen minimum covering
of the u;-component corresponds to setting u; = true. This means that the rings of the
corresponding minimum covering of the u-component have to be able to cover in
addition also the first point W, of this wire. Similarly only a covering of the u;-
component that corresponds to setting u; = false should be able to cover in addition
V, (whereas it cannot cover in addition W,), since u; occurs negatively in ¢,. In the
total number M of allowed rings in the covering exactly four rings would be allocated
to the covering of the points Py, - - -, P of the y;-component of Fig. 2. The previously
mentioned two different minimum coverings of the u;-component (that correspond to
setting u; = true respectively u; = false) are indicated in the upper respectively lower
half of Fig. 2. The coordinate z of the point P, satisfies z= 100w (3m+i) mod (2r+ w)
(according to our earlier assignment of tracks).

In order to verify that the u-component in Fig. 2 has the desired properties, we
consider any covering of the points Py, - - -, P, by four rings Ry, Ry, R3, R4 (numbered
according to their location from left to right) of size (r, w). Two w-intervals from two
different ones of these rings are needed to cover the points P; and P; because
w <|P,— P;| <2r. The same fact holds for the pairs P,, Ps and P, P,. Together this
implies that P, is covered by the left interval of R, and Py is covered by the right
interval of R,. Further P, P (P, Ps; P, P;) are covered by the right interval of
R, (Ry; R;) together with the left interval of R, (R3; Ry).

It is obvious that no ring R; can cover with one w-interval both a point P, and a
point from {V,, - -+, V} or { W, Wj, W,} (because all these wire points have distance
bigger than w from every point F)).

Finally assume that (like in the top half of Fig. 2) the point P, is covered by R,.
This implies that P, is covered by the left interval of R,. Therefore the right interval
of R, does not cover P, because |Py— Py|=2r—w<2r. Thus P, is covered by R;. From
this we conclude that R, does not cover P, (since |Py— P;|> 2r+2w). Therefore R;
covers P, and R, covers P,. Altogether we see that the initial assumption that P; is
covered by R, forces a structure of the covering where all points P, are covered by
the same rings as in the top half of Fig. 2. Further we see that in this case V, cannot
be covered by R,, - - -, Rs: R, cannot cover V, because R, covers P, and |P,— V| <2r;
R, cannot cover V, because R, covers P; and |Vi— P3| > w.

Analogously one shows that in the case where R, covers P, (instead of P,), all
points P, are covered by those rings that cover them in the bottom half of Fig. 2. In
this case W, cannot be covered by R, - - -, R4 (the argument is the same as for V, in
the previous case).

In the general case more wires may have to be attached to a y;-component. Then,
instead of just three pairs (Py, P3), (Ps, Ps), (Pe, P,) one has to use a correspondingly
larger number of pairs (Pax, Pak+1) With [Py — Pyisy| =2w and | Py — Pycsyq| =2r+ w (a
few of these distances are changed slightly as described below). For all wires that lead
to ¢;-components such that u; occurs positively in ¢; one positions the first point W
of such wire to the right of a pair of points ( Py, P,.+)) (like point W, in Fig. 2). One
moves in this case the point Py, ., over a distance w/2 to the left (like point P, in Fig.
2) from its previously indicated position. This small shift ensures that no ring covers
both W and Py, Similarly for all wires that lead to a ¢;-component such that &;
occurs in ¢, one positions the first point V of such wires to the left of a pair of points
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(Psg, Pai+1). In this case one shifts the point Py _y) over distance w/2 to the right of
its previously assigned position. Because of this shift no ring can cover both Py—n
and V. In order to avoid unexpected interferences between the locations where wires
are attached to the u;-component, one uses in the general case only every fourth pair
( Pz, Pax+y) for attaching a wire to the u;-component (by placing the first point of that
wire to the left respectively to the right of this pair). Note that in order to save space
we had to ignore this rule in Fig. 2.

