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l. Intn¡ducliou

Rccursion tltcory is that arca of malhcn¡al¡cal logic whcre onc slud¡cs

the qualitatiD¿ aspects of conrpulability. Here one is only interested in lhe
qucstion whether a cornputatio¡l convergcs al all, i.e. yields a rcsu¡t afler
finitely many cor¡lputnlion stcps. ¡n conr¡rlcxily lltcory, whiclr is ¡rart of
conìpulcr sc¡c¡ìcc, o¡¡c slutlics ir¡ atltlitit¡¡¡ quuntitdiúe :rsl)ccls ()f conrlìuln-

lions. For cxarnplc onc slutJics for com¡rulalions o¡t a Inalhc¡t¡alical
compuler model thc conrputalion linre as a functio¡r of lhc size of lhc irrput.

Over the last few decadcs a nunrber of quitc powerful techniques have

been developed in recursion theory - nrost of them so-callcd priority
argunrents - that fìnally allowed lo solve a number of diflìcult open

recursion theoretic problems (sec Soane [25]). In conrplexity lheory, on lhe

othcr hand, a variety of conccpts and n¡elhods have been introduccd bul
many bas¡c and important ¡rroblents rernain open. We analyzc and survcy

in this paper some of our reccnt research in lhe light of the t¡ueslion
whether arguments from recursion theory are useful in complexily theory.
We arrive at the conclusion lhat rccursion thcorctic tcchnir¡ucs arc i¡l fact

useful in complcxity lheory, although in gencral only in combination with
arguments about algorithms for concrele problems or with argumenfs
about concrete computer models.

Many problems in complexity lheory deal with lhe queslion whether
certain mathematical problems can be solved by computations whose

computation ti¡ne is polynonrially related to lhe size of the input. Il is
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lenpling lo view such quanlitalive t¡uestions as qualitative qttestions in a

lrcrv generalized recursion theory wherc one inlcrprcts the basic concept of
"finile" as "of polynomial size in the considered parameters" and "recur-
sive function" as "in polynomial time computable function." It is well

k¡rorvn that many arguments from recursion theory can be transferred to
generalized recursion theories, where the basic notions of "finite" and

"recursive funclion" are substilr¡ted by other notions (see e.g. Fensr¡o

[5]). Wc look in Section 2 of this paper at a nt¡mber of open problems about

lhe slruclure of NP where one can proue lhat cven under the assumption

P I NP rccursion lheoretic argumcnts will not suffice. Ironically our proof

uscs a rccursion lhcorctic argument.
ln Scclions 3 and 4, on lhe other hand, we exhibit examples from

cornplexif v lheory rvhere a strfltegy that is very reminiscent of a well-known
slrategy from priority arguments in rect¡rsion theory is used in combination
rvilh concrcte arguments aboul algorithms (Section 3) resp. computer

nrodels (Section 4). In Seclion 3 we construct polynomial time approxima-
lion schemes for some strongly NP-complete problems that arise e.g. in
robotics. In Seclion 4 we survey a proof of optimal lower bounds for two

lîpes versus one on delerminislic and nondeterministic Turing machines.

Wc furlher get results lhal show a substanlial superiority of nondetermin-

isnr over delernrinism resp. co-nondeterminism over nondeterminism for
one-tape Turing machines (which have an additional one-way input tape).

We show lhat both in Seclion 3 and in Section 4 one can view the proof of
the desired result as lhe construction of a winning strategy for a two-person
ganre. Further the winning strategy that we give employs a tactic that is

familiar from modern priority arguments. Our winning strategy consists of
a system of different slrategies which have the property that the failure of
one strategy (which after all tells us a l¡ttle b¡l about lhe opponent)

increases lhe chances of lhe other stralegies to beat the opponent. Such

tactic is actually used quite often in complexity theory, although it usually

remains hidden in the combinatorics. We believe that it is worthwhile to
make this fealure more explicit because its full power has not yet been

exptoited. It is r¡uite plausible that the proofs of many theorems in

complexity theory have nol yet been found for the same reasons that

dela¡,ed the solution of several problems in recursion theory. One tends to

insist on winning slrategies that try to reach their goal too uniformly, i.e.

besides lhe outcotne of the game they also want lo prescribe how the game

is won (which is unnecessary and often impossible). The previously

skelched tactic leaves it open which slrategy in our system will overcome

the opponent. Thus it oflers a way to exploit the power of inconstructive
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mathematics. It further appears that similarly as in recursion theory the

description of Iower bouncl proofs as games makes it possible to keep track

of increasingly complex situations (with nested strateg¡es, etc')'

There are many interesting interactions between recursion theory and

complexity ttreory that we do not even touch in this paper. rüe refer to

Sonne [24] for a recent survey concerning the qualitalive theory of

comptexity nteasures (it turns out that in lhis area olle also finds applica-

tions of concepts from complexity theory to recursion thcory, see also

Mnnss [17]). Additionat resr¡lts and references can be found in Hnn-r¡'l¡¡lts

and Horcnonr [9] and Josnrrr [16].
The prcviously indicatcd possibilily to view polynonrial lintc cottt¡rulablc

functions as the "recursive" funclions of a generalized recursioll thcory is

made explicit in forthconting work by Moschovakis.

