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Abstract9

The neocortex can be viewed as a tapestry consisting of variations of rather stereotypical local10

cortical microcircuits. Hence understanding how these microcircuits compute holds the key to under-11

standing brain function. Intense research efforts over several decades have culminated in a detailed12

model of a generic cortical microcircuit in the primary visual cortex from the Allen Institute. We are13

presenting here methods and first results for understanding computational properties of this large-14

scale data-based model. We show that it can solve a standard image-change-detection task almost15

as well as the living brain. Furthermore, we unravel the computational strategy of the model and16

elucidate the computational role of diverse subtypes of neurons. Altogether this work demonstrates17

the feasibility and scientific potential of a methodology based on close interaction of detailed data18

and large-scale computer modelling for understanding brain function.19

1 Introduction20

A major insight into brain function was the discovery that the mammalian neocortex is in first approxi-21

mation a continuous 2D sheet consisting of rather stereotypical cortical microcircuits (Mountcastle 1998;22

Douglas and Martin 2004; Harris and Shepherd 2015). This architecture offers hope that one can un-23

derstand brain function by understanding the computational organization of its local processors: cortical24

microcircuits. The structure of these cortical microcircuits, which are sometimes referred to as cortical25

columns, appears to be highly preserved from mouse to human. Different types of neurons are arranged26

on roughly 6 parallel sheets or laminae, forming synaptic connections primarily to nearby neurons within27

the same or other laminae. Hence both its spatial organization and its units, consisting of a fairly large28

set of neuron types with diverse response properties, mark salient differences to generic recurrent neu-29

ral network models that are commonly considered in computational neuroscience, and abstracted into30

artificial neural networks in modern AI.31

The large number of genetically, morphologically, and electrophysiologically different neuron types in the32

mammalian neocortex, as well as the technical difficulty to probe the efficacy of synaptic connections33
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Figure 1: Overview of the data-based cortical microcircuit model of Billeh et al. (2020). a)
Visualization of the locations of the 51,978 neurons in the model from Billeh et al. (2020), split into
excitatory and 3 major classes of inhibitory neurons (Htr3a, Ssst, Pvalb). Only the 5 laminar sheets
L1, L2/3, L4, L5, L6 are distinguished in this model. b) Base connection probabilities between 17
different types of neurons that result if one takes laminar locations of neurons from the previously shown
4 major classes into account. c) Scaling of connection probabilities in dependence of somatic distance for
different types of connections. The probability of a synaptic connection results by multiplying the base
connection probability for the two neuron types involved with this scaling function. d) Main equations
and parameters that govern the dynamics of internal variables and spiking activity of the employed GLIF3

neuron model. Highlighted parameters stem from experimental data as described in Billeh et al. (2020),
giving rise to 111 different neuron models in the microcircuit according to experimental data from the
cell database of the Allen Brain Atlas.
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between every pair of neuron types, have made it difficult to determine the generic structure of cortical34

microcircuits. But intense research during the past three decades (Mountcastle 1998; Thomson and Lamy35

2007; Markram et al. 2015) has recently culminated in a detailed cortical microcircuit model (Billeh et al.36

2020) for area V1 in mouse, see Figure 1, to which we will simply refer as the Billeh model. Now the37

challenge arises to relate the structure of this model to its computational function. One obstacle is that38

many parameter values, such as the strength of synaptic connections between individual neurons, are39

still missing, and are not likely to be determined in the near future through experimental work. We have40

quite a number of experimental data about the average strengths of synaptic connections between the41

main neuron types, especially if their somata have little distance. Quite a bit of this general statistical42

knowledge has entered the heuristic setting of weights in the Billeh model. But the higher order moments43

of these weight distributions remain unknown. This knowledge gap makes it hard to relate the structure44

of microcircuit models to their computational function, since the latter is likely to arise largely from the45

composition and alignment of individual synaptic weights. This situation is comparable with that in46

artificial neural networks, where even perfect knowledge of the histogram of synaptic weights in a trained47

network provides almost no insight into what it has been trained for. The alignment of synaptic weights48

arises in the brain through a host of plasticity processes, which create correlations and higher order49

dependencies that are likely to define the computational role of individual neurons and local network50

motifs within the larger network. Hence, in order to investigate computational capabilities of the cortical51

microcircuit model of Billeh et al. (2020) one needs to examine the results of aligning or optimizing52

individual synaptic weights for concrete network computations. One commonly refers to this alignment53