Figure 3 shows a ¢-component in full detail. The component itself consists only
of one point P, at a coordinate z such that z=100w- (3m+n +j) mod (2r+ w). The
end segments of up to three wires U=(Uy, ", Ue)s V=(Vy, -+, V), W=
(W, -, W) are attached to the ¢-component. In the number M of rings that we
allow for covering all points in P, no extra ring is allocated for the covering of any
¢;-component. Therefore point P, can only be covered if the signal 1 is transmitted to
the ¢;-component through at least one of the wires U, V, W. More precisely the lengths
e, f, g of these wires are even numbers and e/2, f/2, g/2 rings are allocated in M for
the covering of these wires. Therefore if and only if the first point U, (V,, W,) of such
a wire is covered by some other ring (necessarily a ring from the covering of the
u;-component to which this wire is attached), the last one of the rings that are allocated
to this wire has to cover only its last point U, (Vj W, ). This last ring can cover then
with its other w-interval the point P, of the ¢;-component. In Fig. 3 we have indicated
with broken lines the position of the last ring of each wire in the case where this wire
transmits the signal 1 to the ¢-component. Figure 3 also shows (with solid lines) the
case where the last ring that is allocated to a wire has to cover its last two points (this
means that the corresponding wire transmits the signal 0 to the ¢-component). It is
obvious from the coordinates that are given in Fig. 3 that no ring can cover points
that belong to different wires.

¢,-component:

Po=z U._,=z-6r—4w V,_2=z—6r—§w W, =z—6r—w

U,_ =z—4r-3w V,_l=z-4r—§w W, s=z-4r
U,=2z-2r-2w V,=z—2r—%w W, ,=2-2rtw
W, =z+2w

Wg=z+2r+2w

FiG. 3

¢

Figure 4 shows the design of a “crossing component” for the crossing of two wires
without interference. Such components are needed because a wire that connects a
u,-component with a ¢;-component may have to cross other wires on its way to or from
its regular assigned track (see Fig. 1). Figure 4 shows the component for the crossing
of wires V and W (of these wires only the segments Vs, Vsand Wy, W, are
indicated in the diagram). The crossing component consists of 12 points P_g,* ", Pq.
The left and the right half of the crossing component are drawn symmetrically (this
will simplifv the verification). The coordinate z of the middle of the component depends
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on the track that has been assigned to the wire which is crossed by another wire with
the help of the crossing component.

We first note that five rings Ry, - - -, R; can be positioned in such a way that they
cover P_g, - -, Ps and in addition a given one of the two points V_,, V, and also a
given one of the two points W_,, W,. The top half of Fig.,4 shows the positions of
five rings R, - - -, R; that cover P_q,---, P, W, and V_,. The bottom half of Fig. 4
indicates a way of shifting R;, R, so that together with the (unchanged) rings R,, R,,
R; the five rings together now cover P_g, - - -, Ps, W, and V,. In the case where w_,
has to be covered (instead of W,) we use the fact that the component is symmetrical
with respect to z. With the help of reflection at z we get from Fig. 4 the positions of
five rings that cover P_q,- - -, Ps, W_, and V, (respectively V_,).

crossing component:

P P P, PP, P, P PP P, P Py
Pi=z+r-iw Vi=z+r-w W,=z+5r+3w
Py=z+r+iw Vo=z+3r—-w  Wy,=z+7r+4w
Py=z+r+iw Vi=z+5r (this point is not shown)

P,=z+3r+lw Vi=z+7r
Pi=z+3r+2w
Pi=z+5r+3w

If z+d is the coordinate of point P, then
z—d is the coordinate of point P_, (analogously
for the points V_, and W_,).

FiG. 4

One can see from the coordinates of the points in Fig. 4 that a ring that covers
any of the points P_q, - - -, P; can reach no point that belongs to wire V or W except
possibly some of the points V_,, V,, W_,, W,. Further in the total number M of rings
that are allowed for the covering of all points in P only five rings are allocated for
each crossing component. If six or more rings are used to cover P_g, - - -, Psthen these
rings may cover simultaneously all points in the set {V_,, Vi, W_;, Wi}, But by the
design of the other components it is then impossible to cover with M —6 rings all the
remaining points in P.

We now show that if any five rings R,,- - -, Rs (numbered according to their
position from left to right) cover all points P_, - - -, Pg then either W_, or W, and
either V_, or V, are not covered by these rings. Obviously all the groups {P_s, P_4},
{P_s, P_,, P_j}, {P,, P,, P;}, { P, Ps} contain two points whose distance d lies strictly
between w and 2r. Therefore for each of these groups at least two different rings must
participate in the covering of this group. This implies that each of these groups is
covered by precisely the same rings as in Fig. 4.

