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S1 Eligibility traces

Eligibility traces have been introduced in Section “Mathematical basis for e-prop” in Results. Here,
we provide further information on eligibility traces. In Section S1.1, we discuss an alternative view
on eligibility traces as derivatives. Second, we extend in Section S1.3 our treatment of eligibility
traces for LSNNs in Methods to include non-uniform synaptic delays.

S1.1 Viewing eligibility traces as derivatives

The notion of derivative
[
dht

j

dWji

]
local

from equation (14) quantifies the influence of an infinitesimal

change of Wji on the hidden state htj through the internal processes of neuron j and the spikes

of neuron i. Unlike the partial derivative
∂ht

j

∂Wji
it does not only take into account the update of

the hidden state at time step t, but considers instead the full neuron history. In comparison to

the total derivative
dht

j

dWji
it is only aware of the activity of neurons i and j. Below we explain why

the definition of the eligibility traces in equation (13), or equivalently the recursive equation (14),

define local derivatives
[
dzt

j

dWji

]
local

and
[
dht

j

dWji

]
local

.

One arrives at the equation (13) if one computes the total derivative
dht

j

dWji
in a variation of the

computational graph of Fig. 6 where the function htj = M(ht−1j , z̃t−1,xt,Wj) receives a vector

z̃t−1 that is equal to zt−1 but considered as a constant. We can then define the notation
[
dA
dB

]
local

as a total derivative dA
dB in this altered computational graph. Following the same derivation as

for equation (15) in Methods, the total derivative
[
dht

j

dWji

]
local

expends as
∑
t≤t′

[
dht′

j

dht
j

]
local

∂ht
j

∂Wji
.

Viewing that

[
dht

j

dht−1
j

]
local

=
∂ht

j

∂ht−1
j

in this computational graph, one recognizes that
[
dht

j

dWji

]
local

is

the eligibility vector given in equation (14). Equation (13) follows since etji =
∂ztj
∂ht

j
·εtji =

[
dztj
dWji

]
local

.

In fact this definition allows the extension of this new local derivative to other quantities and one

can summarize symmetric e-prop as the replacement of dE
dWji

by
[
dE
dWji

]
local

in stochastic gradient

descent.

S1.2 Eligibility traces for LSNNs with membrane potential reset

The eligibility traces derived in the methods do not take the reset term into account. We derive
here the eligibility traces that can correct for this. Note however that we did not observe an
improvement when using this more complex model on the speech recognition and the task where
temporal credit assignment is difficult.

Eligibility traces for LIF neurons. When taking into account the reset, the partial derivative
∂ht+1

j

∂ht
j

becomes α− vthrψtj instead of α and, accordingly to equation (14), the eligibility vector can

be computed with the recursive formula: εt+1
ji = (α− βψtj)εtji + ztj .

Eligibility traces for ALIF neurons. According to the dynamics of the ALIF neurons defined

in equations (6)–(10) one coefficient differs in the matrix
∂ht+1

j

∂ht
j
∈ R2×2 as soon as one takes the

reset into account. The coefficient
∂vtj
∂atj

was 0 without reset and becomes now vthrβψ
t
j . Overall the

full derivative
∂ht+1

j

∂ht
j

is then equal to:

∂ht+1
j

∂htj
=

(
α− vthrψtj vthrβψ

t
j

ψtj ρ− βψtj

)
. (S1)
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Even-though e-prop can be implemented as such, the recursive propagation of the eligibility vector
in equation (14) cannot be written in the form of two separable equations as done in equations
(24) and (25). Hence, we preferred to ignore the reset in Methods to provide more interpretable
equations for eligibility traces.

S1.3 Eligibility traces for LSNNs with non-uniform synaptic delays

In our derivation of eligibility traces for LSNNs, we used uniform synaptic delays to ease notation.
Here, we detail how e-prop can be extended to non-uniform delays of several ms. Let the delay of
a synapse from neuron i to j be denoted by c(j, i) > 0. Similarly, let d(j, i) ≥ 0 be the delay of
a synapse that connects an input neuron i with neuron j. Using this definition, the dynamics of
the membrane potential, see equation (6), is written as:

vt+1
j = αvtj +

∑
i 6=j

W rec
ji z

t+1−c(j,i)
i +

∑
i

W in
ji x

t+1−d(j,i)
i − ztjvth . (S2)

Like in the uniform delay case, we obtain
∂vt+1

j

∂vtj
= α. The difference for arbitrary delays becomes

visible in
∂vtj
∂W rec

ji
= z

t−c(j,i)
i and in

∂vtj
∂W in

ji
= x

t−d(j,i)
i . For recurrent weights, the component of the

eligibility vector associated to the membrane potential is hence:

εtji,v =
∑

t′≤t−c(j,i)

zt
′

i = z̄
t−c(j,i)
i . (S3)

As the dynamics of the threshold adaptation is unchanged, the update of εtji,a remains as given in
equation (24). We obtain an eligibility trace

etji = ψtj

(
z̄
t−c(j,i)
i − βεtji,a

)
. (S4)

Analogously, we obtain the corresponding eligibility trace for input synapses by replacing zti and
c(j, i) with xti and d(j, i) respectively.

S2 Optimization and regularization procedures

Here, we discuss how optimization of networks was implemented and techniques that were used
to regularize networks.

S2.1 Optimization procedure

For e-prop and for BPTT, the weights were updated once after a batch of training trials. For
simplicity, all the weight updates ∆W rec

ji are written for the most basic version of stochastic

gradient descent (∆W rec
ji = −η d̂E

dW rec
ji

, where d̂E
dW rec

ji
is the gradient estimate) in this article. In

practice, we used Adam [2] to boost stochastic gradient descent. We refer to [2] for the computation
of the weight updates that result from the gradient estimates.

S2.2 Firing rate regularization for LSNNs

To ensure a low firing rate in LSNNs, we added a regularization term Ereg to the loss function E.
This regularization term had the form:

Ereg =
1

2

∑
j

(
favj − f target

)2
, (S5)

4



where f target is a target firing rate and favj = 1
ntrialsT

∑
t z
t
j is the average firing rate of neuron j.

Here, the sum runs over the time steps of all the ntrials trials between two weight updates. To
derive the plasticity rule that implements this regularization, we follow equation (27) in Methods.
The partial derivative of the regularization loss has the form:

∂Ereg

∂ztj
=

1

ntrialsT

(
favj − f target

)
. (S6)

Inserting this expression into equation (27), we obtain the plasticity rule that implements the
regularization:

∆W rec
ji = η creg

∑
t

1
ntrialsT

(
f target − favj

)
etji , (S7)

where creg is a positive coefficient that controls the strength of the regularization. This plasticity
rule is applied simultaneously together with the plasticity rule that minimizes the loss E. Note
that this weight update fits the e-prop framework provided by equation (1) with a learning signal
Lreg,t
j proportional to f target − favj available locally at neuron j. This learning signal Lreg,t

j can

simply be added to the task-specific learning signal Ltj .

S2.3 Weight decay regularization

When using adaptive e-prop, readout and broadcast weights were regularized using L2 norm weight
decay regularization. This was implemented by subtracting cdecay ·W from each weight W that
was regularized at each weight update, where cdecay > 0 is the regularization factor (see specific
experiments for the value of cdecay). This weight decay in combination with the mirroring of the
weight updates has the effect that, despite different initialization, the output weights and the
adaptive broadcast weights converge to similar values. The remaining difference of performance
between symmetric and adaptive e-prop reported in Fig. 2 and Fig. S3 may be explained by the
different initializations.

