Barcan Marcus et al., cds., Logic, Methadology and Philosophy of Science VII
© Elsevier Science Publishers B.V. (1986) 141-158

ARE RECURSION THEORETIC ARGUMENTS
USEFUL IN COMPLEXITY THEORY?

WOLFGANG MAASS*

Dept. of Mathematics and Computer Science Division,
Univ. of California, Berkeley, CA 94720, U.S. A.

1. Introduction

Rccursion theory is that area of mathematical logic where one studies
the qualitative aspects of computability. Here one is only interested in the
question whether a computation converges at all, i.e. yields a result after
finitely many computation steps. In complexity theory, which is part of
computer science, one studics in addition quantitative aspects of computa-
tions. For example onc studies for computations on a mathematical
computer model the computation time as a function of the size of the input.

Over the last few decades a number of quite powerful techniques have
been developed in recursion theory — most of them so-called priority
arguments — that finally allowed to solve a number of difficult open
recursion theoretic problems (sec SOARE [25]). In complexity theory, on the
other hand, a variety of concepts and methods have been introduced but
many basic and important problems remain open. We analyze and survey
in this paper some of our recent research in the light of the question
whether arguments from recursion theory are useful in complexity theory.
We arrive at the conclusion that recursion theoretic techniques arc in fact
useful in complexity theory, although in general only in combination with
arguments about algorithms for concrete problems or with arguments
about concrete computer models.

Many problems in complexity theory deal with the question whether
certain mathematical problems can be solved by computations whose
computation time is polynomially related to the size of the input. It is

* During the preparation of this paper the author has been supported by the lieisenberg

Programm of the Deutsche Forschungsgemeinschalt, Bonn.
Permanent address (alter Fall 84): Dept. of Mathematics, Statistics and Computer Scicnce,

University of Illinois at Chicago.

141

142 W. MAASS

tempting to view such quantitative questions as qualitative questions in a
new generalized recursion theory where one interprets the basic concept of
“finite” as “of polynomial size in the considered parameters™ and “recur-
sive function” as “in polynomial time computable function.” It is well
known that many arguments from recursion theory can be transferred to
generalized recursion theories, where the basic notions of “finite” and
“recursive function” are substituted by other notions (see e.g. FENSTAD
[5]). We look in Section 2 of this paper at a number of open problems about
the structure of NP where one can prove that even under the assumption
P # NP recursion theoretic arguments will not suffice. Ironically our proof
uses a recursion theoretic argument,

In Sections 3 and 4, on the other hand, we exhibit examples from
complexity theory where a strategy that is very reminiscent of a well-known
strategy from priority arguments in recursion theory is used in combination
with concrete arguments about algorithms (Section 3) resp. computer
models (Section 4). In Section 3 we construct polynomial time approxima-
tion schemes for some strongly NP-complete problems that arise e.g. in
robotics. In Section 4 we survey a proof of optimal lower bounds for two
tapes versus one on deterministic and nondeterministic Turing machines.
We further get results that show a substantial superiority of nondetermin-
ism over determinism resp. co-nondeterminism over nondeterminism for
one-tape Turing machines (which have an additional one-way input tape).
We show that both in Section 3 and in Section 4 one can view the proof of
the desired result as the construction of a winning strategy for a two-person
game. Further the winning strategy that we give employs a tactic that is
familiar from modern priority arguments. Our winning strategy consists of
a system of different strategies which have the property that the failure of
one strategy (which after all tells us a little bit about the opponent)
increases the chances of the other strategies to beat the opponent. Such
tactic is actually used quite often in complexity theory, although it usually
remains hidden in the combinatorics. We believe that it is worthwhile to
make this feature more explicit because its full power has not yet been
exploited. It is quite plausible that the proofs of many theorems in
complexity theory have not yet been found for the same reasons that
delayed the solution of several problems in recursion theory. One tends to
insist on winning strategies that try to reach their goal too uniformly, i.e.
besides the outcome of the game they also want to prescribe how the game
is won (which is unnecessary and often impossible). The previously
sketched tactic leaves it open which strategy in our system will overcome
the opponent. Thus it offers a way to exploit the power of inconstructive

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 143

mathematics. It further appears that similarly as in recursion theory the
description of lower bound proofs as games makes it possible to keep track
of increasingly complex situations (with nested strategies, etc.).

There are many interesting interactions between recursion theory and
complexity theory that we do not even touch in this paper. We refer to
SOARE [24] for a recent survey concerning the qualitative theory of
complexity measures (it turns out that in this area one also finds applica-
tions of concepts from complexity theory to recursion theory, see also
Maass [17]). Additional results and references can be found in HARTMANIS
and Horcrort [9] and Josepn [16].

The previously indicated possibility to view polynomial time computable
functions as the “recursive” functions of a generalized recursion theory is
made explicit in forthcoming work by Moschovakis.

We do not assume in this paper any knowledge from complexity theory.
In particular we try to define and illustrate all concepts from complexity
theory that we use.

