
Roadmap on Neuromorphic Computing and Engineering

3.4 – Learning-to-Learn for Neuromorphic Hardware
Franz Scherr, Wolfgang Maass, Inst. of Theor. Computer Science, TU Graz

Status

An important goal for neuromorphic hardware is to support fast on-chip learning in the hand of a

user. Two problems need to be solved for that:

1. A sufficiently powerful learning method has to run on the chip, such as stochastic gradient

descent.

2. It needs to be able to generalize from a single example (one-shot learning), or at least from

very few.

Evolution has found methods that enable brains to learn a new class from a single or very few

examples. For instance, we can recognize the face of a new person in many orientations, scales, and

lighting conditions after seeing it just once. But this fast learning is supported by a long series of

prior optimization processes of the neural networks in the brain during evolution, development, and

prior learning. In addition, insight from cognitive science suggests that the learning and

generalization capability of our brains is supported by innate knowledge, e.g. about basic properties

of objects, 3D space, and physics. Hence, in contrast to most prior on-chip learning experiments in

neuromorphic engineering, neural networks in the brain do not start from a tabula rasa state when

they learn something new.

Learning from few examples has already been addressed in modern machine learning and AI [1]. Of

particular interest for neuromorphic applications are methods that enable recurrently connected

neural networks (RNNs) to learn from single or few examples. RNNs are usually needed for online

temporal processing —an application domain of particular interest for energy-efficient

neuromorphic hardware. The gold standard for RNN-learning is backpropagation through time

(BPTT). While BPTT is inherently an offline learning method that appears to be off-limit for online on-

chip learning, it has recently been shown that BPTT can be approximated quite well by

computationally efficient online approximations. In particular, one can port the online broadcast

alignment heuristic from feedforward to recurrent neural networks [2,3]. In addition, one can

emulate the common LSTM (long short-term memory) units of RNNs in machine learning by

neuromorphic hardware-friendly adapting spiking neurons. Finally, a computationally efficient online

approximation of BPTT —called e-prop— works well for recurrent networks of spiking neurons

(RSNNs), also with adapting neurons [3]. The resulting algorithm for on-chip training of the weights

𝑊𝑗𝑖 for neuron 𝑖 to neuron 𝑗 of an RSNN —for some arbitrary but differentiable loss function 𝐸—

takes there the form
𝑑𝐸

𝑑𝑊𝑗𝑖
= ∑ 𝐿𝑗

𝑡
𝑡 𝑒𝑗𝑖

𝑡 . The so-called learning signal 𝐿𝑗
𝑡 at time 𝑡 is some online

approximation to the derivative of the loss function 𝐸 with regard to the spike output of neuron 𝑗,

and 𝑒𝑗𝑖
𝑡 is an online and locally computable eligibility trace. If one optimizes the learning signals 𝐿𝑗

𝑡

and the initial values of the weights 𝑊𝑗𝑖 via Learning-to-Learn (L2L) for a range ℱ of potentially user-

relevant tasks 𝐶, these can be learnt from very few examples, see Figure 1 and [4, 5].

Current and Future Challenges

The main choices that have to be made for such realization of fast on-chip learning are the choice of

the family ℱ of tasks, the choice of the optimization method for offline priming through the

definition of hyperparameters, and the choice of the hyperparameters. Options for the latter are for

example

Roadmap on Neuromorphic Computing and Engineering

1. Just the learning rate parameters of on-chip learning rules are hyperparameters.

2. Also the values of all synaptic weights of the RSNN are hyperparameters.

3. Only the initial values of the synaptic weights of the RSNN are hyperparameters.

4. In addition all parameters of an auxiliary NN —the learning signal generator— that

generates online learning signals 𝐿𝑗
𝑡 for fast convergence of e-prop are hyperparameters.

