TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 292, Number 2, December 1985

COMBINATORIAL LOWER BOUND ARGUMENTS FOR
DETERMINISTIC AND NONDETERMINISTIC TURING MACHINES
BY
WOLFGANG MAASS!

ABSTRACT. We introduce new techniques for proving quadratic lower bounds for
deterministic and nondeterministic 1-tape Turing machines (all considered Turing
machines have an additional one-way input tape). In particular, we derive for the
simulation of 2-tape Turing machines by 1-tape Turing machines an optimal
quadratic lower bound in the deterministic case and a nearly optimal lower bound in
the nondeterministic case. This answers the rather old question whether the comput-
ing power of the considered types of Turing machines is significantly increased when
more than one tape is used (problem Nos. 1 and 7 in the list of Duris, Galil, Paul,
Reischuk [3]). Further, we demonstrate a substantial superiority of nondeterminism
over determinism and of co-nondeterminism over nondeterminism for 1-tape Turing
machines.

1. Introduction and definitions. A major goal of computational complexity theory
is the development of methods for proving optimal (or at least significant) lower
bounds on the computation time for various abstract computer models. Such lower
bounds are needed for the classification of mathematical problems according to their
inherent computational complexity. But they are also of practical importance for the
development of optimal computer hardware and software. Unfortunately the num-
ber of significant lower bound results in (machine based) complexity theory is very
small. The “P = NP?’ question is most prominent, but a closer look shows that
nearly every question that requires a nontrivial lower bound argument for a
general-purpose computer is open. Many of these questions are not related to
nondeterminism, which suggests that there is more missing than just a single “trick™.
It may be necessary to develop a new mathematical discipline that provides tools for
sharp lower bound results.

We introduce in this paper some new combinatorial techniques for proving lower
bounds on the computation time of Turing machines that are equipped with one
work tape and an additional one-way input tape (“one-way” means that the input
head on the input tape can move only in one direction). These techniques allow to
settle a rather basic question that is even older than the “P = NP?” question: How

Received by the editors July 31, 1984 and, in revised form, February 18, 1985. The results of this paper
were presented at the 16th Symposium on the Theory of Computing of the ACM (Washington, May 1984)
and at the Special Session on Mathematical Computer Science at the spring meeting of the AMS in
Chicago (Chicago, March 23, 1985).

1980 Mathematics Subject Classification. Primary 03D15, 03D10, 68C25 68C40; Secondary 05A17,
94A17.

- YWritten under support by the Heisenberg Programm der Deutschen Forschungsgemeinschaft, Bonn. '

©1985 American Mathematical Society
0002-9947 /85 $1.00 + $.25 per page

675

676 : WOLFGANG MAASS

much computation time can be saved when the considered Turing machines are
equipped with more than one work tape? The motive for this question is obvious.
One-tape Turing machines are perhaps the most widely used and simplest models for
a general-purpose computer. On the other hand, one notices that certain problems
can be solved quite fast on a Turing machine with more than one work tape, whereas
all known programs for the same problem on a 1-tape Turing machine require
substantially more computation time. But although similarly fast programs for
1-tape Turing machines have not been found, one also cannot prove that they do not
exist (except for the relatively trivial case of Turing machines without extra input
tape, see below). ; '

The first lower bound result concerning the two tapes versus one problem is due
to Rabin [23], who showed in 1963 that there is some difference in power between
the two classes of Turing machines (henceforth TM’s). He constructed a language
that is accepted in real time by a 2-tape TM, but which is not accepted in real time
by any 1-tape TM (a machine runs in real time if it uses only a-constant number of
computation steps between reading two successive input bits and halts within the
same number of steps after reading the last input bit; thus real time implies linear
time). Concerning upper bounds, Hartmanis and Stearns [7] proved in 1965 that
every 2-tape TM that runs in time #(n) can be simulated by a 1-tape TM that runs in
time O(t?(n)). This result holds if both machines are deterministic and if both are
nondeterministic. ‘ '

During the following two decades the main contribution towards closing the wide
gap between existing upper and lower bounds was made by Wolfgang Paul [21]. He
had earlier introduced the notion of Kolmogorov complexity into computational
complexity theory and he used it in 1982 to show that “on-line simulation” of a real
time - deterministic 2-tape TM by a deterministic 1-tape TM requires time
Q(nlog!/?n). The restriction to “on-line simulation” is nontrivial insofar as it
prevents the formulation of the result in terms of language acceptance or set
theoretic relationships between complexity classes (it only applies to computations
with many output bits).

For nondeterministic TM’s all questions about the influence of the number of
tapes on the computing power had been settled except for two tapes versus one
(according to Book, Greibach, Wegbreit [1] one can simulate for every k a nonde-
terministic k-tape TM by a nondeterministic 2-tape TM without an increase in
computation time). Concerning two tapes versus one Duris and Galil [2] proved that
a real time deterministic 2-tape TM cannot be simulated by a real time nondetermin-
istic 1-tape TM. In Duris, Galil, Paul, Reischuk [3] this lower bound was improved
to Q(nloglogn) (apparently they have later achieved Q(# logn)). -

The main disadvantage of a 1-tape TM is the fact that it needs Q(s - d) steps to
move on its work tape a string of s symbols over a distance of d cells. A 2-tape TM
can perform this operation in only O(s + d) steps. Therefore, one can easily derive a
quadratic lower bound for a weak form of 1-tape TM’s that do not have an
additional input tape (they receive the input on the work tape). Hennie [8] showed
already in 1965 that this machine needs quadratic time to decide whether an input
string is a palindrome. The 1-tape TM with an extra one-way input tape is quite a bit

COMBINATORIAL LOWER BOUND ARGUMENTS 677

more powerful and can, for example, recognize palindromes in linear time (provided
there is a marker in the middie). This is the TM model that has been considered in
the previously mentioned lower bound literature and which we will consider in this
paper. Such a 1-tape TM has the option to choose a clever data structure for the
representation of the input on its work tape. A suitable arrangement of the input on
the work tape (note that w.Lo.g. the work tape has several “tracks” and each input
bit may be recorded at many different locations on the work tape) makes it perhaps
unnecessary to perform during the computation a large number of time-consuming
string-moving operations). A clever data arrangement allows, for example, to simu-
late any k-tape TM that runs in time #(n) by a 2-tape TM that runs in time
O(t(n) - log t(n)) (Hennie and Stearns [9]). In view of these facts and because of the
virtually unlimited number of possibilities for representing the input on the work
tape, the correct value of the optimal lower bound for two tapes versus one was
somewhat dubious. v ;

In addition, in the case of two tapes versus one, for nondeterministic TM’s one has
to be aware that nondeterministic 1-tape TM’s are quite powerful: they accept in
linear time NP-complete problems like 3-COLORABILITY. From the technical
point of view, such machines have the additional option to use in a nonuniform way
“individualized” data structures for the representation of the input on their work
tape that are helpful only for a particular computation on a particular input.