S2.4 Optimization with rewiring for sparse network connectivity

Due to limited resources, neural networks in the brain and in neuromorphic harware are sparsely
connected. In addition, the connectivity structure of brain networks is dynamic, with synaptic
connections being added and deleted on the time scale of hours or days, which was shown to
help the network to use the limited connectivity resources in an optimal manner [3]. In order
to test whether e-prop is compatible with synaptic rewiring, we combined it with DEEP R [4].
DEEP R is based on a model for synaptic rewiring in the brain [3] and allows to rewire sparse
neural network models during training with gradients descent. The algorithm minimizes the loss
function E subject to a constraint on the total number of connected synapses. To do so, each
synaptic weight Wji is assigned a fixed sign sji (it is defined to be excitatory or inhibitory) and
an amplitude wji. Each potential synaptic connection can either be “active”, i.e., the synaptic
connection is realized, or “dormant”, i.e., this potential connection is not realized.

For a dormant synaptic connection, the weightWji is set to be zero and the gradients and weight
updates of the connection i→ j are not computed. It means in e-prop that dormant synapses do
not require eligibility traces. For an active connection, the weight is defined as Wji = sjiwji and
the weight amplitude is updated according to the update ∆wji = sji∆Wji − ηcL1 where ∆Wji

is the weight update given here by e-prop and cL1 = 0.01 is an L1 regularization coefficient. To
update the network structure such that the set of active connections is optimized along side their
synaptic weights, DEEP R proceeds as follows after each weight update:

• every active connection for which the amplitude becomes negative is set to be dormant,

• and some dormant connections are selected randomly and set to be active with wji = 0 such
that the total number of active connection remains constant.
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We define the synapse signs sji such that 80% of the neurons are excitatory and 20% are in-
hibitory. Despite the constraint on the neuron signs and the constraint that 90% of the synapses
should remain dormant throughout the learning process, e-prop and rewiring solve the task where
temporal credit assignment is difficult of Fig. 3.

S3 Supervised learning with e-prop

S3.1 Synaptic plasticity rules for e-prop in supervised learning

Here, we derive synaptic plasticity rules that result from e-prop for supervised learning. We con-
sider two cases: First, we derive plasticity rules for regression tasks, and second, for classification
tasks.

We follow the scheme described by equation (27) in Methods. Hence the loss gradients dE
dWji

are estimated using the approximation d̂E
dWji

def
=
∑
t
∂E
∂ztj

etji. Given the eligiblity traces that are

derived in Methods and Section S4.4, what remains to be derived for each task is the expression
of the relevant derivative ∂E

∂ztj
and show that it can be computed online.

Regression tasks: Consider a regression problem with loss function E = 1
2

∑
t,k(ytk − y

∗,t
k )2,

targets y∗,tk and outputs ytk as defined in equation (11). The partial derivative ∂E
∂ztj

takes the form:

E =
1

2

∑
t,k

(ytk − y
∗,t
k )2 (S8)

∂E

∂ztj
=

∑
k

W out
kj

∑
t′≥t

(yt
′

k − y
∗,t′
k )κt

′−t . (S9)

This seemingly provides an obstacle for online learning, because the partial derivative is a weighted
sum over future errors. But this problem can be resolved. Following equation (1), the approxi-

mation d̂E
dWji

of the loss gradient is computed with e-prop as follows (we insert ∂E
∂ztj

in place of the

total derivative dE
dztj

):

d̂E

dWji
=

∑
t′

∂E

∂zt
′
j

et
′

ji (S10)

=
∑
k,t′

W out
kj

∑
t≥t′

(ytk − y
∗,t
k )κt−t

′
et
′

ji (S11)

=
∑
k,t

W out
kj (ytk − y

∗,t
k )

∑
t′≤t

κt−t
′
et
′

ji︸ ︷︷ ︸
def
= ētji

, (S12)

where we changed the order of summations in the last line. The second sum indexed by t′ is now
over previous events that can be computed online. It is just a low-pass filtered version of the
eligibility trace etji. With this additional filtering of the eligibility trace with a time constant equal
to that of the leak of output neurons, we see that e-prop takes into account the latency between
an event at time t′ and its impact on later errors at time t within the integration time window of
the output neuron. Hence, implementing weight updates with gradient descent and learning rate
η, the plasticity rule resulting from e-prop is given by the equation (28). The gradient of the loss
function with respect to the output weights dE

dW out
kj

can be implemented online without relying on

the theory of e-prop. The plasticity rule resulting from gradient descent is directly:

∆W out
kj = −η

∑
t

(ytk − y
∗,t
k )Fκ(ztj) . (S13)
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Similarly the update of the bias of the output neurons is ∆boutk = −η
∑
t(y

t
k − y

∗,t
k ).

Classification tasks: We assume that K target categories are provided in the form of a K-
dimensional one-hot encoded vector π∗,t. To train recurrent networks in this setup, we replace
the mean squared error by the cross entropy loss:

E = −
∑
t,k

π∗,tk log πtk , (S14)

where the probability for class k predicted by the network is given as πtk = softmaxk(yt1, . . . , y
t
K)

= exp(ytk)/
∑
k′ exp(ytk′). To derive the modified learning rule that results from this loss function

E, we replace ∂E
∂ztj

of equation (S9) with the corresponding one resulting from (S14):

∂E

∂ztj
=
∑
k

W out
kj

∑
t′≥t

(πt
′

k − π
∗,t′
k )κt

′−t. (S15)

Following otherwise the same derivation as in equations (S10)-(S12), the plasticity rule in the case
of classification tasks is given by equation (29).

Similarly, one obtains the plasticity rule for the output connections, where the only difference
between the cases of regression and of classification is that the output ytk and the target y∗,tk are

replaced by πtk and π∗,tk respectively: ∆W out
kj = −η

∑
t(π

t
k − π

∗,t
k )Fκ(ztj). The update of the bias

of the output neurons is ∆boutk = −η
∑
t(π

t
k − π

∗,t
k ).

S3.2 Simulation details: speech recognition task (Fig. 2)

S3.2.1 Frame-wise phoneme classification

The goal of the frame-wise setup of the task is to classify audio-frames into phoneme classes. Every
input sequence of audio-frames has a corresponding sequence of class labels of the same length,
hence the model does not need to align the input sequence to the target sequence. This task has
been widely adopted as a speech recognition benchmark for recurrent neural networks (RNNs).

Details of the network model: In Fig. 2c the performance is reported for the same network
architecture as used for LSTM networks in [5], it uses in particular a bi-diretional architecture
where the output of the LSNN is augmented by the output of a second LSNN that receives the
input sequence in reverse time order. This reduces the error in comparison to the uni-directional
case from 36.1% to 32.9% for LSNNs with BPTT. This improvement is qualitatively similar to
what was previously reported for LSTM networks [5].

With the bi-directional architecture used in Fig. 2c, each of the two networks consisted of 300
LIF neurons and 100 ALIF neurons. The neurons in the LSNN had a membrane time constant of
τm = 20 ms, an adaptation time constant of τa = 200 ms, an adaptation strength of β = 0.184, a
baseline threshold vth = 1.6, and a refractory period of 2 ms.

We used 61 output neurons in total, one for each class of the TIMIT dataset. The membrane
time constant of the output neurons was τout = 3 ms. A softmax was applied to their output,
resulting in the corresponding class probabilities. The network model had ≈ 0.4 million weights.