Option 1 has been explored for RSNNs in [6, 7], and with an application to analog neuromorphic

hardware in [8]. Option 2 is arguably the most commonly considered application of L2L in machine

learning and computational neuroscience models [5, 9-13]. An attractive feature of this option for

realizing fast on-chip learning is that it requires no synaptic plasticity for that. Rather, it uses hidden

variables of the RNN for storing information from the few training examples that are needed for fast

learning. In the case of machine learning, these hidden variables are the values of memory cells of

LSTM units. In spiking neural networks these are the current values of firing thresholds of adapting

neurons. An alternative is to choose only some synaptic weights to be hyperparameters, and to

leave others open for fast on-chip learning [14]. Option 3 is used by the MAML approach of [15],

where only very few updates of synaptic weights via BPTT are required in the inner loop of L2L. It

also occurs in [4] in conjunction with option 4, see Figure 2 for an illustration.

One common challenge that underlies the success of all mentioned options, is the efficacy of the

training algorithm for the offline priming phase, the outer loop of L2L. While option 1 can often be

carried out by gradient-free methods, the more demanding network optimizations of the other

options tend to require BPTT for offline priming of the RNN.

Advances in Science and Technology to Meet Challenges

It is quite realistic to enable according to this L2L method fast on-chip learning on neuromorphic

hardware. The most demanding aspect for the hardware is to be able to run the on-chip learning

algorithm that is required. This can be implemented on most neuromorphic hardware if only simple

local rules for synaptic plasticity are required in the inner loop of L2L, as in option 1. In the case of

option 2 a spike-based neuromorphic hardware just needs to be able to emulate adapting spiking

neurons. This can be done for example on SpiNNaker [16] and Intel’s Loihi chip [17]. Using BPTT for

on-chip learning appears to be currently infeasible, but on-chip learning with e-prop is supported by

Figure 1. Scheme for the application of L2L for offline priming of a neuromorphic chip. Hyperparameters 𝛩 of the RSNN on the chip

are optimized for supporting fast learning of arbitrary tasks 𝐶 from a family ℱ that captures learning challenges that may arise in the

hands of a user. The resulting hyperparameters are then loaded onto the chip. Note that the desired generalization capability is here

more demanding than usually: The chip also needs to learn tasks 𝐶 from the family ℱ very fast that did not occur during offline priming

(but share structural properties with other tasks in the family ℱ).

Roadmap on Neuromorphic Computing and Engineering

SpiNNaker and the next generation of Loihi. Then option 4 can be used for enabling more powerful

fast on-chip learning. The only additional requirements are that an offline primed learning signal

generator can be downloaded onto the chip (once and for all), and that the chip supports

communication of learning signals for gating local synaptic plasticity rules. A sample application is

illustrated in Figure 2: On-chip learning and generalization of a new spoken command from a single

example.

Future advances need to address the challenge of training extended learning problems during the

offline phase. Besides improved gradient-based algorithms, also gradient-free training methods such

as Evolution Strategies [18] are attractive for that. In fact, since the latter paradigm allows to employ

neuromorphic hardware directly for evaluating the learning performance, this approach can benefit

from the speed and efficiency of fast neuromorphic devices, as in [8]. Particularly fast neuromorphic

hardware such as Brainscales [19] might support then even more powerful offline priming with

training algorithms that could not be carried out on GPU-based hardware.

Concluding Remarks

Learning in neuromorphic hardware is likely to become split into two phases that each have

different goals and require different learning methods: An extensive offline priming phase —either

on the actual hardware or a software model for it— that optimizes selected hyperparameters but

possibly also the network architecture for a large family of potential on-chip learning tasks in the

hands of the user. The resulting hyperparameters and network architectures will be downloaded

onto the neuromorphic hardware before it gets into the hands of the user. The hardware is then

primed so that remaining open parameters can be learnt on-chip from very few examples, possibly

even just one example. It is conceivable that this method can be expanded to provide another useful

property for neuromorphic hardware in the hands of the user: That on-chip learning cannot bring

the chip into an operating regime which is unsafe, or undesired for other reasons. It has already

been verified that the outer loop of L2L can impose powerful priors for subsequent computing and

learning of RSNNs [13].