We construct in this paper the language L of “polydromes” which extends the
well-known language of palindromes. This language L is accepted in linear (even
real) time by a deterministic 2-tape TM, but every 1-tape TM that accepts L uses
Q(n?) steps (Theorem 2.1). This solves the two tapes versus one problem and shows
that the Hartmanis /Stearns simulation [7] is in fact optimal for the considered two
classes of Turing machines. v

In §3 we define a slight extension L, (“iterated polydromes”) of the language L.
We show that L, is accepted in real time by a deterministic 2-tape TM, whereas no
nondeterministic 1-tape TM accepts L, in time o(n?/log? nloglogn) (Theorem 3.3).
This shows that for nondeterministic Turing machines the Hartmanis/Stearns
simulation is at least nearly optimal. " v

The lower bound arguments of this paper also yield new results concerning the
question whether nondeterministic machines are more powerful than deterministic
machines, and whether cofnondeterﬁlinistic machines are more powerful than non-
deterministic machines. We write DTIME, (¢(n)), NTIME,(¢(n)) for the classes of
languages that are accepted in time O(#(n)) by deterministic, respectively nonde-
terministic, k-tape TM’s (always with an additional one-way input tape). CO-
NTIME, (1(n)) consists of those languages whose complement is in NTIME, (#(n)).
The known separation results are A

NTIME,(n) ¢ U DTIME,(n(log* n)"")
‘ k>1

(Paul, Pippenger, Szemeredi and Trotter [22]),

NTIME, () ¢ DTIME, (n!!)

678 WOLFGANG MAASS

(Kannan [11]) and
NTIME,(n) ¢ DTIME,(n'??)

(Maass and Schorr [22]; here the lower bound also holds for 1-tape TM’s with
two-way input tape).
We show in §4 of this paper that

NTIME, (n) ¢ DTIME,(0(n?)) (Theorem 4.1)
and
CO-NTIME,(n) ¢ NTIME, (0(n?/log?nloglogn)) (Theorem 4.2)

(note that these classes arise from machines that only differ in their control
structures, not in their number of tapes).

The proofs of this paper rely on combinatorial arguments in combination with the
notion of Kolmogorov complexity. It turns out that if a binary sequence X is
“incompressible” (i.e. X has Kolomogorov complexity K(X) > |X]) then one can
handle the information in X like a given set of elements in combinatorics. In
particular, the information pieces that are contained in X are partitioned and
rearranged as if they were (static) elements of a given sets. This is possible because,
due to the incompressibility of X, no information piece from X can disappear
(without leaving a trace which has the same number of bits) and reappear later. The
“Desert Lemmata” (Lemma 2.2 and Lemma 3.4) may be viewed as somewhat
complicated applications of the pigeon hole principle. They assert that, however the
information contained in X is stored on the work tape of a 1-tape TM, there are two
regions (“pigeon holes”) on the tape that are separated by a long interval (the
“desert”), such that for each of these two regions there are large portions of
information about X of which only this region has knowledge.

It is often instructive to view a lower bound argument as the construction of a
winning strategy in a 2 person game (where the opponent claims that he can beat the
lower bound). We have made this view more explicit in a recent survey paper [16].
Compared with previously existing lower bound arguments the opponent has in our
case a large amount of freedom (for example, in the way he arranges the input on the
work tape). Therefore, in order to beat him one has to find a sufficiently general
“weak point” that is an invariant of all reasonable strategies of the opponent
(provided here by the “Desert Lemmata™).

In §3 we study a finitary analogue of a well-known infinitary structure (from
ergodic theory): We demonstrate in Theorem 3.1 with a purely combinatorial proof
a strong ergodicity property of the finitary version of the “doubling transformation”
T(x) = 2x (mod 1) which maps the interval [0, 1) of real numbers into itself. We use
this strong ergodicity property to comstruct ome input that beats all possible
strategies of the opponent (this is necessary in the nondeterministic case). This
combinatorial result appears to be also of some independent interest (we discuss
relationships to expander graphs in §3).

We have tried to make this paper largely self-contained. In particular, all relevant
definitions are given at the end of this section.

COMBINATORIAL LOWER BOUND ARGUMENTS 679

Slightly weaker versions of the results in this paper were first publicized in [14 and
15]. A discussion of some recursion theoretic aspects of our new lower bound
arguments was given in §4 of [16]. Sketches of the proofs were published in an
extended abstract [17]. Subsequently, Ming Li {13] derived a quadratic lower bound
for one tape versus two stacks. Paul Vitanyi [24] proved quadratic lower bounds for
“on-line simulation” (see discussion above) of one queue or two pushdown stores by
one tape (we learnt that in addition Vitanyi had reported at ICALP 83 a n'> lower
bound for on-line simulation of one pushdown store by an oblivious 1-tape TM).

Recently Zvi Galil suggested an alternative to our construction of a suitable input
Z in §3: Instead of our linear graph with weaker expansion properties one might use
his two-dimensional expander graph from [4] and realize the edges of it with logk
sweeps over X (apparently this would give about the same lower bound as Theorem
3.3). - o

The following definitions are used in this paper. All work tapes of Turing
machines are two-way infinite. For simplicity we assume that all Turing machines
use only binary tape and input symbols (all other symbols are coded). A nonde-
terministic TM is characterized by the fact that its transition function is multiple-val-
ued. A nondeterministic TM accepts an input if it has some computation path for
this input that ends in an accepting final state. A language is simply a set of words
over some fixed alphabet. A TM accepts a language L if it accepts exactly those
words over the corresponding alphabet that belong to L. A (deterministic or
nondeterministic) TM runs in time t(n) if no computation path for an input of
length n has more than #(n) steps. We refer to Hopcroft and Ullman [10] for further
details about Turing machines (this book also contains the mentioned simulation
results [7 and 9)). ,

In order to define the Kolmogorov complexity of a binary sequence X, we assume
that all Turing machines M (with any number of tapes) are coded in some fixed way
by binary sequences. We write | M| for the length of the binary sequence that codes
the Turing machine M. One defines the Kolmogorov complexity of X relative to
another binary sequence Y by

K(X|Y):= min{ | M| 'M is a deterministic Turing machine that
produces from input Y the output X }.

The Kolmogorov complexity of X is defined by K(X):= K(X|e), where & is the
empty sequence.

It is obvious that for every natural number n there is a binary sequence X of
length n with K(X) > n (because there are only 2" — 1 Turing machines M with
|M| < n).

