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Spiking neural networks (SNNs) are currently explored as pos-
sible solution for a major impediment of more widespread 
uses of modern AI in edge devices: The energy consumption 

of the large state-of-the-art artificial neural networks (ANNs) that 
are produced by deep learning.

This holds in particular for the convolutional neural networks 
(CNNs) that are commonly used for image classification, but also 
other application domains. These ANNs have to be large to achieve 
top performance, since they need to have a sufficiently large num-
ber of parameters in order to absorb enough information from 
the huge datasets on which they have been trained, such as the 1.2 
million images of the ImageNet2012 dataset. Inference with stan-
dard hardware implementations of these large ANNs is inherently 
power-hungry1.

Spiking neurons have been a focus in the development of com-
puting hardware for AI with a drastically reduced energy budget, 
partially because the giant SNN of the brain—consisting of about 
100 billion neurons—consumes just 20 W (ref. 2). Spiking neurons 
output trains of stereotypical pulses that are called spikes. Hence 
their output is very different from the continuous numbers that an 
ANN neuron produces as output. Most spiking neuron models that 
are considered for implementation in neuromorphic hardware are 
inspired by simple models for spiking neurons in the brain. However, 
these simple neuron models do not capture the capability of biologi-
cal neurons to encode different inputs by different temporal spike 
patterns, not just by their firing rate (see Fig. 1 for an example).

While large ANNs, trained with ever more sophisticated 
deep-learning algorithms on giant datasets, approach—and some-
times exceed—human performance in several categories of intel-
ligence, the performance of the current generation of spike-based 
neuromorphic hardware is lagging behind. There is some hope that 
this gap can be closed for the case of recurrent spiking neural net-
works, since those can be trained directly to achieve most of the 
performance of recurrent ANNs3.

But the problem of producing SNNs that achieve performances 
similar to ANNs with few spikes persists for feedforward networks. 
Feedforward CNNs that achieve really good image classification 

accuracy tend to be very deep and very large, and training corre-
sponding deep and large feedforward SNNs has not been able to 
reach similar accuracies. Problems with the timing of spikes and 
precision of firing rates on higher levels of the resulting SNNs have 
been cited as possible reasons. One attractive alternative is to simply 
take a well-performing trained CNN and convert it into an SNN 
using the same connections and weights. The most common—and 
so far best performing—conversion method was based on the idea 
of (firing) rate coding, where the analogue output of an ANN unit 
is emulated by the firing rate of a spiking neuron4. This method 
produced the best SNN results so far for image classification. But 
the transmission of an analogue value through a firing rate tends to 
require a fairly large number of spikes, which reduces both latency 
and throughput of the network. Furthermore, the resulting SNN 
tends to produce so many spikes that its energy-advantage over 
non-spiking hardware gets lost. Finally, a rate-based ANN-to-SNN 
conversion cannot be applied to those ANNs that currently achieve 
the highest accuracy on ImageNet, EfficientNets5, because these 
employ an activation function that assumes both positive and nega-
tive values: the SiLU function6.

We introduce a new ANN-to-SNN conversion that we call 
FS-conversion because it requires a spiking neuron to emit just a 
few spikes (FS, few spikes). This method is completely different 
from rate-based conversions, and exploits the option of temporal 
coding with spike patterns, where the timing of a spike transmits 
extra information.

Most previously proposed forms of temporal coding (see, for 
example, refs. 4,7–9) have turned out to be difficult to implement effi-
ciently in neuromorphic hardware because they require transmit-
ting fine time-differences between spikes to downstream neurons. 
By contrast, an FS-conversion can be implemented with just logN 
different values of spike times and at most logN spikes for trans-
mitting integers between 1 and N. Practically, the required number 
of spikes can be made even lower because not all N values occur 
equally often. However FS-conversion requires a modified spiking 
neuron model, the FS-neuron, which has an internal dynamic that 
is optimized for emulating particular types of ANN neurons with 
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few spikes. We demonstrate the performance of SNNs that result 
from FS-conversion of CNNs, on two state-of-the-art datasets for 
image classification: ImageNet2012 and CIFAR10. This optimized 
spiking neuron model could serve as guidance for the next genera-
tion of neuromorphic hardware.