2. On the limits of recursion theoretic arguments in complexity theory

We assume that the reader is familiar with the standard definition of a
Turing machine (abbreviated: TM). A set of binary strings is in the class P
if its characteristic function can be computed by a deterministic TM in time
p(n) for some polynomial p (n is the length of the input for the considered
computation). The only new feature of a nondeterministic TM N is that its
transition function is multiple-valued. Thus for every input w one has
instead of one computation a tree of many different computations of TM N
on this input. One says that N accepts input w if one of the branches in the
tree ends with an accepting final state (assume that all final states of N have
been partitioned into accepting and nonaccepting states). N accepts w in
time ¢ if there is at least one such branch of length < ¢ (or one can demand
that every accepting branch has length <t — it does not make a difference
in the following). Finally one says that a set of binary strings is in the class
NP if there is a nondeterministic TM that accepts exactly the strings in this
set and further accepts each string of length n in time p(n) for some
polynomial p. Notice that for sets in NP there is an asymmetry between
being in the set and being out of the set, similarly as for recursively
enumerable sets.

It is tempting to view the classes P and NP as downward projections of
the classes of recursive and recursively enumerable sets. Note that one may

144 W. MAASS

view the clements of a recursively enumerable set f[N], where f is some
total recursive function, as those elements w that are accepted by a
nondeterministic TM that tries in each computation branch a different
argument x and halts at the end of the branch in an accepting state iff
fix)=w

Unfortunately so far one cannot answer even the most basic questions
about this downward projected recursion theory (e.g. P = NP?). BAKER et
al. [2] have shown that the situation is even worse. They consider
relativizations P® and NP? of P and NP where the attached “oracle” O is
some set of binary strings. One can usc e.g. oracle-TM’s like in recursion
theory to define such relativized complexity classes. An oracle-TM may ask
its attached oracle O at any time and as often as it likes during the
computation whether the string u that it has currently written on its special
oracle-tape is in the set O or not. The oracle O gives in one step the
correct answer. General experience says that every recursion theoretic
argument “‘relativizes”, i.e. remains valid if one attaches the same oracle O
everywhere in the argument (for an arbitrarily chosen set O). This
relativized argument proves then an accordingly relativized theorem.
BAKER et al. [2] show that it is impossible to prove P = NP or P # NP by an
argument that relativizes. They do this by constructing via simple dlagonal-
ization sets A and B s.t. P* =NP* and P"# NP".

This result leaves the possibility open that one can get under the
assumption P # NP via recursion theoretic arguments a clear picture of the
structure of the classes P and NP (following the standard tradition in logic
to take as an axiom what one cannot prove). The following result shows
that there are also limitations to this program.

TueOREM 2.1 (HOMER and Maass [14]). The following statements S are
“independent” from the assumption P # NP in the sense that there are
recursive sets A and B s.t. P* #NP* and S* but P #NP® and — S*:

(1) every infinite set in NP has an infinite subset that is in P,

(2) there are simple elements in the lattice of NP-sets (with set theoretic
inclusion),

(3) there is a set U in NP that is universal for P, ie. P=
{{v I(v,w)e U}Iw a binary string} for some standard pairing operation

(._.>.

To prove Theorem 2.1 one splits for each statement S the desired
properties of A resp. B into infinitely many requirements. One constructs
A and B in stages s.t. gradually all requirements become satisfied. This

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 145

construction is somewhat delicate because there arise conflicls between
requirements of different types. One possible way to solve such conflicts is
to use a finite injury priority construction. Alternatively — since one has in
these constructions a recursive a priori bound on the stages where an
earlier attempt might be injured — one can eliminate with some additional
work all injuries. On the other hand, one encounters usually still delays of
the activities for a given rcquirement and in order to show that cach
requirement is only finitely long delayed onc has to argue like in a finite
injury priority argument. In general it may be appropriate to view a delay
of a requircment in the restricted world of constructions of recursive sets
(instead of recursively enumerable sets) as a form of injury.

Following Theorem 2.1 a large number of similar “independence”
results has been found (see references in Josepn [16]).

What methods remain that might possibly answer the mentioned ques-
tions from complexity theory if recursion thcoretic arguments (actually
more generally: arguments from mathematical logic) do not suffice? We
would like to mention two possible escapes. If one proves (by any
argument) that a concrete NP-complete problem (say HAMILTONICITY)
is not in P then this proof of P # NP does not relativize. There is not even a
natural definition of HAMILTONICITY® for an oracle O. Second one
might analyze more closely the concrete structure of computations on a
specific computation model. In general such arguments do not remain valid
if one adds an oracle tape to the computation model. Thus in any case it
appears to be unavoidable that the recursion theorist gets “his fingers
dirty”.

3. Approximation algorithms

In this section we apply a strategy that is familiar from recursion theory
in order to design approximation algorithms.

The following computational problem arises in the context of motion
planning and positioning of robots:

Given: n points in Euclidean space (e.g. spots that have to be welded by
a robot) and some type of industrial robot.

Wanted: a minimal number k of positions for the base of the robot s.t.
* each of the n points can be reached by the arm of the robot from one of
these k positions.