We do nol assutne in this pîper any knowledge fronr contplexity theory.

In particular we try to defìne and illustrale all concepts fronr cornplexity

theory that we use.

2. on lhe timits of recursion lheorelic argunrents in conrplexity lhcory

We assume that the reader is familiar with the standard definition of a

Turing machine (abbreviaterl: TM). A set of binary strings is in the class P

if its characteristic function can be computed by a deterministic TM in time

p(n) lor some polynonriat p (n is the length of the input for lhe considered

computation). The only new feature of a nondeterministic TM N is that its

transition function is multipte-valued. Thus for every input w one has

instead of one computation a tree of many different computations of TM N

on this input. One says that N accepts input w if one of the branches in the

tree ends with an accepting final state (assume that all finalslates of N have

been partitioned into accepting and nonaccepting states). N accepts w in

time , if there is at teast one such branch of length < f (or one can demand

that every accepting branch has length < t - it does not make a difference

in the following). Finally one says that a set of binary strings is in the class

NP if there is a nondeterministic TM that accepts exactly lhe strings in this

set and further accepts each string of length n in time p(n) for some

polynomial p. Notice that for sets in NP there is an asymmetry between

being in the set and being oul of the set, similarly as for recursively

enumerable sets.

It is tempting to view the classes P and NP as downward projeclions of

the classes of recursive and rccursively enumerable sets. Note that one may
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view thc clements of a recursively enumerablc set /[N], where / is some

tolal rccursive function, as lhose elements w that are accepted by a

nondeterministic TM that tries in each computation branch a different

argunrent x and hatts at the end of the branch in an accepting state ift

lG)= w'

Unfortunatety so far one cannot answer even the most basic questions

aboul lhis downward projected recursion theory (e.g. P = NP?). Bnxen et

al. [2] have shown that the situation is even worse. They consider

rclativizalions P' and NP" of P and NP whcre thc altached "oracle" O is

solnc scl of binary slrings. One can usc e.g. oraclc-TM's like in recursion

thcorv lo define such relativized complexily classes. An oracle-TM may ask

its altachcd oracle O at any lime and as often as it likes during the

cornputation whclher lhe string ¡r that it has currently written on its special

oracle-lapc is in lhc set O or not. The oracle O gives in one stcp the

corrcct answer. General experience says lhat every recursion theoretic

argunrenl "relativizes", i.e. remains valid if one attaches the same oracle O

evervwhere in the argument (for an arbitrarily chosen set O). This

rctntivizcd argument proves then an accordingly relativized theorem.

B¡xrn er al. [2]show that it is impossible to prove P = NP orP I NP by an

nrgunìenl lhat relalivizes. They do lhis by constructing via simple diagonal-

ization sets A and B s.l. PA =NPo and P"lNPn.
This result leaves the possibility open that one can get under the

assumption P I NP via recursion theoretic arguments a clear picture of the

slruclure of the classes P and NP (following the standard tradition in logic

to lake as an axiom what one cannot prove). The following result shows

thal there are also limitations to this program.

Tnnonrn 2.1 (Hor'lrn and Mnnss flal. fhe following slalements S a¡e

"independent" from the assumption PINP in the sense lhat there are

recursiue sels A and B's.í. PolNpo and So but PulNP" ¿nd -rSB:
lll euery infinite s¿f in NP has an infiníte subset thal is in P,

(2) there are sintple elemenls in tlrc lauice o/ NP-sefs (with set lheoretic

inclusion),
(3) there Ís a sel U in NP lhat ts uniuersal for P, í.e. p =

{{uf(u, w\eUllw a binary stringl for some standard pairing operation
(.,.).

To prove Theorem 2.1 one splits for each statement S the desired

properties of A resp. B inlo infinitely many requirements. One constructs

A and B in stages s.t. gradually all requirements become satisfied. This
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construction is so¡newhal dclicate because there arise conflicls between

requirements of diflercnt types. One possible way to solve such conflicts is

to use a finite injury prior¡ly construction. Alternalively - since one has in

these construct¡ons a recursive a priori bound on lhe slages where an

earl¡er attentpt might be injured - one can eliminale wilh some additional

work all injuries. On the olher hand, one encounlers usually still dclays of

the activities for a givcn rcc¡uircnìcnl and in ortlcr lo show lhat cach

rer¡uirenrenl is only finitcly long delayed onc has to argue likc in a lìnite

injury priorily arguntcnt. In gencral it may bc approprialc to vicw a dclay

of a ret¡uircnlcnt in the rcstrictcd world of conslruclitlns of rccursivc scls

(instead of recursively enumerable sets) as a form of injury.

Following Theorenr 2.1 a large nuntber of sinlilar "indepcndctrcc"
results has been found (see references in Josenrr Il6l).