emulating an aNN neuron by a spiking neuron with few 
spikes
The FS-conversion from ANNs to SNNs requires a variation of the 
standard spiking neuron model, to which we refer as FS-neuron. 
The computation step of a generic artificial neuron in an ANN 
(Fig. 2a) is emulated by K time steps of an FS-neuron (Fig. 2b). 
Its internal dynamics is defined by fixed parameters T(t), h(t), d(t) 
for t = 1, ..., K. These are optimized to emulate the activation func-
tion f(x) of the given ANN neuron by a weighted sum of spikes PK

t¼1 dðtÞzðtÞ
I

, where z(t) denotes the spike train that this neuron 
produces. More precisely: z(t) = 1 if the neuron fires at step t, else 
z(t) = 0. To emit a spike at time t, a neuron’s membrane potential 
v(t) has to surpass the current value T(t) of its firing threshold. We 
assume that the membrane potential v(t) has no leak, but is reset to 
v(t) − h(t) after a spike at time t. Expressed in formulas, the mem-
brane potential v(t) starts with value v(1) = x where x is the gate 
input, and evolves during the K steps according to

vðt þ 1Þ ¼ vðtÞ � hðtÞzðtÞ: ð1Þ
The spike output z(t) of an FS-neuron for gate input x can be defined 
compactly by

zðtÞ ¼ ΘðvðtÞ � TðtÞÞ ¼ Θ x �
Pt�1

j¼1
hðjÞzðjÞ

 !
� TðtÞ

 !
;

t ¼ 1; :::;K;

ð2Þ
where Θ denotes the Heaviside step function. The total output f̂ ðxÞ

I
 

of the FS-neuron from these K time steps, which is collected by the 
FS-neurons on the next layer, can be written as:

f̂ ðxÞ ¼
XK

t¼1

dðtÞzðtÞ: ð3Þ

An illustration of the model can be found in Fig. 2b.
For emulating the ReLU activation function one can choose the 

parameters of the FS-neuron so that they define a coarse-to-fine 
processing strategy for all input values x that lie below some upper 
bound, as described in the Methods section. For emulating the SiLU 
function of EfficientNet one achieves a better FS-conversion if the 
parameters are chosen in such a way that they enable iterative—and 
thereby more precise—processing for the range of inputs between 
−2 and 2 that occur most often as gate inputs x in EfficientNet. The 
resulting dynamics of FS-neurons is illustrated in Fig. 3 for the case 
of the SiLU and sigmoid activation functions.

All FS-neurons that emulate ANN neurons with the same  
activation function can use the same parameters T(t), h(t), d(t), 
while the factor w in the weights of their output spikes is simply 
lifted from the corresponding synaptic connection in the trained 
ANN (Fig. 2).

Note that the number of neurons and connections in the net-
work is not increased through the FS-conversion. However the 
number of computation steps L of a feedforward ANN with L lay-
ers is increased by the factor K. But the computations of the ANN 
can be emulated in a pipelined manner, where a new network input 
(image) is processed every 2K time steps by the SNN. In this case 
the parameters of the FS-neurons change periodically with a period 
of length K while the FS-neurons compute. These K steps are fol-
lowed by K time steps during which the FS-neurons are inactive, 
while the FS-neurons on the next layer collect their spike inputs for 
emulating the next computation step or layer of the ANN. Note that 
since all FS-neurons that emulate ANN neurons with the same acti-
vation function can use the same parameters T(t), h(t), d(t), they 
require only little extra memory on a neuromorphic chip.

Both the TensorFlow code and the chosen parameters of the 
FS-neurons are available online.

application to imageNet
The ImageNet dataset10 has become the most popular benchmark 
for state-of-the-art image classification in machine learning (we are 
using the ImageNet2012 version). This dataset consists of 1,281,167 
training images and 50,000 test images (both RGB images of differ-
ent sizes), that are labelled by 1,000 different categories. Classifying 
images from ImageNet is a nontrivial task even for a human, since 
this dataset contains for example 59 categories for birds of different 
species and gender11. This may explain why a relaxed performance 
measurement, where one records whether the target class is among 
the top five classifications that are proposed by the neural network 
(‘Top5’), is typically much higher.

The recently proposed EfficientNet5 promises to become a new 
standard CNN architecture due to its very high accuracy while uti-
lizing a smaller number of parameters than other CNN architec-
tures. EfficientNet uses as activation function f(x) besides the SiLU 
function (Fig. 4) also the familiar sigmoid function, shown as the 
red curve in Fig. 4c. Note that 99.97% of its activation functions 
are SiLU functions, making the appearance of the sigmoid function 
comparatively rare. The SiLU function emerged from preceding 
work on optimizing activation functions in ANNs12. Another char-
acteristic of the EfficientNet architecture is the extensive usage of 
depth-wise separated convolution layers. In between them, linear 
activation functions are used. Although it would certainly be pos-
sible to approximate linear functions using FS-coding, we simply 
collapsed linear layers into the generation of the weighted sums that 
form the inputs to the next layers.