process as training of the network model.54

We report here methods and first results of this research strategy. We have adapted the synaptic weights55

of the Billeh model through stochastic gradient descent to support a particular type of network compu-56

tation: the image-change-detection task. This task has frequently been used in biological experiments on57

mice (Garrett et al. 2020; Joshua H. Siegle et al. 2021): The subject receives a long sequence of natural58

images, with short time gaps in between where just a uniformly gray screen is shown. Training the Billeh59

model to solve this computational task is for several reasons not straightforward:60

i If one models the neurons as leaky integrate-and-fire (LIF) neurons, this neuron model is not61

differentiable.62

ii The point neuron models of Billeh et al. (2020) pose additional challenges: They are generalized63

LIF neurons, more precisely, GLIF3 models that contain two additional internal variables which64

model slower dynamics processes such as after-spike currents, as found in biological neurons (Teeter65

et al. 2018).66

iii Even the core model of Billeh et al. (2020) that we consider is fairly large: It consists of 51,97867

neurons. But gradients need to be computed very fast nevertheless, since successful stochastic68

gradient descent training typically requires the computation of gradients for the whole network for69

very large numbers of input presentations (trials).70

We found that recently proposed approximations of stochastic gradient descent for recurrent networks71

of LIF neurons (Bellec et al. 2018) can be efficiently adapted to work also for GLIF3 neuron models.72

Furthermore, we show that very efficient software (TensorFlow (Martin Abadi et al. 2015)) and computer73

hardware (GPUs), that have been designed to support fast training of deep neural networks in machine74

learning, can be adapted to train large and biologically detailed models for deep neural networks of the75

brain, such as the model of Billeh et al. (2020).76

We demonstrate the potential of this research strategy by training the Billeh model for the image-change-77

detection task, and then “opening up the black box” (Sussillo and Barak 2013) of the trained model in78

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.469025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469025


order to elucidate how it carries out this quite demanding network computation. We show that by79

applying reverse engineering methods to the computer model that can at present not be applied to the80

living brain one can understand how the diverse neuron types of the model can collaborate to carry out81

this network computation.82

2 Results83

2.1 A data-based laminar microcircuit model can solve the image-change-84

detection task85

The microcircuit model of Billeh et al. (2020) provides a major advance, since it is based on an extensive86

body of experiments at the Allen Institute that were all directed at one brain area, V1, in one species,87

mouse, see Figure 1a, b and c. More precisely, we have used the “core” part of the point-neuron version88

of their model, since simulations of the detailed biophysical version require too much compute time. But89

the point neuron version provides already a major advance over previous models because it is based on90

17 different data-based neuron types (listed in each row and column of Figure 1b). These are further91

split into 111 different variations based on response profiles of individual neurons from the Allen Brain92

Atlas (Allen Institute 2018) to which GLIF3 neurons have been fitted.93

We trained the Billeh model to solve the image-change detection task through backpropagation-through-94

time (BPTT). We expanded the BPTT method of Bellec et al. (2018) for LIF neurons so that it could95

be applied to GLIF3 neuron models. We did not allow synaptic weights to change their sign, thereby96

preserving Dale’s law. We included a regularization term similarly as in Bellec et al. (2020) in the97

loss function for gradient descent in order to keep the firing activity of the network in a biologically98

realistic sparse firing regime. As a result, the distribution of firing rates stayed close to the biological99

data from Joshua H. Siegle et al. (2021) and to the rate distribution before training, see Supplementary100

Figure S2. In particular, the average firing rate after training was 3.86 Hz. Hence the model computed101

in an energy-efficient sparse firing regime. The distribution of synaptic weights changed during training102

only little for synaptic connections between excitatory neurons, and weights generally became stronger103

for synaptic connections from and to inhibitory neurons, see Supplementary Figure S3.104