Assume for a contradiction that both V_, and V, are covered by R,,- -+, Rs
(besides P_g,- - -, Ps). If R, covers V_, and R, covers V, then R, has to cover both
P_, and P, although |P_,~ Py|>2r+2w. Thus we may assume that R, covers V_, (the
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case where Ry covers V, is symmetrical). Then the location of the left end of R, is at
some coordinate =z —r. Therefore the other interval of R, does not cover P,. Further
y, can only be covered by R,. Therefore the left end of R, is located at some coordinate
<r—W. This implies that R, does not cover P,. Thus P, remains uncovered, a contra-
diction.

Finally assume for a contradiction that both W_,and W, are coveredby Ry, - - -, R;s
[bcsides P, ", Ps). Our preceding consideration implies that only R, can cover
w_, and that only Rs can cover W,. Therefore R, does not cover P_4 and R does
not cover P,. Thus R, covers P_q and R, covers Ps. This implies that R, does not cover
p_,and R, does not cover P;. But R; cannot cover P_, and P;since |P_y—= Py|>2r+2w.
Thus either P_; or P; remains uncovered, a contradiction.

We have specified for each occurring component ¢ the number M, of rings that
are allocated for this component among the M rings. M is then defined as the sum
of these M, (over all components ¢). P is defined as the union of all components (note
that the number of components is polynomial in m and n). The preceding arguments
imply that the given formula F is satisfiable if and only if all points in P can be
covered by M rings of size (r, w) (for r and w as defined before).

Remark 2.2. In some sense it is easier to reduce PLANAR 3SAT instead of 3SAT
to the considered problem (see Lichtenstein [7]): no crossing components are needed
in this case. On the other hand one then has less control over the structure of the
(planar) graph that has to be represented. This fact makes an explicit description of
this variation of the proof very difficult.

3. Covering with rings of bounded degree of nonconvexity is in P. In order to
demonstrate why covering with nonconvex objects is more difficult than covering with
convex objects, we first give a simple algorithm for covering with convex objects in
one dimension (we cover with one-dimensional rings of size (r, w) where r/w=0). In
this algorithm one places intervals of length 2w successively so that their left endpoint
coincides with the leftmost one of the given points that is not yet covered.

If one covers with nonconvex rings, one has several choices among positions of
rings that cover the leftmost point that is not yet covered. One can either place this
ring far to the right (so that its right end reaches as far as possible) or one can place
it more to the left (so that the left end of the right w-interval covers additional points).
In this way the number of reasonable choices for placing the first m rings grows
exponentially in m. Therefore we use a different approach in the following polynomial
time algorithm.

THEOREM 3.1. There is an algorithm that compules for n given points on the line
and a given ring size {r,w) a covering of the given points by a minimum number of rings
of size (r, w) in O(n®""*7) steps (respectively in O(n) steps if r/w=0).

Proof. Assume n points on the line and a ring size {r, w) with r> 0 are given. The
algorithm relies on the following definition.

DerINITION 3.2. Consider an arrangement B of rings of size {r, w) on the line,
where the leftmost ring has its center at C, and the rightmost ring has its center at
Cr. We call B a block if every given point in the interval (C +r+w,Cp—r— w) 1is
covered by some ring in B.

LEMMA 3.3. Consider any covering C of all given points by rings of size (r, w). Let
B be a subset of rings from C. Let C, be the center of the leftmost ring in B and let Cr
be the center of the rightmost ring in B. Assume that every ring in C whose center is
located in the interval (Cy, Cr) belongs to B. Then B is a block.

The proof of Lemma 3.3 follows immediately from the definition of a block.
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LEMMA 3.4. For any block B the subset of the n given points that are covered by B
can be characterized with the help of at most 8 r/w™+6 of the given points (independent
of the size of B).

Proof of Lemma 3.4. Let C, be the leftmost and Cg be the rightmost center of
rings in B. Then all of the given points in (C.+r+ w,Cr—r—w) and none of the
given points in (-, C,—r—~w) or (Cg+r+w, +x) are covered by B. Within the
interval [C, —r—w, C_+ r+ w] the block B defines a set of at most 2" r/w ™+ 1 disjoint
intervals of length Zw so that in each such interval all given points are covered by B
and any two such intervals are separated by intervals of uncovered points. Each of
these up to 2" r/w™'+1 intervals can be characterized by the leftmost one and the
rightmost one of the given points that it covers. Together this requires up to
2-(2"r/w7+1) points. We need the same amount of information to characterize the
right end of B. Finally we need two more points to describe the endpoints of the largest
interval in the interior of B where all given points are covered.