Since the SiLU function also assumes negative values, it appears 
to be difficult to convert an ANN with this activation function via 
rate-coding to a spiking neuron. But it is fairly easy to convert it 
to an FS-neuron. The values of the parameters T(t), h(t) and d(t) 
for t = 1, ..., K of the FS-neuron can be obtained by training the 
FS-neuron model to fit the SiLU function, see Fig. 4a,b. We used  
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Fig. 1 | encoding of different input values (current steps of different 
amplitudes) by temporal spike patterns in a biological neuron. Data taken 
from the Allen Cell Types Database (Layer 3 spiny neuron from the human 
middle temporal gyrus).
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for that backpropagation through time, with a triangle-shaped 
pseudoderivative for the non-existing derivative of the Heaviside 
step function.

In most cases, the possible inputs to an activation function are 
not uniformly distributed, but there exists a certain region in which 
most inputs lie with high probability. For example, most of the 

ANN neuron

x = Σi wiai x = Σi wiai

ƒ(x) = ΣK
t=1 d(t)z(t) ≈ ƒ(x)One time step

w
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Fig. 2 | Conversion of an aNN neuron into an FS-neuron. a, A generic ANN neuron with activation function f(x) that is to be emulated. We denote the 
activation of the presynaptic neuron i as ai and the weight from the presynaptic neuron i as wi. b, An FS-neuron that emulates this ANN neuron in K time 
steps t = 1, ..., K. Its output spike train is denoted by z(t).
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Fig. 3 | internal dynamics of FS-neurons. The first row depicts the response of the FS-neurons to a low input value (x = −0.5) and the second row displays 
the response to a high input (x = 0.5). The first column shows responses of an SiLU FS-neuron, while the second column a sigmoid FS-neuron. The relevant 
values of T(t) and v(t) for discrete time steps t (see Fig. 4b,d) are smoothly interpolated for illustration.
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inputs to the SiLU functions in the EfficientNet are in the interval 
from −2 to 2 and therefore, achieving a high approximation accu-
racy in this region is especially desirable (Fig. 5a). It is possible to 
encourage the FS-neuron to put more emphasis on a certain region, 
by assigning a high weight in the loss function to this region. More 
details about the training procedure of the FS-parameters can be 
found in the Methods section.

The effective activation function of the resulting FS-neuron 
is shown in Fig. 4a. Figure 4c shows the corresponding result for 
the FS-conversion of an ANN neuron with the sigmoid activation 
function.

Using these FS-neurons it is possible to emulate the 
EfficientNet-B7 model with spiking neurons. The accuracy of the 
resulting spiking CNN, using the publicly available weights w of the 
trained EfficientNet, can be found in Table 1, together with the total 
number of spikes that it uses for sample inferences.

The FS-conversion of EfficientNet-B7 achieved an accuracy 
of 83.57%. The best accuracy for ImageNet that had previously  
been reported for SNNs was 74.6% (ref. 4). It was achieved  
by a rate-based conversion, which required a substantial number  
of spikes per neuron and about 550 time steps for each image  
classification. The SNN resulting from FS-conversion of 
EfficientNet-B7 used about two spikes per neuron for classifying 
an image. The FS-neurons approximating the SiLU function used 
K = 16 and the FS-neurons approximating the sigmoid function 
used K = 12.

The layers of the CNN that use the SiLU function as activation 
function can be simulated in a pipelined manner by the SNN, pro-
cessing a new image every 2K time steps: its first K time steps are 
spent collecting the outputs from the preceding layer of FS-neurons 
during their K time steps of activity. It then processes these collected 
inputs x during the subsequent K time steps.

Hence the SNN that results from FS-conversion of EfficientNet 
can classify a new image every 2K = 32 time steps. Further imple-
mentation details can be found in the Methods section.