What melhods rentain that nright possibly answcr lhe menlionecl t¡ues-

tions from complexity theory if recursion thcoretic argumenls (aclually

more generally: argurnents from mathematical logic) do not sufñce? We

would like to mention two possible escapes. If one proves (by any

argument) that a concrelc NP-complete problem (say HAMILTONICITY)
is not in P then this proof of P I NP does not relalivize' There is nol even a

naturat delìnition of HAMILTONICITY' for an oracle O' Second one

might analyze more closely the concrele slructure of computalions on a

specific computation nlodel. In general such arguments do not remain valid

if one adds an oracte tape to the computation model. Thus in any case it

appears to be unavoidable that the recursion theorist gets "his fingers

dirly".

3. Approximation algorithnrs

Ih ttris section we apply a stralegy that is fanliliar from rectrrsion tltcory

in order to design approximation algorithms.
The following computational problem arises in the context of motion

planning and positioning of robots:
Giuen: n points in Euclidean space (e.g. spots that have to be welded by

a robot) and some type of industrial robot.
Wanted: a minimal number ft of positions for the base of the robot s.t.

each of the n points can be reached by the arm of the robot from one of

these & positions.
We look first at the 1- and 2-dimensional versions of this problcm.

Assume that all given points lie in a fixed horizontal plane. Assunle lhat
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from any fixed base position the arm of the robot can reach any point that

has a distance between ¡ and r * w from the (vertical axis through the)

base of lhe robot, where r and w depend on the flexibility of the arm of tl¡e

considered type of robot. Thus we arrive at the mathematical problem of

covering n given points in the Euclidean plane by a minimal number of

rings with inner radius r and outer radius r * w. Unfortunalely the

following result suggesls that no conrpuler is al¡le to solve this problem (for

nontrivial sizes of n).

T¡eoneu 3.1 (Fowlrn, PATensoN and T¡pt¡voro [6]). The problem whelher

n giuen points in the Euclideon plane can be couered by k rings of inner

radius r and ouler ¡adius ¡ f w is strongly NP-complete (euen if we fix r =0,
i.e. consider only discs\.

We would like to explain briefly to those readers that are not familiar

s,ilh nonclelernlininistic colnputations whal this nleans. It is easy to see

lhat lhe considered problem (which we identify with the sel

{((¡,,y,),...,(rn, lnl,r,w,ft)f the n points with coordinates (x¡,¡) can be

covered by k rings of inner radius r and outer radius r * w; all numbers are

rational|) lies in lhe class NP. A nondeterministic Turing machine (see

definition in Section 2) just guesses the positions of up to k rings, and

checks whelher alt points are covered by these rings' If a tt¡ple

((¡,, y,), . . . , (¡", !n'), t, ttt,k) is in lhe considered set then along some branch

of the computation tree of the nondeterministic computation the TM

guesses k ring positions that cover all points and therefore it halts at the

end of this branch in an accepting state. Since it takes only polynomially

many steps (in the length of the considered tuple) to write down k guessed

ring positions and lo verify that all n points are covered (assume that one

can compute in one slep the distance betwecn two points), this accepting

branch is of potynomial length in the size of the input. Thus the problem is

in NP. To say that the problem is NP-complete means that it is in NP and

that every other problem in NP can be reduced to it by a deterministic

potynomial time computable function (tike in many-one reducibility). This

implies that the problem is not in P unless P = NP. Strong NP-

compleleness means that this hotds even if we write down the data of the

probtem in unary code (which¡nakes the size of the ¡nput much longer).

Notice that if we cannot compute in polynomial time the minimal

number k of rings that are needed for a covering, we certainly cannot

compute an opt¡mal covering in polynomial time.
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We refer to Gnnrv and Jo¡rNson [7J for furlher infornration about

NP-completeness.

Usually one can escapc NP-completeness in geometric location problenrs

by looking only at special cases that are essentially l-dinrensional. ln our
case one might want to considcr given points on a slraighl line (or on n

fixed number of parallel lines). Noticc that lhe inlerseclion of a ring wilh a

straight line is a pair of closcd inlervals. Unforlunalely our problern is t¡uilc
obnoxious.

Turonru 3.2 (Mnass [8]). Tfte probletn whetlrcr n giuen poinls ott the line
can be coue¡ed by k pairs ol closed inte¡uols ol length w and distance 2r is
slrongly NP-complete,

Does NP-conrpleteness imply that it is hopelcss to attack these problcnrs
on a computer? No, bccause even NP-complete problems may have good

approximation algoritlrrns (anolher possibility would be to look al randonr-
ized algorithms, a third possibility would be to show that P = NP). Inslcad
of a minimal number of robot positions an approximation algorithnr for the
considered problem computcs a nearly minimal number of robol positions
from which all points can l¡e reached. If for an instance I of our problenr
OPT(I) is an optimal solution and A(1) is an approximate solution that is

produced by approximation algorithm A one calls

I lA(r)l-loPr(Dl I

loPr(r)l
the error of A on instance I (IOPT(I)1,lA(/)l are the nunrbers of robot
positions that are used in the respective solutions). One calls A a

polynomial lime approximalion sclrcme for some conrbinatorial optinriza-
tion problent tI tf the scheme A provides for every given e > 0 a

polynomial time approximation algorithm A, lhat has error ( e for all
instances I oî. il.