Details of the dataset preparation and of the input preprocessing: We followed the same
task setup as in [6, 5]. The TIMIT dataset was split according to [7] into a training, validation, and
test set with 3696, 400, and 192 sequences respectively. The input xt was given as preprocessed
audio that was obtained by the following procedure: Computation of 13 Mel Frequency Cepstral
Coefficients (MFCCs) with a frame size of 10 ms on an input window of length 25 ms, computation
of the first and the second derivatives of MFCCs, concatenation of all computed factors. The 39
input channels were mapped to the range [0, 1] according to the minimum/maximum values in the
training set.
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In order to map the inputs into the temporal time domain of LSNNs, each preprocessed audio
frame was fed as inputs xt to the LSNN for 5 consecutive 1 ms steps.

Details of the learning procedure: All networks were trained for a maximum of 80 epochs,
where we used early stopping to report the test error at the point of the lowest error on the
validation set. Weight updates were implemented using Adam with default hyperparameters [2]
except for εAdam, which was set to 10−5. Gradients were computed using batches of size 32. We
used L2 regularization in all networks by adding the term 10−5 · ‖W‖2 to the loss function, where
W denotes all weights in the network. The learning rate was initialized to 0.01 and fixed during
training. For random e-prop and adaptive e-prop, broadcast weights Bjk were initialized using
a Gaussian distribution with a mean of 0 and a variance of 1 and 1/n (n being the number of
neurons in the LSNN) respectively. In adaptive e-prop, we used in addition to the weight decay
described above L2 weight decay on readout and broadcast weights according to S2.3 using a
factor of cdecay = 10−2. Firing rate regularization, as described in Section S2.2, was applied with
creg = 50.

S3.2.2 Phoneme sequence recognition with CTC

We compared e-prop and BPTT on the task and the network architecture used in [8]. The essential
building blocks of this architecture were also used in [9] for developing commercial software for
speech-to-text transcriptions. In this architecture Connectionist Temporal Classification (CTC) is
employed. This enabled us to train networks on unaligned sequence labeling tasks end-to-end. We
considered the results of [8] that were obtained with three layers of bi-directional LSTM networks,
CTC, and BPTT as a reference. We are aware that this configuration cannot be adapted to an
online implementation easily, due to the usage of a bi-directional LSTM network and the CTC
loss function. However, we believe that this task is still relevant to compare BPTT and e-prop
because it is a well established benchmark for RNNs.

Details of the network model: The neurons were structured into 3 layers. The network was
recurrently connected within a layer and had feedforward connections across layers. Each layer
consisted of 80 LIF neurons and 720 ALIF neurons (9.1 million weights). The neurons in LSNNs
had a membrane time constant of τm = 20 ms, an adaptation time constant of τa = 500 ms, an
adaptation strength of β = 0.074, a baseline threshold vth = 0.2, and a refractory period of 2 ms.
Synaptic delays were randomly chosen from {1, 2} ms with equal probability. The membrane time
constant of output neurons was τout = 3 ms.

E-prop with many layers of recurrent neurons: If one naively applies e-prop in such a
configuration, the partial derivative ∂E

∂ztj
is non-zero only if j belongs to the last layer, whereas

earlier layers would not receive any learning signal. To avoid this, we connected all neurons in all
layers of the RNN to the output neurons. Therefore, the outputs ytk of the RNN were given as

ytk =
∑
t′≤t κ

t−t′∑
l

∑
jW

out,(l)
kj z

(l),t′

j , where z
(l),t′

j denotes the visible state of a neuron j within
the layer l. As a result, the learning signals in the case of e-prop were non-zero for neurons in
every layer.

E-prop with the CTC loss function: ECTC is defined based on the log-likelihood of obtaining
the sequence of labeled phonemes given the network outputs ytk. We refer to [10] for the formal
definition of the probabilistic model. Equation (7.27) in [11] shows the gradient of the loss function
ECTC with respect to the activity of the outputs ytk that we denote as dE

dytk
. Using the linear

relationship between the visible state z
(l),t
j and the outputs ytk, we obtain that the partial derivative

∂ECTC

∂z
(l),t
j

that we need in order to find the learning signals used in e-prop, and are defined as∑
t′≥t κ

t′−t∑
k
dE
dyt
′

k

B
(l)
jk . Here, B

(l)
jk denote the broadcast weights to the layer l.
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Details of the dataset preparation and of the input preprocessing: The TIMIT dataset
was split in the same manner as in the frame-wise version of the task. The raw audio was
preprocessed before it was provided as an input xt to the network. This included the following
steps: computation of a Fourier-transform based filter-bank with 40 coefficients and an additional
channel for the signal energy (with step size 10 ms and window size 25 ms), computation of the
first and the second derivatives, concatenation of all computed factors, which totals to 123 input
channels. Normalization over the training set was done in the same manner as in the frame-wise
version of the task.

In order to map the inputs into the temporal time domain of LSNNs, each preprocessed audio
frame was fed as inputs xt to the LSNN for 5 consecutive 1 ms steps.

Details of the learning procedure: All models were trained for a total of 60 epochs, where
gradients were computed using batches of 8 sequences. The learning rate was initialized to 10−3

and decayed every 15 epochs by a factor of 0.3. We used early stopping to report the test error, as
in the previous task. Dropout was applied during training between the hidden layers and at the
output neurons with a dropout probability of 0.3. As in the frame-wise setup, the weight updates
were implemented using Adam with the default hyperparameters [2] except for εAdam = 10−5.
For random e-prop and adaptive e-prop, broadcast weights Bjk were initialized using a Gaussian
distribution with a mean of 0 and a variance of 1 and 1/n (n denoting the number of neurons
in the corresponding layer) respectively. In adaptive e-prop, we used L2 weight decay on readout
and broadcast weights according to S2.3 using a factor of cdecay = 10−4. When the global norm

of gradients Nclip = ‖ d̂E
dW in

ji
‖2 + ‖ d̂E

dW rec
ji
‖2 + ‖ d̂E

dW out
ji
‖2 was larger then 1, we scaled the gradients

by a factor of 1
Nclip

. We used beam search decoding with a beam width of 100. As in [8], the

networks were trained on all 61 phoneme labels but were then mapped to a reduced phoneme set
(39 classes) for testing.

S3.3 Applying e-prop to an episodic memory task

The FORCE training method [1] arguably defines the state of the art for training methods for
RSNNs that do not need to backpropagate gradients through time. FORCE learning uses a
synaptic plasticity rule that requires knowledge of the values of all synaptic weights in the network.
This rule was not argued to be biologically plausible, but no other methods for training an RSNN
to solve the task described below were known so far.

In order to compare e-prop to FORCE learning, we tested e-prop on the task to replay a movie
segment that was used as a target y∗,t [1]. Specifically, it had to generate at each time step the
values of all pixels that described the video frame of the movie at that time step. This episodic
memory task was arguably the most difficult task for which an RSNN was previously trained in
[1].

Here, we considered an extension to this task: An LSNN had to replay 1 out of 3 possible
movies, where the desired movie index was provided as a cue to the network, see Fig. S1a. As
in [1], the LSNN received also a clock-like input signal to indicate the current position in the
movie. We show in Fig. S1b that an LSNN can be trained to solve this task with either one of the
e-prop versions (see Movie S4), and that e-prop performs almost as well as BPTT.