To motivate our algorithm we consider any minimum covering C of all given
points. We partition C into two blocks B, and B, where B, consists of the 2™ leftmost
rings in C and m is maximal such that 2™ <|C]|. In the same way we partition each
of the blocks B,, B, into two blocks of about half its size. After at most “log, |C|”
iterations of this step we have broken down C into its “atoms”: single rings. The
following dynamic programming algorithm reverses the described process: we look at
all possible ways of concatenating two smaller blocks so that they yield one larger
block. We can do this in polynomial time because by Lemma 3.4 there exist at most
n®"/* ¢ different subsets S of the set of all n given points so that some block of rings
covers precisely the points in S.

ALGORITHM. We develop a table where we record for blocks of increasing lengths
the subset of the n given points which is covered by each block. In addition we record
for each block the number of rings that it uses and the locations of the centers of its
leftmost and its rightmost ring. Thus each entry in the table requires at most
O((8"r/w™+9) - log n) bits. We also set up a list that allows us to check in o8 r/w'+
9) - log n) steps whether a candidate entry for the table already appears in the table.

In the first row of the table we record for all blocks of length 1 the described
data. It is sufficient to consider here only rings that are positioned in such a way that
one of their four endpoints coincides with one of the given points.

In each subsequent row we record the described data for each block that arises
as the union of two blocks from previous rows (unless we get an entry that appears
already in the table).

After we have written "log, n” rows we give as output the first entry in the table
where all n given points are covered such that no covering of all points with fewer
rings has been recorded in the table.

To justify the algorithm we note that one can always shift a ring—without changing
the set of given points that it covers—until one of its endpoints coincides with one of
the given points. The correctness of the algorithm follows then from our preceding
observations.

There are at most O(n* /™ *°) entries in the table. Thus one has to check for at
most O(n'®"""* ™'®) pairs of previously recorded entries whether they yield a new entry
in the table. For each of these pairs one needs at most O("r/w™ - log n) steps to check
whether the union of the corresponding blocks yields a new block whose characteristic
data do not yet appear in the table (and to compute the characteristic data of the new
block). In this way we arrive at an upper bound of O(n'®""/*™*'8. ~r/w™ . |og n) steps
for the algorithm.
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Remark 3.5. Theorem 3.1 shows that for any fixed bound on the degree of
nonconvexity r/w of the covering rings the one-dimensional ring cover problem is in
P. Easy variations of the proof show that this remains true if in addition certain parts
of the line are “forbidden” as centers of rings. Further one can associate different
costs with having centers of rings at different locations and then compute in polynomial
time a covering of minimum cost. One can also extend these algorithms to the case
where besides points on a line also certain whole intervals have to be covered.

In another possible extension one might assume that k different ring sizes
{ry, wy), - * +, {r, wi) are given, where rings from any of these sizes may be used for a
minimum covering. Also one can associate different costs with different ring sizes and
compute a covering of minimum cost in polynomial time. Notice that this variation
includes the case where rings of a certain size may be placed not only with their centers
on the line but also at a number of different distances from the line (in our terminology
each distance gives rise to a different ring size when we consider the intersection of
such a two-dimensional ring with the considered line). In this extension the ratio
max {r;|i = k}/min {w,|i = k} appears in the degree of the polynomial time bound in
place of r/w.

4. A property of minimum covers by rings of low nonconvexity. If one covers given
points on the line by a minimum number of intervals (i.e. rings with r/w =0), one can
assume without loss of generality that the leftmost interval of the covering is positioned
with its left end at the leftmost given point. Because of this property one can compute
in one dimension minimum covers by convex objects in linear time (see the beginning
of § 3). Unfortunately this property does not hold for minimum covers by rings of size
(r, w) for any r/ w> 0. We show in this section that nevertheless a more general property
holds for rings with ratio r/w =1 (and not for rings with any bigger ratio). The property
says that for rings with ratio r/ w=1 one can assume without loss of generality that
the leftmost ring of a minimum cover is positioned at one of two canonical positions,
both of which are easy to compute. Thus one can answer certain questions about the
position of the first ring of a minimum cover without computing a minimum cover.
One can further use this structural property of minimum covers to design a fast
approximation algorithm for covering with rings of ratio r/ w=1 (see [3] and [4]).