The Billeh model received for the image-change-detection task, like the subjects of the biological exper-105

iments (Garrett et al. 2020; Joshua H. Siegle et al. 2021), a sequence of natural images, interleaved by106

short phases where a gray screen was presented as visual input, see Figure 2a, b. These natural images107

were first processed by the model for the LGN (lateral geniculate nucleus) of Billeh et al. (2020), pro-108

ducing input currents to neurons of the microcircuit model in a retinotopic and lamina-specific manner109

as in Billeh et al. (2020), see Figure 2c. The task of the subjects was to report whenever the most110

recently presented image differed from the previous one (Figure 2a). The model was trained to report111

within a response window of 50 ms length that started 50 ms after image offset through increased firing112

of a population of excitatory neurons in L5 if the image was different from the preceding one. Since113

we do not have experimental data about the identity of the readout neurons that extract the network114

decision and project it to other brain areas, we randomly selected in our model 60 excitatory neurons115

from a sphere with a diameter of 170 microns within layer 5 (see Figure 2e) to produce together a num-116

ber of spikes that transcended a decision threshold (see bottom row of Figure 3a) whenever the image117

had changed. This modelling assumption appears to be reasonable since pyramidal cells on layer 5 are118

typically viewed as readout neurons from a laminar cortical microcircuit, reporting network decision in119

particular to subcortical structures (Harris and Shepherd 2015).120
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Figure 2: Image-change-detection task. a) Schematic sequence of visual stimuli in the task. Images
sequences are presented to the model, interleaved by delays of gray screen (caption continued on next
page)
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Figure 2: (continued caption) b) Diagram explaining the temporal structure of the task. The model has
to report if a different image than the previous one is shown during the 50 ms response window. c) A
model of LGN encodes the visual stimuli into a temporal response of LGN neurons that are associated
to a particular location in visual field (The responses of the LGN neurons shown here were sorted by the
timing of peak activation). This response serves as input to the data-based model of V1, and is injected
as currents instead of sampled Poisson spike trains. d) A random selection of 60 excitatory neurons in
layer 5 (within a sphere of 170 microns in diameter) constitutes the readout. These neurons report a
positive decision collectively by high firing rates. e) For testing, images for the image-change-detection
task were drawn from this set of 8 images that are not used during training.

We randomly selected a pool of 48 natural images from the Imagenet dataset (Deng et al. 2009) that we121

used as network inputs. We used 40 of them for training, similar to the biological experiments of Garrett122

et al. (2020). Task performance was evaluated both for the 40 images used for training, and for the other123

8 images. The model achieved after training a high performance for this task, see Figure 3b, that lies in124

the same range as the performance achieved by mice (Garrett et al. 2020). Importantly, the trained model125

was able to generalize very well, achieving -like the subjects of Garrett et al. (2020)- almost the same126

performance for images that were not used during training. Hence the model has a general computational127

competence that is not constrained to particular images. In the subsequent sections we will “open the128

black box” and unravel the strategy that the laminar microcircuit model uses for the processing of these129

new images.130

We also analyzed in which cases errors arise most often, see Figure 3c. It can be inferred that the model131

mostly has problems due to a confusion of the images associated with the colors orange and light blue,132

regardless of which came first. Correspondingly, the distance-preserving low-dimensional projection of133

network states in Figure 4c shows that the network states are the least separated when these two images134

have been processed.135

2.2 Linking network dynamics and network computation136

A direct link between network dynamics and network computation -i.e., behavior of the organism- was137

exhibited for c-elegans through Ca-imaging data by Kato et al. (2015). They found that most neu-138

rons participate in the examined behavior, in spite of their numerous differences in spatial collection139

and genetically encoded neuron type. Furthermore, they demonstrated that different behaviors, which140

correspond in our model to computations with different network decisions (change or no-change), can141

be clearly decoded from low-dimensional projections of the temporal evolution of the high-dimensional142

vector formed by the states of individual neurons. We wondered whether similar links can be drawn for143

network computations in our model, in spite of numerous deviations from the paradigm of Kato et al.144

(2015):145

i computer model of a brain network versus in-vivo recordings146

ii mammalian neocortex versus the nervous system of c-elegans147

iii visual perception task versus motor behavior148

iv state vectors defined by of spiking activity of neurons versus derivatives of the internal Ca-dynamics149

of neurons150

v 51,978 dimensional state vectors versus maximally 131-dimensional recorded state vectors of c-151

elegans.152
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Figure 3: Sample of network activity during task performance after training. a) Visual stimuli
composed of a sequence of images, interleaved by delays of gray screen, are converted to a response
pattern using the model of LGN (top row). This input is injected in a current-based manner using the
data-based LGN to V1 connections into the neurons of the model, resulting in network activity (middle
row, neuron types and layers are separated but the order within these groups is randomized). (caption
continued on next page)
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Figure 3: (continued caption) Whenever the presented image is different to the previous one shown,
the 60 readout neurons in layer 5 (L5) report it by high firing rates during a response window of 50
ms (penultimate row). The rate of this readout can be estimated using an exponential sliding window
(blue curves). Its temporal evolution is shown along with the decision threshold (last row). b) After
the training procedure, the model could perform the task for images used during training, but also for
new, unseen images. For those testing images (see Figure 2e) the model was able to report the changed
identity in 89% of all cases, while it wrongly reported a change in 11% of cases where the image identity
did not change. c) Transition-specific errors. For certain types of transitions between different images
the model incurs more errors than otherwise, especially for the images marked light blue and orange.

