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ABSTRACT

We start an investigation of strong reducibilities in a- and
B-recursion theory. 1In particular, we study Myhill's Theorem about
recursive isomorphisms (A {{B4B AS A B), and show that it
holds for a limit ordinal B if and only if glcff = w. (In parti-
cular, it falls for all admissible a > w.) We point out a consequence
for Ei-sets {(n > 2) under V = L.

§1. INTRODUCTION AND BASIC DEFINITIONS

During the last twenty years classical recursion theory (CRT) has
been extended to a theory of computable functions on admissible ordinals
(a-recursion theory) respectively arbitrary 1limit ordinals (B-recursion
theory) .

These new theories concentrated on the study of Turing-degrees (e.g.
Post's problem) and of the lattice of recursively enumerable sets. So
far recursive isomorphisms and strong reducibilities gl, gm. ete. have
not been considered in a- or PB-recursion theory (except for a few
elementary results on B-recursive isomorphisms in [14]). 1In this
paper we begin a study of this latter subject.

A general experience has been, that results that can be proved
rather easily in CRT (like e.g., the solution of Post's problem) can be
generalized to all admlssible ordinals and even to many inadmissible
ordinals. On the other hand, results from CRT that require more com-
plicated constructions (like e.g., minimal pairs) are more difficult
to generalize, and might not even hold for all admissible ordinals.

We analyze in this paper an extremely easy (although important)
result from classical recursion théory ~ Myhill's Theorem - and show
that it holds for no admissible ordinal a > w, further that 1t holds
for arbitrary limit ordinals B if and only if g¢lcfB = w. By
"Myhill's Theorem" we mean here the following result (see Rogers [16],
Theorem 7-VI): Any sets A and B c w are one-one reducible to each
other (1.e., A <; B and B, A) if and only if A and B are re-
cursively isomorphic (A = B).

The notions L, end = which occur in Myhill's Theorem are well
defined for arbitrary limit ordinals pB. A subset of B (or of LB)
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1s called PB-recursively enumerable (B- r.e.) if and only if 1t is El-
definable over LB (LB 1s the collection of all sets that appear in
the hilerarchy of constructible sets before level g, we refer the reader
to Devlin [3] for details about constructible sets). A function f
from B into B (f may be partial) is called PB-recursive if and
only 1f the graph of f 1s pB- r.e. Thus for subsets A,B of B one
says that A = B (A is PB-recursively isomorphic to B) if and only
if there 1s PB-recursive function f that maps B one-one onto B
such that f(A) = B. Further A L (A 1s one-one reducible to B)
i1f and only Iif there 1s a PB-recursive one-one map f from B into
B such that

vx € B(x € A <> f(X) € B).

A = B 1s an abbreviation for A £ B and B gl A,

We would llke to point out that for certain ordinals B > w the
concepts that are considered in the generalization of Myhill's Theorem
to B colnclde with well known notions from descriptive set theory, in
case V = L. In particular for B = R? (where R% is the first un-
countable L-cardinal) the real numbers in L can be identified with
the ordinals less than B and a function is PB-recursive if and only
i1f the corresponding function from reals into reals 1s Ez-definable
(further zi-definable for n > 2 corresponds to I over
<LNL,Sn> for some suitable mastercode Sn; our results on Myhill's
Theirem remain valid for such admissible structures). Therefore the
statement of Myhill's Theorem for pB = &? 1s equivalent to the question
whether for all sets A,B of reals such that A = f-l[B] and
B = g-l[A] for some one-one 5% functions f and g there is a
2% definable permutation h of the reals with h[A] = B. We give a
negative answer to this question (under V = L). We can even show
(via a priority argument) that there are 5% sets A and B for
which this statement does not hold.

This paper is largely self-contalned. A reader that 1s only inte-
rested in a-recurslon theory may substitute o for B throughout
this paper. We use only very elementary notions from p-recursion
theory, which we repeat here for completeness. One writes g¢glecfp for
the least ordinal ©& < B such that there is some pB-recursive function
whose domain is ® and whose range is unbounded in B (thus B is
admissible if and only if g¢lcfp = B). B* 1s the least ordinal © < B
such that some p-recursive function maps B one-one into ©&. é is

the least ordinal 6 < B such that some B-recursive function maps
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B one-one onto & (by Friedman [8] one has B = maX(B*,clch) for

all 1limit ordinals PB). An ordinal © < B 1is called a RB-cardinal if
no function f ¢ L maps © one-one into some v < &5, A set a € LB
is called i-finite if and only if some functlon f ¢ LB maps o one-
one onto some © < glcfp (see [14] for other equivalent definitions).

For partial functions f and g we write f£(X%) = g(x) 1if and
only if either f and g are defined on X and have the same value
or both functions are not defined on x.

In section 2 of this paper we show that Myhill's Theorem falls for
all B with gleff > w (in particular for all admissible a > w). In
section 3 we show that Myhill's Theorem holds if ¢lcfBf = w.