Approximating the ReLU activation function. The ReLU activa-
tion function, see Fig. 4d, is among the most frequently used activa-
tion functions, and also quite good accuracies have been achieved 
with it for ImageNet. It represents a special case for FS-conversion, 
as it is possible to find the ideal values for h(t), T(t) and d(t) analyti-
cally, bases on the idea of computation with binary numbers. By set-
ting the parameters of the FS-neuron to T(t) = h(t) = d(t) = 2K−t, the 
FS-neuron approximates the ReLU activation function f(x) with a 
coarse-to-fire-processing strategy. Let us assume for simplicity that 
an FS-neuron receives inputs x from (−∞,0]∪{1,2,...,2K − 1}. Then it 
reproduces with the specified parameters the output ReLU(x) of the 
ReLU gate for any x from (−∞,0]∪{1,2,...,2K − 1} without error. In 
order to be able to also transmit non-integer values x between 0 and 
some arbitrary positive constant α, one simply multiplies the given val-
ues for T(t), h(t) and d(t) with α2−K. Then the FS-neuron reproduces 
ReLU(x) for any non-negative x less than α that are multiples of α2−K 
without error, and ReLU(x) is rounded down for values x in between 
to the next larger multiple of α2−K. Thus the output of the FS-neuron 
deviates for x in the range from −∞ to α by at most α2−K from the out-
put of the ReLU gate. The resulting approximation is plotted for α = 10 
in Fig. 4d. Several advantages arising from the simple structure of the 
parameters have been laid out in the Methods section.

The accuracy of 75.22% for the ANN version of ResNet50 in Table 
1 resulted from training a variant of ResNet50 where max-pooling 
was replaced by average pooling, using the hyperparameters given 
in the TensorFlow repository. The resulting accuracy in ImageNet is 
close to the best published performance of 76% for ResNet50 ANNs 
(table 2 in ref. 5). The application of the FS-conversion to this vari-
ant of ResNet50 (with K = 10 and α = 25) yields an SNN whose Top1 
and Top5 performance is almost indistinguishable from that of the 
ANN version.

application to CiFar10
CIFAR1013 is a smaller and more frequently used dataset for image 
classification. It consists of 60,000 coloured images, each having 
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 of different activation functions by FS-neurons. a, Approximation of the SiLU function with a single FS-neuron. (red: SiLU 
function, blue: FS-approximation with K = 16.) b, Optimized internal parameters of the SiLU FS-neuron. c, Approximation of the sigmoid function with a 
single FS-neuron. d, Optimized internal parameters of the sigmoid FS-neuron. e, Approximation of the reLU function with K = 10 and α = 25.
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Fig. 5 | Number of spikes needed by FS-neurons for image classification and influence of K and bit precision Q on performance. a, The number of spikes 
used by an a FS-neuron with K = 16 to approximate the SiLU function, as a function of its input value x. The red Gaussian models the probability that 
the FS-neuron will receive this input value in the EfficientNet-B7 model (mean = −0.112, variance = 1.99). b, The number of spikes used by an FS-neuron 
to approximate the reLU function with K = 6 and α = 10. The red Gaussian models the probability that the FS-neuron will receive this input value in the 
resNet50 model in an application to images from ImageNet (mean = −0.36970, variance = 2.19). c, Test Accuracy of the resNet50 model on CIFAr10 
with FS-neurons, in dependence on K. The red cross indicates the chosen value of K for our results. d, Mean squared error (MSE) of a SiLU approximation 
by FS-neurons with different values of K. The red cross indicates the chosen value of K in the given context. e, MSE of a SiLU approximation by FS-neurons 
with K = 16 as a function of the bit precision Q of its parameters. f, MSE of a sigmoid approximation by FS-neurons with K = 12 as a function of the bit 
precision Q of its parameters.

Table 1 | accuracy and spike numbers for classifying images from imageNet with FS-conversions of two state-of-the-art CNNs

Model aNN accuracy accuracy of the SNN 
produced by FS-conversion

Params (no.) layers 
(no.)

Neurons (no.) Spikes (no.)

ImageNet2012

EfficientNet-B7 85% (97.2 %) 83.57% (96.7%) 66,000,000 218 259,000,000 554,900,000