We now focus on the network dynamics during processing of an image and during the subsequent response153

window, as shown in Figure 4a. We first address the question whether most neurons participate in such154

a generic computation, and if so, whether there is a rule when they usually become active. Since our155

model exhibits a fairly large variety of network responses to the same image, due to additional random156

inputs summarized as “rest of the brain” (Billeh et al. 2020), we considered in Figure 4b trial averaged157

activity: We normalized the activity of each neuron over the time course under consideration, and plotted158

its averaged activity. This normalized activity allows us to plot the time at which each neuron tends to159

become most active, independently of their overall activity level. We sorted all neurons according to the160

time of the peak of their activity relative to image onset, see Figure 4b. This analysis suggests that most161

neurons participate in the network computation, each at a preferred time. In particular we can discern162

two classes of neurons: Those that prefer to become active during an image presentation, and those that163

become more active after an image presentation.164

We further performed an embedding of the network activity during task performance using the 2D165

projection UMAP (McInnes, Healy, and Melville 2018) of the 51,978-dimensional network states that166

result from the spiking activity of its 51,978 neurons, see Figure 4c. More precisely, we applied an167

exponential filter with a time constant of 20 ms to the spike output of each neuron for 8 new images that168

had not been used during training. We then discarded all but the 50 most important principal components169

of these network states, which were then embedded into 2D space by UMAP. This analysis reveals in170

Figure 4c that the network undergoes during image processing a directional low-dimensional dynamics,171

which can be seen as the backbone of the network computation into which the computational processing of172

each neuron is embedded. Furthermore, each stimulus (image) and network decision (behavior) produces173

a bundle of trajectories in the network dynamics that stay in general well-separated, except for the case174

of the two images marked blue and orange in Figure 2e, for which a change between them is less reliably175

detected by the network according to Figure 3c. Hence one sees here a direct link between the structure176

of the network dynamics and its computational performance.177

A refined temporal evolution of network states is shown in Figure 4d for cases where always the same178

image was presented, but the preceding image was either different or the same. The trajectories of179

network states are almost the same during the presentation time of the image, no matter whether it had180

occurred already just before or not. But a clear bifurcation of network states is visible at the onset of181

the response window.182

Altogether one sees that the dynamics and computational organization of the nervous system of c-elegans183

exhibits numerous parallels with our trained data-based model for area V1 in mouse.184
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Figure 4: Global perspective of network computations as dynamical system. a) Spike raster
of the network in response to an image presentation, on a finer time scale than Figure 3a. (caption
continued on next page)

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.469025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.469025


Figure 4: (continued caption) b) Preferred time of activity of each neuron is shown. Different laminae can
be seen to compute in parallel, rather than sequentially. The timing of neural activity is less stereotypical
during the response window, since we average here over change and no-change conditions. c) Low
dimensional embedding of network activity using UMAP (McInnes, Healy, and Melville 2018). Each dot
represents the network activity at a particular ms during the processing of an image and the generation
of the network decision. The embedding was obtained by considering spike trains of all neurons during
150 seconds of task performance. These spike trains were subjected to an exponential filtering procedure
using a kernel with a time constant of 20 ms. The filtered spike trains were subsequently projected to their
50 most salient principal components (PCA), which were then embedded into 2D space by an application
of UMAP d) Averaged network embedding trajectories for a single image, both for the case where the
preceding image was different and where it was the same. These trajectories emerge by averaging the
low-dimensional projections of network trajectories.