Not all NP-complete problems have good approximation algorilhrns. In
particular polynomial time approximation schemes for strongly NP-
complete problems are very rare (see [7]).

We sketch in the rest of this sect¡on the construction of polynomial time
approximation schemes for the considered strongly NP-complete prob-
lems. We will also point out how one can view these conslructions as the

construction of winning strategies in certain 2-person ganres. Our winning
strategy employs a systenr of complementary slratcgies with the properlies
that we described in Section l.
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Tneoneu 3.3 (HocHnauu and Mnnss [l3l). For euery finite dimension d the

problem of computing for n giuen poinls in d-dimensional Euclidean space

posítions lor a núnimal numbe¡ of d'dimensional balls with rcdius w that

couer all n poinls has a polynomial time approxirnation scheme (this problem

is strongly NP-complele for d>2).

Pnoor. lt is sufficient to illustrate the idea lor d = 2. For a given ¿ ) 0 we

describe a polynonrial time approxinration algorithm 4.. Fix a natural

nunrber I s.t. (l + lll)' < I * e. Cut the 2-dimensional Euclidean plane into
vertical strips of width I '2w.'\Ne use lhe divide-and-conquer method and

solve lhe covering problem separately in each strip. We then take the union

of all discs lhat we use for the coverings in lhe strips and get a covering of
all n given poinls. The problem with this approach is that it may cause an

error > e. This occurs in particular if most of the given points happen to lie

close to a cut line.
To vierv algorithm design as a 2-person ga¡ne one imagines that player I

("rve") wants lo produce an algorithm with the desired properties and

pla¡'er ll ("opponent") wanls to construct an inslance of the considercd
problem where player I's algorithm fails. ln lhe preceding situation player

ll can win by placing most of the n given points in suitable positions close

(i.e. in distance <2n) to a cut line of player I's algorithm. Player I is now

nrore clever and uses instead of one strategy S for cutting the plane into
strips of width I . 2w, I different strategies S,,...,Sr where S¡ = S and $*¡
results from S, by shifting all cut lines of strategy $ over a distance 2w to
the right. The rationale behind this approach is that if player II decides to

place e.g. most of the n points close to the cut lines of strategy Sr, he must

place accordingly fewer points close to the cut lines of the other strategies

$. This implies that one of the strategies Sr causes a relatively small error.
More precisely each disc of a ñxed optimal global solution is cut by a cut

line of at most one strategy S,. Thus for some $ the cut lines of S¡ cut at

nrost l/l of these discs. Further the number of additional discs (compared
rvith lhe fixed oplimal solution) that the divide-and-conquer strategy $
uses can be bouhded by the number of discs in the fixed optimal solution
lhal are cut by a cut line of this strategy $. Therefore some strategy $
causes an error < UL

So far we have assumed that each strategy $ computes an optimal
covering in each of its strips of width I'2w. Since we do not know how to
do this in polynomial time, we use again for each strip an approximation
algorithm. rvVe cut now the considered strip by horizontal lines in distance

I .2w and apply again the divide-and-conquer method. In each resulting
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l'2wxl'2w square we can aflord to compute an oplinral covering by

exhaustive scarch becausc this lakcs orily polynonrially in nt nrany steps

(where r¡ is the numbcr of points in that st¡uare). We use here the fact that

at most 2l' discs are needcd for an opfimal covering of such sqrlare.

Further every disc in an optimal covering that covers nlore lhan one of tl¡e

givcn points has w.l.o.g. at lcasl lwo of ltrc givcn poinls on its ¡reriphery antl

thcsc two points dctcr'¡rti¡¡e its posilion up to two possibililics.

Of course we may again produce an error Þ e by this divide-and-

conqucr nrethod for ttte considcred strip. Thereforc we try I diflerent

substratcgies T,,. .., 'Il for culling tlris slrip inlo I . 2w x l. 2w st¡trarcs,

wherc I+r results fronr lì by moving all cut lines of 7: upw:lrd ()ver

distance 2w. Some ?l is guarantced to cause in this strip an error < l/l
(sarne argunrent as bcfore).

Altogether approxinration algorithrn A. procecds as follows. It tries

successively I strategics S,,...,Sr for cutting the plane inlo verticalstrips

of width I.2w. Scparately for each strip that arises in some $ it tries

successively I substrategies T¡, ...,T, for cutting it into l'2wxl'2w
s(luares. For cach rcsutlitrg s(ttt¿lrc il cottt¡rulcs an o¡rlintal covcrittg by

exhauslivc scarch. lt rclurns with ll¡c rcsulling covcring front lhal sub-

stratcgy I whiclr uscs the fcwcst discs. Finally A. oul¡ruts the covcrittg

of the rr given points which arises from that strategy $ which uses the

fewest discs.

By the preced¡ng A. uses at most (I + ll D'z' I OPT(I ) I discs. It is easy to

vcrify that the running ti¡ne of A. is polynomial in n and w.

Compared with a "supermind" wltich knows immediately the best

cutting strategy the previous algorithm A. has to try various gucsses at the

opponent's strategy. A, has to pay for this lack of knowledge with a time

penalty: a factor of 12 in the time bound for 4,. Thcse dclays co¡cspond to

the injuries in a lìnite injury priority construction.

