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1 Autocorrelation based intrinsic time scale of neurons trained12

on STORE-RECALL task.13

We wondered whether the adaptive firing threshold of LIF neurons with SFA affects the autocorre-14

lation function of their firing activity — termed intrinsic time scale in (Wasmuht et al., 2018). We15

tested this for an SNN consisting of 200 LIF neurons without and 200 LIF neurons with SFA that16

was trained to solve a one-dimensional version of the STORE-RECALL task. It turned out that17

during the delay between STORE and RECALL these intrinsic time constants were in the same18

range as those measured in the monkey cortex, see Figure 1C in (Wasmuht et al., 2018). Further-19

more, neurons of the trained SNN exhibited very similar distributions of these time constants (see20

Appendix figure 1), suggesting that these intrinsic time constants are determined largely by their21

network inputs, and less by the neuron type.22

2 sMNIST task with sparsely connected SNN obeying Dale’s23

law24

This task has originally been used as a temporal processing benchmark for ANNs, and has suc-25

cessfully been solved with the Long Short-Term Memory (LSTM) type of ANNs (Hochreiter and26

Schmidhuber, 1997). LSTM units store information in registers – like a digital computer – so that27

the stored information cannot be perturbed by ongoing network activity. Networks of LSTM units28

or variations of such units have been widely successful in temporal processing and reach the level29

of human performance for many temporal computing tasks.30

Since LSTM networks also work well for tasks on larger time-scales, for comparing SNNs with31

LSTM networks, we used a version of the task with 2 ms presentation time per pixel, thereby32

doubling the length of sequences to be classified to 1568 ms. Grey values of pixels were presented33

to the LSTM network simply as analog values. A trial of a trained SNN with SFA (with an34

input sequence that encodes a handwritten digit “3” using population rate coding) is shown in35

Appendix figure 3B. The top row of Figure 3B shows a version where the grey value of the36

currently presented pixel is encoded by population coding, through the firing probability of 8037

input neurons. Somewhat better performance was achieved when each of the 80 input neurons was38
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associated with a particular threshold for the grey value, and this input neuron fired whenever the39

grey value crossed its threshold in the transition from the previous to the current pixel (this input40

convention was used to produce the results below).41

Besides a fully connected network of LIF neurons with SFA, we also tested the performance of42

a variant of the model, called SC-SNN, that integrates additional constraints of SNNs in the brain:43

It is sparsely connected (12% of possible connections are present) and consists of 75% excitatory44

and 25% inhibitory neurons that adhere to Dale’s law. By adapting the sparse connections with the45

rewiring method in (Bellec et al., 2018) during BPTT training, the SC-SNN was able to perform46

even better than the fully-connected SNN of LIF neurons with SFA. The resulting architecture47

of the SC-SNN is shown in Appendix figure 3C. Its activity of excitatory and inhibitory neurons,48

as well as the time courses of adaptive thresholds for (excitatory) LIF neurons with SFA of the49

SC-SNN are shown in Appendix figure 3B. In this setup, the SFA had τa = 1400 ms. When we50

used an SNN with SFA, we improved the accuracy on this task to 96.4% which approaches the51

accuracy of the artificial LSTM model which reached the accuracy of 98.0%.52

We also trained a liquid state machine version of the SNN model with SFA where only the53

readout neurons are trained. This version of the network reached the accuracy of 63.24 ± 1.48%54

over 5 independent training runs.55

3 Google Speech Commands56

We trained SNNs with and without SFA on the keyword spotting task with Google Speech Com-57

mands Dataset (Warden, 2018) (v0.02). The dataset consists of 105,000 audio recordings of people58

saying thirty different words. Fully connected networks were trained to classify audio recordings,59

that were clipped to one second length, into one of 12 classes (10 keywords, as well as two special60

classes for silence and unknown words; the remaining 20 words had to be classified as “unknown”).61

Comparison of the maximum performance of trained spiking networks against state-of-the-art ar-62

tificial recurrent networks is shown in Table 1. Averaging over 5 runs, the SNN with SFA reached63

90.88± 0.22%, and the SNN without SFA reached 88.79± 0.16% accuracy. Thus an SNN without64

SFA can already solve this task quite well, but the inclusion of SFA halves the performance gap65

to the published state-of-the-art in machine learning. The only other report on a solution to this66

task with spiking networks is (Zenke and Vogels, 2020). There the authors train a network of LIF67

neurons using surrogate gradients with BPTT and achieve 85.3 ± 0.3% accuracy on the full 3568

classes setup of the task. In this setup, the SNN with SFA reached 88.5± 0.16% test accuracy.69

Features were extracted from the raw audio using the Mel Frequency Cepstral Coefficient70