The language L that we will consider in this paper extends the well-known
language of palindromes. Words in L represent the running of two independent
heads over a recorded sequence X. Therefore we call them “polydromes” (poly
(Greek) = many, dromos (Greek) = a running). We define L first in terms of
command sequences for a “virtual” 2-tape TM M’. A more concise but somewhat
less intuitive definition is given afterwards. The virtual TM M interprets each input

680 WOLFGANG MAASS

symbol from {0,1,2,3} as a command. M’ starts in “writing mode” and copies all
binary symbols at the beginning of the input onto both work tapes (from left to
right). As soon as M’ encounters a symbol from {2, 3} on the input tape, it changes
for the rest of the computation into-its “testing mode”. M’ interprets 2 (3) as the
command to move work head 1 (2) one cell to the left. In the testing mode M’
interprets a symbol y € {0,1} as the command to test whether that work head
which moved last reads the same symbol y in the currently scanned cell. The
complete input Y is in L if and only if all these tests have a positive outcome.

It is obvious from this definition that L is accepted i in-real time by the 2-tape TM
M’ v

This is another—purely combinatorial—definition of L:
L:= <x1 Xy 2yt Zglxg,..,x, € (0,1} A zy € {2,3)

AVje {2,...,k}(zj €{0,1) > (2, € {23} and z; = x4y,

where m := I{j' <j=lzp=1z,4} |< "))}

As an example for words in L, we note that a binary strihg Xy X,y Y, 18
a palindrome if and only if the word x, --- x, 2y, --- 2y, isin L. '

For the lower bound argument in the deterministic case (§2), we will consider the
followmg words Yy ; r from L. Let X be a binary sequence and let L = {/;,1;,... }
and R = {r,r,...} be two arbitrary sets of subsequences of consecutive bits
(“ blocks”) from X. We assume that each block has length p and that the blocks in
L and R are listed in the order of their appearance in X from right to left. Let
liy -1 ,and r,; -+ 7, , be the symbols of block /;, respectively 7, in the order
from rlght to left. Let d; L(z) (d(i)) be the number of bits between blocks /, and L
(r; and r,, ;) in X. Further, let d;(0) (d3(0)) be the number of bits in X to the right
of block /; (r;). Then the followmg string Yy ; z isin L:

Yyi =X - X, 2...2 203205 -+ 2L, 3---3 3r,3r, -+ 3y,
d; (0) times d g (0) times :
2-.-2 212.12[2‘2 e 212‘1J 3...3 3r2'13r2_2 cee 3r2‘1J <. - ete.
d; (1) times : dp (1) times

(alternating through all blocks of L and R).
2. Two tapes versus one for deterministic Turing machines.

‘THEOREM 2.1. The language L of polydromes is accepted ini linear (even real) time
by a deterministic 2-tape Turing machine, but any deterministic 1-tape Turing machine
that accepts L requires time Q(n*) (a reminder: all Tyring machines in this paper have
an additional one-way input tape).

PROOF. According to §1 it is obvious that the language L is accepted in real time
by some deterministic 2-tape TM. Assume for a contradiction that there is a
deterministic 1-tape TM M that accepts L but does not require time Q(»?2). This
implies that for every natural number ¢ there is an infinite set N, of natural numbers

COMBINATORIAL LOWER BOUND ARGUMENTS 681

such that M accepts every word Y € L with |Y| € N, in at most |Y|?/c steps (note
that the considered assumption does not imply that M runs in time o(n?)). We fix
M for the following and we choose ¢ large enough (this will be made more precise in
the following). For convenience we assume that.c is chosen in such a way that ¢'/¢ is
a natural number.

In order to get a contradiction we construct a word X"Z € L such that
|X"Z| € N, and M needs more than | X "Z|?/c steps to accept the input X "Z. We
fix a large enough number n_ € N, (precise conditions on the size of n, will come
out of the following arguments). We set n:= _n_/8, and choose a binary string X of
length n with K(X) > n (see §1 for the definition of the Kolmogorov complexity
K(X)). With the help of padding it will be easy to arrange that the length of the
constructed input X "Z is equal to n, (we assume for simplicity that all considered
Turing machines only use binary symbols, thus every symbol in {0, 1,2, 3} requires 2
bits). From an intuitive point of view this choice of X guarantees that X looks like a
random number to M (provided that n > |M|). In particular, M will not be able to
deduce from knowledge about some parts of X any significant information about
the rest of X.

Since M is deterministic, it processes the first part X of the input X"Z
independently of the second part Z. Therefore, we can wait with the definition of Z
until M has processed X. Further we can define this “test sequence” Z in such a
way that it exploits particular “weak points” of this first part of M’s computation.
The following Lemma 2.2 shows that because of the linear structure of the single
work tape of M there will always be some weak point in the first part of the
computation.

For the rest of this proof we partition the string X into 7 := "n/c'/*? blocks of
length ¢!/ (the last block may be shorter).

LeMMA 2.2 (“DESERT LEMMA™). If n is large enough, then there is an interval D of #
cells (the “desert™) on the work tape of M and there are two sets L;, and R, which’
each contain /2, — 2"n/c/*" blocks from X, such that the work head of M is always
left (right) of D during those steps where the input head reads from a block in X that
belongs to L, (Rp). ' ‘ ‘

PROOF OF LEMMA 2.2. There are at most n/c'/? blocks B in X such that the work
head .of M moves over 7 or more cells, while the input head reads B (if c is large
enough then "n/c/?" - fi > n?/c%/¢ > n?/c). Therefore, it will be sufficient to find
an interval D, of 37 cells on the work tape of M with the following two properties
(define D to be the middle third of D,):

(i) there are at least /2, — "n/c*/?" blocks B such that the work head is at some
step left of D, while the input head reads from B,

(ii) there are at least 7/2, — "n/c'/*" blocks B such that the work head is at some
step right of D, while the input head reads from B.