In section 4 we sketch the outline for a systematic development of
the theory of strong reducibilities in a- and PB-recursion theory.
We show that Myhill's Theorem can be saved for all limit ordinals B
if one considers the reducibility Si (where one demands that in addi-
tion the range of the reduclng functlion is B-recursive) instead of
Sl' We introduce an appropriate generalization of the notion of
"acceptable Goedel numbering." We show for example that for all B8
a PB-r.e. set 1s creative if and only if it 1s m-complete. Further
if olefp > B* these notions coincide with l-completeness. More
detailed proofs for results in section 4 can be found in the
Diplomarbeit [4] of the first author.

§2. MYHILL'S THEOREM FAILS IF glcff > w

TLet two PB-recursive functions f,g: B l—_-!> B and two sets A,Bc B
be given so that A . B via f,g, 1l.e., f-l[A] = B and g_l[B] = A.
How can we find a PB-recursive permutation h:B i;%8>8 such that A = B
via h? It does not make sense to define h 1in terms of A and B,
since h 1s to be PB-recursive, and nothing is sald about the defina-
bility of A and B. So, glven x € B, which elements of B can we

use as h(x)? We observe

X e A& F(x) e B (fg)f(x) ¢ B<&=
= (fg)kf(x) € B for any (or all) k e w <&
&> ay e Bk ¢ w ((£2)5(y) = £(x)),

by the definition of = .

We are thus led to considering the sets of all elements of B which
can be reached from f(x) by iterating fg or (fg)-l.
to find some h—l(y) for some y ¢ B, we can choose from all x e B
reachable from g(y) by iterating gf or (gf)_l.

Analogously,
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2.1. Definition.

Let x;x')y,y' € B‘
X n %' ("x and x' are in the same A-class"): &
(ke @) (x = (&0)%(x') v x' = (e£)5(x))
x P y' ("y and y' are in the same B-class"): &>
(ke ) (y = (£8)5(y") v y' = (£)5(¥))
[x]A: = {x'eB|x' o x)
(y1%: = (y'esly' ~° y) :
A pair ([x]A,[y]B) is called an orbit if f(x) ¢ [y]B
(1£2 gly) e [x]* 1ff 3k ¢ wix = (af)fa(y) vy = (£2)*£(x))

Note. All these notions should carry a subscript "f,g", which we
omit. The superscripts "A" and "B" do not indicate that the orbits
depend on the sets A,B but only that they should be thought of as
subsets of R, as the domain of h and f (A-classes) or as the range
of h and domain of g (B-classes) respectively.

We state a trivial fact:

(*) ([x]A c A [f(x)]A s B) v ([x]A nA-= [f(x)]B nB=4g), for all
X e B.

(In fact, (*) is equivalent to the definition of "A = B via £,g").
Now the ideas discussed above can be made more precise as follows:

the members of [f(x)]B can serves as h(x)
the members of [g(y)]A can serve as h_l(y).

The familiar proof of Myhill's Theorem in CRT, as it can be found, e.g.
in Rogers [16], works along these lines: Let A,B & w, A =, B via
f,g. h 1s defined in w stages:

Stage 2n. If n 1s already in dom(h), go to Stage 2nt+l. Otherwise,
look for some member of [f(n)]B not yet in ran(h) by inspecting
f(n), (fg)f(n), etc. If y 1is the first suitable element encountered
in that way, define h(x) = y.

Stage 2n+l. If n is already in ran(h), go to Stage 2n+2. Otherwise,
choose analogously some X € [g(n)]A not yet in ‘dom(h) and define
h(x) = n.

We observe one fact, which seems trivial, but is essential for the
construction to work:
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At every stage in the construction, 1if ([x]A,[y]B)
18 an infinite orbit, there are Infinitely many ele-
ments of [x]A (resp. [y]B), which have not yet
entered dom(h) (resp. ran(h)). So you can be

sure that at every stage of the construction you will
be able to find a suitable counterpart for n.

Now, what happens if one tries to construct such an h 1In the same
way for some admissible a > w? Again, let A,Be a, A = B via f,g.
One tries to construct h in a many steps. It 1s easlly seen that
[x]A and [y]B are a-finite sets (of a-cardinality w or less),
for all x,y € a. Since h 1s a-recursive and total, there 1s some
stage at which h must be defined on all of [x]A (by admissibility).
But now: how can you make sure that at this stage all elements of
[f(x)]B are in ran(h)? Let us look at a special orbit to make this
difficulty apparent: Assume there 1s some Xq (we cannot compute 1t
from x) such that [x]A = [xo,(gf)(xo),...l. Now there may be an
element y, such that g(yo) = x, or not. (yo would be another
element of [f(x)]B.) But at some stage you have to finish defining
h on [x]A. If some Yo @s described emerges after that stage, we
have to- choose h_l(yo) outside of [x]A, and it 1s no longer guar-
anteed that y, e B <= h™l(y,) € A,

This feature of the enumerations of f and g, and the a-recursive
isomorphisms - h has to settle down on every a-finite set of a-
cardinality < o, but orbits may change "later" - 1s used in the follow-
ing to construct a counterexample to Myhill's Theorem for all o > w.

Remark. In the case a* < o there exists a counterexample for trivial
reasons: Split o into two a-recursive unbounded sets A and a-A.
. 1oL, o» S

Choose a-recursive mappings fl:A a and feza-A a-a”. (fl
exists by the definition of a*.) Choose any a-recursive functions
glza*ﬁ‘éA and ggza-a*ga—A. Then A = a* via £, U £y,
8y 3] & but A = a* 1s impossible, since a* 1s a-finite and A
is onto.