resNet50 75.22% (92.4%) 75.10% (92.36%) 26,000,000 50 9,600,000 14,045,000

CIFAr10

resNet8 87.22% 87.05% 78,000 8 73,000 103,000

resNet14 90.49% 90.39% 174,000 14 131,000 190,000

resNet20 91.58% 91.45% 271,000 20 188,000 261,000

resNet50 92.99% 92.42% 755,000 50 475,000 647,000

The SNNs produced by FS-conversion of the ANNs achieved almost the same accuracy, and usually used at most two spikes per neuron. Top 5 accuracy is reported in parentheses. The number of spikes 
needed for inference was obtained by averaging over the 1,000 test images.
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a resolution of just 32 by 32 pixels, and just 10 image classes. The 
results for ANN versions of ResNet that are given in Table 1 for 
CIFAR10 arise from training them with the hyperparameters given 
in the TensorFlow models repository. They use the ReLU function 
as the only nonlinearity, since we have replaced their max-pooling 
with average pooling. Nevertheless, they achieve an accuracy for 
CIFAR10 that is very close to the best results reported for CIFAR10 
in the literature. The best performing reported ResNet on CIFAR10 
is ResNet110, where a test accuracy of 93.57% had been achieved14. 
Our ResNet50 achieves 92.99%, which is similar to their accuracy of 
93.03% for ResNet56.

analysis of FS-coding
On digital neuromorphic hardware, the energy consumption is pro-
portional to the number of spikes that are needed for a computa-
tion. The number of spikes needed for an FS-neuron to perform 
the approximation of the target function is depicted in Fig. 5a,b as 
a function of the gate input x. If one compares these numbers with 
the distribution of input values x (red curves) that typically occur 
during image classification, one sees why on average fewer than two 
spikes are used by FS-neurons for these applications.

The most important specification of an FS-neuron is the number 
K of time steps that it uses. Figure 5c,d provides insight into the 
nature of the trade-off between the size of K and the approximation 
quality of the FS-neuron.

Furthermore, it is of interest to consider scenarios where only 
a certain number of bits are available for the FS-neuron parame-
ters. To analyse the impact of that, we consider a setting where the 
parameters of the FS-neurons can only take on discrete values in the 
range [−8,8]. The possible values are equally spaced and the num-
ber of values can be written as 2Q, where Q refers to the number 
of bits that are available for each parameter T(t), h(t), d(t) of the 
FS-neuron. Fig. 5e,f depicts the impact of such quantization on the 
mean squared error of the approximation of the activation function.

Expected implementation cost on neuromorphic hardware. We 
distinguish three types of neuromorphic hardware:

•	 Digital, but hardware not constrained to a particular neuron 
model (for example, SpiNNaker)

•	 Digital, but hardware is constrained to a particular neuron 
model (for example, Loihi)

•	 Mixed digital analogue (for example, IBM research chip with 
memristors and BrainScaleS-2)

SpiNNaker. The SpiNNaker platform15 provides a flexible envi-
ronment, which is not constrained to a specific neuron model. 
SpiNNaker allows computation of all products d(t)w on the chip, 
which reduces the additional memory consumption to a small con-
stant value. All parameters T(t), h(t) and d(t) only need to be stored 
in memory once, as they can be shared across all neurons, which 
approximate the same activation function. The additional compu-
tational complexity of the FS-neuron model also has a very small 
impact, as computing the updated weight d(t)w can be done with a 
single instruction cycle.

Loihi. Loihi16 also promises to be an interesting target platform for 
FS-neurons. Especially FS-neurons approximating the ReLU acti-
vation function could be ported very efficiently to this hardware 
platform. As the chip is based on fixed-point arithmetic, one can 
implement T(t), h(t) and d(t) for ReLu using a single parameter, 
namely the shared weight exponent. This is possible due to the 
fact that at every time step t all FS-parameters have the same value, 
which is always a power of 2. Therefore, the additional memory 
consumption does not grow with K. It is also possible to use other 

activation functions besides ReLU on Loihi, however, in this case it 
would be necessary to store all products d(t)w on the chip, as com-
puting the updated weight in an online fashion is not possible. In 
this case, an increase in memory consumption of OðKÞ

I
 is expected.

IBM research chip with memristors. IBM has presented an 
in-memory chip architecture supporting both ANNs and SNNs 
in the supplementary material S3 of the ref. 17. This architecture 
employs a memristor crossbar array for fast (time complexity Oð1Þ

I
) 

and energy-efficient multiplication of the outputs of one layer l of 
neurons with the weights of synaptic connections to neurons on the 
next layer l + 1. One can replace all spikes (that is, values 1) that 
emerge from layer l at time t of the K-step cycle in the emulation of 
the neurons on layer l by a common value value d(t) that is centrally 
stored. Since the values d(t) and 0 can be used directly as inputs 
to the memristor array, no significant extra cost is expected. The 
neuron models are implemented in the digital part of this neu-
romorphic chip architecture of IBM, using very fast digital logic 
and SRAM for storing parameters. Since all neurons on a layer l of 
our FS networks use the same parameters T(t) and h(t), they can 
be stored in a local SRAM for all neurons on layer l, in a similar 
fashion as on SpiNNaker. A neuron model that goes already one 
step in the direction from LIF to FS-neurons has actually already 
been implemented on this architecture: the soft spiking neural unit 
(sSNU), that emits analogue instead of binary values and subtracts a 
corresponding value from the membrane potential17.