We define D, to be the leftmost interval of length 37 on the work tape of M that
satisfies (i). Assume for a contradiction that this interval D, does not have property
(ii). Define another interval D, of length 37 + 1 that consists of D, together with

682 WOLFGANG MAASS

the next cell to the left of D,. By definition of D, there is a set T of 2 - "n/c*/?"
blocks B such that the work head of M is always inside D, at those steps where the
input head looks at B. Let ¢, (cg) be a cell that lies between 1 and 7 cells to the left
(right) of D, such that the work head of M scans ¢, (cy) during at most 7 steps
(such cells exist because for ¢ large enough one has 72 > n?/c*? > n2/c). Let S,
(SR) be the crossing sequence for cell ¢, (cgz) which records for every crossing of
this cell the current machine state and (in binary code) the number of cells by which
the input head has advanced since the last crossing. Both crossing sequences require
only 7 - (s,, + 2 - "log ¢") bits, where the constant s,, depends only on the number
of states of machine M. We use at this point the fact that, according to Galil [S], for
any sequence my, ..., m; of natural numbers with 25;1 m; = n the convexity of the
log-function implies that

Y. (1 +1logm,) <#-(1+logn/f)<#-(1+loge).
j=1

We define X to be a variation of string X where all blocks that belong to T are
“censored”, i.e. replaced by equally long sequences of a new symbol B. Let I be the
inscription on the segment of M ’s work tape between the cells ¢; and ¢, at that step
t, where the input head moves off the last symbol of X (if the input head of M
never moves so far, one gets trivially a contradiction). Let T " be the concatenation
of all blocks-in T (in the order from left to right as they appear in X). We define an
auxiliary TM P (P can have an arbitrary number of tapes) that produces the output
T " from an input that consists of X<, I, S;, Sk, the cell numbers of ¢; and cy, #,,
the state and head positions of M (on an input that starts with X) at step ¢,. P
considers successively all binary sequences U that have the same length as T ". For
each such sequence U it replaces the censored parts in X< by U (call the resulting
binary sequence XC[U]). Then P simulates M on input X [U] until step #,. P -
outputs the sequence U if it finds that TM M on input X[U] generates on the cells
¢, and ¢, the crossing sequences Sy, respectively Sz, produces between ¢; and ¢, at
step ¢, the inscription I and reaches at step 7, the same state and head positions as
M on input X. Otherwise P tests in the same manner the lexicographically next
string after U.

The constructed TM P may use exponentially many computation steps, but it will
always output some string U (because the string T " has all the properties that are
expected from U). We assume for a contradiction that P outputs a string U that
differs from T ". At this point we have to give attention to the fact that P does not
test whether the input X<[U] produces at step ¢, also outside of the interval (¢, cg)
on the work tape of M the same inscription as the input X (P cannot test this
because it would then need as part of its input the corresponding inscription for
input X; this would make P’s input too long for our purposes). At this point it
becomes crucial that the crossing sequences S; and Sy did not just (like usual
crossing sequences) record for each crossing the current machine state, but in
addition the current position of the input head. We know (from the definition of
X©) that at those steps where its work head is outside of the interval (c;, cg), the

COMBINATORIAL LOWER BOUND ARGUMENTS 683

TM M on input X reads only those parts of X where X and X€ (and therefore X
and XC[U]) agree. Since M on input X[U] also produces the crossing sequences
S;, Sg on cell ¢, respectively cg, the same fact holds for M on input X“[U]. Thus
whenever the work head of M (for input X[U]) is outside of the interval (c,, cg),
M only processes those parts of the input where X and X[U] agree. Therefore, on
input X and on input X[U] the machine M produces automatically at step z, the
same tape inscription outside of (¢;, cg). Since M arrives at step 7, for both of the
inputs X and XC[U] not only with the same tape inscription but also in the same
state and with the same head positions, we can easily fool M in the following way:
We set Z:= 2x,2x,_, - 2x; (where x; - -+ x, = X). Obviously, X"Z € L and
XC[UI"Z & L (since X # X[U]). Since M accepts X "Z and since M reaches on
input X[U]"Z at step ¢, the same configuration as on input X "Z, M also accepts
XC€[U]"Z. This contradiction implies that U = T "\ : ’

The existence of the previously described TM P implies that
(1) K(T"| XY < K, -loge - n/c'”?
for some constant K,, that depends only on machine M.

On the other hand, if some TM produces (without input) the output X and if
another TM produces on input X the output T ", we can combine both TM’s into
one TM that produces (without input) the output X. Therefore (we ignore additive
constants in our estimates)

) n< K(X) < K(X)+K(T"XE).
Further one gets
(3) K(X)<sn—=2-n-c"2/* +4-n-(1 + logc)/c'/2.

We use here that X€ contains 2 - "n/c'/?7 - ¢!/3 censored bits and that we can
describe the location of all censored blocks by giving their distances in binary code
(the sum of distances between consecutive censored blocks is at most #, thus one can
use the same trick as for the estimate of the lengths of S;, S before).

The combination of (2) and (3) yields

(4) K(T"X)>2-n/c**—4-n-(1+logc)/c /2
Finally, from (1) and (4) we get
(5) 2/c6 < K,y - loge/c + 4 -(1 + logc) /2

Thus in order to get the desired contradiction we just have to choose ¢ large enough
so that (5) becomes wrong. This finishes the proof of Lemma 2.2.

For the following we fix a desert D and two sets L, R, of 7i/2,—2-"n/c"/*?
blocks from X as in Lemma 2.2. We define the second part Z of the constructed
i~npt5t sothat X"Z =Yy, » (see8§l for the definition of Yy ; for arbitrary. sets
L, R of blocks). This “test sequence” Z forces M to check all blocks of L, and R,
in alternation. We call each segment of Z, where one checks in immediate succession
a block from L, and a block from R, an L, — R, pair. For large enough ¢ one
has 7i/2,— 2 -"n/c*/*" > "ii/4. Thus we can assume that Z contains at least
Ti/4'L, — R, pairs, where one first checks a block from L, and immediately
afterwards a block from R .

684 WOLFGANG MAASS

From an intuitive point of view, it is plausible that the considered TM M 1is not
able to process the constructed input X "Z within the given time bound. Because of
the length of the desert, M cannot transfer a large amount of information about
blocks in Ly, or R, across the desert without exceeding its time bound. Therefore,
for most of the L, — R, pairs in Z, where some blocks by € Ly, and b, € R, are
checked in immediate succession, the work head of M has to move close to that area
of the tape where it had originally recorded information about these blocks. Thus it
has to move close to the left end of desert D in order to check b, and close to the
right end of desert D in order to check b,. The following Lemma 2.3 verifies this
intuition,

We write D, D,,, D, for the left, middle, respectively right third, of desert D.

LEMMA 2.3. For at least 2/3 of the L, — R p pairs in Z the work head of M touches
a cell left of D,, during those steps where M’s input head reads from that L, — R,
pair. '

PROOF OF LEMMA 2.3. Assume for a contradiction that for at least 1/3 of the
L, — R}, pairs in Z the work head of M stays to the right of D, at all steps where
the input head reads from that L, — R p pair. Let L be a set of "7 /12" blocks from
L, that occur in these L, — R, pairs. Let X<"Z€ be a variation of the input
where all blocks that belong to L. have been censored (i.e. replaced by equally long
sequences of a new symbol). Note that in Z the bits from each block B of [. occur
in alternation with the symbol “2”, In Z€ these symbols “2” remain unchanged
while the bits from B are replaced by m.