Concerning thc problem from Theorem 3.1 one gets in the same way a

polynomial time approximation scheme for each fixed bound on the

"nonconvexity" measure rlw of. the covering rings. For the l-dimensional
problem there is a more subtle approach that allows to eliminate the term

rlw ftom the exponent of the time bounds. This yields the following result.

Tueoneru 3.4 (Hocuonuu and MRnss ll2i). There is a polynotnial tinrc

approxinntion scheme for lhe strongly NP'complele problenr of Theorem 3.2.

One can improve the tirnc trounds of thc previous approximation
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algorithnrs considerably by using insight into the combinatorial resp.

geomelrical struclure of an optimal local covering (see Sections 5 and 6 in

I I 2]).

Of course one gels in the same way approxinration schcmes for covering

rvith objecls of various other shapes. A nice application is the problem of
covering given points with a minimal number of squares, which comes up in

image processing [261. Also the same mcthods happen to provide polyno-

nrial li¡ne approximation schemes for NP-complete packing problems

rvhcrc one wanls to pack without overlap a maximal nunlber of objccts of a

given size and shape inlo a given area (JoHNsoN Il5l describes how such

problenrs arise in lhe context of VLSl-design).

4. Lower bounds for Turing machines

The gcneric question of nlachine-based complexity theory is the follow-

ing. Civen are two classes T¡ and 7, of mathematical models for compu-

lers, rvhere models of type T2 appear to be more powerful than those of
lvpe T¡. Find the slowest growing function S¡,.7¡ s.t. any ntodel of type Tz

rvhose tinre bound is r(n) (for some function t(n)) can be simulated by a

nrodet of type T, with time bound O(Sr,.r,(l(n))) (simulation just means

that the same output is produced on the same input). Nonlinear lower

bounds for S7,.¡, tell us that models of type Tzare in fact more powerful

and the precise growth rate of S7,.4 provides a quant¡tative measure for
lhe superiority of models of type Tz over models of type Tr.

Questions of this form arise quite frequently in computer science, e.g. if
one wanls to make an intelligent choice between several competing designs

for hardware or software. Such questions also arise in more theoretical

considerations where one wants to classify the inherent computational

difficulty of mathematical problems (which often can be determined only

for a special type of computer model, e.g. only for nondeterministic

machines).

Unfortunately questions of the considered type have only been solved

for very few ctasses T, and Tr. The most prominent open problem is the

instance where T¡ is the class of deterministic Turing machines and G is

the class of nondeterministic Turing machines (P ¿ NP problem, S7,.7, is

nontinear Ay [2211. Many other open problems of the considered type are

not retaled to nondeterminism. This suggests lhat there is not just a single

"trick" missing (the one that shows P I NP). Rather a new mathematical
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area has to bc dcvelopcd that prtlvidcs teclrniques for sharp ltlwer boultd

results.

We want to reporl in this scction aboul sonrc new resulls in lhis area,

that rely on the method of playing simultaneously scveral slrategies againsl

the opponent in a 2-pcrson ganre. wc will dcscribe prinrarily lhose aspccls

lhat arc rclcvanl to lhis aspcct antl rcfcr ttl Mnnss Ilt)l for all rnissirtg

dctails.
Thc fìrst problcnt lhat wc c¡¡lsidcr is thc inslancc whcrc Tr is thc cl:rss of

l-ta¡re dctcrminislic'l'uring ntachincs and T, is lhc class gf 2-la¡rc dctcr-

lninistic Turing nrachincs. We asst¡nre that evcry lirring nraclrinc ('l'Nl)

possesses besides its work tapes (whose number we indicate) an adtlitional

one-way input lapc (onc-way tìlcilns lhal thc associalcd llead can nrovc

only in onc rtirection). Furlhcr onc hcad is associaled which cach lapc. All
hcads may nrove simullaneously.

The problem of comparing these two classcs Tr and Tr is aclually quite

old. Traditionally only l-tape TM's have been considered. 2'Tape 'l-M's

emcrged right at the beginning of machine-based conrplexity tlreory

bccause onc can write for these nlacltines progranìs lhat run substantially

faster than all known progrilns for l-tape TM's. Unfortunalcly althouglr

simitarly fast programs have not been found, one was neither able to prove

lhat they do not cxist. 'l'he obvious disadvantage of a l-tape TM is lhc fact

that it needs tì(l.d) steps to move on its work tape a string of I synrbols

over a d¡stance of I cells, while a 2-tape TM can do this in time O(, + d).