The following theorem provides counterexamples for all admissibles
a > w. The counterexamples produced there for the case a* < o 1is
different from that Just given in that the ranges of the functions f
and g are a-regular,

2.2. Theorem.
For all admissible a > w there sare a-r.e. sets A,Bc a so that
A<y B and B, A, but not A = B,
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Proof.

Let a > w be some flxed admissible ordinal. Fix a simultaneous a-
recursive enumeration [h:]g<a,e<a* of the partlel a-recursive 1-1
functions with domain and range subsets of o. (Such an enumeration
exists by an appropriate application of El-Uniformisation for La to
some universal a-recursive function.) We want to define a-recursive
funetions f,g:a l:1'--I>a and o-r.e. sets A,B c a such that the
following requirements are satisfied:

(*+) AnlB via f,g

(Re) if he 1s total and onto, then he[A] # B, for ell e < a*.
How can this be done? We choose functions f and g as follows:

£(6) = 6+1 for all 6<a
g(6+1) = 6+1 for all 6<a.

The values of g at limit ordinals are going to be determined during
the construction. Assuming for a moment that g has already been
completely defined, we observe that the orbits included by £ and g
can be sketched as follows:

i "
. '

wr+‘to¢/- ------ o wr+lt J wysho e{—----—- o wp+h
A /
r
wp+do T=mmm s cwp+3 wr4de €~ —- —— -0 wp+d >D
A .< >D?" =B7‘ / r
T op+do €= s mmmm- o wp+d wr+2e ——————— 0 w2 > B.=z
/ r-
wp+loEm - = mm--2 0 wped) mr»inq---/—»o wr+1) DrU{l}
\, wpe N “’T"F\
(— means f, AN
<-—-- means g) hN

"o Adran(f)

If wréran(g) If wy= g(A)

Figure 1
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{wy+n|n< w)

We define A_:
e de y

=}
2
]

{wy+n+1|n< w}

D,y if wy#d ran(g)

(o¢]
I

£
DYU[U 1f wy=g(Ar).

It is obvious that (AW’BW)' Y< a, are the orbits here.
The recuirememt (**) can now easily be satisfied: From (*) above
we have for all sets A,B c a:

A=, B via f,g 1iff

1
(%%*) V,Y<a((Ays:A and B,YgB) v (A,YnA=B,ynB=¢)).

Thus, in the construction to follow we ensure (**) by making (%*x*)
true:

whenever a member of AY is to enter A or & member
of BY is to enter B, put all elements of A into

Y
A and &ll elements of BY into B.

How to make Re true? Remember the discussion following the descrip-
tion of the proof of Myhill's Theorem in CRT above. f and g have
been chosen so as to enable us to create deliberately the situation
recognized above as hazardous to a proof of Myhill's Theorem for a > w:
wait until he has settled down on Ay, then pick some A ¢ he[Aw]
and define g(1): = wY, thus adding A to BW' Then of course
h;l(x) I'4 AY' We have now the opportunity to achieve h [A] # B by
trying to ensure hgl(x) ¢ A &> ) ¢ B, without hurting (***): 1if
h;l(x) is already in A, we keep all elements of A outside A and
all elements of B_ outside Bj; if h;l(x) i1s not yet in A, we put
all elements of A, (B ) into A(B), and hope that ht(x) will stay
out of A forever.

We want to describe the strategy for Re, as it is used in the con-
struction below. We may assume for this discussion that he is total
and onto. We enumerate the pairs [(a,g(a))|a<a limit} and the sets

A and B in stages eo<a.
<o
<o Fix some stage oq- Assume that a~finite parts A 9 of A and

B Y of B have been enumerated and that an a-finite part of the
set [(a,g(n)): A a limit} has been determined.

Step 1: Start an attempt for Re:
Choose some <Y which has not beeg mentioned in the construction so far.

In particular, AyrﬁA O 8, DyfﬂB s #, wynot yet in ran(g).
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Step 2: Continue this attempt:
When some stage o4 > % is reached at which he has been enumerated

so far that dom(h:l> 2 AY’ we continue this attempt (such a stage must
exlist since A 1s a-finite and he 1s total): Choose some

A ¢ ho[A] not yet in dom(g) and add the pair (A,wy) to g at
stage oy

Step 3: Complete this attempt:
When some stage 623>cl 1s reached at which he has been enumerated

o
so far that 3 ¢ ran(he2>, then we may complete this attempt (such a

stage 9 exists since he is onto): By the construction we know
_ - <e¢
that hel(x) '4 Ay. Hence hel(x) € Ay' for some %' £ v. TLet A C
be the part of A enumerated so far.
<e
case 1: A, € A 2. Do nothing.
<o
Case 2: AW' nA 2= 4. Then put all elements of A_  into
A and all elements of B? = [a} U DT into B at
stage Opn: (only this action is called "completing
this attempt.") Hope that the elements of AY' will

stay out of A forever.

Problems occur, of course, when one tries to treat all o-recursive
permutations simultaneously. Conflicts between different a-recursive
permutations may arlse in Step 3 of the strategy: <for the sake of some
he" e' £ e, perhaps the elements of AY' will be put into A 1later.