LEMMA 4.1. The following implication holds if and only if r/w=3: If there exists a
minimum cover of given points by rings of size (r, w) where the leftmost ring has one of
the given points in the gap between its two w-intervals, then there also exists a minimum
cover by rings of size (r, w) where the leftmost ring is positioned with its left end at the
leftmost given point.

Proof. We first give a counterexample for the case r/w>3. We assume that three
points a, b, ¢ are given. We choose the distance d between b and ¢ such that w<d <2r
(this is possible if and only if r/ w>1). The locations of the points a, b, c are indicated
in Fig. 5. The two rings in the upper half of Fig. 5 form a minimum cover. The leftmost
ring has point b in its gap. On the other hand if we position the leftmost ring of a

x >

Fi1G. §
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covering with its left end at the leftmost given point a (as in the bottom half of Fig.
5) we need two more rings to cover b and c

The positive result for r/w=1/2 follows from the following observation. Let
R,,: -, R, be any minimum cover by rings of size (r, w) with r/w=1!(we assume that
the rings are numbered from left to right). Assume that one of the given points lies in
the inner disc I, (of radius r) of the first ring R,. Let R, be a ring that is positioned
with its left end at the leftmost given_point and let [, be its inner disc (of radius r).
We define point L as the left end of /,. We consider two cases.

Case 1. The left end of ring R, is at point L or to the left of L. In this case we
continue the cover that was started by Iil_with a ring R, that is positioned with its left
end at L. Since 2r = w the rings R, and R, together cover all points from the leftmost
given point until as far as 2r+2w to the right of point L. It is obvious that all points
that are covered by R, or R, fall into this interval.

Case 2. Otherwise. By assumption one of the given points lies in I, and without
loss of generality this point is covered by R,. Since this point is left of the right end
of I, the left end of R, lies inside of 1,. Therefore all given points in I are covered
by R, because 2r =w. This implies that all given points that are covered by R, or R,
are also covered by R, or R,.

THEOREM 4.2. Assume that points on a line and a ring size (r,w) withr/w=3 are
given. Then there is a minimum cover of these points by rings of size (r, w) where the
leftmost ring R of this cover has at least one of the following two properties:

(1) The left end of R coincides with the leftmost given point.

(2) R is in the rightmost possible position where it covers the leftmost given point

and has none of the given points in its gap.

Proof. Let S be the leftmost ring of a minimum cover. If one of the given points
falls into the gap of S the claim follows from Lemma 4.1. Otherwise the rightmost
possible ring R that covers the leftmost given point and has none of the given points
in its gap covers all points that are covered by S.

5. The capacitated ring cover problem. We now consider a capacitated version of
the ring cover problem. We assume that in addition to the previously considered input
data a natural number b is given, which we interpret as the ‘““capacity” of a ring. In
addition to a covering we now also have to assign to each of the given points one of
the rings that cover this point (one says that the assigned ring “serves” this point).
This assignment has to be arranged in such a way that no ring has to serve more than
b points. The goal is again to minimize the number of rings that are used.

The capacitated version appears to be of interest for both of the possible applica-
tions that were described in the introduction. It also appears to be of some mathematical
interest because the algorithm from the previous section does not readily extend to
the capacitated problem. The reason for this difficulty is the fact that the degree of
the polynomial time bound of the algorithm from Theorem 3.1 is proportional to the
number of points that are needed to characterize which of the given points are covered
by a block. In an extension of this algorithm to the capacitated case one also has to
record for every block which of the points that it covers are served by rings in this
block. If for example n/10 points lie at the fringe of a block, this may require up to
n/10 data. Therefore even for a fixed bound on b and on r/w the resulting algorithm
is no longer polynomial in the number n of given points.

We show below that there exist among all minimum solutions of the capacitated
ring cover problem certain “normal” solutions. Normal solutions are characterized by
the fact that they can be decomposed into blocks of a particular simple structure which
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we call b-blocks (see Definition 5.4). The number of data that are needed to characterize
the set of points that are served by the rings of a b-block is independent of n. Since
there exist minimum solutions that are in addition normal, it is sufficient to record in
the table of a dynamic programming algorithm only those sets of given points that are
served by a b-block. In this way we arrive again at a polynomial time algorithm.