2.3 Where and when does the network decision emerge?185

The low-dimensional projection of global network states in Figure 4 showed a bifurcation of network186

trajectories for the change/no-change condition after the offset of an image. But where and when does187

information about the decision emerge in the network? To answer this question we analyze in Figure 5a188

the temporal and spatial organization of information about the network decision. The first information189

about the network decision arises in the firing activity of neurons during the time window from 50 to190

100 ms after the onset of an image. This time interval is of particular interest because information from191

a new image reaches the microcircuit model about 50 ms after image onset. Hence this time interval192

is the earliest possible one where any neuron could possibly disseminate information through its spikes193

regarding the question whether the current image is the same as the preceding one. Figure 5a shows194

that there exist in fact neurons, primarily in L4 and L5, whose spikes contain already during this earliest195

possible phase information about the subsequent network decision, that is created 100 ms later, during196

the response window that lasts from 150 to 200 ms after image onset. Figure 5a indicates the locations of197

those neurons that have during this earliest phase the largest MI with the subsequent network decision.198

Figure 5b shows the spiking activity of 7 sample neurons whose firing rates during this time interval has199

substantial MI with the network decision. They were among those 12 that had the highest MI, but we do200

not show those 7 with the largest MI in order to allow inclusion of examples for Sst and Pvalb neurons.201

Most of these neurons are excitatory, but also Sst and Pvalb neurons (color code for neuron types as in202

Figure 3a) are included. Whereas most of these neurons had a higher firing rate for the change condition,203

one of the two examples for Pvalb neurons (blue spikes) among the selected 7 neurons uses a lower firing204

rate in the change condition, the other one a higher firing rate. Also all excitatory neurons among them205

have during [50, 100] ms a higher firing rate in the change condition.206

Figure 5c shows the time course of the slowest internal variable of the underlying GLIF3 models of these207

7 neurons. The time constants of their slowest internal variable -for an after-spike current- is indicated208

at the top of each column in Figure 5c. Hence those with large time constants could potentially convey209

information about the preceding image, whose offset was 200 ms before the onset of the current image.210

This will be further analyzed in the next subsection.211

2.4 Neuronal mechanism that triggers the network decision212

Figure 5c suggests that long-lasting after-spike currents play an important role in the network computation213

for image-change-detection since many of those neurons that transmit the earliest information about the214

subsequent network decision have after-spike currents with large time constants. Figure 6a shows the215
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Figure 5: Mutual information between neuron activity and network decision. a) The mutual
information between activity of single neurons and the change/no-change decision of the network during
the response window can be empirically estimated. (caption continued on next page)
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Figure 5: (continued caption) This was achieved by considering the spike counts of each neuron within 50
ms windows and establishing an empirical joint distribution for spike count and network decision. This
was then used to compute the mutual information. For neurons that overlap in the projection from 3D
to 2D the maximum value of them is visualized, thereby avoiding that dark points can arise through
accumulation of small contributions from several neurons. b) Spike trains of neurons with high mutual
information during the period from 50 ms to 100 ms after image onset. Trials are separated depending on
the change/no-change condition. One sees condition-dependent differences in their firing responses from
about 50 ms after image onset. c) Visualization of the slowest after-spike current of the same neurons
and trials (time constant shown on top).

locations and types of those 20 neurons with a time constant larger than 300 ms whose firing during216

[50, 100] ms that have the highest MI with the subsequent network decision. All 4 major neuron types217

occur among them, and they are mostly located in L4, especially at the border to L2/3. In Figure 6b we218

analyze for four neurons that have large MI the dependence of the value of their slow after-spike current219

at the onset of the current image, in dependence of the identity of the preceding image. The first column220

provides an overview of this dependence, showing that the largest current amplitude was specific to a221

particular identity of the preceding image. The histogram of values of this internal variable at the onset222

of the present image is shown in the second column. The last column shows that its extreme values (more223

than 2 std from the mean) are assumed almost exclusively for a particular preceding image. In other224

words, they use the value of their after-spike currents as working memory for the identity of the preceding225

image. Hence, if this value of their internal variable can be made observable, i.e., transformed into spiking226

activity that affects the readout neurons in L5, this working memory could be used to produce a correct227

network decision. Figure 6c shows that they do in fact play a pivotal role in the production of the network228

decision: Silencing of these neurons one after the other, starting with those that have the highest MI229

during [50, 100] ms, degrades the accuracy of the network quite strongly, reaching chance level when230

all 20 neurons shown in the first panel are silenced. Hence these 20 neurons are causally related to the231

network decision.232

Finally, we would like to emphasize that the computational analysis in Fig. 5 and 6 was carried out for a233

new set of images that had not been shown during training of the network. Hence our reverse engineering234

has unraveled the generic computational mechanism of the network, rather than one that was induced235

for concrete images.236

3 Discussion237

We have shown that one can train a large and biologically detailed model for a patch of neocortex to238

carry out a demanding computational task. We have focused here on a task that has also frequently been239

considered in biological experiments: to report an image change in a sequence of natural images that is240

interleaved with gray screens. In fact, after training the large-scale model for a patch of area V1 of Billeh241

et al. (2020) the model reaches for the image-change-detection task the same performance level as the242

subjects (Garrett et al. 2020). Furthermore, the model is able to solve this task for new sets of images.243