This observation allows to prove easity quadralic lower bounds for a weak

form of l-tape TM's that do not have an extra input tape (they receive lhe

input on the work tape), see Herun¡¡r [lll. E.g. such nlachine cannot

compute for any ô >0 in O(n'-n)steps whether a string xt"'xnlt"'/" is

a "patindrome", i.e. for all i: yt = xatÈi. Thc l-lape TM with an cxlra

one-way input tape - lhis is lhe nroclcl lhat is usually studicd in lhc currcnl

lower bound literature - is quite a bil nlore powcrful and can c.g.

recognize palindromes in linear time. In addilion for more difficult

probtems such l-tape TM has the option to choose a clever "datastructure"
ior the representation of the input on its work tape which nrakes it

unnecessary to perform during the computation a lot of time-consuming

copying operations. In particutar, the machine can use several "tracks" on

its single work tape and it nray also write immediately each input symbol

that it reads from the input tape at a number of different locations on lhe

work tape. In order to get strong tower bound results for the funclion Sr,.r,

in quesf ion one has to show that all these tricks cannot hclp. On the other

hand, there are related situations where the use of clever dalaslructures
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helps very well. For example one can simulale a k-tape TM with time

bound r(n) by a 2-lape TM without a severe time loss in time

O(l(n) . log f (n)), for any k > 2 (HenN¡e and SreenNs [10]).
The best known upper bound for the function St'.7, in question is

Sr,,¡.(rn)=O(n¡') (Henrn,lexts and Srennns [8]). The best known lower

bound result shows that not St,.r,(n¡) =O(m 'loglognr) (Dunrs et al. [4];
one should also mention related earlier work by R¡sll.¡ [23], AnNoenne Il]
and Paur- [21]).

THeonru 4.1 . For no ô ) 0, S¡.r,(tn ) = O(r¡'-t ).

Anolher open problem of the considered type (see DuRls et at. [4] for a

recenl tist of open problems, we solve here l. and 7.) deals with the classes

TT of nondeterministic l-tape TM's and T| of nondeterministic Z'tape

TM's. The HeRrun¡¡ls and Srenn¡.¡s simulation [8] provides again the best

rupper bound Sr1.rg(rl)=O(rnt) and the best lower bound result shows

that ¡rol S,1.r1(rr)=O(rn'loglogrr) (Dunls et al. [4]).
Strong tower bounds lor nondeterntinislic l-tape TM's are a bit more

difficult. Notice thal these machines accePt e.g. some NP-complete prob-

lems tike 3-COLORABILITY in linear time. Further in terms of the

previously discussed possibilities a nondeterministic l-tape TM has an

inrportant additional tool. In order to simulate a 2-tape TM without

significant time toss it can choose for each input an "individualized"
data-slructure on its work tape, which facilitates the particular computa-

tion lhal is performed on this particular input. In addition Boor et al. [3]
have proved that for any k ) 2 one can simulate a nondeterministic k-tape

TM by a nondeterministic 2-tape TM without any increase in computation

time. Furthermore for alternating TM's (which iterate nondeterminism)

Plu¡- et al. [20] have shown that for any k > 1 one can simulate a k-tape

alternating TM by a l-tape alternating TM without any increase in

compulation time.

THeoneu 4.2. For no ô)0, Sr1.4(nr)=O(n¡'-').

So far we have compared classes that have the same control structure but

diflerent storage facilities. We co.nsider now pairs of classes which have the

same storage facilities (one work,tape besides the one-way input tape) but

different control slructures. We write pTIME'(r(n)) and NTIME'(I(n))
for the classes of sets that are accepted by deterministic resp. nondeter-

ministic l-tape TM's (always with an additional one-way input tape). We
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write CO-NTIMET(I(n)) for the class of sets whose complentent is in
NTIME'(f (,¡)).

Tneoneu 4.3. NTIME¡(n) I U,"u DTIMET(n'-').

THeoReu 4.4. co-NTIME'(n) Ø U.',,NTIME¡(n'-').

Notice that Theorem 4.4 inrplies Theorenl 4.3. In a so¡newhat relalcd
result P¡u¡- et al. [22] have shown that

NTIME,(n)ø U DTIME*(n' (log' n)'/o)'

Concerning stronger scparation results the authors of l22l poinl ouf fhal

their method might yield at best an n 'log n lower bound. We usc here a

difterent type of argument (analysis of the structure of computations for
concrete languages) which seems to have no a priori limitations. Wc

construct a language Lr that satisfies lhe following lemmata (which

obviously imply Theorenrs 4. l-4.4).

Levun 4.5. Lr is accepted by a deternrinistic Z-tape TM in linear (euen

real) time.

Leuun 4.6. The conrplenrcnt of L, is accepted by a nondelernúnistic l-tape

TM ¡'n linear (eoen real) time.

Le¡uun 4.7 (Main Lemma). There is no õ)0 s.f. L¡ is accepled by a
non-deterministic l-tape TM in time O(n2-").

The language L¡ consists of finite sequences of symbols 0,1,2,3, 4. Wc

interprct these symbols as contnrantls lhat tcll a tlctcrministic 2-lapc 'l'M

M' to perform certain operations and lests. We assume that initially M'is
always in "writing mode". In this mode M'copies the initial segment of ils
input Y from left to right on both work tapes until it encounlers in the

input a first symbol zÊl0,ll. M'rejects the input unless z = 4. M'changes

now into the "testing mode" (it never changes back to the writing nrode).