We now show that one can “‘normalize” any given solution to the capacitated ring
cover problem without increasing the number of rings that are used. This normalization
process consists of two steps. First we minimize the number of rings that serve points
in both of their w-intervals. Then we change positions of rings and the assignment of
points for those rings that serve now only points in one of their w-intervals in order
to minimize the overlap of their “service areas”. This second step of the normalization
process uses the same method as the proof of the following result for the convex case.

THEOREM S.1. There is an algorithm that computes for n given points on a line, a
given interval length d and a given capacity b in O(n) steps the positions of a minimum
number of intervals of length d together with an assignment of each given point to some
interval that covers this point such that no interval serves more than b points.

Proof. We extend the simple algorithm from the beginning of § 3. We place
successively the next interval so that its left end coincides with the leftmost point that
is not yet served. We assign to this interval the b leftmost points that it covers (there
may be less than b points).

One shows by induction on n that this algorithm uses the minimum number of
intervals. For the induction step consider any minimum solution C. It is possible to
change the position of the leftmost interval in C and the assignment of points to this
interval so that this interval serves the same points as the first interval that is placed
by the algorithm. We can then apply the induction hypothesis to the remaining points,
where we use the (previously slightly altered) rest of C for comparison.

The following is the desired result for the nonconvex case.

THEOREM 5.2. There is an algorithm that computes for n given points on the line,
a given ring size {r, w) and a given capacity b in O(n°" """ steps a minimum solution
to the capacitated ring cover problem.

Proof. According to the outline at the beginning of this section we first show that
among the minimum solutions of the considered problem there exist certain “normal”
ones. Let C be a solution of the considered problem. In the first step of the normalization
process we minimize the number of rings that serve points in both of their intervals.
Thus let C be the result of replacing—without increasing the number of rings that are
used—the maximum possible number of rings in C that serve points in both of their
intervals by rings that serve points in only one of their intervals (we change the
assignment of points accordingly). Of course this has to be done in such a way that
C is also a solution of the considered problem.

LEMMA S.3. For every real number c there are in C less than b*+3b rings with
center in [c, ¢+ w] that serve points in both of their intervals.

Proof of Lemma 5.3. Assume fora contradiction that there are in C atleast b*+3b
rings with center in [¢, ¢+ w] that serve points in both of their intervals. Each such
ring R defines a triple of numbers (Xr, Y&, Zr) Which are the numbers of points that
ring R serves in each of the three intervals [c—r—w,c—r], (c—rc—r+w]N
(¢c—r,c+r), [c+r c+r+w]. Since the numbers Xz, Y&, Zg range from O to b there are
less than b+ 3 different triples of numbers that occur. Thus at least b of these rings
have the same triple (x, y, z). We show that these b rings can be replaced by b rings
that serve points in only one of their intervals. We position x rings with the left end
at c—r—w and assign to them those bx points that lie in [c—r—w, ¢ —r] and which
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were served before by the b replaced rings. Analogously we position y, z, b—x—-y -2
rings with the left end at c—r, c+r, ¢+ r+ w respectively and we assign to them those
points in the corresponding intervals (¢c—r,c—r+wlN(c—r,c+r), [c+rctr+w],
(c+r+w, c+r+2w] that were served before by the b replaced rings._

The possibility of this substitution contradicts the definition of C.

It may still occur that for example two rings R, and R, in C serve only points in
their left interval and R, is left of R,, but R, serves some points that lie to the right
of points that are served by R,. Such overlap can make the description of the set of
points that are served by a block arbitrarily long. Therefore we consider now the subset
S of the n given points that are served in C by rings that serve points in only one of
their intervals. Say there are k such rings in C. We apply to the points in S the algorithm
of Theorem 5.1, where we use intervals of length w. By Theorem 5.1 the algorithm
uses exactly k such intervals. We now interpret each such interval as the left interval
of a ring of size (r, w). After we have changed in this way those rings in C that serve
points in only one of their intervals, we call the resulting new covering of all n points
C'. By construction C' uses no more rings than C. Further the properties of the
algorithm from Theorem 5.1 guarantee that:

(I) If R, and R, are two rings in C’ that serve points in only one of their intervals,
then both rings are positioned with the left end at the leftmost point which they serve
and if R, is positioned left of R, then all points that are served by R, lie to the left
of every point that is served by R,. .