Details of the network model: We used an LSNN that consisted of 700 LIF neurons and
300 ALIF neurons. Each neuron had a membrane time constant of τm = 20 ms and a refractory
period of 5 ms. ALIF neurons had a threshold adaptation time constant of 500 ms, and a threshold
adaptation strength of β = 0.07. All neurons had a baseline threshold of vth = 0.62. All 5544
output neurons had a membrane time constant of τout = 4 ms.
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Details of the dataset preparation and of the input scheme: We manually chose three
movie clips from the Hollywood 2 dataset [12], which contained between 0 and 2 scene cuts∗, see
Movie S4. The movie clips were clipped to a length of 5 seconds and spatially subsampled to a
resolution of 66 × 28 pixels. Since our simulations used 1 ms as a discrete time step, we linearly
interpolated between the frames of the original movie clips, which had a framerate of 25 frames
per second. In total, we obtained a target signal with 66×26×3 = 5544 dimensions, whose values
were divided by a constant of 255, such that they fit in the range of [0, 1].

The network received input from 115 input neurons, divided into 23 groups of 5 neurons. The
first 20 groups indicated the current phase of the target sequence, similar to [1]. Neurons in group
i ∈ {0, 19} produced regular spike trains with a firing rate of 50 Hz during the time interval
[250 · i, 250 · i + 250) ms and were silent at other times. The remaining 3 groups encoded which
movie had to be replayed, where each group was assigned to one of the three movies. To indicate
a desired replay of one specific movie, each neuron in the corresponding group produced a Poisson
spike train with a rate of 50 Hz and was silent otherwise.

Details of the learning procedure: For learning, we carried out 5 second simulations, where
the network produced a 5544 dimensional output pattern. Gradients were accumulated for 8
successive trials, after which weight updates were applied using Adam with a learning rate of
2 · 10−3 and default hyperparameters [2]. The movie to be replayed in each trial was selected with
uniform probability. After every 100 weight updates (iterations), the learning rate was decayed
by a factor of 0.95. For random e-prop, we used random broadcast weights Bjk that were sampled
from a Gaussian distribution with a mean of 0 and a variance of 1. In adaptive e-prop we used L2
weight decay (see Section S2.3) for the broadcast weights Bjk and the output weights W out

ji with
a factor of cdecay = 0.001. To avoid an excessively high firing rate, regularization, as described in
Section S2.2, was applied with creg = 0.1 and a target firing rate of f target = 10 Hz.

S3.4 Simulation details: task where temporal credit assignment is dif-
ficult (Fig. 3)

This task was inspired by the task performed by rodents in [13]. Each trial was split into three
periods: the cue period, the delay period, and the decision period. During the cue period, the
subject was stimulated with 7 successive binary cues (“left” or “right”), and had to take a corre-
sponding binary decision (“left” or “right”) during the decision period. The trial was considered
a success if the decision matched the side that was most often indicated by the 7 cues. No action
was required during the delay period. Each cue lasted for 100 ms and the cues were separated by
50 ms. The duration of the delay was distributed uniformly between 500 ms and 1500 ms, and
the decision period lasted for 150 ms.

Details of the network model and input scheme: We used an LSNN that consisted of 50
LIF neurons and 50 ALIF neurons. All neurons had a membrane time constant of τm = 20 ms, a
baseline threshold of vth = 0.6, and a refractory period of 5 ms. The time constant of the threshold
adaptation was set to τa = 2000 ms, and its impact on the threshold was given as β = 1.74 · 10−2.

Input to this network was provided by 4 populations of 10 neurons each. The first two input
populations encoded the cues as follows: When a cue indicated the “left” side (resp. the “right”
side), all the neurons within the first (resp. the second) population produced Poisson spike trains
with a firing rate of 40 Hz. The third input population spiked randomly throughout the decision
period with a firing rate of 40 Hz and was silent otherwise. All the neurons in the last input
population produced Poisson spike trains of 10 Hz throughout the trial, which was useful in
particular to avoid that the network becomes quiescent during the delay.

Details of the learning procedure: For learning, we used e-prop for classification tasks, see
Section S3.1. The target label π∗,tk was given as the correct output during the decision period at

∗sceneclipautoautotrain00019.avi, sceneclipautoautotrain00061.avi, sceneclipautoautotrain00071.avi
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the end of a trial. To help the network solve the task, we used a curriculum with an increasing
number of cues. We first trained with a single cue, and increased the number of cues to 3, 5 and
finally 7. The number of cues increased each time the network achieved less than 8% error on 512
validation trials. The same criterion was used to stop training once 7 cues were reached.

Independent of the learning algorithm that was used (BPTT, e-prop), a weight update was
applied once every 64 trials and the gradients were accumulated during those trials additively. All
weight updates were implemented using Adam with default parameters [2] and a learning rate of
5 ·10−3. In the cases of random e-prop and adaptive e-prop, broadcast weights Bjk were initialized
using a Gaussian distribution with mean 0 and variance 1. In adaptive e-prop we used L2 weight
decay (see Section S2.3) for the broadcast weights Bjk and the output weights W out

ji with a factor
of cdecay = 0.001. In addition, firing rate regularization, as described in Section S2.2, was applied
with creg = 1. and a target firing rate of f target = 10 Hz.

S4 Applying supervised learning with e-prop to artificial
neural networks (LSTM networks)

Here we show that e-prop can also be applied to artificial neural networks. We chose long short-
term memory (LSTM) neworks [14] for this demonstration, whose performance defines the stan-
dard for RNNs in machine learning. We demonstrate in Section S4.1 that LSTM networks can
achieve competitive results on TIMIT when trained with e-prop, followed by details on these sim-
ulations (Section S4.2). In the following sections, we provide details on the LSTM network model
used (Section S4.3) and on eligibility traces for LSTM units (Section S4.4).

S4.1 Speech recognition with LSTM networks and e-prop

In Results, we have used e-prop to train LSNNs on the speech recognition task TIMIT (see
Fig. 2). To test whether e-prop is effective also for artificial neural networks, we applied it to
LSTM networks on the very same task in its two flavors of frame-wise classification and sequence
transcription.

Supplementary Fig. S3 shows that e-prop approximates the performance of BPTT in both
versions of TIMIT also for LSTM networks very well. For the more difficult version of TIMIT
involving sequence transcription, we trained a feedforward sequence of 3 LSTM networks as in [8].

S4.2 Simulation details: speech recognition task with LSTM networks
(Fig. S3)

The data preparation in the two setups (frame-wise phoneme classification and phoneme sequence
recognition) were identical to the LSNN case. They are described in Section S3.2. The details on
the network models and training procedures are described next for the two task setups separately.

S4.2.1 Frame-wise phoneme classification with LSTM networks

Details of the network model: We used a bi-directional network architecture [5], where the
output of an LSTM network was augmented by the output a second LSTM network that received
the input sequence in reverse time order. Each of the two networks consisted of 200 LSTM units.

We used a 61-fold softmax output, one for each class of the TIMIT dataset. The LSTM network
had ≈ 0.4 million weights, which matched the number of weights in the LSNN for the same task.

Details of the learning procedure: LSTM networks were trained in the same way as LSNNs,
see section S3.2, except for the following differences in hyperparameters: We decayed the learning
rate after every 500 weight updates by a factor of 0.3. For L2 weight decay on readout and
broadcast weights according to S2.3 we used a factor of cdecay = 10−3. As LSTM units are not
spiking, we did not use firing rate regularization.
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S4.2.2 Phoneme sequence recognition with CTC and LSTM networks

We compared e-prop and BPTT on the task and the network architecture used in [8]. As for
LSNNs, we employed Connectionist Temporal Classification (CTC) to achieve phoneme sequence
recognition (see “Phoneme sequence recognition with CTC” in section S3.2). This enabled us to
train networks on unaligned sequence labeling tasks end to end.