In other words, it has learned to apply a network algorithm that is generally applicable. Our reverse244

engineering of the resulting network computation shows that a particular feature of the neuron models245

in Billeh et al. (2020), that are based on the detailed cell type data of the Allen Brain Atlas, plays a key246

role in the resulting network computation: The presence of internal variables of neurons that change on247

a much slower time scale than the membrane potential. These variables, which reflect for example after-248

spike currents, are usually not considered in computational models for neural networks of the brain. Our249

hypothesis is that they play an essential role in computations of generic cortical microcircuits, especially250
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Figure 6: Identification of neurons that trigger the network decisions. a) Spatial location and
type of those 20 neurons with a large time constant (> 300 ms) for after-spike currents that have during
[50, 100] ms the largest MI with the network decision (during the response window). b) Statistical analysis
of the values of their after-spike currents at the onset of a new image, in dependence of the identity of the
preceding image (left column). The mean is shown with error bars denoting the std. The analysis of trials
where this variable assumed its most negative values (at least 2 std from the mean, colored red) reveals
that these neurons are highly selective to the identity of the PRECEDING image: however, since the
network had been trained with different images, they appear to select each some generic image feature.
This analysis is shown for 4 neurons that were randomly selected among the 20 neurons from panel a)
(bottom row). c) Verification that the spiking activity of the 20 neurons from panel a) is causal for the
network decision. Task performance visibly drops as these neurons are deactivated one after another,
from highest to lowest MI of their spiking activity during [50, 100] ms with the network decision.
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for computations where time and delays play an essential role.251

We have also shown in Figure 4c and d that a powerful method for the conceptualization and visualization252

of network computations that have been developed for c-elegans by Kato et al. (2015) can be adapted253

for cortical microcircuits models to elucidate also in their much higher dimensional space of network254

states the relation between network dynamics and network function (behavior). Like in their data for255

c-elegans we see that computational progress in the cortical microcircuit model produces a directional256

low-dimensional trajectory of network states to which most neurons in the network contribute, in spite257

of their different types, subtypes, and laminar locations. Trial-to-trial variability gives rise to bundles258

of such trajectories that need to be well-separated for different network inputs and conditions in order259

to avoid erroneous network decisions. This dynamical system perspective enables us to understand the260

global reference framework into which computational contributions of individual neurons, such as those261

exhibited in Figure 6, are embedded. It also allows us to relate the network dynamics to deficiencies of262

its computational performance (failure to detect changes between the images marked blue and orange).263

Altogether, if recordings from mouse V1 support the predictions of our model, this will show that salient264

aspects of the organization of computations have been preserved from c-elegans to mouse V1, in spite of265

the obvious differences that we have listed in subsection 2.2.266

This work demonstrates the feasibility of a powerful methodology for understanding brain computations:267

An interplay of detailed biological data and computer simulations of large-scale models that carry out268

the same computational task as the brain areas from which one records, thereby enabling the generation269

of detailed hypotheses about the computational organization and underlying neural mechanisms. On270

the practical level we have shown that software tools (TensorFlow) and computer chips (GPUs) that271

have been developed to accelerate deep learning applications in AI make this method accessible for many272

researchers. An obvious next step in this direction is the investigation of distributed computations in273

several cortical microcircuits. Numerous experimental data suggest that microcircuits of the neocortex274

carry out computations interactively with microcircuits in other neocortical and subcortical areas, but275

we do not know much about the organization of these distributed brain computations. In particular,276

it has been conjectured that working memory function is distributed over several cortical areas, and277

that working memory for longer time spans is contributed by higher cortical areas. Pyramidal cells in278

L2/3 of neocortical microcircuits are conjectured to serve as hub for integrating information streams279

from lower and higher areas. Specifically, we conjecture that an expansion of our model through data-280

based interconnections with microcircuit models for higher cortical areas will make it possible to solve281

the image-change-detection task also for longer intermittent periods between image presentations, as in282

the experiments of Garrett et al. (2020) and Joshua H. Siegle et al. (2021). On the other hand, our283

results suggest that V1 can solve this task without contributions from higher brain areas for the case of284

temporal distances of up to 200 ms between successive images. Furthermore they suggest that L2/3 is285

less essential for this simpler version of the task. In addition, our Figures 5 and 6 point to an important286

role of L4 for this version of the task. The underlying connectivity data of Billeh et al. (2020) suggest that287