We look first at the 1- and 2-dimensional versions of this problem.
Assume that all given points lie in a fixed horizontal plane. Assume that

146 W. MAASS

from any fixed base position the arm of the robot can reach any point that
has a distance between r and r+ w from the (vertical axis through the)
base of the robot, where r and w depend on the flexibility of the arm of the
considered type of robot. Thus we arrive at the mathematical problem of
covering n given points in the Euclidean plane by a minimal number of
rings with inner radius r and outer radius r+w. "Unfortunately the
following result suggests that no computer is able to solve this problem (for
nontrivial sizes of n).

TheoReM 3.1 (FOWLER, PATERsON and TamiMOTO [6]). The problem whether
n given points in the Euclidean plane can be covered by k rings of inner
radius r and outer radius r + w is strongly NP-complete (even if we fixr =0,
i.e. consider only discs).

We would like to explain briefly to those readers that are not familiar
with nondetermininistic computations what this means. It is easy to see
that the considered problem (which we identify with the set
{{{x i) ee oy (Xns Yu)y 1 W, k)lthe n points with coordinates (x;, y;) can be
covered by k rings of inner radius r and outer radius r + w; all numbers are
rational}) lies in the class NP. A nondeterministic Turing machine (see
definition in Section 2) just guesses the positions of up to k rings and
checks whether all points are covered by these rings. If a tuple
(X1, Y1« - -+ (X Yu), 1, W, k } is in the considered set then along some branch
of the computation tree of the nondeterministic computation the TM
guesses k ring positions that cover all points and therefore it halts at the
end of this branch in an accepting state. Since it takes only polynomially
many steps (in the length of the considered tuple) to write down k guessed
ring positions and to verify that all n points are covered (assume that one
can compute in one step the distance between two points), this accepting
branch is of polynomial length in the size of the input. Thus the problem is
in NP. To say that the problem is NP-complete means that it is in NP and
that every other problem in NP can be reduced to it by a deterministic
polynomial time computable function (like in many-one reducibility). This
implies that the problem is not in P unless P=NP. Strong NP-
completeness means that this holds even if we write down the data of the
problem in unary code (which makes the size of the input much longer).

Notice that if we cannot compute in polynomial time the minimal
number k of rings that are needed for a covering, we certainly cannot
compute an optimal covering in polynomial time.

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 147

We refer to GAREY and Jounson {7] for further information about
NP-completeness.

Usually one can escape NP-completeness in geometric location problems
by looking only at special cases that are essentially 1-dimensional. In our
case one might want to consider given points on a straight line (or on a
fixed number of parallel lines). Notice that the intersection of a ring with a
straight line is a pair of closed intervals. Unfortunately our problem is quite
obnoxious.

THEOREM 3.2 (MAAss [18]). The problem whether n given points on the line
can be covered by k pairs of closed intervals of length w and distance 2r is
strongly NP-complete.

Does NP-completeness imply that it is hopeless to attack these problems
on a computer? No, because even NP-complete problems may have good
approximation algorithms (another possibility would be to look at random-
ized algorithms, a third possibility would be to show that P = NP). Instead
of a minimal number of robot positions an approximation algorithm for the
considered problem computes a nearly minimal number of robot positions
from which all points can be reached. If for an instance I of our problem
OPT(1) is an optimal solution and A([) is an approximate solution that is
produced by approximation algorithm A one calls

LIA(D)[-]OPT()] |
|OPT(D)]

the error of A on instance I (|OPT(I)|, |A(I)] are the numbers of robot
positions that are used in the respective solutions). One calls A a
polynomial time approximation scheme for some combinatorial optimiza-
tion problem II if the scheme A provides for every given £ >0 a
polynomial time approximation algorithm A, that has error <e¢ for all
instances I of II.

Not all NP-complete problems have good approximation algorithms. In
particular polynomial time approximation schemes for strongly NP-
complete problems are very rare (see [7]).

We sketch in the rest of this section the construction of polynomial time
approximation schemes for the considered strongly NP-complete prob-
lems. We will also point out how one can view these constructions as the
construction of winning strategies in certain 2-person games. Our winning
strategy employs a system of complementary strategies with the properties
that we described in Section 1.

148 W. MAASS

TneorReM 3.3 (HocuBauM and MAass [13]). For every finite dimension d the
problem of computing for n given points in d-dimensional Euclidean space
positions for a minimal number of d-dimensional balls with radius w that
cover all n points has a polynomial time approximation scheme (this problem
is strongly NP-complete for d =2).

Proor. It is sufficient to illustrate the idea for d = 2. For a given £ >0 we
describe a polynomial time approximation algorithm A,. Fix a natural
number [s.t. (1 + 1/1) <1+ ¢. Cut the 2-dimensional Euclidean plane into
vertical strips of width [- 2w. We use the divide-and-conquer method and
solve the covering problem separately in cach strip. We then take the union
of all discs that we use for the coverings in the strips and get a covering of
all n given points. The problem with this approach is that it may cause an
error > €. This occurs in particular if most of the given points happen to lie
close to a cut line.