Let ¢, be a cell in D, that is scanned during at most 7 steps (such cell ¢, exists
because we assume:.that c is so large that 71%/3 exceeds the time bound | XZ)%/¢).
Let S, be a crossing sequence for cell ¢, that records for each crossing the current
state and input head position (analogously as Sy, Sg in Lemma 2.2). S, requires at
most 7 - 5, - log ¢ bits (same argument as in Lemma 2.2), where the constant s,,
depends only on machine M.

Let L™ be the concatenation of all blocks in . (in the order as they appear in X).
We construct an auxiliary TM P that computes " from X" ZC, the number of
cell ¢, S, and the final state and head positions of TM M on input X"Z.
Analogously as the TM P in the proof of Lemma 2.2 this machine P tries
successively all binary sequences ¥ of length |LN. P simulates for each such
sequence V' the TM M on input (X "ZC)V] (the latter term is defined in the
obvious way; in particular, (X°"Z)L"]= X"Z). P outputs the first string ¥
such that M on input (X" ZC)[V| generates on cell ¢, the crossing sequence S, and
halts with the same state and head positions as M on input X "Z. Obviously the
string ¥ = L has all these properties and thus P produces some output. Assume
for a contradiction that P produces an output ¥ # 1", We apply a “cut and paste”
argument where we cut the computations of M on input X"Z and on input
(XCNZ)V] at all those points where the work head scans cell ¢;. Then we combine
all those parts of M’s computation on input X "Z where the work head is left of
cell ¢, with all those parts of M’s computation on input (XS ZOV] where the

COMBINATORIAL LOWER BOUND ARGUMENTS 685

work head is not to the left of cell ¢, (this is possible because both computations
generate on cell ¢, the same crossing sequence). The constructed combination
yields an accepting computation of TM M on input X "Z €[V]. We use at this point
that M on input X "Z reads, during those phases of the computation where its work
head is left of cell c,, only those parts of the input where X "Z and X "Z €[V] agree
(this follows from the definition of L and of cell ¢,). Further, since I C L, and
since the crossing sequence S, records the current position of the input head for each
crossing of ¢;, M on input (X" Z)[V] reads, during those phases of the computa-
tion where its work head is not to the left of ¢, only those parts of the input where
(XC"Z[V] and X"ZC[V] agree. The resulting accepting computation of M on
input X "Z€[V] yields a contradiction, since our assumption ¥V # L" implies that
X "Z V] & L. Thus we have shown that TM P delivers the desired output L".

We now proceed similarly as in the proof of Lemma 2.2. The existence of TM. P
implies that (for sufficiently large c)

(6) K(L"|XC"Z€) <253, loge - n/c'/® < n/48.
On the other hand
(7) K(X€°Z1XC) < n (1 +loge) /3,

because we can describe the locations of those blocks in X which are tested in Z
with the help of their distances (in binary code). Further (in analogy to (2) and (3) in
Lemma 2.2) we have

n<K(X)< K(X)+K(L"Xx€)
<n=n/12+n-(1 +loge)/c** + K(L"|XC).

This implies

(8) K(L"X) 2 n/12 — n-(1 + logc) /3.
Finally ii-is obvious that , ‘

(9) K(L"X€) < K(XS"Z€|XC) + k(L0 XC"ZE).

From (7), (8) and (9) we get
K(L"|X"Z€) > K(L"|X€) — K(X°"Z€|X)
>n/12—-2-n-(1+logc)/c*? > n/24

(for sufficiently large ¢). This contradicts (6) and thus the proof of Lemma 2.3 is
complete.

The same argument as in Lemma 2.3 shows that for at least 2/3 of the L p— Rp
pairs in Z the work head of M touches a cell to the right of the middle third D, of
desert D while M ’s input head reads from that pair. This fact in combination with
Lemma 2.3 implies that for at least 1/3 of the L;, — R, pairs in Z the work head of
M crosses all of D,, during those steps where M ’s input head reads from that pair.
Thus M uses on input X "Z at least 1/3 - #i/4 - i/4 > n?/(36 - ¢*/*) computation
steps. For large enough ¢ this exceeds M’s time bound of | X "Z|%/c < 81 - n%/c
steps. This contradiction completes the proof of Theorem 2.1. ,

686 WOLFGANG MAASS

3. Two tapes versus one for nondeterministic Turing machines and a helpful
combinatorial result. The language L, of “iterated polydromes” that we will consider
for the nondeterministic case is a slight extension of our previously discussed
language L. We introduce a new command “4” for the virtual 2-tape TM M’ from
§1 that tells M’ to change the direction of movement for both of its work heads (this
new command will only be used when M’ is in its testing phase). Whereas in
language- L the command “2” (*3”) always required M’ to move work head 1 (2)
one cell to the left, the same command instructs M’ in the language L, to move
work head 1 (2) one cell to the left, if the number of preceding commands “4” is
even, and one cell to the right, otherwise. With the help of this new command “4”
we can instruct the 2-tape TM M’ to perform during its testing phase several sweeps
over its work tapes. Analogously as for L, a word Y over {0,1,2,3,4} isin L, if and
only if all “tests” in Y have a positive outcome (where Y is interpreted as command
sequence for the 2-tape TM M’). The equivalent purely combinatorial definition of
the language L, is obvious but tedious (see [17]).

We will use in the following proof only very simple words in L,, where the new
command “4” occurs only once. More precisely, only the following words Yy , € L,
will be considered. Let X be a binary sequence. Assume that X is partitioned into k
blocks B,,..., B,_; (listed in their order from left to right in X) of length p. We
define Yy , as the command sequence X "Z for M’, where Z is the following test
sequence. First, during one simultaneous sweep of both work heads of M’ from
right to left we arrange that, for 0 < i < k/2, head 1 checks block B; immediately
after head 2 has checked block B,, and immediately before head 2 checks block
B,, ., (a block is “checked” in the same way as described for language L in §1). In
the second part of the test sequence Z both work heads of M’ move from left to
right and during this sweep head 1 checks, for 0 < i < k/2, block B, ,,; im-
mediately after head 2 has checked B,,,, and immediately before head 2 checks B,,.

Note that for n:= |X| the length of the word Yy ,:= X"Z € L, is bounded by
107. The only property of language L, that will be used in the proof of Theorem 3.3
is the fact that Yy , = X"Z € L,, whereas X nZ & L, for every variation Z of Z
where some binary symbols in Z have been replaced by other binary symbols.