(MFCC) method with 30 ms window size, 1 ms stride, and 40 output features. The network models71

were trained to classify the input features into one of the 10 keywords (yes, no, up, down, left,72

right, on, off, stop, go) or to two special classes for silence or unknown word (where the remainder73

of 20 recorded keywords are grouped). The training, validation and test set were assigned 80, 10,74

and 10 percent of data respectively while making sure that audio clips from the same person stay75

in the same set.76

All networks were trained for 18,000 iterations using the Adam optimizer with batch size 100.77

The output spikes of the networks were averaged over time, and the linear readout layer was78

applied to those values. During the first 15,000 iterations, we used a learning rate of 0.001 and for79

the last 3000, we used a learning rate of 0.0001. The loss function contained a regularization term80

(scaled with coefficient 0.001) that minimizes the squared difference of average firing rate between81

individual neurons and a target firing rate of 10 Hz.82

Both SNNs with and without SFA consisted of 2048 fully connected neurons in a single recurrent83

layer. The neurons had a membrane time constant of τm = 20 ms, the adaptation time constant of84

SFA was τa = 100 ms, adaptation strength was β = 2 mV. The baseline threshold was vth = 10 mV,85

and the refractory period was 2 ms. The synaptic delay was 1 ms.86

4 Delayed-memory XOR87

We also tested the performance of SNNs with SFA on a previously considered benchmark task,88

where two items in the working memory have to be combined non-linearly: the Delayed-memory89
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XOR task (Huh and Sejnowski, 2018). The network is required to compute the exclusive-or90

operation on the history of input pulses when prompted by a go-cue signal, see Appendix figure 4.91

The network received on one input channel two types of pulses (up or down), and a go-cue on92

another channel. If the network received two input pulses since the last go-cue signal, it should93

generate the output “1” during the next go-cue if the input pulses were different or “0” if the input94

pulses were the same. Otherwise, if the network only received one input pulse since the last go-cue95

signal, it should generate a null output (no output pulse). Variable time delays are introduced96

between the input and go-cue pulses. The time scale of the task was 600 ms which limited the97

delay between input pulses to 200 ms.98

This task was solved in (Huh and Sejnowski, 2018), without providing performance statistics,99

by using a type of neuron that has not been documented in biology — a non-leaky quadratic100

integrate and fire neuron. We are not aware of previous solutions by networks of LIF neurons. To101

compare and investigate the impact of SFA on network performance in the delayed-memory XOR102

task, we trained SNNs, with and without SFA, of the same size as in (Huh and Sejnowski, 2018)103

— 80 neurons. Across 10 runs, SNNs with SFA solved the task with 95.19 ± 0.014% accuracy,104

whereas the SNNs without SFA converged at lower 61.30± 0.029% accuracy.105

The pulses on the two input channels were generated with 30 ms duration and the shape of106

a normal probability density function normalized in the range [0, 1]. The pulses were added or107

subtracted from the baseline zero input current at appropriate delays. The go-cue was always a108

positive current pulse. The 6 possible configurations of the input pulses (+, −, ++, −−, +−, −+)109

were sampled with equal probability during training and testing.110

Networks were trained for 2000 iterations using the Adam optimizer with batch size 256. The111

initial learning rate was 0.01 and every 200 iterations the learning rate was decayed by a factor of112

0.8. The loss function contained a regularization term (scaled with coefficient 50) that minimizes113

the squared difference of the average firing rate of individual neurons from a target firing rate of114

10 Hz. This regularization resulted in networks with a mean firing rate of 10 Hz where firing rates115

of individual neurons were spread in the range [1, 16] Hz.116

Both SNNs with and without SFA consisted of 80 fully connected neurons in a single recurrent117

layer. The neurons had a membrane time constant of τm = 20 ms, a baseline threshold vth = 10 mV,118

and a refractory period of 3 ms. SFA had an adaptation time constant of τa = 500 ms and an119

adaptation strength of β = 1 mV. The synaptic delay was 1 ms. For training the network to120

classify the input into one of the three classes, we used the cross-entropy loss between the labels121

and the softmax of three linear readout neurons. The input to the linear readout neurons were122

the neuron traces that were calculated by passing all the network spikes through a low-pass filter123

with a time constant of 20 ms.124

5 12AX task in a noisy network125

As a control experiment, aimed at testing the robustness of the solution (performance as a function126

of the strength of added noise), we simulated the injection of an additional noise current into all127

LIF neurons (with and without SFA). The previously trained network (trained without noise) was128

reused and tested on a test set of 2, 000 episodes. In each discrete time step, the noise was added129

to the input current Ij(t) (see equation (4) in the main text), hence affecting the voltage of the130

neuron:131

Ij(t) =
∑
i

W in
ji xi(t− dinji) +

∑
i

W rec
ji zi(t− drecji ) + Inoise, (1)

where Inoise was drawn from a normal distribution with mean zero, and standard deviation σ ∈132