To solve such conflicts, the appropriate tool is the a-finite in-
Jury priority method (the CRT-version of this method was invented by
Friedberg and Muchnik in 1956). One essential reguirement for this
method to work 1s satlsfied: one may start an attempt at obtaining
he[A] # B unboundedly often. (The stage % in the sketch above was
arbitrary.)

It is rather easy to see that for a with the property Acha=(1
(e.g., if o 1is a regular I-cardinal) a priority construction which
uses < on a as priority ordering, along the previous outline
succeeds without complications.

To make the construction work for all a, we will have to adopt a
technique for creating a prilority ordering of length Acha. We use
Shore Blocking here (Shore [21]), following the exposition of this
method in Simpson [22]. Proofs of the following propositions concerning
Aecfa may be found there.
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2.3. Definition.

A,cfa 1s the least 8 < a such that some EQ(La)-function maps B
cofinally into a.

A20fa* is the least © < a* such that some zg(La)-function maps B
cofinally into a*.

2.4, Lemma.

(1) a,cfa = pcfa*

(11) Let v < pjcfa. If [Iu|u<(vJ is a simultaneously a-r.e,
sequence of a-finite sets IH' then U[Iu|u<v] is a-finite.

2.5. Lemma.

There are an a-recursive function H:ax spcfo —>a* and a A,(L,)-
function H:p,cfo —>a* such that

(1) H is nondecreasing and continuous; H(0) = 0; ren(H) is cofinal
in a*,

(11) For each g¢<a the function v b ﬁ(a,v) 18 nondecreasing and
continuous; ﬁ(a,o) = 0, ?{(o‘,v) La.

(111) For each y < A,cfa there 1s some o¢<a such that
(<) (v 20)(Blr ) = B()).

2.6, Definition. (The change function).
We say that H(v) changes 1ts value at stage ¢ 1Iff

(3t <e)(¥e')(1<e'<e —> H(g',u) = H(o,n)) .

The change function ch gives the initial segment of a* 1n which no-
thing changes:

[
ch(e): = U{H(e,v)] for no u<v does H(u) change its
value at stage ¢}.

The essential property of ch 1s the second assertion of the following
lemma. (The proof is trivial.)

2.7. Lemma.

(1) For all e<ch(s) there is exactly one v such that
H(o,v) < e < H(e,v+l); and neither H(v) nor H(w+l)
change their value 51; stage e.

(11) 1f H(v) < e < H(w+1), and the interval [H(v),H(w+1)[ reaches
i1ts final position at stage ¢ (i.e., ¢ 1s least such that for
all >0 H(r,v)=H(v) and H(r,v+1)=H(w1l)) then ch(ec)<e.
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We use H to give priorities < Aecfa to the Re's in the follow-
ing manner: Asymptotically (es o goes to a), the priority of e<a*
is wv< A cfa if H(v) < e<H(w+l). 1If e, has priority v, (1=1,2),
then e has higher priority thanA e, iff v1<(v2. Since H 1s in
general not a-recursive, we use H instead, and treat e as if it
had priority v at stage ¢ if ﬁ(c,v)ge<f{(c.v+l). Since for each
e<a* there is a stage g, such that for all ¢ > o, holds ch(c) > e,
these "guessed" priorities are the true ones after boundedly many stages
for each initial segment of a*.

It 1s essential for the construction to work that a new attempt at
satisfying R, 1is started at stage o 1If e e [H(v),H(w»+1) and this
interval reaches 1ts final position at stage ¢. This is what we use
the change function for.

If ej,e; € [ﬁ(c,v),ﬁ(c,v+l)[, they are treated at stage o as if
they had the same priority. If a confllct between such e,.e, occurs
at stage o, we give priority to that e, which "comes first", 1i.e.,
for which an attempt 1s to be completed at stage o¢. This causes no
harm, since if an attempt for Re 1s completed at stage ¢, this
attempt 1is not injured at a later stage for the sake of an e' of the
same priority (cf. the proofs of 2,9 and 2.10).

As last of our preliminaries, we choose some a-recursive parti-
tion (Ze]e<a* of a. (E.g., let Ze==(<e,6>: 8<a} for some fixed
a-recursive bijection < , >: a* x a on1-;o>a‘) Only A'Y with v<z,
will be used in the strategy for Re as described above,

The construction

By simultaneous recursion on ¢<a we enumerate sets A,B ¢ o, and
define g | (A[v<a limit). Let A<° and B<° be the parts of A
and B respectively enumerated before stage o.

Stage g¢g.
Injuries caused by changes of H:

A1l attempte for R such that e > ch(g) are injured now.

Strategy for Re:
Determine the unique e < a® such that ¢ ¢ Ze. Consider
three cases:

Cagse 1. (corresponds to Step 1 above).

If all attempts for Re started before stage ¢ have been
injured in the meantime, then start an attempt for Re as
follows:
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Choose some witness v ¢ Ze so large that no member of A

or DW has occured in the construction so far.

v

Case 2. (corresponds to Step 2).