BrainScaleS-2. This neuromorphic chip18 is also a mixed analogue 
digital architecture where a digital plasticity processor allows fast 
changes of synaptic weights, but also central memory storage and 
application of the time-varying parameters T(t), h(t) and d(t) of the 
neuron dynamics. Like on SpiNNaker, the parameters only have to 
be stored once in memory and can be shared across many neurons. 
The leak term of the membrane voltage of the analogue neuron 
models can be switched off, so that the analogue part can be used 
for efficient matrix multiplication in a similar manner as on the 
IBM chip.

Discussion
We have presented a new approach for generating SNNs that are 
very close to ANNs in terms of classification accuracy for images, 
while working in the energetically most attractive regime with very 
sparse firing activity. Besides substantially improved classification 
accuracy, they exhibit drastically improved latency and through-
put compared with rate-based ANN-to-SNN conversions. One 
can argue that this is exactly the way that evolution has chosen the 
design of neurons in living organisms. Not only neurons with par-
ticular information-processing tasks in the smaller nervous systems 
of insects, but also neurons in the neocortex of mammals exhibit an 
astounding diversity of genetically encoded response properties19–21. 
In particular, the probability of producing a spike depends in diverse 
ways on the recent stimulation history of the neuron, see ref. 22 for 
some standard models. In other words, the excitability of different 
types of biological neurons increases or decreases in complex ways 
in response to their previous firing. As a result, the temporal struc-
ture of a train of spikes that is produced by a biological neuron con-
tains additional information about the neuron input that can not 
be captured by its firing rate. Similary, FS-neurons that are opti-
mized for high-accuracy image classification with few spikes exhibit 
history-dependent changes—encoded through their functions T(t) 
and h(t) according to equation (2)—in their propensity to fire (Fig. 
4b,e). Furthermore, the function d(t) enables subsequent neurons 
to decode their spikes in a timing-sensitive manner. In these regards 
an FS-conversion from ANNs to SNNs captures more of the func-
tional capabilities of spiking neurons than previously considered 
rate-based conversions to an off-the-shelf spiking neuron model.
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It is well known that spikes from the same neurons in the brain 
can transmit different information to downstream neurons depend-
ing on the timing of the spike, for example, phase precession in 
the hippocampus23. Hence it is conceivable that downstream neu-
rons give different weights to these spikes, dependent on the firing 
time of the presynaptic neuron. In fact, it is well known that the 
large repertoire of pre- and postsynaptic synaptic dynamics found 
in different synapses of the brain24,25 enables postsynaptic neurons 
to modulate the amplitude of postsynaptic responses in depen-
dence of the timing of presynaptic spikes relative to an underly-
ing rhythm. This can be viewed as a biological counterpart of the 
timing-dependent weights d(t) in our model. Altogether we believe 
that FS-neurons provide a first step in exploring new uses of SNNs 
where information is not encoded by the timing of single spikes or 
firing rates, but by temporal spike patterns.

Important for applications of FS-coding in neuromorphic hard-
ware is that it is applicable to virtually any activation function, in 
particular to that activation function for ANN neurons that cur-
rently provides the highest accuracy on ImageNet, the SiLU func-
tion. Rate-based conversion can not be readily applied to the SiLU 
function because it assumes both positive and negative output val-
ues. When approximating the more commonly used ReLU func-
tion, FS-neurons approach the information theoretic minimum of 
spikes for spike-based communication.

In fact, FS-neurons that emulate ANN gates with the ReLU 
activation function produce 1.5 spikes on average for classifying 
an image, while those for the switch activation function produce 2 
spikes on average. As the number of spikes required for inference by 
an SNN is directly related to its energy consumption in spike-based 
neuromorphic hardware, the energy consumption of FS-converted 
SNNs appears to be close to the theoretical optimum for SNNs. 
Since FS-conversion provides a tight bound on the number K of 
time steps during which a spiking neuron is occupied, it can also be 
used for converting recurrently connected ANNs to SNNs.