The movement pattern of the two work heads of M’ during the test phase of the
command sequence Yy , is very simple: during both sweeps head 2 moves twice as
fast as head 1. In this way every block B, is checked by head 1 immediately after
head 2 has checked block B0 and immediately before head 2 checks block B,w;
where

b® = 2b (mod k), b®=b®+1 and b, b®, 6V € {0,...,k —1}.

The following Theorem 3.1 extracts an important combinatorial property from
this movement pattern, which will be used in the proof of Theorem 3.3. This
combinatorial property appears to be also of independent interest (in a forthcoming
paper [19] we analyze some related combinatorial structures—which we call
“meanders” [18]-in a systematic fashion). It provides a finitary analogue to a
well-known infinitary property of the “doubling transformation” T(x) = 2x (mod 1),

COMBINATORIAL LOWER BOUND ARGUMENTS 687

which maps the interval [0,1) of real numbers into itself. This transformation is
studied in ergodic theory (see e.g. Halmos [6]) as a standard example for a
measure-preserving function (i.e. w(T'[E]) = p(E) for every measurable set E C
[0,1)) that is not invertible, but ergodic, which means that the only measurable sets
E that are invariant under T (E is invariant under T if T7'[E] = E) are trivial sets
(i.e. u(E) = 0or p([0,1)\ E) = 0). Theorem 3.1 asserts a strong ergodicity property
of the finitary analogue of this transformation T: every set of measure 1,/2 is not
only not invariant, it is moved by a considerable amount.

The following result gives also a partial answer to a question about expans1on
properties of graphs, which was raised by Klawe [12]. Klawe proved in [12] that
every rational linear mapping T between one-dimensional graphs of k vertices
yields at most an expansion factor of 1 + c/logk for some constant ¢ (i.e.
IT[X] < (1 + ¢/logk)|X| for some X € {0,...,k — 1}). We show here that this
upper bound on the expansion factor can actually be achieved by the (rational and
linear) doubling transformation T for all sets X C {0,..., k — 1} of size k/2. Thus
Klawe’s upper bound on the expansion factor is optimal for such X (up to the
constant c), which was conjectured by Klawe’s (see the question at the end of [12]).

THEOREM 3.1. Let S be a sequence of numbers from {0,..., k — 1} (possibly with
repetitions), where k = 2! for some natural number I. Assume that every number
be {0,...,k — 1} is somewhere in S adjacent to the number b® = 2b (mod k) and
somewhere in S adjacent to the number b® = b© + 1. Then for every partition of
(0,...,k — 1} into two sets G and R of equal size k/2 there are at least k/4logk
elements of G that occur somewhere in S adjacent to a number from R.

REMARK 3.2. One can easily construct a sequence S with properties as in Theorem
3.1 whose lepgth is bounded by 3k (see the construction of the command sequence
Yy ,)-

PrOOF OF THEOREM 3.1. Fix a partition of {0,...,k — 1} into two sets G and R
such that |G| = |R| = k/2.

Let e € {0,..., k — 1} be fixed. Then there is for every number d € {0,..., k —
1} a unique sequence {d¢,...,df) of elements from {0,...,k — 1} such that
dé=e, dt,, = (d5)Qordf,, = (df)", and df = d (simply transform the binary
sequence of length / which represents e in / many steps into the binary representa-
tion of d). We write G¢ for the set of b € G such that for some d we have df = b
and df,, € R, where (d¢,...,d}) is the sequence associated with d. Note that by
assumption on S every element of G° is somewhere in § adjacent to an element
from R.

CLaM 1. Assume e € G. Then k/2 < TI24|Gel- 27

PrOOF OF CramM 1. For every d € R there is in the associated sequence
(dg,...,df) a maximal index 7 < [such that df € G and df,; € R (since e = dg
€ G and d = df € R). Note that df € G (by definition of Gy). Further, at most
2/=7 of the k/2 numbers d € R yield both the same index 7 and the same number
dg (by definition of the sequence (d§, ..., d[) for d).

688 WOLFGANG MAASS

CLamM 2. For every index » € {0,...,/ - 1} and every number b {0,...,. k- 1}
there are at most 2" numbers e such that b G

PROOF OF CLAIM 2. If b € G then we can write b in the form b = Lizba, 2+
LI ve; - 27, where e = Xibe; 2/ and a,, e; € {0,1}. For every fixed 4 and ¢
this relationship to e holds for at most 2 many e (since the / — r least significant
bits of e are determined by 4).

In order to finish the proof of Theorem 3.1 we add up the k/2 many inequalities
for all e € G in Claim 1. Thus

&2-472 £ T (6:l-277 = Lo 1 o]

eeG r=0 r=0 eel
-1

< Z 2(—r . U Gre,' 2r,
re=() e

where we used Claim 2 for the last inequality. Further,

-1) -1
Z 2/—,‘ ‘ U Gre U Gre U Gr'e

=20y
r=0 teeG . e ee(;

r=0
Together -this- implies (since / = logk) that |U,.; G*| > k/4 logk for some r &
{0,...,7~1}. The claim of Theorem 3.1 follows from this inequality by the
definition of the sets G. v .
The next result yields the desired (nearly) quadratic lower bound for nondetermin-
istic 1-tape Turing machines (always with an additional one-way input tape).

=k- 3

1
=0

=
r

THEOREM 3.3. The language L, of iterated polydromes is accepted in linear (even
real) time by a deterministic 2-tape Turing machine, but L; is not accepted in time
o(n?/log?nloglogn) by any nondeterministic 1-tape Turing machine.

PROOF. Assume for a contradiction that M is a nondeterministic 1-tape TM that
accepts L, in time #(n) = o(n?/log?nloglog n). Compared with the proof of
Theorem 2.1 the following new difficulty arises because M is nondeterministic. On
any input X "Z such a machine M can guess during the first part of its computation
(while its input head reads X) what the second part Z of ‘the input will be. In
particular, M might process X in such a way that just this specific “test sequence”
Z can be executed with relatively few steps (say n'° many steps). This additional
ability appears to be fatal to our argument from §2. There we had relied on the
possibility to wait with the definition of Z until that point where M had already
processed X (we chose Z so that it exploited a particular “weak point” of M’s
processing of X). . '

According to the previous considerations we must now specify immediately the
complete input X "Z on which we challenge M. Weset X"Z = ¥ x.p (defined at the
beginning of this section) for some “random” string X and a suitable number p.- We
show that Theorem 3.1 implies that this test sequence Z has the following property:
For any two sufficiently large disjoint sets L and R of blocks of length p from X
there is a reasonably large number of L — R pairs in Z. We need this strong
property of Z because when we define the input X"Z, we do not yet know which
sets L, and R), will arise in the “Desert Lemma® (Lemma 3.4),

COMBINATORIAL LOWER BOUND ARGUMENTS 689

For the precise proof we fix a natural number » that is sufficiently large (exact
conditions will come out of the following arguments). For convenience we choose n
so that all later occurring terms such as loglogn, n/8loglogn, etc., have natural
numbers as values. Further, we fix (as in §2) a binary string X of length » with
K(X) > n. We partition X into k= n/8loglogn blocks of length 8loglogn. We
choose Z so that X"Z =Yy , for pi= 8loglogn (see the definition at the
beginning of this section). This definition implies that X"Z € L,. We fix an
accepting computation C of the nondeterministic TM M on input X " Z. By assump-
tion on M, the length of C is bounded by #(10n), where t(n) = o(n?/log*n loglog n).