If at some stage %y < ¢ an attempt for Re has been started
and not been injured in the meantime, which used <Y as wit-
ness, and A_ & h%, and wY is not yet in ran(g), then continue
this attempt as follows: Choose some limit )\ = w®, g€ Ze. which
has not occured in the construction before (in particular

£ he[AW])‘ Add the pair (A, wy) to graph (g) now.

Case 3. (corresponds to Step 3).

If an attempt for Re has been started at some stage 9o

using <Y as witness, such that

(1) it has been continued at some stage °].>°0' by putting
(A, wY) into graph (g).

(11) A e ran(h:) for A as in (1).

(111) this attempt has not been inJured nor has it been comp-
leted in the meantime.

(1v) ngt(x) ¢ a7,

then complete this attempt as follows:

(1) Enumerate all members of AY into A and all members
of BY = {a} U DY into B now.

(2) All attempts concerning only e' with lower prilority
than e are injured now. (These are the ordinals
e' < a* so that e < H(o,v) < e' for some v< s cfa.)

(3) Compute ¥' such that h;l(h) € Ay" and e' such that
Z' € Zgy. If f' has the same priority e (i.e.,
H(o,v)<e, e'<H(s,v+l) for some v<A,cfo) and the

current attempt for R i1f any 1s going on, uses V!

e'’
as witness, then this attempt 1s injured now. (Observe
for later use that in this case holds A nA<° = g, by

(iv) above.)

'y'

Make sure that g will be total:
If wo 1s not yet in dom(g) then let

g(we): =w-. (the g-th members of ZO).

(We can safely assume that hy = 8.)
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2.8. Lemma,
(1) g 1s a-recursive, total, and one-one.
(11) A and B are a-r.e. subsets of a.

(1i1) A =, B via f,g.
1

Proof.

(1) and (11) follow immediately from the construction. Injectivity of
g 1s guaranteed by the fact that each attempt for any Re is continued
at most once,

(111) Obviously, by Step 3 in the construction, condition (#***) is
satlsfied.

2.9. The Injury Lemma.
For all v< A2cfa holds:
(1) The injury set

Iv: = [c<r | at stage ¢ -an attempt for some Re with
e<H(o,w1l) 1is injured)
1s a-finite.
(1i1) The completion set

Cv: = {0<a | at stage o an attempt for some R, with
N
e<H{(e,w1l) 1is completed])
is a-finite.

Proof.
(i) and (11) are proved simultaneously by induction on v< A cfa.

So, let such a v be gilven, and assume by the induction hypothesis
that the sets Iu and C“ are a-finite for all u<wv. Of course,
the families (I |u<y} and (C |u<v} are simultaneously a-r.e.,
so by Lemma 2.4, (i11) the set LJ[CH | u< v} 1is a-finite. Choose a
strict upper bound oo<a of this set. From Lemma 2.5, (1i1i) and the
definition of the change function it follows that we can choose some
°1>°o such that:

ch(e) > f{(a,wl) = H(wl) for all ¢ > oy,
hence
(1) (Vc)al)(Ve<H(v+l)) (e<ch(s)).
It is clear from the definitlion of % that

(2) (ve >al)(Ve<H(v+1)) (no attempt for some R. with
higher priority than Rg 1is completed at stage o).
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Next we define an a-r.e. set b & H(w+l) x a:

b: = {(e,a) la)al and an attempt for Re is completed at
stage ¢ and H(v) < e < H(w1)]}.

We show that b 1s a function. So assume (e,ae) € b. Now the attempt
for Re which 1is completed at stage ¢, can not be inJured after stage
Oo- (ch(g) >e, since we are beyond ¢,. No e' with higher priority
can injure e now, since we are beyond goe No e! with the same
priority can injure this attempt for Re now, since A,Y=A then; cf.
Case 3 in the construction.) Hence never a new attempt for Re is
started after g,. Thus for no ¢ > g, can hold (e,ce) eb. dom(b)
is an a-finite set by z‘l—separation below a*; so b and ran(b)

are o-finite as well by edmissibility. Choose a strict upper bound
9,>0; of ren(b). By (1), (2), and the definition of b we conclude
that no attempt for any e <H(v+l) can be injured after stage Cp-
Thus ¢,<a 1s an upper bound of Iv' Since I, is clearly a-
recursive, it is oa-finite by Al-separation. Thus (1) 1s proved.

Next we must show that C is a-finite as well. Since Cv is a-
recursive, it suffices to show that cvn {e<ale >02} is bounded. It
is clear by the definition of %y and o, that this set equals
(o >a, | an attempt for some R, 8o that H(v)<e<H(v+l) 1s completed

at stage ¢J.
But for each e ¢ [H(v),H(wv+l)[ at most one attempt is completed after
stage o,. Arguing as above for the set b, we see that the a-r.e.

get

{(e,0) |a>c:2 and e<H(v+l) and an attempt for R, 1s completed at
stage o)

13 a function with domain bounded below a*, hence 1s a-finite. So
its range is a-finite, as was to be shown.

2.10. Lemma.
For each e < a the reguirement Re 1s satisfiled.

Proof.