The proposed method for generating highly performant SNNs 
for image classification through FS-conversion of trained CNNs 
offers an opportunity to combine the computationally more effi-
cient and functionally more powerful training of ANNs with the 
superior energy-efficiency of SNNs for inference. Note that one can 
also use the resulting SNN as initialization for further training of the 
SNN, for example, for a more specific task.

Altogether our results suggest that spike-based hardware may 
gain an edge in the competition for the development of drastically 
more energy-efficient hardware for AI if one does not forgot to 
optimize the spiking neuron model in the hardware for its intended 
range of applications. In contrast with energy-efficient digital hard-
ware that is optimized for specific ANN architectures and activation 
functions (see ref. 26 for a review), a spike-based neuromorphic chip 
that is able to emulate FS-neurons can carry out inference for all 
possible ANN architectures. It can also emulate ANNs with previ-
ously not considered activation functions, since a change of the acti-
vation function just requires reprogramming of the digitally stored 
parameters of FS-neurons. Hence, such spike-based chip will be 
substantially more versatile than common digital hardware accel-
erators for AI.

Methods
This section lists details necessary to reproduce our results. To aid the 
interpretation of the results, a comparison to previous conversion approaches has 
been added.

When training the parameters of the FS-neurons, it is important to specify 
an interval in which the approximation should be very good. Ideally, most 
of the inputs to the ANN neuron should fall into this interval to guarantee a 
good performance. In our experiments, the FS-neurons have been trained to 
approximate the interval from [−8,12] for the SiLU function and [−10,10] for the 
sigmoid function. The resulting FS-neuron approximates the SiLU function with 
a mean squared error of 0.0023 inside the main region [−2,2] and 0.0064 in the 

region outside, which can be written as [−8,−2]∪[2,12]. After optimization the 
values T(t), d(t) and h(t) stay confined for most time steps t to the main region 
[−2,2], as can be seen in Fig. 4b.

To reduce the complexity of the converted CNN, we decided not to emulate 
the multiplication operation by FS-neurons, which occurs in the CNN if the 
squeeze and excitation optimization27 is being used. In many neuromorphic chips, 
such as SpiNNaker and Loihi, the on-chip digital processor could carry out these 
multiplications. Otherwise one can approximate multiplication in a similar manner 
as the SiLU function with a suitably optimized FS-neuron, see ref. 28. Alternatively 
one can compute multiplication with a small circuit of threshold gates, that is, very 
simple types of spiking neurons, of depth 2 or 3. A recent summary of such results 
is provided in section 3 of ref. 29.

Due to the simple structure of the parameters of the ReLU FS-neurons 
several advantages arise. In particular when approximating the ReLU function 
with an FS-neuron it is possible to calculate the changes of parameters for 
t = 1, ..., K by simply using a bit shift operation, possibly providing a very efficient 
implementation on neuromorphic hardware. The resulting SNN can be used in 
a pipelined manner, processing a new network input every 2K = 20 time steps, 
analogously as for the SiLU function.

Further properties of FS-coding that are relevant for neuromorphic hardware. 
One of the major advantages of using FS-neurons in neuromorphic hardware is the 
smaller amount of time steps and spikes required to approximate artificial neurons. 
For the case of the ReLU activation function, a rate coded spiking neuron requires 
N time steps to encode N different values. FS-neurons improve upon this unary 
coding scheme by utilizing the time dimension to implement a binary coding 
scheme. Therefore, the number of time steps required to encode N different values 
can be reduced to just log2(N).

To underline the binary coding nature of FS-neurons, in the case of the 
ReLU activation function, the corresponding FS-neurons will show a spiking 
pattern equivalent to that of the output of the ReLU function, written as a binary 
number. The same logarithmic relation holds not only for the number of time 
steps required but also for the number of spikes needed to transmit a value. More 
sophisticated codes could be used to make the computation robust to noise in spike 
transmission.

Note, that most of the inputs to the FS-neurons have a value close to 0, as 
shown in Fig. 5a,b. Consequently, the FS-neurons usually require only a few spikes 
to transmit the output values, making the the coding scheme even more sparse in 
practice.

Comparison with previous methods. The idea of converting a pre-trained 
ANN to an SNN has received a fair amount of attention in recent years. The 
most popular conversion approaches are rate based, meaning they translate the 
continuous output of an artificial ReLU neuron into a firing rate of a spiking 
neuron. Unfortunately there are some drawbacks associated with rate-coding. Due 
to its unary coding nature, rate-codes are sub-optimal in the sense that they do 
not make good use of the time dimension. Usually a large amount of time steps is 
required to achieve a sufficiently accurate approximation. Furthermore, rate-based 
conversions are only capable of converting simple activation functions like ReLU, 
but fail to convert more sophisticated functions like SiLU.

