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Status 

An important goal for neuromorphic hardware is to support fast on-chip learning in the hand of a 

user. Two problems need to be solved for that: 

1. A sufficiently powerful learning method has to run on the chip, such as stochastic gradient 

descent. 

2. It needs to be able to generalize from a single example (one-shot learning), or at least from 

very few.  

Evolution has found methods that enable brains to learn a new class from a single or very few 

examples. For instance, we can recognize the face of a new person in many orientations, scales, and 

lighting conditions after seeing it just once. But this fast learning is supported by a long series of 

prior optimization processes of the neural networks in the brain during evolution, development, and 

prior learning. In addition, insight from cognitive science suggests that the learning and 

generalization capability of our brains is supported by innate knowledge, e.g. about basic properties 

of objects, 3D space, and physics. Hence, in contrast to most prior on-chip learning experiments in 

neuromorphic engineering, neural networks in the brain do not start from a tabula rasa state when 

they learn something new. 

Learning from few examples has already been addressed in modern machine learning and AI [1]. Of 

particular interest for neuromorphic applications are methods that enable recurrently connected 

neural networks (RNNs) to learn from single or few examples. RNNs are usually needed for online 

temporal processing —an application domain of particular interest for energy-efficient 

neuromorphic hardware. The gold standard for RNN-learning is backpropagation through time 

(BPTT). While BPTT is inherently an offline learning method that appears to be off-limit for online on-

chip learning, it has recently been shown that BPTT can be approximated quite well by 

computationally efficient online approximations. In particular, one can port the online broadcast 

alignment heuristic from feedforward to recurrent neural networks [2,3]. In addition, one can 

emulate the common LSTM (long short-term memory) units of RNNs in machine learning  by 

neuromorphic hardware-friendly adapting spiking neurons. Finally, a computationally efficient online 

approximation of BPTT —called e-prop— works well for recurrent networks of spiking neurons 

(RSNNs), also with adapting neurons [3]. The resulting algorithm for on-chip training of the weights 

𝑊𝑗𝑖  for neuron 𝑖 to neuron 𝑗 of an RSNN —for some arbitrary but differentiable loss function 𝐸— 

takes there the form  
𝑑𝐸

𝑑𝑊𝑗𝑖
= ∑ 𝐿𝑗

𝑡
𝑡 𝑒𝑗𝑖

𝑡  . The so-called learning signal 𝐿𝑗
𝑡  at time 𝑡 is some online 

approximation to the derivative of the loss function 𝐸 with regard to the spike output of neuron 𝑗, 

and  𝑒𝑗𝑖
𝑡  is an online and locally computable eligibility trace. If one optimizes the learning signals 𝐿𝑗

𝑡  

and the initial values of the weights 𝑊𝑗𝑖   via Learning-to-Learn (L2L) for a range ℱ of potentially user-

relevant tasks 𝐶, these can be learnt from very few examples, see Figure 1 and [4, 5]. 

 

Current and Future Challenges 

The main choices that have to be made for such realization of fast on-chip learning are the choice of 

the family ℱ of tasks, the choice of the optimization method for offline priming through the 

definition of hyperparameters, and the choice of the hyperparameters. Options for the latter are for 

example  
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1. Just the learning rate parameters of on-chip learning rules are hyperparameters. 

2. Also the values of all synaptic weights of the RSNN are hyperparameters. 

3. Only the initial values of the synaptic weights of the RSNN are hyperparameters. 

4. In addition all parameters of an auxiliary NN —the learning signal generator— that 

generates online learning signals 𝐿𝑗
𝑡  for fast convergence of e-prop are hyperparameters. 

Option 1 has been explored for RSNNs in [6, 7], and with an application to analog neuromorphic 

hardware in [8].  Option 2 is arguably the most commonly considered application of L2L in machine 

learning and computational neuroscience models [5, 9-13]. An attractive feature of this option for 

realizing fast on-chip learning is that it requires no synaptic plasticity for that. Rather, it uses hidden 

variables of the RNN for storing information from the few training examples that are needed for fast 

learning. In the case of machine learning, these hidden variables are the values of memory cells of 

LSTM units. In spiking neural networks these are the current values of firing thresholds of adapting 

neurons. An alternative is to choose only some synaptic weights to be hyperparameters, and to 

leave others open for fast on-chip learning [14]. Option 3 is used by the MAML approach of [15], 

where only very few updates of synaptic weights via BPTT are required in the inner loop of L2L. It 

also occurs in [4] in conjunction with option 4, see Figure 2 for an illustration. 