Let e be such that he is total and onto. Fix the unique v< Aecfa
such that H(v)<e<H(wl). From the Injury Lemme 2.9 1t follows that
there is some stage after which no attempt for Re is inJured. Hence
there must be a last attempt for Re. (Ze is unbounded!). We show
that 1t succeeds. Let % be the stage at which this last attempt
for Re 1s started. By the construction, e<ch{e) for all ¢ >g0.
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Hence H(v) and H(wl) don't ever change their value after stage
gg- I.e., that the sets {e' | e' has lower (higher) priority than
e at stage ¢) are independent of ¢ for c:>ao. Since he is total,
and A is oa-finite, there is some stage > % after which
dom(h:) 2 Ay' So there 1s a stage oy > % such that this attempt
for R, 1s continued (again because Z, 1s unbounded). So we have
g(r) = wy for some 4\ ¢ he[Av]' Since h_, 1is onto, there is some
stage > o, at which A enters ran(he). Let ¢, De the least
stage in Ze after that. Consider two cases:

-1 @2
Case 1. hg (A\) e A “. Then all elements of B, stay outside B
forever by the construction. So ) ¢ B but h;l(x) € A, hence
he[A] # B.

Case 2. h;l[h] 4 A<°2. Then by the construction, all elements of B
are put into B at stage G5 Hence A ¢ B. We must show that
ho'(A) ¢ A. There is a unique ' such that h '(x) e A,,. Fix the
unique e' such that Y' e Ze" If e' has lower priority than e
at stage G5 the current attempt for e' 1s injured; since attempts
for e' started later must use some new "v" as witness, the members
of Ay, are never put into A after stage Co- If e' has higher
priority than e at stage %5, then no attempt for e' can be comp-
leted after stage %5 (otherwise the last attempt for Re would be
injured then, contradiction), hence AW” NA = g remains true. If
e' has the same priority as e at stage Py and the current attempt
for e' has 7vy' as its witness, then this 1is injured at stage °5
(Case 3 (3) in the construction). If e' does not use Y' in a
current attempt, ¥' will never be chosen as witness for some attempt
for R,,, since it 1s not "new" .

This finlshes the proof of Theorem 2.2.

If we look at Theorem 2.2 from a PB-recursionist's point of view,
we get

2.11. Theoren.
Myhi11l's Theorem falls for all limit ordinals B with glcfP> w.

Proof.

Case 1. B 1is weakly admissible, i.e., B* < olcfB. In this case, we
can reduce the proposition for B (there are pB-r.e. sets A,Bc B

so that A 'i B but not A = B) to the same proposition for an admissi-
ble structure <La,e,T>, where o = ¢lceff, T € a 18 an a-regular set

which codes the Ao-satisfaction relation of L@' g 1s the admissible



103

ce;lapse of Lﬁ, as defined in [13]. The proof of Theorem 2.2. works

equally well for . It is easlly seen that the counterexample for U«
obtained in this eay can be transformed into a counterexample for LB

by the inverse of the collapsing function.

Cagse 2. B 1is strongly inadmissible, 1.e., B* > glefp > w. In [4] it
18 shown that there are sets A,B c p and P-recursive 1-1 functions
f,g:8 —> B so that A = B via f,g, but A,B are not pB-recursively
isomorphic. The proof uses an enumeration of the G6del Numbers of the
B-recursive permutations of LB’ hich is, of course, not a B-r.e.
set. (But 1t 1s easily seen that A,B can be chosen 80 as to be de-

finable over Lﬁ')

§3. MYHILL'S THEOREM HOLDS IF ¢lcff = w

In §2, we disproved Myhill's Theorem for all £ with ¢lcff > w.
How 1is the situation if glcfp = w? We know that for B = w the
theorem holds. If 5 = w, Myhill's original proof works Just as well.
But even for arbitrary limit ordinals B with o¢leff = w the theorem
is true:

3.1. Theorem.
ILet ¢lcfp = w. Then A = B= A =3B, for all A,B « B.

Proof.

Let A,Be f and B-recursive functions f,g:B-l:l>B be given so
that A = B via f,g. We use the central idea of Myhill's proof (as
recalled at the beginning of §2). The construction of a pB-recursive
isomorphism h between A and B 1is carried out in w stages, and
thus the growth of dom(h) and rar(h) during the construction can
be controlled in such a way that at each stage n, if x is a candi-
date to enter dom(h), we can guarantee that at some stage m > n a
possible image for x under h 1is avallable. (Recalling the defini-
tion in §2 of the orbits induced by f and g we remark that this
must be an element of [£(x)]® not yet in rar(h).)

We shall define a pB-recursive function h and show in a series
of lemmas that h 1s an isomorphism between A and B, 1.e., h is
total, onto, one-one, and h[A] = B. The definition of h will in-
volve f and g only, A and B .are not mentioned. Recalling state-
ment (*) of §2 we see that to achieve h[A] = B we have to define h
in such a way that
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htl [x]A maps [x]A one-one onto [f£(x)1B, for all x ¢ B.

The problem with this aim is that the orbits cannot be dealt with in a
B-recursive way. (E.g., the questions if [x]A e ran(g), or if [x]A
1s finite or infinite, are not Pp-recursively decidable.) So we have
to use approximations to the orbits.

Since e¢lefp = w, there are two Zl(LB)-sequences <fn| ne « and
<gn| ne o, fo c fl c f2 €..., and g, € g € & S..., such that

f=U[fn|n€w] and g=U[gn|newJ.