Another popular conversion approach uses time to first spike (TTFS) coding30. 
This approach encodes the continuous outputs of the corresponding ReLU ANN 
neurons in the length of the time interval until the first spike, resulting in a very 
sparse spiking activity. However, this method seems to not scale easily to large 
models and has, to the best of our knowledge, not been tested on large datasets 
like ImageNet. The idea of using single-spike temporal coding was introduced in 
ref. 31 and it has been shown to have a variety of applications, like implementing an 
efficient k-NN algorithm on neuromorphic hardware32.

Furthermore, a new conversion method has been proposed, in which 
the spiking neurons can approximate the ReLU function using a hysteresis 
quantization method33. This approach waits to be tested on larger networks and 
datasets.

One property that all previously mentioned conversion methods have in 
common is that they only consider transforming artificial ReLU neurons to spiking 
neurons, and therefore cannot convert more sophisticated activation functions, 
which are used in network architecture like the EfficientNets.

A detailed summary comparing FS-coding to previous results can be found in 
Extended Data Table 1.

It is worth noting that the throughput using FS-coding is substantially better 
than that of SNNs which result from rate-based ANN-to-SNN conversions of ANNs 
with the ReLU function, as proposed for example in refs. 4,34. The Inception-v3 
model4 was reported to yield an SNN that needed 550 time steps to classify an 
image. Under the assumption that rate-based models profit only very little from 
pipelining, it is reasonable to estimate that the throughput of an SNN that results 
from FS-conversion of ReLU gates with K = 10 is roughly 25 times higher.

The SNN resulting from the rate-based conversion of the ResNet34 model 
discussed previously34 has been reported to use 2,500 time steps for a classification. 
Therefore, we estimate that the throughput is increased here by a factor around 125 
through FS-conversion.
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Spiking versions of ResNet20 have already been explored34. Using a rate-based 
conversion scheme, an accuracy of 87.46% was reported.

FS-conversion of ResNet20 yields a substantially higher accuracy of 91.45%, 
using just 80 to 500 time steps for each image—depending on the model depth—
instead of 2,000, thereby significantly reducing latency. In addition, the throughput 
is drastically improved.

Also the number of spikes that the SNN uses for classifying an image from 
CIFAR10 is significantly reduced when one moves from a rate-based conversion 
to an FS conversion. A converted ResNet11 has been reported to use more than 8 
million spikes to classify a single test example35. Comparing this to an FS-converted 
ResNet14 we find that the latter uses 40 times fewer spikes despite being a slightly 
larger model. Using direct training of SNNs instead of a conversion scheme has 
been reported to result in a lower amount of spikes needed to perform a single 
classification. However, even a directly trained SNN version of ResNet11 uses 
seven times more spikes than an FS-conversion of ResNet14 (table 8 in ref. 35).

In ref. 36 the authors present a novel approach for obtaining high-performance 
SNNs by combining a rate-based conversion scheme with a subsequent 
gradient-based fine-tuning procedure. They report the highest accuracy for an 
SNN on CIFAR10, which was achieved by converting a very performant ANN. 
They also show results for ImageNet, where they achieve an accuracy of 65.1% 
on their ResNet34. Deeper models, like the ResNet50, were not considered in this 
work. On ImageNet FS-conversion of the ResNet50 model improves their accuracy 
by 10% and FS-conversion of the EfficientNet-B7 surpasses their performance by 
18.47%.

Data availability
Both ImageNet37 and CIFAR1013 are publicly available datasets. No additional 
datasets were generated or analysed during the current study. The data for the 
spike response depicted in Figure 1 have been published by the Allen Institute for 
Brain Science in 2015 (Allen Cell Types Database; available from: https://celltypes.
brain-map.org/experiment/electrophysiology/587770251). The implementation 
and pre-trained weights of the EfficientNet-B7 and ResNets are available from: 
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.

Code availability
The code this work is based on is publicly available (https://github.com/
christophstoeckl/FS-neurons; https://zenodo.org/record/4326749#.YCUuchP7S3I). 
Additionally, the code is available in a Code Ocean compute capsule (https://
codeocean.com/capsule/7743810/tree).
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Extended Data Fig. 1 | Comparison with other conversion methods. We did not find information regarding the number of time steps used for the 
BinaryConnect model4.
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