L2/3 is in fact in a key position for solving this task, because pyramidal cells in L4 have direct synaptic288

connections to pyramids in L5 with about 75% of the connection probability to L2/3 pyramids. Hence289

L2/3 is likely to become computationally less relevant in a model where it does not also receive top-down290

inputs. Furthermore, the data of Billeh et al. (2020) show that many pyramidal cells in L2/L3 and L4291

have after-spike currents with long time constants, a feature that is essential for solving the image-change292

detection task according to our results. This finding is of particular interest in view of previous paradigms293

for modelling computations in neural networks of the neocortex, which rarely addressed the functional294

role of neuron diversity and longer time constants of neurons. In contrast, we have demonstrated the295

feasibility of a more integrated research approach where detailed physiological and anatomical data are296

directly combined with the analysis of computations in large-scale network models. One nice feature of297

this approach is that it generates a substantial number of hypotheses that can be experimentally tested298

since they suggest recordings from particular types of neurons in particular locations of laminar cortical299
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microcircuits.300

4 Methods301

4.1 Details of the training procedure302

In order to train the model, we considered the following loss function:

E = −
∑
n

[
t(n) log σ

(
θ
(
r(n) − r0

))
+
(

1 − t(n)
)

log σ
(
θ
(
r0 − r(n)

))]
+ λEreg . (1)

Here, the sum over n is organized into chunks of 50 ms and r(n) denotes the population firing rate of the303

readout neurons in that time interval. Similarly, t(n) denotes the target output in that time window, being304

1 if a change in image identity should be reported and otherwise 0. The value r0 = 0.01 denotes a baseline305

firing rate. The term λEreg is a regularization term that penalizes unrealistic membrane voltages as well306

as unrealistic firing rates. We applied BPTT, backpropagating errors within consecutive time windows307

of 700 ms length (see Figure 7), and minimized the loss function with respect to the weights between308

the neurons in the model, and the parameter θ > 0. Specifically, we employed 64 GPUs of the JUWELS309

Booster to carry out this optimization program, where gradients were computed on 128 sequences in310

parallel. See also Supplementary Figure S1 for an overview of the scaling behavior in the distributed311

training setup.312

Figure 7: Visualization of BPTT windows during task performance. BPTT is applied to windows
of 700 ms, regardless of the alignment to the image presentation.

4.2 Software and hardware details313

The BPTT training algorithm was coded in TensorFlow, which runs very efficiently on GPUs. A simu-314

lation of the Billeh model for 700 ms of biological time and computation of BPTT-gradient through this315

computation took about 5 s on a fast GPU (NVIDIA A100). This computation had to be iterated 16,000316

times in order to achieve high computational performance for the chosen task, which took 23 h of wall317

clock time on 64 GPUs (see Figure S1 for the speedup resulting from this parallelization).318

4.3 After-spike currents provide working memory similar to threshold adap-319

tation320

It was shown in Bellec et al. (2018) that an adapting threshold enables working memory along the lines of321

LSTM networks by considering slow internal processes of neurons. In particular, the proposed model was322
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denoted LSNN, and includes neurons that emit a spike z(t) = H(v(t) − A(t)) whenever the membrane323

voltage v(t) crosses an adaptive threshold A(t) from below (H denotes the Heaviside function). In their324

case, the adaptive threshold can be written in terms of the filtered spike train of the same neuron325

ALSNN(t) = vth + (κadapt. ∗ z)(t) . (2)

Here, vth denotes the baseline threshold, ∗ denotes the convolution operation, and κadapt. is a causal,326

exponential kernel: κadapt.(t) = exp(− 1
τadapt.

t)H(t), where τadapt. is the time constant of adaptation.327

Hence, the threshold would increase with every emitted spike, and fade back to its baseline thereafter.328

The point neuron model of (Billeh et al. 2020) consists of GLIF3 neurons (Teeter et al. 2018). These do not329

include an adaptive threshold but so-called after-spikes currents, which inject current into the membrane330

after spike emission. The injected current decays according to a specific time constant thereafter. It is331

argued that if this injected current is negative, it will essentially have a similar effect as an adapting332

threshold and hence potentially providing also a similar capability for working memory. In fact, one can333

rewrite the dynamics of GLIF3 neurons with an after-spike current in terms of an adapting threshold. In334

doing so, one can write the dynamics of GLIF3 neurons as LSNN neurons but with a different adaptive335

threshold AGLIF3
that emerges from an application of 2 filters on the spike train:336