M'always interprets the synrbol 4 as the command to change the direclion

of movement for both of its work heads. M'inlerprets 2(3) as lhe comnrantl

to move work head l(2) one cell in the currently required direction. M' in
testing mode interprets a symbol ye{0,1} as the command to test

whether the work head that moved last reads currently lhe symbol y. We
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put a slring Y in Lt ifl all these test lhat M'performs for input Y have a

positive oulcome. With this definition of L¡ we have proved simultaneously

Lemma 4.5. The proof of Lemma 4.6 is also quite obvious.

As an example for words in Lr we note that a binary string

rr " 'r.Ir " '/" is a palindrome iff the string x¡ "' x"42y2y2 " '2¡ is in

Lr. For lhe lower bound argumcnt wc will consider words in Lr of the

follorving slructure. Lel X = rr " '¡" be a binary string and let L =
1,.1r.... and R = rt,r2,... be two sels of subsequences of consecutive bits

("[rlocks") from X. We assume lhat lhe blocks in L and R are listed in the

order trf lheir occurrence fronr right to left in X. Let l¡.r "'1,.o and r¡r"'r;p
bc the symbols of block l, resp. r¡ in the order of their occurrence in X from

right to left. Let 4(t) (d,(r) be the number of bits between blocks l¡ and

l,,r (r¡ and r¡*,) in X. Furlher let d,(0) (4(0)) be the nunrber of bits in X to

the right of block I' (r,).Then the following string is in L¡:

xr " ' x,42 " '221t.21¡2" '21v3 " ' 33rr.r3r,.r " '3r1.r2 " '2212.J/,2.2" ' Zlz.p
\--J 

--d,(0) times d,(O)rimes 4(l) times

f.i3t .'3t r.r' ' ' 3tr.n' ' ' (etc., altcrnating through all blocks of L and R ).

r{(l)tinres

We view the proof of Lemma 4.7 as a 2-person game where player I
("we") wanls to prove the claimed lower bound and player II ("opponent")
claims to have a counterexample. The opponent starts the game by

choosing a nondeterminislic l-tape TM M and constants ô,K>0. He

claims lhal M accepts Lr in time K ' n'-". Player I continues the game by

choosing an input X" Z in L¡ on which he tests M. X" Z is chosen as

follows.
We assume lhat some canonicat way of coding TM's À7 by binary strings

has been fixe<!. We write JM I for the tength of the binary string that codes

¡ø. fne first part X = xr. . .¡" of the input is a binary string s.t. K(X)>
n>lMl. Here the Kolmogorov complexity K(X) is defined as

K(X):= min{lMll ú is a TM which produces

(for the empty input) output X).

The nolion of Kolmogorov complexity has been introduced into com-

plexity theory by Peur- (see [2]). Its advantage is that if I((X) >lXl>lM I

we can be sure that TM M has nearly no special knowledge about X (X
looks like a random string to M).

We define for the rest of this section ñ:= nt-"t'. Note that (for large n ) ri'z

is bigger than the lime bound lor M.
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To motivate the choicc of the secondpart Z of lhe input we first give a

result that holds for any Z.

Leuun 4.8 ("Desert Lemma"). Assunrc lhat C is an acceplittg contpulation

of TM M on inpul X" Z with no more than K(lÙn 'log n)'-' steps (tr is the

length of string X). T-lrcn for large enough n there is an inlerual D (" desert")

of n cells on the work tapc of NI und tlrcre are lwo sets L antl R s.t. boú L uul
R contain exactly nl2-2nt-^'t blocks B from X with lB I = n"^' for each B

antl s.t. in conrputation C the work head of M ß always left (right) of D
while its input head reads from a block B in X that belongs rc L ß).

The proof of Lemma 4.8 requires a lengthy combinatorial argument

which we cannot give here. One uses in particular that among any ri cells

on the work tape of M there is one which is visited during at ntosl ri sleps.

This may bc vierved as playing ñ substrategies against lhe opponent - one

of which is guarantced to rvin.

If we put ourselvcs for a moment in the easier situation of the proof of
Theorem 4.1 where lhc opponcnt's l-tapc TM M is a tlclerntirrislic

nrachinc, wc flrc i¡flcr Lclnlr¡a 4.ll alrc:rtly t¡uilc closc kr lltc cottt¡rlclitl¡t ttf

lhc proof. In lhis casc lhc fìrsl parl of lhe contpulalio¡t C ol M on in¡rttl

X" Z until thc step fu where M's inpul hcad ntoves onlo lhe fìrsl symbol of

Z does not depend on Z.The¡efore we need not specify Z beÍore step f,.