Details of the network model: The neurons were structured into 3 recurrent layers. In each
layer there were 250 LSTM units. All neurons in all layers of the RNN were connected to the
output layer (see “E-prop with many layers of recurrent neurons” in section S3.2).

Details of the learning procedure: LSTM networks were trained in the same way as LSNNs,
see section S3.2. In the case of BPTT, we also used the peephole feature in the LSTM network
model.

S4.3 LSTM network model

We used a standard model for LSTM units [14], for which the hidden state at time step t is a one

dimensional vector containing only the content of the memory cell ctj , such that htj
def
= [ctj ], and ztj

is the value of its output. The memory cell can be viewed as a register which supports writing,
updating, deleting and reading. These operations are controlled independently for each cell j at
each time t by input, forget and output gates (denoted by itj , f

t
j and ℴtj respectively). The new

cell state candidate that may replace the cell state ct−1j at each time step t is denoted c̃tj . The
input, forget, and output sigmoidal gates as well as the cell state candidate of an LSTM unit j
are defined by the following equations:

itj = σ
(∑

i

W rec,i
ji zt−1i +

∑
i

W in,i
ji xti

)
(S16)

ftj = σ
(∑

i

W rec,f
ji zt−1i +

∑
i

W in,f
ji xti

)
(S17)

ℴtj = σ
(∑

i

W rec,ℴ
ji zt−1i +

∑
i

W in,ℴ
ji xti

)
(S18)

c̃tj = tanh
(∑

i

W rec,c
ji zt−1i +

∑
i

W in,c
ji xti

)
, (S19)

where all the weights used here are parameters of the model (we also used biases that were omitted
for readability). Using these notations, one can now write the update of the state of an LSTM
unit j in a form that we can relate to our general formalism:

ctj = ftjc
t−1
j + itj c̃

t
j (S20)

ztj = ℴtjc
t
j . (S21)

In terms of the computational graph in Fig. 6, equation (S20) defines M(ct−1j , zt−1,xt,Wj) and

(S21) defines f(ctj , z
t−1,xt,Wj).

S4.4 Eligibility traces for LSTM units

Eligibility traces for LIF neurons and ALIF neurons were derived in “Derivation of eligibility
traces for concrete neuron models” in Methods. Here, we derive eligibility traces for the weights
of LSTM units.

To obtain the eligibility traces, we note that the state dynamics of an LSTM unit is given by:
∂ht

j

∂ht−1
j

=
∂ctj
∂ct−1

j

= ftj . For each weight WA,B
ji with A being either “in” or “rec” and B being i,f,
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or c, we compute a set of eligibility traces. For example, the eligibility vectors for the recurrent
weights to the input gate W rec,i

ji , are updated according to equation (14), leading to:

εi,tji = ftjε
i,t−1
ji + c̃tji

t
j(1− itj)z

t−1
i , (S22)

resulting in eligibility traces:

ei,tji = ℴtjε
i,t
ji . (S23)

Similarly, the eligibility traces for the input weights to the input gate are obtained by replacing
zt−1i with xti.

Output gates: The gradients with respect to the parameters of the output gate do not require
additional eligibility traces. This is because the output gate contributes to the observable state but
not to hidden state, see equations S20 and S21. Therefore, one can use the standard factorization
of the error gradient as used in BPTT. For the recurrent weights to the output gates W rec,ℴ

ji , the
gradient is given by:

dE

dW rec,ℴ
ji

=
∑
t

dE

dztj

∂ztj
∂W rec,ℴ

ji

=
∑
t

dE

dztj
ctjℴ

t
j(1− ℴtj)z

t−1
i . (S24)

Hence, when applying e-prop to the weights of the output gate of an LSTM unit, we use, similarly
as in equation (27), the same approximation ∂E

∂ztj
of the ideal learning signal dE

dztj
. The other term

is local, depending only on t and t − 1, and does not require eligibility traces. For input weights
to the output gate W in,ℴ

ji , the gradient is obtained by replacing zt−1i with xti.

S5 Reward-based e-prop: Application of e-prop to deep RL

S5.1 Synaptic plasticity rules for reward-based e-prop

Here, we derive the synaptic plasticity rules that result from gradients of the loss function E, as
given in equation (32), see Fig. 4b for the network architecture. As a result of the general actor-
critic framework with policy gradient, this loss function additively combines the loss function for
the policy Eπ (actor) and the value function EV (critic).

We consider two cases: First, a simplified case where in each trial, one action is taken at the
end of the trial. This is the setup of the reward-based version of the task where temporal credit
assignment is difficult of Fig. 3, see Fig. S4 for performance results. Second, we analyse a more
general case where actions are taken throughout the trial. This is the setup of the Atari tasks
(Fig. 4, Fig. 5). For both cases, we derive the gradients for the parts Eπ and EV of the loss
function E, and express the plasticity rules resulting from these gradients.

Single action at the end of the trial (Fig. S4): In this setup, a discrete action a ∈ {1, . . . ,K}
from a set of K possibilities needs to be taken at the last time step T of a trial, leading to a binary-
valued reward rT . As a result, the return RT (denoted here for notational simplicity as R) is equal
to rT . We assume that the agent chooses action k with probability πk = softmaxk(yT1 , . . . , y

T
K)

= exp(yTk )/
∑
k′ exp(yTk′). Following the definition of Eπ in (30) one can write the loss function Eπ

using the one-hot encoded action 1a=k which assumes a value of 1 only if a = k and is 0 otherwise.
Hence we can write log π(a|y) =

∑
k 1a=k log πk, where although we sum over all possible actions,

only the term corresponding to the action a that was taken is non zero. Therefore, we can write
Eπ as:

Eπ = −R log π(a|y) = −R
∑
k

1a=k log πk . (S25)
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Interestingly, in the discrete action case, the loss function Eπ is reminiscent of the one used for
supervised classification, see equation (S14). But it exhibits two differences: firstly, the indicator
of the selected action 1a=k replaces the target label π∗k, and secondly, the loss is multiplied by
the reward R. Hence, the derivation of the weight update is almost identical with the additional
difference that we also replace R with R − V in the resulting gradient to reduce the variance of
the loss gradient estimate as derived in the general case in (35). Finally, in order to optimize E
defined in (32), we also need to consider EV = 1

2 (R − V )2, for which we can reuse the weight
update of e-prop for regression (S12). Combining the weight updates for Eπ and EV into a single
one, we have:

∆W rec
ji = −η

[
(R− V )

∑
k

Bπjk(πk − 1a=k)− cV (R− V )BVj

]
︸ ︷︷ ︸

Lj

ēTji , (S26)

where we denote with Bπjk the broadcast weights from output neurons yk, and with BVj the
broadcast weights from the output neuron that produces the value prediction V . The choice of
these broadcast weights then defines which variant of reward-based e-prop is employed (reward-
based symmetric e-prop, reward-based adaptive e-prop, or reward-based random e-prop).

For the synaptic connections of output neurons, the loss gradient can be computed directly
from the loss function (32). We also subtract the value prediction to reduce variance of the gradient
estimate as in (35), and obtain for the update rules: ∆Wπ,out

kj = −η(R − V )(πk − 1a=k)Fκ(zTj ),

and ∆WV
j = ηcV (R − V )Fκ(zTj ). Similarly, the updates of the biases of output neurons are:

∆bπ,outk = −η(R− V )(πk − 1a=k), and ∆bV = ηcV (R− V ).