If B* = @, we can additionally assume that |[f | < n eand lg,l <n
for all n ¢ w. (If necessary, take some PB-recursive function

r:m-a%%%%'ﬂ, and replace fn.gn by fn I rin], g, F.r[n] respectively.)
3.2. Definition.

Let n e w. ((gnfn)og = (fngn)og = 1d
For x,x',y,¥y' € B we define:

B')
x ~ﬁ X't & (Tk € w)x =~ (gnfn)k(x') vV X' e (gnfn)k(x))

vyt > (T e w)(y ~ (£,8)5(y) vy~ (£.2)5(y))

[x]ﬁ s = {x' ]| x' ~ﬁ x}
yIE : = (y' |y~ ¥)

A pair ([x]g,[y]g) of eauivalence classes 1s called an n-orbit
(w.r.t. <f, |n e b, <gn| ne «) 1f and only if

(3k € w)(x ~ (g,f )% (v) vy = (£,8) (x)) .

3.5, Lemma.

(1) ~ﬁ and ~§ are equivalence relations on B which are refine-

ments of ~A and ~B, respectively.
B.

(2) Let x,y ¢
([x]A,[y]B) is an orbit if and only if

(3n e w)(([X]ﬁ,[y]E) is an n-orbit).
(Ry ¢ B)(([x]ﬁ,[&]g)) is an n-orbit if and only if

x e dom(f ) U ran(g ).
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(3x € B)(([i]ﬁ,[y]g) is an n-orbit) if and only if

v e dom(gn) u ran(fn).

(3) x B ox n,x,x'

n
are P-recursive relations of
B
Yo~ V! n,y.y'

(4) The mappings (n,x) b [x]ﬁ end (n,y) p» [y]ﬁ are B-recursive.

(5) For each n € w, the set of n-orbits is a partlal one-one

mapping.

Proof.
Trivial.

We shall need a kind of linear ordering (of order type < w) of
each class [x]ﬁ and [y]g. For this sake, we first choose a distin-
guished representative in each equivalence class and then define some
notion of "distance from the distinguished element."

3.4, Definition.
Let n € w.

mﬁ(x): = min([x]ﬁ) . for xe B
mo(y): = min([yll) , for xep
dsﬁ(x): =

[ o , if x = m (x)

n
i 2, if k>0 and x= (g f ) (mi(x)) and

and (v1)(0< 3 <k > x# (g ) (b))
k-1, 1f k>0 and x = (g f,) " (mi(x)) and
L and (33 > 0)(x ~ (g,£)(m(x))) .

dsg(y) is defined analogously (exchange fn and - replace A
by B and x by vy).

3.5. Remark,

To meke the meaning of dsﬁ . dsE clearer, we consider two cases. Let

X = mﬁ(x).
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Case 1. [x]ﬁ 1s "eyelie", 1.e., (2] > O)((gnfn)d(x) = x). Let 3
be the least such J. Then
[x1* = [x1} = ((g,2,)"(x) | 0 < k< 3y), and

ash((g,£,)"(x)) = 2k for all k, 0 < k< s

Case 2. [x]ﬁ is not "cyelic."
Then for each x!' ¢ [x]ﬁ there 1s exactly one integer 2z such that

x!' = (gnfn)z(x) ;s and

asB(xt)y =2z , 1r z20

dsh(x') = -2z-1 , if z < 0.
3.6. Lemma.
(1) mﬁ(x) 1s a PB-recursive function of n and x;

A A A
X ~ x' if and only if mn(x) = mn(x').

Analogously for mﬁ.

(2) dsg(x) and dsg(y) are B-recursive functions of n,x (respect-
ively n,y).

B

(3) For all ne w and all x,y ¢ B are ds> | (x1* ana ash ) y
n n n n

one-one functions.,

Proof.
Trivial.

3.7. Construction of h.

By induction on n € w an rl(LB)—sequence <hn| ne «> of partial
mappings h, e LB is defined. h 1is obtained as the union U[hnl ne w.
(Note that h, nh, g for n#m).

Abbreviation: he 1= Uth, | m<n},

h := {(x,y) ¢ le x,y satisfy (1) and (2) and (3))

where (1), (2) and (3) are the following conditions:
A B
(1) ([x]n,[y]n) is an n-orbit and xtdom(h<n) and ydran(h<n)

(2) (33 > 0)(x ~ (g,£,)4(x)) v
v (J{x]p-dom(h )| > 2 and |[ylp-ran(h)| > 2)
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(3) (vx')(x'e [x]ﬁ-dom(h<n) —> dsﬁ(x')zds‘:(x)) and

(vy')(y' e [y]g-ran(h<n) —> dsg(y')stg(y)) ;

This construction may seem to be too involved. Why not add as many
pairs (x',y') € [x]ﬁ X [y]i to h at stage n as possible, if
([x]ﬁ,[y]g) is an n-orbit? At the first glance, this strategy would
perhaps make h total and onto. But, then it could happen that at
some stage n e.g., [x]A c dom(h<n), and [x]ﬁ gets a new element at
stage n+l. Then we could never make h onto. The solution to this
problem is as follows: At most one element of [x]ﬁ is allowed to

enter dom(h) at stage n. Condition (2) then will ensure that
A A A
[x]n-dom(h<n+1) £ ¢ or [x]" = [x] ] 1s finite.
This willl suffice to guvarantee that for all n e w

1f [x]* 1is infinite, then [x]*-dom(n

<n+1) is infinite.