To view algorithm design as a 2-person game one imagines that player I
(“we™) wants to produce an algorithm with the desired properties and
player 11 (“opponent”) wants to construct an instance of the considered
problem where player I's algorithm fails. In the preceding situation player
Il can win by placing most of the n given points in suitable positions close
(i.e. in distance <2w) to a cut line of player I's algorithm. Player I is now
more clever and uses instead of one strategy S for cutting the plane into
strips of width [- 2w, [different strategies Si,..., S where S, =S and §;.,
results from S; by shifting all cut lines of strategy S; over a distance 2w to
the right. The rationale behind this approach is that if player II decides to
place e.g. most of the n points close to the cut lines of strategy S, he must
place accordingly fewer points close to the cut lines of the other strategies
S.. This implies that one of the strategies S; causes a relatively small error.
More precisely each disc of a fixed optimal global solution is cut by a cut
line of at most one strategy S,. Thus for some S; the cut lines of S, cut at
most 1/ of these discs. Further the number of additional discs (compared
with the fixed optimal solution) that the divide-and-conquer strategy S;
uses can be bounded by the number of discs in the fixed optimal solution
that are cut by a cut line of this strategy S,. Therefore some strategy S;
causes an error <1/

So far we have assumed that each strategy S; computes an optimal
covering in each of its strips of width { - 2w. Since we do not know how to
do this in polynomial time, we use again for each strip an approximation
algorithm. We cut now the considered strip by horizontal lines in distance
[- 2w and apply again the divide-and-conquer method. In each resulting

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 149

I-2w x 2w square we can afford to compute an optimal covering by
exhaustive scarch becausc this takes orily polynomially in m many steps
(where m is the number of points in that square). We use here the fact that
at most 2% discs are needed for an optimal covering of such square.
Further every disc in an optimal covering that covers more than one of the
given points has w.Lo.g. at least two of the given points on its periphery and
these two points determine its position up to (wo possibilitics.

Of course we may again produce an error > ¢ by this divide-and-
conquer method for the considered strip. Therefore we try [diferent
substrategics T,..., Ty for cutting this strip into | -2w X1 2w squarcs,
where Ti., results from T, by moving all cut lines of T; upward over
distance 2w. Some T, is guarantced to cause in this strip an error < 1/I
(same argument as before).

Altogether approximation algorithm A, proceeds as follows. It tries
successively | strategics S.,..., S for cutting the plane into vertical strips
of width [-2w. Separately for each strip that arises in some S, it tries
successively [substrategies T,,..., T; for cutting it into [-2w x[-2w
squares. For cach resulting square it computes an optimal covering by
exhaustive scarch. It returns with the resulting covering from that sub-
strategy T; which uses the fewest discs. Finally A, outputs the covering
of the n given points which arises from that strategy S; which uses the
fewest discs.

By the preceding A, uses at most (1 +1/1)*+|OPT(I)] discs. It is easy to
verify that the running time of A, is polynomial in n and w.

Compared with a “supermind” which knows immediately the best
cutting strategy the previous algorithm A, has to try various guesses at the
opponent’s strategy. A, has to pay for this lack of knowledge with a time
penalty: a factor of I? in the time bound for A, . These dclays coyrcspond to
the injurics in a finite injury priority construction.

Concerning the problem from Theorem 3.1 one gets in the same way a
polynomial time approximation scheme for each fixed bound on the
“nonconvexity” measure r/w of the covering rings. For the 1-dimensional
problem there is a more subtle approach that allows to eliminate the term
r/w from the exponent of the time bounds. This yields the following result.

THEOREM 3.4 (HocHBAauM and Maass [12]). There is a polynomial time
approximation scheme for the strongly NP-complete problem of Theorem 3.2.

One can improve the time bounds of the previous approximation

150 W. MAASS

algorithms considerably by using insight into the combinatorial resp.
geometrical structure of an optimal local covering (see Sections 5 and 6 in
[12]). :

Of course one gets in the same way approximation schemes for covering
with objects of various other shapes. A nice application is the problem of
covering given points with a minimal number of squares, which comes up in
image processing [26]. Also the same methods happen to provide polyno-
mial time approximation schemes for NP-complete packing problems
where one wants to pack without overlap a maximal number of objects of a
given size and shape into a given area (JOHNsON [15] describes how such
problems arise in the context of VLSI-design).

4. Lower bounds for Turing machines

The generic question of machine-based complexity theory is the follow-
ing. Given are two classes T, and T; of mathematical models for compu-
ters, where models of type T, appear to be more powerful than those of
tvpe T,. Find the slowest growing function Sr, +, s.t. any model of type T
whose time bound is 1(n) (for some function f(n)) can be simulated by a
model of type T, with time bound O(Sr,.r,(¢(n))) (simulation just means
that the same output is produced on the same input). Nonlinear lower
bounds for Sr,r, tell us that models of type T are in fact more powerful
and the precise growth rate of Sr,r, provides a quantitative measure for
the superiority of models of type T over models of type T\.

Questions of this form arise quite frequently in computer science, e.g. if
one wants to make an intelligent choice between several competing designs
for hardware or software. Such questions also arise in more theoretical
considerations where one wants to classify the inherent computational
difficulty of mathematical problems (which often can be determined only
for a special type of computer model, e.g. only for nondeterministic
machines).