Actions throughout the trial (Fig. 4, Fig. 5): In this setup, we assume that the agent
can take discrete actions ak among K possible choices at certain decision times t0, . . . , tn, . . . .
We also assume that the agent chooses action k with a probability πtnk based on a categorical
distribution that depends on the network output: πtnk = π(ak|ytn) = softmaxk(ytn1 , . . . , y

tn
K ) =

exp(ytk)/
∑
k′ exp(ytk′).

To derive the gradient estimate resulting from reward-based e-prop, we first consider the re-
gression problem defined by the loss function EV , and note that a major difference to the previous
case is that the return Rt integrates future rewards that may arrive long after an action was taken.
We begin with the result for regression from equation (S12). Substituting the relevant variables,
we obtain an estimation of the loss gradient:

d̂EV
dW rec

ji

= −
∑
t′

(Rt
′
− V t

′
)WV,out

j ēt
′

ji , (S27)

where WV,out
j are the weights of the output neuron V tj predicting the value function E[Rt]. In order

to overcome the obstacle that an evaluation of the return Rt
′

requires to know future rewards, we
introduce temporal difference errors δt = rt + γV t+1 − V t, and use that Rt

′ − V t′ is equal to the
sum

∑
t≥t′ γ

t−t′δt. We then reorganize the two sums over t and t′ (note that the interchange of
the summation order amounts to the equivalence between forward and backward view of RL [15]):

d̂EV
dW rec

ji

= −
∑
t′

(∑
t≥t′

γt−t
′
δt
)
WV,out
j ēt

′

ji (S28)

= −
∑
t

δt
∑
t′≤t

γt−t
′
WV,out
j ēt

′

ji (S29)

= −
∑
t

δt Fγ
(
WV,out
j ētji

)
. (S30)

For the part Eπ in the loss function E defined at equation (30), we consider the estimator ∂̂E
∂ztj

given

in (35), and use our previous definition that the probabilities of actions ak follow a categorical
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distribution, using a softmax of the network output yk. The estimator then becomes:

∂̂Eπ
∂ztj

=
∑
k

Wπ,out
kj

∑
{n | tn≥t}

κtn−t(Rtn − V tn)
(
πtnk − 1atn=k

)
, (S31)

where Wπ,out
kj are the weights onto the output neurons ytk defining the policy π, and κ is the

constant of the low-pass filtering of the output neurons. Following a derivation similar to equa-
tions (S10) to (S12) for supervised regression, we arrive at an estimation of the loss gradient of
the form:

d̂Eπ
dW rec

ji

=
∑
t

∂̂Eπ
∂ztj

etji (S32)

=
∑
t,k

Wπ,out
kj

∑
{n | tn≥t}

(Rtn − V tn)
(
πtnk − 1atn=k

)
κtn−tetji (S33)

=
∑
n,k

(Rtn − V tn)Wπ,out
kj

(
πtnk − 1atn=k

) ∑
t≤tn

κtn−tetji︸ ︷︷ ︸
ētnji

. (S34)

Like in the derivation of the gradient of EV , this formula hides a sum over future rewards in
Rtn that cannot be computed online. It is resolved by introducing the backward view as in
equation (S30). We arrive at the loss gradient:

d̂Eπ
dW rec

ji

=
∑
t

δtFγ
(∑

k

Wπ,out
kj

(
πtk − 1at=k

)
ētji

)
. (S35)

Importantly, an action is only taken at times t0, . . . , tn, . . . , hence for all other times, we set the
term πtk − 1at=k to zero.

Finally, the gradient of the loss function E is the sum of the gradients of Eπ and EV in
equations (S30) and (S35) respectively. Application of stochastic gradient descent with a learning
rate of η yields the synaptic plasticity rule given in the equations (36) and (37) in Methods.

Policy entropy regularization: In order to prevent premature convergence and encourage
exploration, we add to the loss function of reward-based e-prop an auxiliary loss that maximizes

the entropy H of the policy by EH = −
∑
tH(πt1, . . . , π

t
K)

def
= −

∑
tH

t. Hence the equation (35)

defining the estimators of the loss gradients ∂̂E
∂ztj

becomes:

∂̂E

∂ztj
= −

∑
n

(Rtn − V tn)
∂ log π(atn |ytn)

∂ztj
+ cV

∂EV
∂ztj

+ cH
∂EH
∂ztj

. (S36)

To exhibit the term ∂EH

∂ztj
, we begin with the definition of entropy and find EH =

∑
n

∑
k π

tn
k log πtnk =

−
∑
nH

tn for the case of actions that probabilities distributed according to categorical distribu-
tion:

∂EH
∂ztj

= −
∑

{n | tn≥t}

∑
k

κtn−tWπ,out
kj

∂Htn

∂ytnk
(S37)

=
∑

{n | tn≥t}

∑
k

κtn−tWπ,out
kj πtnk

(
log πtnk +Htn

)
. (S38)

And thus, using a similar derivation as in equations (S10) to (S12), we find the estimate of the
gradient of the loss function EH as:

d̂EH
dWji

=
∑
t

∂EH
∂ztj

etji =
∑
n,k

Wπ,out
kj πtnk

(
log πtnk +Htn

)
ētnji . (S39)
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Hence this adds a term of the form LH,tj ētji to the final learning rule of reward-based e-prop
exhibited in equations (36) and (37) in Methods such that it becomes:

∆W rec
ji = −η

∑
t

δtFγ
(
Ltj ē

t
ji

)
− ηLH,tj ētji with (S40)

LH,tj = cH
∑
k

Bπjkπ
t
k

(
log πtk +Ht

)
. (S41)

Plasticity rule for the readout weights and biases: The gradient of E with respect to
the output weights can be computed directly from equation (32) without the theory of e-prop.
However, it also needs to account for the sum over future rewards that is present in the term
Rt − V t. Using a similar derivation as in equations (S28)-(S30) the plasticity rule for these
weights becomes:

∆Wπ,out
kj = −η

∑
t

[
δtFγ

( (
πtk − 1at=k

)
Fκ(ztj)

)
+ πtk

(
log πtk +Ht

)
Fκ(ztj)

]
(S42)

∆WV,out
j = ηcV

∑
t

δtFγ
(
Fκ(ztj)

)
. (S43)

Similarly, we find the update rules for the biases of the output neurons. We obtain for these:

∆bπ,outk = −η
∑
t

[
δtFγ

(
(πtk − 1at=k)

)
+ πtk (log πtk +Ht)

]
, and ∆bV,out = ηcV

∑
t δ
t.

S5.2 Simulation details: RL version of the task where temporal credit
assignment is difficult (Fig. S4)

The task considered in this experiment was the same as in Section S3.4, but while the task
was there formulated as a supervised learning, the network is trained here using a reinforcement
learning setup. A reward of 1 was given at the end of the trial, if the agent selected the side which
had more cues than the other side, otherwise no reward was given. The network model remained
the same as in the supervised setup. The result is shown in Fig. S4: The task can be learnt by
reward-based e-prop.

Details of the decision process: In the reinforcement learning setup of the task, one binary
action formalizes the decision of the agent (“left” of “right”) at the end of the trial. This decision
was sampled according to probabilities πk that were computed from the network output using a
softmax operation (see section S5.1).

Details of the learning procedure: For learning, we simulated batches of 64 trials, and applied
weight changes at the end of each batch. Independent of the learning method, we used Adam to
implement the weight update, using gradients that were accumulated in 64 trials using a learning
rate of 5 ·10−3 and default hyperparameters [2]. For random e-prop, we sampled broadcast weights
Bjk from a Gaussian distribution with a mean of 0 and a variance of 1. To avoid an excessively
high firing rate, regularization, as described in Section S2.2, was applied with creg = 0.1 and a
target firing rate of f target = 10 Hz.