{0.05, 0.075, 0.1, 0.2, 0.5}.133

Performance of the network without noise was 97.85% (performance of one initialization of134

the network with 100 LIF neurons with SFA and 100 LIF neurons without SFA). During testing,135

including the noise current of mean zero and standard deviation σ ∈ {0.05, 0.075, 0.1, 0.2, 0.5}136

lead to the performance of 92.65%, 89.05%, 80.25%, 27.25%, 0.25%, respectively. The network137

performance degrades gracefully up to a current of standard deviation of about 0.1.138
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For an illustration of the effect of noise, see Appendix figure 5 and 6. There, we compare the139

output spikes, adaptive threshold, and membrane voltage of one neuron with noise current to the140

versions without noise. The shown simulations started from exactly the same initial condition141

and noise with standard deviation 0.05 (0.075) was injected only into the shown neuron (other142

neurons did not receive any noise current). One sees that even this weak noise current produces a143

substantial perturbation of the voltage, adaptive threshold, and spiking output of the neuron.144

6 Duplication/Reversal task145

A zoom-in for the rasters shown in Figure 4A (from the main text) is shown in Appendix figure146

7, for the time period 3− 4 seconds.147
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Appendix figure 1: Histogram of the intrinsic time scale of neurons trained on
STORE-RECALL task. We trained 64 randomly initialized SNNs consisting of 200 LIF neu-
rons with and 200 without SFA on the single-feature STORE-RECALL task. Measurements of
the intrinsic time scale were performed according to (Wasmuht et al., 2018) on the spiking data of
SNNs solving the task after training. Averaged data of all 64 runs is presented in the histogram.
The distribution is very similar for neurons with and without SFA.

Appendix figure 2: Illustration of models for an inversely adapting ELIF neuron, and
for short-term synaptic plasticity. (A) Sample spike train. (B) The resulting evolution of
firing threshold for an inversely adapting neuron (ELIF neuron). (C-D) The resulting evolution of
the amplitude of postsynaptic potentials (PSPs) for spikes of the presynaptic neuron for the case
of a depression-dominant (STP-D: D�F) and a facilitation-dominant (STP-F: F�D) short-term
synaptic plasticity.

5



Appendix figure 3: sMNIST time series classification benchmark task. (A) Illustration
of the pixel-wise input presentation of handwritten digits for sMNIST. (B) Rows top to bottom:
Input encoding for an instance of the sMNIST task, network activity, and temporal evolution of
firing thresholds for randomly chosen subsets of neurons in the SC-SNN, where 25% of the LIF
neurons were inhibitory (their spikes are marked in red). The light color of the readout neuron
for digit “3” around 1600 ms indicates that this input was correctly classified. (C) Resulting
connectivity graph between neuron populations of an SC-SNN after BPTT optimization with
DEEP R on sMNIST task with 12% global connectivity limit.
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Appendix figure 4: Delayed-memory XOR task. Rows top to bottom: Input signal, Go-cue
signal, network readout, network activity, and temporal evolution of firing thresholds.

Model test accuracy (%)

FastGRNN-LSQ (Kusupati et al., 2018) 93.18
SNN with SFA 91.21
SNN 89.04

Appendix table 1: Google Speech Commands. Accuracy of the spiking network models
on the test set compared to the state-of-the-art artificial recurrent model reported in (Kusupati
et al., 2018). Accuracy of the best out of 5 simulations for SNNs is reported.

Appendix figure 5: Effect of a noise current with zero mean and standard deviation
0.05 added to a single neuron in the 12AX task. Spike train of a single neuron without
noise, followed by spike train in the presence of the noise, adaptive threshold of the neuron that
corresponds to the spike train with no noise (shown in blue), spike train with noise present (shown
in orange), and corresponding neuron voltages over the time course of 200 ms.
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Appendix figure 6: Effect of a noise current with zero mean and standard deviation
0.075 added to a single neuron in the network for the 12AX task. Spike train of a single
neuron without noise, followed by spike train in the presence of the noise, adaptive threshold of
the neuron that corresponds to the spike train with no noise (shown in blue), spike train with noise
present (shown in orange), and corresponding neuron voltages over the time course of 200 ms.

Appendix figure 7: A zoom-in of the spike raster for a trial solving Duplication task
(left) and Reversal task (right). A sample episode where the network carried out sequence
duplication (left) and sequence reversal (right), shown for the time period of 3 - 4 ms (2 steps
after the start of network output). Top to bottom: Spike inputs to the network (subset), sequence
of symbols they encode, spike activity of 10 sample LIF neurons (without and with SFA) in the
SNN, firing threshold dynamics for these 10 LIF neurons with SFA, activation of linear readout
neurons, output sequence produced by applying argmax to them, target output sequence.
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Appendix figure 8: Distribution of adaptation index from Allen Institute cell mea-
surements (Allen Institute, 2018).
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