Unfortunately questions of the considered type have only been solved
for very few classes T, and T:. The most prominent open problem is the
instance where T, is the class of deterministic Turing machines and T is
the class of nondeterministic Turing machines (P 2 NP problem, S+ 1, is
nonlinear by [22]). Many other open problems of the considered type are .
not related to nondeterminism. This suggests that there is not just a single
“trick” missing (the one that shows P # NP). Rather a new mathematical

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 151

area has to be developed that provides techniques for sharp lower bound
results.

We want to report in this section about some new results in this area,
that rely on the method of playing simultaneously several strategics against
the opponent in a 2-person game. We will describe primarily those aspects
that are relevant to this aspect and refer to Maass [19] for all missing
details.

The first problem that we consider is the instance where Ty is the class of
I-tape deterministic Turing machines and T is the class of 2-tape deter-
ministic Turing machines. We assume that every Turing machine (TM)
possesses besides its work tapes (whose number we indicate) an additional
onc-way input tape (onc-way mcans that the associated head can move
only in one direction). Further one head is associated which cach tape. All
hcads may move simultancously.

The problem of comparing these two classes Ty and T is actually quite
old. Traditionally only I-tape TM’s have been considered. 2-Tape TM’s
emerged right at the beginning of machine-based complexity theory
because one can write for these machines programs that run substantially
faster than all known programs for 1-tape TM’s. Unfortunately although
similarly fast programs have not been found, one was neither able to prove
that they do not exist. The obvious disadvantage of a I-tape TM is the fact
that it needs (Z(l - d) steps to move on its work tape a string of / symbols
over a distance of d cells, while a 2-tape TM can do this in time O(/ + d).
This observation allows to prove easily quadratic lower bounds for a weak
form of 1-tape TM’s that do not have an extra input tape (they receive the
input on the work tape), see HEnNIE [11]. E.g. such machine cannot
compute for any 8 >0 in O(n*~") steps whether a string x; -+ * Xayi* ** ya is
a “palindrome”, i.e. for all i:y; = xy.1-;. The 1-tape TM with an cxtra
one-way input tape — this is the model that is usually studicd in the current
lower bound literature — is quite a bit more powecrful and can c.g.
recognize palindromes in linear time. In addition for more difficult
problems such 1-tape TM has the option to choose a clever *‘datastructure™
for the representation of the input on its work tape which makes it
unnecessary to perform during the computation a lot of time-consuming
copying operations. In particular, the machine can use several “tracks™ on
its single work tape and it may also write immediately each input symbol
that it reads from the input tape at a number of different locations on the
work tape. In order to get strong lower bound results for the function S1,.r,
in question one has to show that all these tricks cannot help. On the other
hand, there are related situations where the use of clever datastructures

152 W. MAASS

helps very well. For example one can simulate a k-tape TM with time
bound t(n) by a 2-tape TM without a severe time loss in time
O(t(n) - log t(n)), for any k >2 (HenNiE and STEARNS [10]).

The best known upper bound for the function St,.r, in question is
S1,1.(m)=0O(m?) (HARTMANIS and STEARNs [8]). The best known lower
bound result shows that not Sy, 7,(m)=O(m - loglog m) (Duris et al. [4];
one should also mention related earlier work by RABIN [23], AANDERAA [1]
and PauL [21]).

THeEOREM 4.1. For no 8 >0, Sy, r(m)=0(m*"*).

Another open problem of the considered type (see DuRis et al. [4] for a
recent list of open problems, we solve here 1. and 7.) deals with the classes
TV of nondeterministic 1-tape TM’s and T5 of nondeterministic 2-tape
TM's. The HARTMANIS and STEARNSs simulation [8] provides again the best
upper bound Sryry(m)=0(m?) and the best lower bound result shows
that not Syy.ry(m)=O(m - loglog m) (Duris et al. [4]).

Strong lower bounds for nondeterministic 1-tape TM’s are a bit more
difficult. Notice that these machines accept e.g. some NP-complete prob-
lems like 3-COLORABILITY in linear time. Further in terms of the
previously discussed possibilities a2 nondeterministic 1-tape TM has an
important additional tool. In order to simulate a 2-tape TM without
significant time loss it can choose for each input an “individualized”
data-structure on its work tape, which facilitates the particular computa-
tion that is performed on this particular input. In addition Book et al. [3]
have proved that for any k > 2 one can simulate a nondeterministic k-tape
TM by a nondeterministic 2-tape TM without any increase in computation
time. Furthermore for alternating TM’s (which iterate nondeterminism)
PauL et al. [20] have shown that for any k > 1 one can simulate a k-tape
alternating TM by a 1-tape alternating TM without any increase in
computation time.

THeoreM 4.2. For no 8 >0, Sryy(m)=0(m*™").

So far we have compared classes that have the same control structure but
different storage facilities. We consider now pairs of classes which have the
same storage facilities (one work-tape besides the one-way input tape) but
different control structures. We write DTIME(¢(n)) and NTIME(t(n))
for the classes of sets that are accepted by deterministic resp. nondeter-
ministic 1-tape TM’s (always with an additional one-way input tape). We

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 153

write CO-NTIME,(1(n)) for the class of sets whose complement is in
NTIME,(t(n)).