LEMMA 3.4. (“DESerT LEMMA”). If n is large enough then there is an interval D of
27125 /logn cells on the work tape of M and there are two sets Ly, and R, which
contain each k/2 — 27% /log n loglog n blocks from X such that in compuiation C the
work head of M is always left (right) of D during those steps where the input head
reads from a block in X that belongs to L, (R). '

PrOOF OF LEMMA 3.4. The proof is analogous to the proof of Lémma 2.2. For
large n there are less than 27'n/lognloglogn blocks B in X such that in

computation C the work of M moves over 27*2n/logn or more cells while its input

head reads B (since t(n) = o(n?/log’nloglogn)). Therefore it will be sufficient to
find an interval D, of 3 - 275 /logn cells on the work tape of M which has the
following two properties (define D as the middle third of D,):

(i) there are at least k/2 — 27''n/log nloglog n blocks B in X such that at some
step of computation C the work head of M is left of D, while the input head reads
from B,

(ii) there are at least k/2 — 27"n/log nloglog n blocks B in X such that at some

step of computation C the work head of M 1s right of D, while the input head reads
from B.

Define D, as the leftmost interval of length 3 -27'2n/logn which satisfies
property (i). Assume for a contradiction that this interval does not have property (1).
Define another interval D, of length 1 + 3 - 272n/logn that consists of D, to-
gether with the next cell to the left of D,. By definition of D, there is a set T of
2719 /log nloglog n blocks B such that in computation C the work head of M is
always inside D, while the input head reads from B. Let ¢, (cy) be a cell that lies
between 1 and 3 - 2721 /log n cells to the left (right) of D, such that the work head
of M scans ¢, (cg) during at most 27*n/log nloglog n steps of C. Let S; (Sy) be
the crossing sequence for cell ¢, (cy) which records for every crossing of this cell the
current machine state and (in binary code) the number of cells by which the input
head has advanced since the last crossing. The differences 4, of the input head
positions- that occur in S, (Sg) add up to n (only that part of computation C is
relevant where X is read). Thus

2"y /log nlog log n ’
Y (1 + logd,) < (27%'n/lognloglogn) - (1 + log(2' log nloglogn))

i=1

and S, and S, together require no more than 2™ "n/log n bits.

e

690 WOLFGANG MAASS

In the same way as in the proof of Lemma 2.2 one defines an auxiliary TM P in
order to show that

(10) K(T"|XC) <2 % /logn

(where T " is again the concatenation of all blocks in T, X€ is a variation of X
where all blocks that belong to T have been censored). The only difference to
Lemma 2.2 is the fact that here the TM P requires more computation time:- it has to
simulate for every considered input X €[U] all possible computations of the nonde-
terministic TM M on this input. However, the result of the argument is not affected
by this difference.

In order to achieve the desired contradiction to (10) one shows in analogy to (3) in
Lemma 2.2 that

(11) K(X%) <n —(27n/lognloglogn) - 8 - loglog n
+(27%n/log nloglog n) (1 + log(2%° log nloglogn))
<n—6-29%/logn.

It is obvious that n < K(X) < K(X€) + K(T ") X) and therefore we get, from
(11), that

K(T™X)>n—K(X)>6- 27 /log n.

This contradiction to (10) completes the proof of Lemma 3.4.

We now consider the sequence S of block indices € {0,...,k — 1} in the order as
they are checked in the considered test sequence Z (for which X "Z = Yy , is the
input for M). We noted earlier that S satisfies the hypothesis of Theorem 3.1. Let
L, and R, be the sets of indices of those blocks that belong to the sets L,
respectively R ,,, in Lemma 3.4. We fix any two disjoint sets L, R C {0,....k~1)
with |L| = |R|=k/2, L, c L and R,cRr. According to Theorem 3.1 there is a
set H of at least k/4log k elements of L that are somewhere in S adjacent to an
element of R. We have |L — L, IR — RD[< 2‘9n/lognloglogn. Therefore, at
most 2 %1/lognloglogn elements of H belong to L — L, and at most 6 -
2‘9n/lognloglogn clements of H are adjacent to an element of R — R p (every
element of {0,..., k — 1} occurs three times in S). Thus there is a set H’ € H of at
least ’

k/4logk — 7-27°n/lognloglogn > 27%1/lognloglogn

elements of L, that are somewhere in S adjacent to an element of R . Therefore,
thereis a set H” C H' of 271 /6 log nloglogn elements of L, that are all adjacent
to different elements of R,. Each of these pairs of adjacent numbers in S corre-
sponds to an L, — R, pairin Z (i.e. a pair of blocks from L, respectively R p,,
that are checked in immediate succession in Z). In this way we get a set H of
27%n/6lognloglogn L p — Ry pairs in Z which all contain different blocks from
L, and different blocks from R,. We write D, D,, D, for the left middle,
respectively right third, of the “desert” D from Lemma 3.4,

COMBINATORIAL LOWER BOUND ARGUMENTS 691

LEMMA 3.5. For at least 2/3 of the 2n/6 lognloglogn L, — R, pairs in H the
work head of M touches a cell left of D, during those steps in computation C where
M’s input head reads from that pair.

PROOF OF LEMMA 3.5. Assume for a contradiction that for 1/3 of the L, —~ R,,
pairs in A the work head of M stays to the right of D, during those steps where the
input head reads from that pair in Z. Let L be a set of 27"n/log nloglog n blocks
from L, that occur in these L, — R, pairs. Let ¢, be a cell in D, that is scanned
during at most 27*n/log nloglog n steps of computation C. Let S, be the crossing
sequence for cell ¢, in computation C (analogously as in Lemma 2.3). In the same
way as in Lemma 3.4 one can show that S, requires at most 2~z /log n bits.