Lemma 4.8 deals only with the part of C before step l1r. Thus we can use lhe

sets i and R that are provided by Lemma 4.8 for the definition of Z. Fronr

L and F we define Z asin the exampte right af ter lhe deñnition of L¡, with

p:= nott, L:= L, R:= Æ. Then we can complete lhe proof by using Lenrnla

4.10 bclow (call every subset¡ucnce o1 Z qn L - R pair lhat consists of the

commands to check a block from i and to check in inrmediate st¡ccession a

block from Ii).
When we relurn now to the proof of Lemma 4.7 (lhe nondeter¡ninistic

case) we see that our strategic situation is much weaker. In this case the

first part of computation C until step lo depends already on the second parl

Z of the input (e.g. M may choose a representation of X on its work tape

that facilitates the particular test sequence Z; lechnically M can guess Z
while reading X and verify its guesses later while reading Z). But iÎ we

define already Z belore the beginning of the computation, wilh sonre

arbitrarily chosen sets L, R in the way of our previous example, we can

hardly expect lhat the opponent is so kind to arrange C s.t. the sets Il, F
that come out of Lemma 4.8 are the same - or even sinlilar - to the sets

L, R we started with. Thcrefore we use a system of several tliflcrcnt
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slrateg¡es against the opponent. We use in our first strategy a guess L', R,

al lhe fulure L, Ii that may be totally wrong. But if this is the case we learn

al least somelhing aboul lhe opponent and the second guess L2, Ru that we

use in our second strategy is designed to approximate any I], F that are

tolally different from Lr, R¡. Analogously L¡, R1 is designed to approxi-

nate any L, li that are totally different from Lr, Rr and Lr, Rr. Altogether
u'e design a system of logli "guesses" L¡, R¡ and we use L¡, R¡ to define

the ith seclion Z¡ o1 Z. Zr is defined from Lr, R¡ exactly as the string in our
prcviorrs example had been defined from sets L, R. 22 is a sinlilar
ctrnrmand sequence that lells the 2-tape TM M'to check in alternation the

blocks in L: and Rz, lhe first oncs with hcad l, the second ones with head 2.
'l'his is done on M'during one sweep from left to right of both heads. Zt
uscs likc Z¡ a sweep from right lo left to check in alternation the blocks in

L.. R,.
We partition X into ¡ñ blocks of length nn^'. We number these blocks in

X from left to right by binary sequences of length log rñ (assume w.l.o.g.
lhat logri is a natural number). We say that two blocks are i-connected if
their associaled binary sequences difler exactly at the i-last bit. If two

blocks are i-connected we put lhe left one into L¡ and the right one into Rr.

Finatly we defìne Z:= Zrn. . .n Zr,ea. Notice that any two blocks from X
lhat are i-connected for some i are tested in immediate succession

somewhere in command sequence Z. lt is obvious lhat Xñ Z e Lt.
We have now specified the complete input Xn Z and Lemma 4.8

provides for this input a "desert" D and two sets L, R of. ñ12-2nt-'t'
blocks each. We call a subsequence of Z an i-R pair if it consists of the

commands to check in immediate succession two blocks á¡, á: from X s.t.

one betongs to i and the other to F.

Lenun 4.9. Assume that ilrc ñ blocks of X hat:e been partitioned into any
tlree sets i, R, O (G consÍsts of those blocks lhat are neithe¡ in L nor in R).
Then there arc at least min{l¿l,llil}-lCllogn L-R pairs in the preui-

ously defined sequence Z.

Pnooror Leu¡un 4.9. We verify now that our previously described tactic-
where we play a system of log ñ strategies against the opponent - is

successful. Assume for simpticity that G = fl and l¿ | = lF l= nl2. We view

the partition into f, ñ as a coloring of the blocks in X. Consider the case

where our first strategy fails completety and Zr contains no i-li pair. This

implies (by the deñnition on L¡ R¡ respectively the definition of "l'
connectcd") that the first and second block in X have received the same
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color, the third and fourth block in X have receivcd the sanre color, etc.

Assume in addition that thc second slralegy fails completcly and thc
second section Z¿ o1 Z contains also no t-li pair. Togelhcr with thc
previous informatior¡ this implies thal lhe ñrst through fourth block in X
have the same color, the fifth through eighth block in X have lhe sarne

color, etc. Apparcntly, this cannot go on for all seclions Zt,. . . , Z¡,,r; o1 Z
because otherwise all blocks in X would have rcccivcd tlte sanrc color. ¡r

contradiction to lL I = lF I = n12.

It is not difñcult to fìll in the precisc proof of Lcmnra 4.9, which ¡rrocecds
by induction on log i.

Lemnra 4.9 implies lhal for lhe two sets f, F that have been provitled by
Lemma 4.8 there are at least ñ12-6n'-'t'logti ll-lt pairs in Z which is

nrore lhan ñ l4 lor large n. The final knockoul is delivered by lhe following
lemma.

LEvt,t¡ 4.10. For al leasl 113 of the L-R pairs in Z tlrc work head of lvÍ
crosses the n 13 cells in the middle of desert D during tlwse steps where its

input head reads from that L-R pair in Z.

The proof of Lemma 4.10 requires a lenglhy combinatorial argument.
The intuition is that M cannot too often check blocks from X (as

demanded bv Z) without nroving its work head close to the area where it
had written notes about this block while reading the corresponding part of
X. Of course one has to be aware that M may have written down each

block at several locations and it may also have spread information about
each block to other areas during its later head movemenls.

Lemma 4.10 implies that the work head of M crosses (for large n) at

least U3, ñ14 ofrcn ahe nl3 cells in lhe middle of deserl D. This lakcs al
leasf it/36 steps, which excecds for large n the timc bound of
K(lln.logn)'-'steps for machine M oninput X"Z. This finishes rhe

proof of Lemma 4.7.
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