THEOREM 4.3. NTIME,(n)Z U;.o DTIME(n*™*).
THEOREM 4.4. CO-NTIME,(n)Z U,.oNTIME(n*"*).

Notice that Theorem 4.4 implies Theorem 4.3. In a somewhat related
result PauL et al. [22] have shown that

NTIMEy(n)Z U DTIME, (n - (log* n)").
LE]]

Concerning stronger scparation results the authors of [22] point out that
their method might yield at best an n - log n lower bound. We use here a
different type of argument (analysis of the structure of computations for
concrete languages) which seems to have no a priori limitations. We
construct a language L, that satisfies the following lemmata (which
obviously imply Theorems 4.1-4.4).

LEMMA 4.5. L, is accepted by a deterministic 2-tape TM in linear (even
real) time.

LEMMA 4.6. The complement of L, is accepted by a nondeterministic 1-tape
TM in linear (even real) time.

LEMMA 4.7 '(Main Lemma). There is no 8§ >0 s.t. L, is accepted by a
non-deterministic 1-tape TM in time O(n*™").

The language L, consists of finite sequences of symbols 0, 1, 2, 3, 4. We
interpret these symbols as commands that tell a deterministic 2-tape TM
M’ to perform certain operations and tests. We assume that initially M’ is
always in “writing mode”. In this mode M’ copies the initial segment of its
input Y from left to right on both work tapes until it encounters in the
input a first symbol z & {0, 1}. M’ rejects the input unless z =4. M’ changes
now into the “testing mode" (it never changes back to the writing mode).
M’ always interprets the symbol 4 as the command to change the direction
of movement for both of its work heads. M’ interprets 2(3) as the command
to move work head 1(2) one cell in the currently required direction. M’ in
testing mode interprets a symbol y €{0,1} as the command to test
whether the work head that moved last reads currently the symbol y. We

154 W. MAASS

put a string Y in L, if all these test that M’ performs for input Y have a
positive outcome. With this definition of L, we have proved simultaneously
Lemma 4.5. The proof of Lemma 4.6 is also quite obvious.

As an example for words in L, we note that a binary string
Xi* o XaY1*+* Yo is @ palindrome iff the string x, -+ - x,42y,2y,+ -+ 2y, is in
L,. For the lower bound argument we will consider words in L, of the
following structure. Let X =x,---x, be a binary string and let L =
L. l....and R =r,r,... be two sets of subsequences of consecutive bits
(“blocks™) from X. We assume that the blocks in L and R are listed in the
order of their occurrence from right to left in X. Let - --l, and r,; -+~ 1,
be the symbols of block I resp. r; in the order of their occurrence in X from
right to left. Let d,(i) (d.(i)) be the number of bits between blocks / and
I,y (r; and 1.y) in X. Further let d,(0) (d. (0)) be the number of bits in X to
the right of block I, (r,). Then the following string is in L,:

Xy x,.42 e 221|_|21|.2 v 21|_p3 e 33r|_|3r|_z e 3r..,,2 e 2212_|212_2 PISHG le_p
[S—) N —t [S—
d,{0) times d, (0) times d, (1) times

3:-:33r.43r2 -+ 3, + + - (elc., alternating through all blocks of L and R).
[
d (1) times

We view the proof of Lemma 4.7 as a 2-person game where player I
(“we”") wants to prove the claimed lower bound and player II (“opponent’)
claims to have a counterexample. The opponent starts the game by
choosing a nondeterministic 1-tape TM M and constants 8, K >0. He
claims that M accepts L, in time K - n°~" Player I continues the game by
choosing an input X" Z in L, on which he tests M. X" Z is chosen as
follows.

We assume that some canonical way of coding TM’s M by binary strings
has been fixed. We write | M| for the length of the binary string that codes
M. The first part X = x,-- - x, of the input is a binary string s.t. K(X)=
n >|M|. Here the Kolmogorov complexity K(X) is defined as

K(X):=min{| M || M is a TM which produces
(for the empty input) output X}.

The notion of Kolmogorov complexity has been introduced into com-
plexity theory by PauL (see [2]). Its advantage is that if K(X)=|X|>|M|
we can be sure that TM M has nearly no special knowledge about X (X
looks like a random string to M).

We define for the rest of this section 7i:=n'"*”. Note that (for large n) i’
is bigger than the time bound for M.

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 155

To motivate the choice of the second part Z of the input we first give a
result that holds for any Z.

LemMA 4.8 (“Desert Lemma’”). Assume that C is an accepling computation
of TM M on input X " Z with no more than K(10n - log n)"™* steps (n is the
length of string X). Then for large enough n there is an interval D (* desert’’)
of ii cells on the work tape of M and there are two sels L and R s.t. both L and
R contain exactly ii/2—2n"'"*" blocks B from X with |B|= n"" for each B
and s.t. in computation C the work head of M is always left (right) of D
while its input head reads from a block B in X that belongs to L (R).