We write X" Z€ for the variation of input X "Z where all blocks that belong to
L have been “censored” (see §2 for a definition). Let L" be the concatenation of all
blocks in L (in the order as they appear in X). We construct an auxiliary TM P
that computes L from X<"Z€, S, the number of cell ¢, and the final machine
state of computation C. P tries successively (in the same way as TM P in the proof
of Lemma 2.3) all possible fill-ins for the censored blocks in X€"Z ¢, in addition it
tries all possible computations of the nondeterministic TM M on the resulting
inputs. The same “cut and paste” argument as in Lemma 2.3 shows that L is the
only fill-in that allows a computation of M on the resulting input which generates S,
on cell ¢, and halts in the same final state as computation C. The existence of TM P
implies that K(L"|X"Z€) < 27% /log n. On the other hand,

K(X) < n—(2"n/lognloglogn) - (8loglogn)
+(27"n/lognloglogn) - (2loglogn).
Therefore (because K(X) > n)
K(L"|XZ) > n - K(X€) - K(X"ZC|X) > 6 - 27Uy /logn

(note that K(X“"Z€|X) = O(1)). This contradicts the previously derived upper
bound and the proof of Lemma 3.5 is complete.

A symmetrical version of Lemma 3.5 shows that for at least 2 /3ofthe L, - R,
pairs in H the work head of M touches a cell to the right of D, while the input
head reads from that pair. Together with Lemma 3.5 this implies that for at least
1/3 of the 27%n/6lognloglogn L p — Ry pairs in H the work head of M crosses
the middle third D,, of the “desert” D while the input head reads from that pair. We
have |D,| = 272 /3log n and therefore M uses in computation C at least

(27°n/6lognloglogn) - (272 /3 logn) =278 . 42 /18log2nloglog n

steps. This contradicts the assumed time bound of t(n) = o(n*/log?nloglog n)
steps for TM M and the proof of Theorem 3.3 is complete.

4. Separation results for determinism, nondeterminism and co-nondeterminism. So
far we have compared the computing power of Turing machines that have the same
control structure but different memory structures. We now compare Turing ma-
chines that all have the same type of memory:one work tape (in addition to the

692 WOLFGANG MAASS

one-way input tape), but different control structures: deterministic, nondeterministic
resp. co-nondeterministic. The corresponding complexity classes DTIME,(¢(n)),
NTIME,(¢(n)) and CO-NTIME, (1(n)) were defined in §1.

THEOREM 4.1. Assume t(n) = o(n?). Then NTIME,(n) ¢ DTIME,(¢(n)).

ProoF. The complement of the language L is obviously in NTIME (n) (the
machine can guess the “reason” why a word is not in L and verify this guess with its
single work head). According to Theorem 2.1 L is not in DTIME, (¢(n)).

THEOREM 4.2. Assume t(n) = o(n®/log’n loglogn). Then CO-NTIME,(n) g
NTIME,(1(n)).

PrOOF. The complement of language L, is in NTIME (») (use an analogous real
time algorithm as for-L). According to Theorem 3.3 L, is not in NTIME (¢(n)).
~ ACKNOWLEDGMENTS. We would like to thank Andreas Blass, Joel Seiferas and Zvi
Galil for helpful suggestions. In particular, Zvi Galil [5] pointed out a simple way of
saving a log-factor in our estimates.

REFERENCES

1. R. V. Book, S. A. Greibach and B. Wegbreit, Time and tape bounded Turihg acceptors and AFL’s, J.
Comput. System Sci. 4 (1970), 606-621. _
2. P. Duris and Z. Galil, Two tapes are better than one for nondeterministic machines, Proc. 14th ACM
STOC (1982), 1-7.
3. P. Duris, Z. Galil, W. J. Paul and R. Reischuk, Two nonlinear lower bounds, Proc. 15th ACM STOC,
1983, pp. 127-132.) ‘
4. O. Gabber and Z. Galil, Explicit construciions of linear size superconcentrators, Proc. 20th IEEE
FOCS, 1979, pp. 364--370.
5. Z. Galil, private communication
6. P. R. Halmos, Ergodic theory, Lecture Notes, University of Chicago, 1955.
7. J. Hartmanis and R. E. Steatns, On the computational and complexity of algorithms, Trans. Amer,
Math. Soc. 117 (1965), 285-306.)
8 F. C. Hennie, One-tape off-line Turing machine computations, Inform. and Control 8 (1965),
553-578. - :
9. F. C. Hennic and R. E. Stearns, Two-tape simulation of multitape Turing machines, J. Assoc.
Comput. Mach. 13 (1966), 533-546.
10. J. E. Hopcroftand J.-D. Ullman, Introduction to automara theory, languages and computation,
Addison-Wesley, Reading, Mass., 1979.
11. R. Kannan, Alternation and the power of nondeterminism, Proc. 15th ACM STOC, 1983, pp.
344-346.
12. M. Klawe, Non-existence of one-dimensional expanding graphs, Proc. 22th IEEE FOCS, 1981, pp.
109-113.
13. M. Li, On one tape versus two stacks, preprint (February 1984).
14. W. Maass, Simulation of two tapes by one tape requires quadratic time, abstract (August 1983).

15. » Quadratic lower bounds for deterministic and nondeterministic Turing machines, abstrac
(September 1983). '

16. . Are recursion theoretic arguments useful in complexity theory (Proc. Internat. Conf. on
Logic, Methodology and Philosophy of Science, Salzburg, 1983), North-Holland, Amsterdam, 1983.

17. + Quadratic lower bounds for deterministic and nondeterministic one-tape Turing machines,
Proc. 16th ACM STOC, 1984, pp. 401-408.

18. + An optimal lower bound for random access machines and other applications of Ramsey’s

theorem, abstract (June 1984).
19. » Meanders, Ramsey’s theorem and lower bound arguments (in preparation).

COMBINATORIAL LOWER BOUND ARGUMENTS 693

20. W. Maass and A. Schorr, Speed-up of one-tape Turing machines by bounded alternation (in
preparation).

21. W. 1. Paul. On-line simulation of k + 1 tapes by k tapes requires nonlinear time, Proc. 23rd IEEE
FOCS, 1982, pp. 53~56.

22. W. J. Paul, N. Pippenger, E. Szemeredi and W. Trotter, On determinism versus nondeterminism and
related problems, Proc. 24th IEEE FOCS, 1983, pp. 429-438.

23. M. O. Rabin, Rea! time computation, Israel J. Math. 1 (1963), 203-211.

24, P. M. B. Vitanyi, One queue or two pushdown stores take square time on a one-head tape unit, Report
CS-R8406 of the Centre for Mathematics and Computer Science, Amsterdam, 1984,

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DivisION, UNIVERSITY OF CALIFORNIA,
BERKELEY, BERKELEY, CALIFORNIA 94720

Current address: Department of Mathematics, Statistics and Computer Science, University of Illinois at
Chicago, Chicago, Ilinois 60680 .