In addition C’ has the same rings as C that serve points in both of their intervals.
Thus C’ retains the property that was proved in Lemma 5.3 for C. Thus we have:

(I1) For every real number ¢ there are in C’ less than b*+3b rings with center
in [c, ¢+ w] that serve points in both of their intervals.

We call a solution C’ with properties (I) and (I11) a normal solution. The preceding
construction shows that there always exists a minimum solution that is in addition
normal.

As in Theorem 3.1, the key for the dynamic programming algorithm is the definition
of a relatively small class of “*building blocks’ from which one can build via concatena-
tion an optimal solution.

DEeFINITION 5.4. Consider an arrangement B of rings of size (r, w) such that no
ring in B serves more than b points. Let C,(Cr) be the center of the leftmost (rightmost)
ring in B. We call B a b-block if we have for f(b, r/w)=(2"r/w"+2)" (b°+3b°)+b

i) every point in (C,+r+w, Cg —r—w) is served by a ring from B,

ii) at most f(b, r/w) points in [C,—r—w, C,+r+w]N[C,—r—w, Cp—r~ w)
are not served by a ring from B, . ]

iii) at most f(b, r/w) points in [Cg—r~w, Cx+r+w] are served by a nng
from B. _

It is obvious that the relevant properties of such b-block can be described with
at most 2 - f(b, r/w)+3 data (each of which is essentially a number between 1 and .n).
Besides C;, Cr and the number of rings that are used in the b-block this description
includes those 2 - f(b, r/w) points that are mentioned in part ii) respectively iii) of the
definition.

LEMMA 5.5. Let C be a normal solution of the considered problem. Consider a
collection B of rings from C where the leftmost ring in B has its center at C,, the rightmos!
center in B has its center at Cx and every ring in C that has its center in (Cy, Cr) belongs
to B. Then B is a b-block.

Proof of Lemma 5.5. Property i) is obvious. For property ii) we first consider (l?osc
pointsin I =[C,—r—w, C,+r+w]N[CL—r—w, Cg —r— w) which are served by rings
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in C that serve points in only one of their intervals. Except for possibly the first one,
these rings have their centers in (Cr, Cr) and thus they belong to B (we use part (I)
of the normality definition). This gives rise to at most b points in I that are not served
by rings from B. Next we consider those points in I that are served by rings of C that
serve points in both of their intervals. Unless their centers are in [CL—2r—2w, C.l,
these rings necessarily belong to B. By part (1I) of the normality definition there are
at most ((2r 4+2w)/w) " (b*+3b) rings in C that have their centers in[CL—2r—2w, C.]
and serve points in both of their intervals. These rings serve at most Q2 r/w 42} (b°+
3b?) points. Property iii) is verified analogously.

gimilarly as before t is sufficient to consider in the following algorithm only
positions of rings where one of the given points coincides with one of the four endpoints
of the ring.

ALGORITHM. In the first row of the table we write down the covering properties
of all b-blocks that consists of one ring. In each subsequent row we list the characteristic
data (consisting of O(f(b, r/w)-log n) bits) for each new b-block which we get by
raking the union of two b-blocks from previous rOWs.

After we have written down "log, n_ rows we output the first b-block in the table
that serves all given points and such that no other b-block in the table serves all n
points with fewer rings.

The correctness of the algorithm follows from the previous observations. In
particular some minimum solution that is in addition normal will appear in the table.
This ensures that the output is a minumum solution.

For the time analysis we note that there are at most O(n*/®"/**?) entries in the
\able. Thus we consider at most O(n*/6/*)*¢) pairs of b-blocks during the algorithm.
For each pair we need at most O(log n- f(b, r/w)) steps to check whether its union
forms a b-block whose characteristic data do not yet appear in the table. This leads
to an upper bound of O(n*I®r"*7 - f(b, r/ w)) steps for the algorithm.

Remark 5.6. The proof of Theorem 2.1 implies that already for a fixed capacity
bz3 the one-dimensional capacitated ring cover problem is NP-complete.
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