The proof of Lemma 4.8 requires a lengthy combinatorial argument
which we cannot give here. One uses in particular that among any i cells
on the work tape of M there is one which is visited during at most s steps.
This may be viewed as playing i substrategies against the opponent — one
of which is guaranteed to win.

If we put ourselves for a moment in the easier situation of the proof of
Theorem 4.1 where the opponent’s [-tape TM M is a deterministic
machine, we arc after Lemma 4.8 already quite close to the completion of
the proof. In this case the first part of the computation C of M on input
X" Z until the step t, where M’s input hcad moves onto the first symbol of
Z does not depend on Z. Therefore we need not specify Z before step fa.
Lemma 4.8 deals only with the part of C before step f,. Thus we can use the
sets L and R that are provided by Lemma 4.8 for the definition of Z. From
L and R we define Z as in the example right after the definition of L,, with
p:=n®", L:=L, R:= R. Then we can complete the proof by using Lemma
4.10 below (call every subsequence of Z an L — R pair that consists of the
commands to check a block from L and to check in immediate succession a
block from R).

When we return now to the proof of Lemma 4.7 (the nondeterministic
case) we see that our strategic situation is much weaker. In this case the
first part of computation C until step f depends already on the second part
Z of the input (e.g. M may choose a representation of X on its work tape
that facilitates the particular test sequence Z; technically M can guess Z
while reading X and verify its guesses later while reading Z). But if we
define already Z before the beginning of the computation, with some
arbitrarily chosen sets L, R in the way of our previous example, we can
hardly expect that the opponent is so kind to arrange C s.t. the sets LR
that come out of Lemma 4.8 are the same — or even similar — to the sets
L, R we started with. Therefore we use a system of several diffcrent

156 W. MAASS

strategies agamsl the opponent. We use in our first strategy a guess L), R,
at the future L, R that may be totally wrong. But if this is the case we learn
at least something about the opponent and the second guess L,, R, that we
use in our second strategy is designed to approximate any L, R that are
totally different from L,, R,. Analogously Li, R, is designed to approxi-
mate any L, R that are totally different from L,, R, and L,, R,. Altogether
we design a system of log /i *“‘guesses” L, R; and we use L;, R; to define
the ith section Z; of Z. Z, is defined from L,, R, exactly as the string in our
previous example had been defined from sets L, R. Z, is a similar
command sequence that tells the 2-tape TM M’ to check in alternation the
blocks in L; and R, the first ones with head 1, the second ones with head 2.
This is done on M’ during one sweep from left to right of both heads. Z,
uses like Z, a sweep from right to left to check in alternation the blocks in
L_\g R.‘-

We partition X into /i blocks of length n**, We number these blocks in
X from left to right by binary sequences of length log /i (assume w.l.o.g.
that log #i is a natural number). We say that two blocks are i-connected if
their associated binary sequences differ exactly at the i-last bit. If two
blocks are i-connected we put the left one into L; and the right one into R;.

Finally we define Z:=Z,"- - -" Z,,, a. Notice that any two blocks from X
that are i-connected for some i are tested in immediate succession
somewhere in command sequence Z. It is obvious that X" Z € L,.

We have now specified the complete input X“Z and Lemma 4.8
provides for this input a “desert” D and two sets L, R of i/2—2n'"*"
blocks each. We call a subsequence of Z an L-R pair if it consists of the
commands to check in immediate succession two blocks b,, b; from X s.t.
one belongs to L and the other to R.

LemMMA 4.9. Assume that the i blocks of X have been partitioned into any
three sets L, R, G (G consists of those blocks that are neither in L nor in R).
Then there are at least min{|L|,|R|}—|G |log i L-R pairs in the previ-
ously defined sequence Z.

PrOOF OF LEMMA 4.9. We verify now that our previously described tactic —
where we play a system of logri strategies against the opponent — is
successful. Assume for simplicity that G =@ and |L| =|R | = i/2. We view
the partition into L, R as a coloring of the blocks in X. Consider the case
where our first strategy fails completely and Z, contains no L-R pair. This
implies (by the definition of L,, R, respectively the definition of “1-
connectcd™) that the first and second block in X have received the same

RECURSION THEORETIC ARGUMENTS IN COMPLEXITY THEORY 157

color, the third and fourth block in X have received the same color, etc.
Assume in addition that the second strategy fails completely and the
second section Z, of Z contains also no L-R pair. Together with the
previous information this implies that the first through fourth block in X
have the same color, the fifth through eighth block in X have the same
color, etc. Apparently, this cannot go on for all sections Z,,..., Z.: of Z
because otherwise all blocks in X would have reccived the same color, a
contradiction to |L|=|R|= /2.

It is not difficult to fill in the precisc proof of Lemma 4.9, which proceeds
by induction on log .

Lemma 4.9 implies that for the two sets L, R that have been provided by
Lemma 4.8 there are at least /i/2—6n'"*?logii L-R pairs in Z, which is
more than i/4 for large n. The final knockoult is delivered by the following
lemma.

LemMA 4.10. For at least 1/3 of the L-R pairs in Z the work head of M
crosses the iif3 cells in the middle of desert D during those steps where its
input head reads from that L-R pair in Z.