Figure 2. Left: Learning architecture for fast on-chip learning with e-prop. A learning signal generator produces online learning signals

for fast on-chip learning. The weights of the learning signal generator as well as the initial weights of the learning network result from

offline priming. Right: Example application for fast learning. In this task 𝐶, the learning network has to learn the new command

“connect” from a single utterance, so that it recognizes it also from other speakers. The learning signal generator is only activated when

the new command is learnt (leftmost green segment).

Roadmap on Neuromorphic Computing and Engineering

Acknowledgements

This research was supported by the Human Brain Project (Grant Agreement number 785907) of the

European Union and a grant from Intel. We thank Christoph Stöckl for helpful comments.

References

[1] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J., “Building machines that learn and

think like people” in Behavioral and brain sciences, 2017, 40.

[2] Murray, J. M., “Local online learning in recurrent networks with random feedback” in eLife, 8,

2019, e43299.

[3] Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W., “A solution

to the learning dilemma for recurrent networks of spiking neurons” in Nature Communications, 11,

2020, 3652.

[4] Scherr, F., Stöckl, C., & Maass, W., “One-shot learning with spiking neural networks”, bioRxiv,

2020.

[5] Hochreiter, S., Younger, A. S., & Conwell, P. R., “Learning to learn using gradient descent” in

International Conference on Artificial Neural Networks (pp. 87-94). Springer, Berlin, Heidelberg,

2020.

[6] Confavreux, B., Zenke, F., Agnes, E. J., Lillicrap, T., & Vogels, T. P., “A meta-learning approach to

(re) discover plasticity rules that carve a desired function into a neural network”, bioRxiv, 2020.

[7] Jordan, J., Schmidt, M., Senn, W., & Petrovici, M. A., “Evolving to learn: discovering interpretable

plasticity rules for spiking networks”, arXiv preprint, 2020, arXiv:2005.14149.

[8] Bohnstingl, T., Scherr, F., Pehle, C., Meier, K., & Maass, W., “Neuromorphic hardware learns to

learn” in Frontiers in neuroscience, 13, 2019, 483.

[9] Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... & Botvinick, M.,

“Learning to reinforcement learn”, arXiv preprint, 2016, arXiv:1611.05763.

[10] Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., & Abbeel, P., “Rl $^ 2$: Fast

reinforcement learning via slow reinforcement learning”, arXiv preprint, 2016, arXiv:1611.02779.

[11] Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., ... & Botvinick, M.,

“Prefrontal cortex as a meta-reinforcement learning system” in Nature neuroscience, 21(6), 2018,

860-868.

[12] Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W., “Long short-term memory and

Learning-to-learn in networks of spiking neurons” in Advances in Neural Information Processing

Systems, 2018, pp. 787–797

[13] Subramoney, A., Bellec, G., Scherr, F., Legenstein, R., & Maass, W., "Revisiting the role of

synaptic plasticity and network dynamics for fast learning in spiking neural networks", bioRxiv, 2020.

[14] Subramoney, A., Scherr, F., & Maass, W., “Reservoirs learn to learn”, arXiv preprint, 2019,

arXiv:1909.07486.

[15] Finn, C., Abbeel, P. & Levine, S., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep

Networks” in Proceedings of the 34th International Conference on Machine Learning” in PMLR,

2017, 70:1126-1135

[16] Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., & Brown, A. D.,

“Overview of the spinnaker system architecture” in IEEE Transactions on Computers, 62(12), 2012,

2454-2467.

[17] Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., ... & Wang, H., “Loihi: A

neuromorphic manycore processor with on-chip learning” in Ieee Micro, 38(1), 2018, 82-99.

Roadmap on Neuromorphic Computing and Engineering

[18] Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I., “Evolution strategies as a scalable

alternative to reinforcement learning”, arXiv preprint, 2017, arXiv:1703.03864.

[19] Grübl, A., Billaudelle, S., Cramer, B., Karasenko, V., & Schemmel, J., “Verification and design

methods for the BrainScaleS neuromorphic hardware system” in Journal of Signal Processing

Systems, 92(11), 2020, 1277-1292.