S5.3 Simulation details: Atari task (Fig. 4, Fig. 5)

Details of the Atari simulator and of the input scheme: For all our experiments we used
the Arcade Learning Environment [16] to simulate various Atari games. This simulator takes the
actions from the agent as input and advances the dynamics of the game by repeating the same
action for 4 times. The simulator then produces a reward feedback along with the new video
frame. The shape of the produced video frame is 160 pixels in width and 210 pixels in height and
each pixel has 3 values that describes its color. We first converted the colored video frame into a
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gray-scale video frame and scaled it to a size of 84 by 84. The gray-scale values (assuming values
between 0 and 255) were divided by 255. In our experiments, these observations were each given
for 5 ms as input xt, . . . ,xt+4 to the spiking agent.

Details of the network model: The network architecture of the agent consisted of a spiking
CNN followed by an LSNN. The spiking CNN consisted of 5512 LIF neurons for Pong (10928 LIF
neurons for Fishing Derby respectively). These neurons were organized in two layers. Neurons
in the first layer received input current resulting from a convolution of the video frame. The
spikes of these neurons were propagated to a second layer of neurons using synapses with a con-
volutional weight structure. Biases were channel-specific for both convolutions, see Table S1 for
all corresponding hyperparameters. All neurons in the two convolutional layers had a membrane
time constant of τm,CNN ms and a threshold of vth,CNN, see Table S1. The LSNN consisted of 240
LIF neurons and 160 ALIF neurons for Pong (180 LIF neurons and 120 ALIF neurons for Fishing
Derby respectively) and received spiking input from all neurons of the second convolutional layer.
Membrane time constants τm, baseline thresholds vth, adaptation time constants τa and adapta-
tion strengths β are reported in Table S1. The refractory period was set to 5 ms. All synaptic
delays in the LSNN were 1 ms. The output yt, V t was defined as the membrane voltage of output
neurons, whose membrane time constants τout are reported in Table S1. These output neurons
received spikes from all neurons in the network, including neurons in the convolutional layers.

Details of the action set and of the action generation: The set of valid actions was selected
according to the game at hand. For Pong, we used a set of 3 valid actions: Up, Down and Stay
(No op). For Fishing Derby, we used 9 possible action choices: Stay (No op), Fire, Up, Right, Left,
Down, Up-right, Up-Left and Down-right. Actions were sampled according to a discrete probability
distribution, where the k-th action was sampled with a probability of πtk = softmaxk(ytn1 , . . . , y

t
K).

Since the agent received the same video frame for 5 ms, actions were also generated only after
every 5 ms.

Details of the learning procedure: The agent was trained consuming a total of 250·106 action
generations, corresponding to 109 video frames of the Atari simulator (actions are repeated 4 times
internally). A weight update occurred every 32 episodes (64 for Fishing Derby respectively). We
computed gradients resulting from reward-based symmetric e-prop according to equation (S40).

For Pong the weights of the CNN are only trained to minimize the regularization of the neural
activity, hence it does not require learning signals. For Fishing Derby, as every neuron is connected
to the output neurons, we define feedback weights Bπ,CNN

jk , BV,CNN
jk for neurons in the CNN to be

symmetric to the output weights: Bπ,CNN
jk = Wπ,out,CNN

kj , BV,CNNj = WV,out,CNN
j .

Due to simulation constraints, we reset the fading memory filter Fγ(Ltj ē
t
ji) as well as the

eligibility vectors εtji to zero after every 500 ms for Pong (150 ms for Fishing Derby respectively).

The weight updates were applied using Adam [2] with a learning rate of 10−3 (The parameter ε was
set to 1). In Fishing Derby we clipped these gradients if exceeding a norm of 1000. The maximum
episode length Tmax was restricted to 1000 ms at the start of training, and was increased after
every 8750 s by ∆T , see Table S1. We used a discount factor of γ = 0.998. Note that an action
is generated only after every 5 ms. The coefficient cV that trades off between Eπ and EV can be
found in Table S1. We also applied entropy regularization according to equation (S39) to prevent
premature convergence to suboptimal policies. The value of the coefficient cH that adds this loss
EH to the objective is provided in Table S1. To avoid an excessively high firing rate, regularization
was applied as described in S2.2. The target firing rate was given by f target = 20 Hz. We used
further regularization to prevent membrane voltages from assuming values for which ψj is zero.
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S6 Evaluation of four variations of e-prop (Fig. S5)

We evaluate here the performance of four variations of random e-prop. In these variations, we
used

• truncated eligibility traces for LIF neurons,

• global broadcast weights,

• temporally local broadcast weights, and

• a replacement of the eligibility trace by the corresponding term of the Clopath rule,

respectively. The considered task, whose implementation details are described in Section S6.5, is
an extension of the task used in [1]. In this task, an RSNN was trained to autonomously generate
a 3 dimensional target signal for 1 second. Each dimension of the target signal was given by the
sum of four sinusoids with random phases and amplitudes. Similar to [1], the network received a
clock input that indicated the current phase of the pattern.

In Fig. S5a, we show the spiking activity of a randomly chosen subset of 20 out of the 600
neurons in the RSNN along with the output of the three output neurons after application of
random e-prop for 1, 100, and 500 seconds, respectively. In this representative example, the
network achieved a very good fit to the target signal (normalized mean squared error 0.01).

S6.1 A truncated eligibility trace for LIF neurons

A replacement of the term z̄ti with zti in equation (23) yields a performance that is reported in
panel b of Fig. S5 as “Trunc. e-trace”. Its performance is for the considered task only slightly
worse than that of random e-prop.

S6.2 Global broadcast weights

Since 3-factor rules have primarily been studied so far with a global 3rd factor, we asked how the
performance of e-prop would change if the same broadcast weight would be used for broadcast
connections between all output neurons k and network neurons j. We set this global broadcast
weight equal to 1√

n
with n being the number of neurons in the network. Fig. 2 and Fig. S2 show

together that the performance for the considered task is much worse than that of random e-prop.
We have also tested this on TIMIT with LSNNs and found there an increase of the frame-wise
error rate from 36.9% to 52% when replacing the broadcast weights of random e-prop with a global
one. On the harder version of same task, the error rate at the sequence level increased from 34.7%
to 60%.

S6.3 Temporally local broadcast weights

One can train RNNs also by applying the broadcast alignment method of [17] and [18] for feed-
forward networks to the unrolled version (see Fig. 1b) of the RNN. In contrast to e-prop, this
approach suggests to draw new random broadcast weights for each layer of the unrolled network,
i.e., for each time step of the RNN. Fig. S5c shows that this variation of random e-prop performs
much worse. However an intermediate version where the random broadcast weights are redrawn
every 20 ms performs about equally well as random e-prop for the considered task.

S6.4 Replacing the eligibility trace by the corresponding term of the
Clopath rule

The dependence of the synaptic plasticity rules from e-prop on the postsynaptic membrane poten-
tial through the pseudo-derivative in the eligibility traces yields some similarity to some previously
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proposed rules for synaptic plasticity, such as that of [19], which were motivated by experimen-
tal data on the dependence of synaptic plasticity on the postsynaptic membrane potential. We
therefore tested the performance of random e-prop, where the eligibility trace was replaced by the
corresponding term from the “Clopath rule”:

[vtj − v+th]+[v̄tj − v−th]+z̄t−1i , (S44)

where v̄tj is an exponential trace of the post synaptic membrane potential, with a time constant of

10 ms chosen to match their data. [·]+ is the rectified linear function. The thresholds v−th and v+th
were vth

4 and 0 respectively. Fig. S5b shows that the resulting synaptic plasticity rule performed
quite well.