AGLIF3(t) = vth + ((κm ∗ (κasc ∗ z))(t) . (3)

Here, κm is a causal, exponential kernel with a time constant of the membrane voltage of the neuron, and337

κasc is defined using the time constant of the after-spike current. Importantly, this suggests that both338

models should possess the same capabilities for working memory provided that the time constants of the339

slower internal processes (adapting thresholds or after-spike currents) are comparable. It also suggests340

that the working memory that is implemented by the after-spike currents in the GLIF3 model reacts341

slower due to an additional filter.342

Derivation We will describe the neuron models in terms of differential equations, closely relating to the343

definition of GLIF in Teeter et al. (2018). Let R, C and Ie(t) denote the membrane resistance, membrane344

capacitance and input current to the considered neuron respectively. Further, assume that EL denotes345

the resting potential of a neuron and vth is its baseline threshold.346

Using these definitions, one can define the dynamics of the membrane voltage v(t) and of the adapting
threshold ALSNN(t) of a neuron as in Bellec et al. (2018) using the equations:

v′(t) =
1

RC
(EL − v(t)) +

1

C
Ie(t) − z(t)A(t) , (4)

A′
LSNN(t) =

1

τadapt.
(vth −ALSNN(t)) + βz(t) , (5)

z(t) = H(v(t) −ALSNN(t)) . (6)

Note that z(t) is the spike train of the neuron, H is the Heaviside function, τadapt. is the time constant347

of threshold adaptation and the parameter β scales the impact of threshold adaptation.348

In contrast, the GLIF3 neuron model, as introduced by Teeter et al. (2018), does not include an adapting
threshold but a number of after-spike currents. Consider the case when there is just a single after-spike
current Iasc(t), then the dynamics of a GLIF3 neuron can be expressed by the following equations:

v′(t) =
1

RC
(EL − v(t)) +

1

C
Ie(t) +

1

C
Iasc(t) − z(t)vth , (7)

I ′asc(t) = −kIasc(t) + δIascz(t) , (8)

z(t) = H(v(t) − vth) . (9)
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Here, k corresponds to the inverse time constant of the decay of the after-spike current and δIasc denotes349

the increase in after-spike current right after a spike.350

It is possible to bring equations (7)-(9) into the form of equations (4)-(6), where we introduce an adapting351

threshold AGLIF3
(t) for GLIF3 neurons. This allows us to compare and interpret the slower internal352

mechanisms (threshold adaptation and after-spike currents) on a common ground. For this purpose, we353

substitute v(t) = ṽ(t) −AGLIF3(t) + vth in equations (7)-(9). Equation (7) then becomes:354

ṽ′(t) −A′
GLIF3

(t) =
1

RC
(EL − ṽ(t)) − 1

RC
(vth −AGLIF3

(t)) +
1

C
Ie(t) +

1

C
Iasc(t) − z(t)vth . (10)

This differential equation can be split in two (which when subtracted from another yield the original
one), and thus yield the dynamics of the GLIF3 model in terms of an adapting threshold, facilitating a
comparison between LSNNs and GLIF3:

ṽ′(t) =
1

RC
(EL − ṽ(t)) +

1

C
Ie(t) − z(t)vth , (11)

A′
GLIF3

(t) =
1

RC
(vth −AGLIF3(t)) − 1

C
Iasc(t) , (12)

I ′asc(t) = −kIasc(t) + δIascz(t) , (13)

z(t) = H(v(t) −AGLIF3
(t)) . (14)

Note that the solution of ALSNN is given by:

ALSNN(t) = vth + (κadapt. ∗ z)(t) , (15)

with κadapt.(t) = βexp(− 1

τadapt.
t)H(t) , (16)

where ∗ denotes the convolution operation. The solution of AGLIF3
, on the other hand, includes an

intermediate integration due to Iasc, hence resulting in:

AGLIF3
= vth + ((κm ∗ (κasc ∗ z)))(t) , (17)

with κm(t) =
1

C
exp(− 1

RC
t)H(t) , (18)

and κasc(t) = (−δIasc) exp(−k t)H(t) . (19)
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