One common challenge that underlies the success of all mentioned options, is the efficacy of the 

training algorithm for the offline priming phase, the outer loop of L2L. While option 1 can often be 

carried out by gradient-free methods, the more demanding network optimizations of the other 

options tend to require BPTT for offline priming of the RNN. 

 

Advances in Science and Technology to Meet Challenges 

It is quite realistic to enable according to this L2L method fast on-chip learning on neuromorphic 

hardware. The most demanding aspect for the hardware is to be able to run the on-chip learning 

algorithm that is required. This can be implemented on most neuromorphic hardware if only simple 

local rules for synaptic plasticity are required in the inner loop of L2L, as in option 1. In the case of 

option 2 a spike-based neuromorphic hardware just needs to be able to emulate adapting spiking 

neurons. This can be done for example on SpiNNaker [16] and Intel’s Loihi chip [17]. Using BPTT for 

on-chip learning appears to be currently infeasible, but on-chip learning with e-prop is supported by 

Figure 1. Scheme for the application of L2L for offline priming of a neuromorphic chip.  Hyperparameters 𝛩 of the RSNN on the chip 

are optimized for supporting fast learning of arbitrary tasks 𝐶 from a family ℱ that captures learning challenges that may arise in the 

hands of a user. The resulting hyperparameters are then loaded onto the chip. Note that the desired generalization capability is here 

more demanding than usually: The chip also needs to learn tasks 𝐶 from the family ℱ very fast that did not occur during offline priming 

(but share structural properties with other tasks in the family ℱ). 

 



Roadmap on Neuromorphic Computing and Engineering 

SpiNNaker and the next generation of Loihi. Then option 4 can be used for enabling more powerful 

fast on-chip learning. The only additional requirements are that an offline primed learning signal 

generator can be downloaded onto the chip (once and for all), and that the chip supports 

communication of learning signals for gating local synaptic plasticity rules.  A sample application is 

illustrated in Figure 2: On-chip learning and generalization of a new spoken command from a single 

example.  

Future advances need to address the challenge of training extended learning problems during the 

offline phase. Besides improved gradient-based algorithms, also gradient-free training methods such 

as Evolution Strategies [18] are attractive for that. In fact, since the latter paradigm allows to employ 

neuromorphic hardware directly for evaluating the learning performance, this approach can benefit 

from the speed and efficiency of fast neuromorphic devices, as in [8]. Particularly fast neuromorphic 

hardware such as Brainscales [19] might support then even more powerful offline priming with 

training algorithms that could not be carried out on GPU-based hardware. 

 

 

 
Concluding Remarks 

Learning in neuromorphic hardware is likely to become split into two phases that each have 

different goals and require different learning methods: An extensive offline priming phase —either 

on the actual hardware or a software model for it— that optimizes selected hyperparameters but 

possibly also the network architecture for a large family of potential on-chip learning tasks in the 

hands of the user. The resulting hyperparameters and network architectures will be downloaded 

onto the neuromorphic hardware before it gets into the hands of the user. The hardware is then 

primed so that remaining open parameters can be learnt on-chip from very few examples, possibly 

even just one example. It is conceivable that this method can be expanded to provide another useful 

property for neuromorphic hardware in the hands of the user: That on-chip learning cannot bring 

the chip into an operating regime which is unsafe, or undesired for other reasons. It has already 

been verified that the outer loop of L2L can impose powerful priors for subsequent computing and 

learning of RSNNs [13].  

 

Figure 2.  Left:  Learning architecture for fast on-chip learning with e-prop. A learning signal generator produces online learning signals 

for fast on-chip learning. The weights of the learning signal generator as well as the initial weights of the learning network result  from  

offline priming. Right: Example application for fast learning. In this task 𝐶, the learning network has to learn the new command 

“connect” from a single utterance, so that it recognizes it also from other speakers. The learning signal generator is only activated when 

the new command is learnt (leftmost green segment). 
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