S6.5 Simulation details: pattern generation task

The performance in this task is reported as a normalized mean squared error (nmse) that we

defined for this task as: nmse =
∑

t,k(y
t
k−y

∗,t
k )2∑

t,k(y
∗,t
k −ȳ

∗
k)

2
, where we set ȳ∗k = 1

T

∑
t y
∗,t
k .

Details of the network model and of the input scheme: We used a network that consisted
of 600 LIF neurons. Each neuron had a membrane time constant of τm = 20 ms and a refractory
period of 3 ms. The firing threshold was set to vth = 0.41. Output neurons used a membrane
time constant of τout = 20 ms. The network received input from 20 input neurons, divided into 5
groups, which indicated the current phase of the target sequence similar to [1]. Neurons in group
i ∈ {0, 4} produced 100 Hz regular spike trains during the time interval [200 · i, 200 · i + 200) ms
and were silent at other times.

Details of the target pattern: The target signal had a duration of 1000 ms and each compo-
nent was given by the sum of four sinusoids, with fixed frequencies of 1 Hz, 2 Hz, 3 Hz, and 5 Hz.
At the start of learning, the amplitude and phase of each sinusoid in each component was drawn
uniformly in the range [0.5, 2] and [0, 2π] respectively. This signal was not changed afterwards.

Details of the learning procedure: For learning, we computed gradients after every 1 second
of simulation, and carried out the weight update using Adam [2] with a learning rate of 3 · 10−3

and default hyperparameters. After every 100 iterations, the learning rate was decayed by a factor
of 0.7. For random e-prop, the broadcast weights Bjk were sampled from a Gaussian distribution
with a mean of 0 and a variance of 1

n , where n is the number of network neurons.
Firing rate regularization, as described in Section S2.2, was applied with creg = 0.5 and a

target firing rate of f target = 10 Hz.
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Pong Fishing Derby
τm 15 ms 10 ms
vth 1 1
τa 70 ms 70 ms
β 0.1 0.1

τout 2 ms 4 ms
vth,CNN 0.1 0.1
τm,CNN 1 ms 1 ms

cV 1 0.5
cH 0.0025 0.006
creg 50 10

∆T

((
3

√
Tmax

1 s · 1000 + 1

)3

− Tmax

1 s · 1000

)
ms 1000 ms

First convolutional Layer
Kernel structure 8× 8× 1× 8 8× 8× 1× 16

Stride 4 4
Padding VALID SAME

Number of neurons 3200 7056
Second convolutional Layer

Kernel structure 4× 4× 8× 8 4× 4× 16× 32
Stride 1 2

Padding VALID SAME
Number of neurons 2312 3872

Table S1: Table of hyperparameters used in Atari tasks
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Figure S1: Performance comparison of BPTT and e-prop on an extension of the
episodic memory task from [1]. The LSNN had to generate at each time step the values
of all pixels that described the video frame of the movie at that time step, see section S3.3. a)
Input spikes, network activity (for 20 sample neurons), learning signals, and network outputs (at
1s and 4s, shown at the top) of an LSNN after 1000 training iterations. For comparison we also
show learning signals after just 100 iterations, where their amplitude is still large. b) Performance
of BPTT and e-prop.
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Figure S2: Comparison of learning algorithms for training LSNNs on the TIMIT task.
Performance of BPTT and the three versions of e-prop on frame-wise phoneme classification (left)
and for phoneme sequence recognition (right).
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Figure S3: LSTM networks trained with BPTT and e-prop on the TIMIT task. Perfor-
mance of BPTT and the three versions of e-prop on frame-wise phoneme classification (left) and
for phoneme sequence recognition (right).
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Figure S4: Performance of reward-based random e-prop and BPTT for the RL version of the task
from Fig. 3, applied to an LSNN consisting of 50 LIF and 50 ALIF neurons.
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Figure S5: Evaluation of several variants of random e-prop a) The task is a classical
benchmark task for learning in recurrent SNNs: learning to generate a target pattern, extended
here to the challenge to simultaneously learn to generate 3 different patterns, which makes credit
assignment for errors more difficult. Learning performance with random e-prop is shown after
training for 1, 100, 500 s. b) Normalized mean squared error of several learning algorithms for
this task after 500 s of training. “Clopath rule” denotes a replacement of the eligibility trace of
random e-prop by a corresponding term proposed in [19] based on experimental data. b) Learning
curves for variations of random e-prop with temporally local broadcast weights.
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Movie S1: Task from Fig. 3 with difficult temporal credit assignment
Rodent task from [13] and [20] that requires long-term credit assignment for learning: a rodent

has to learn to run along a linear track in a virtual environment, where it encounters several cues
on the left and the right side along the way. It then has to run through a corridor without cues
(giving rise to delays of varying lengths). At the end of the corridor, the rodent has to turn to
either the left or the right side of a T-junction, depending on which side exhibited more cues along
the way.
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Movie S2: Dynamics of BPTT for the task from Fig. 3 with difficult temporal credit
assignment

Dynamics of BPTT for the task where temporal credit assignment is difficult: First, a simu-
lation of the network has to be carried out in order to produce the network state of all neurons
for all time steps. After that the loss function E can be evaluated. Then the simulated network
activity is replayed backwards in time to assign credit to particular spikes that occurred before
the loss function became non-zero. One sees that the slow time constants that are present in
the dynamics of adapting thresholds of adaptive LIF (ALIF) neurons result in slowly decaying
non-vanishing gradients during the backpropagation through time. In contrast, for LIF neurons
the backpropagated gradients vanish rather quickly.
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Movie S3: Dynamics of e-prop for the task from Fig. 3 with difficult temporal credit
assignment

The computation of the LSNN is accompanied by the computation of synapse specific eligibility
traces. An error in the computation only becomes apparent during the so-called decision period
at the end of a trial. In this last phase, a learning signal (Lj) that transmits deficiencies of the
network output is provided separately to each neuron. As can be seen from the video, synapses
that project to neurons with adapting thresholds (ALIF neurons) still have non-vanishing eligibility
traces during the last phase, and hence can be combined with the learning signals at that time to
implement long-term credit assignment.
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Movie S4: Solution of the episodic memory task from [1] by an LSNN trained with
e-prop

Extension of episodic memory task from [1] trained with random e-prop. The top row presents
the actual movie clip, and the output produced by the trained LSNN. The middle row shows the
input that is presented to the network: a channel that indicates which of the three learned clips
had to be replayed, and an array of input neurons that indicate the current timing in the clip. The
bottom row shows the spiking activity of a subset of the neurons in the LSNN (20 neurons out of
1000). As can be seen, the network learned via e-prop to distinguish well between the different
clips and also, the LSNN was able to deal with scene cuts, which require the network to change
its output abruptly.
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Movie S5: Network dynamics, synaptic plasticity, and performance of an LSNN
trained by reward-based e-prop to win the Atari game Pong

A trial of the Atari Pong task after training the network with reward-based symmetric e-prop:
The video frames of the game screen (right) are preprocessed using a spiking CNN and provided
as input to the LSNN, resulting in spiking activity (bottom left: LIF, ALIF). Output neurons
predict future rewards, and the probability of taking actions (Move up, Move down, Stay), shown
top left. Learning dynamics are induced when reward prediction errors (green) are combined with
a decaying product of local eligibility traces and action feedback (blue). This results in weight
changes at synapses (red), shown middle left.
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