The proof of Lemma 4.10 requires a lengthy combinatorial argument.
The intuition is that M cannot too often check blocks from X (as
demanded by Z) without moving its work head close to the area where it
had written notes about this block while reading the corresponding part of
X. Of course one has to be aware that M may have written down each
block at several locations and it may also have spread information about
each block to other areas during its later head movements.

Lemma 4.10 implies that the work head of M crosses (for large n) at
least 1/3+7i/4 often the 7i/3 cells in the middle of desert D. This takes at
least 7i°/36 steps, which exceeds for large n the time bound of
K(10n -logn)** steps for machine M on input X" Z This finishes the
proof of Lemma 4.7.

References

[1] AANDERAA, S.O., 1974, On k-tape versus (k —l)-tape real time computations, in:
Complexity of Computation, R.M. Karp, ed., SIAM-AMS Proceedings, Vol. 7 (AMS,
Providence), pp. 75-96.

[2] BAkER, T., GiLL, J. and SoLovAy, R., 1975, Relativizations of the P 2 NP question,
SIAM J. Comput 4 (4), pp. 431442,

IS8 W. MAASS

[3] Book, R.V., GREIBACH, S.A. and WEGBREIT, B., 1970, Time and tape bounded Turing
acceptors and AFL’s, J. Comput. Syst. Sci. 4, pp. 606-621. .

[4] Duris, P., GALIL, Z., PAuL, W. and REISCHUK, R., 1983, Two nonlinear lower bounds,
Proceedings of the STOC Conference of the ACM, pp. 127-132.

[5] Fenstap, J.E., 1980, General Recursion Theory: An Axiomatic Approach (Springer,
Berlin).

[6) FowLER, R.J.. PATERsON, M.S. and Tammorto, S.L., 1981, Optimal packing and
covering in the plane are NP-complete, Inform. Process. Lett. 12, pp. 133-137.

{7} Garev. M.R. and JoinsoN, D.S., 1979, Computers and Intraciability (Freeman, San
Francisco).

(8] HARYMANS, J. and STEARNS, R.E., 1965, On the computational complexity of algorithms,
Trans. AMS 117, pp. 285-306.

[9] HARIMANIS, J. and HOPCROFT, 1., 1971, An overview of the theory of computational
complexity, 3. ACM 18, pp. 444-475.

(10] Hennig, F.C. and SteARNS, R.E., 1966, Two-tape simulation of multitape Turing
machines, J. ACM 13, pp. 533-546,

[11] HenNig, F.C., 1965, One-tape, off-line Turing machine computations, Information and
Control 8, pp. 553-578.

[12] HocusauM, D.S. and Maass, W., Fast approximation algorithms for a nonconvex
covering problem, to appear.

[13] HocHsaumM, D.S. and Maass, W., 1985, Approximation algorithms for covering and
packing problems in image processing and VLSI, J. ACM 32, pp. 130-136.

[14] HoMER, S. and Maass, W., 1983, Oracle dependent properties of the lattice of NP-sets,
Theoret. Comput. Sci. 24, pp. 279-289.

[15] Jounson, D.S., 1982, The NP-completeness column: an ongoing guide, J. Algorithms 3,
pp- 182-195.

{16]) Joserii, D., 1983, Three proof techniques in complexity theory, to appear in Proceedings of
a Conference on Computational Complexity Theory in Santa Barbara (March 1983).

(17} Maass, W., 1983, Characterization of recursively enumerable sets with supersets effectively
isomorphic to all recursively enumerable sets, Trans. AMS 279, pp. 311-336.

[18] Maass, W., On the complexity of nonconvex covering, SIAM J. Comput., to appear.

[19] Maass, W., 1984, Quadratic lower bounds for deterministic and nondeterministic one-tape
Turing machines, Proc. STOC Conf. ACM, pp. 401-408.

[20] Paur, W.J., PrAuss, E.J. and REISCHUK, R., 1980, On alternation, Acta Informatica 14,
pp. 243-255.

{21] PauL, W.J., 1982, On-line simulation of k + 1 tapes by k tapes requires nonlinear time,
Proceedings of the 23rd IEEE FOCS Conference, pp. 53-56.

[22) PAuL, W.J., PIPPENGER, N., SZEMERED!, E. and TROTTER W.T., On deferminism versus
nondeterminism and related problems, Proccedings of the 24th IEEE FOCS Conference.

[23] RaBiIN, M.O., 1963, Real time computation, Israel J, Math, 1, pp. 203-211.

[24] Soare, R.L, 1981, Computational complexity and recursively enumerable sets, to appear
in Proceedings of the Workshop on Recursion Theoretic Approaches lo Computer
Science (Purdue, May).

[25] SoaRk, R.L., 1984, Recursively Enumerable Sets and Degrees: the Study of Computable
Functions and Computably Generated Sets (Springer, Berlin).

Added in proof. Some improvements and detailed proofs of the results in Section 4 can be
found in: MAAss, W., Combinatorial lower bound arguments for deterministic and nondeter-
ministic Turing machines, Trans. AMS, to appear.