So the construction never breaks down for lack of suitable elements 1n
[x]A#dom(h<n). {(The strategy concerning the y's 1is the same.)

It just remains to make h total and onto. For this purpose,
the first elements of [x]ﬁ-dom(h<n) , [y]g-ran(h<n) (with respect
to the distance functions dsﬁ and dsg) are chosen to enter dom(hn),
ran(hn), if any are. TFor this idea to work, the distance functions
must finally "settle down", 1i.e., dsﬁ(x) must be constant for n
large enough.

The details are given in the following lemmas.

3.9. Lemma.

Let x,y € B.
(1) For all n e w holds: [x]ﬁ = [x]ﬁ+l and [y]ﬁ c [y]£+1.
(x)? = U([x]ﬁ| new and [y]P= U[[ylﬁl new.

(2) 1im mi(x) = min([x]*) and 1im md(y)

min([y]B).
n=co n~co

(3) 1lim dsA(x) exists and 1lim dsB(y) exists.
e 1 neeo o
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(%) The mappings x b lim dsA(x) and y » lim dsB(y) are one-one

n-co n- 0o
on the respective equivalence classes, e.g., 1f
x &~ x' and 1im dsﬁ(x') 1im dsA(x) then x = x',
n= 0o n=oo

(The limits are all in the discrete topology on B respectively w.)

Proof.
Straightforward (use 3.6.).

5.10. Lemma.
(1) h 1is a partial one-one function: For all x,x',y,y' € B holds

that if (x,y),(x',y') e h, then x=x' >y =y'.
(2) If h(x) -y, then ¥y =0 £(x) (1.e., ([x]A.[y]B) is an orbit.)

Proof.

(1) Let n>m, (x,y) ¢ h, (x',y'") € h .
Assume first that x = x'., Then n must be equal to m. (If
n>m, then X € dom(h< ), hence x ¢ dom(h ) by 3.7.(1).)
Since ([x]n,[y] ) and ([x]ﬁ,[y ]B) are both n-orbits, by
3.3.(5) 1t follows that [y]g = [y ]g y and y' both satisfy
3.7.(3) and hence are identical.
The other direction is proved similarly.

(2) 1t (x y) € h , then ([x]n,[y] ) 1s an n-orbit, hence
(tx1%, [318) 1s an orbit by 3.3.(2).

3.11. Lemma.
If xe¢ B and (gf)k(x) = x for some k > O, then x ¢ dom(h).
If yep and (fg)k(y) =y for some k > O, then y e ran(h).

Proof.
We prove the first assertion by induction on 1im dsA(x) Since’
(gf)k(x) =x for k > 0, both [x]A and [f(x)c% are finite (and
have the same cardinality).

Choose m 8o large that f | [x]A s f and g t [f(x)]B € gy
Then for 211 n > m holds:

(x)* = [x]5 and [£(x)1% = [£(x)1]

([x]ﬁ, [f(x)]ﬁ) is an - n-orbit and

and

for all x' e [x]A holds dsﬁ(x') = dsﬁ(x')
(ef. 3.9.(3)).
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By the induction hypothesis choose n > m so large that

(vx' ¢ [x]A)(dsﬁ(x') < dsﬁ(x)-—é x' e dom(h<n)).
If x ¢ dom(h<n), we are done. If not, then
B
[£(x)1B-ran(n ) # 4.
too, since |[x]ﬁ| = |[f(x)]§|, and h<n is one-one, and

h;;[[x]g] s [x]2 vy 3.10.

This means that 3.7.(1), (2), and (3) is satisfied for x and
some Yy € [f(x)]B. (Note that (fg)k(y) =y for all y e [f(x)]B.)
So x ¢ dom(hn) by the construction. The assertion concerning ran(h)
is proved simllarly.

3.12. Lemma.
Let X,y ¢ B be such that ([x]A,[y]B) is an orbit. Assume that
(gf)k(x) # x for all k > 0. Then the following assertions hold:

(1) For all x!' e [x]A and all k > 0 1is (gf)k(x') £ x',
for all y' e [y]® and a1l k >0 1s (£g)%(y') £ y'.

(2) 1f ([x]ﬁ,[y]g) i1s an n-orbit, then
[[x1yx [¥IDnh | = [[x)Andon(n )| = [Ty12nran(n )€ (0,1].

(3) [x]ﬁ-dom(h<n+l) #£ ¢ and [y]g-ran(h<n+l) # 8, all n e w.

(4) 1If ([x]ﬁ,[y]g) is an n-orbit, and [x]ﬁ is infinite, then
A B
[x]n—dom(h<n+1) and [y]n-ran(h<n+l) are both infinite.

Proof.
(1) is trivial, and (2) follows immediately from the construction 3.7.
(3) By induction on n:

Case 1. [x]ﬁ n dom(hn) # 8.
Then x e dom(fn) ] ran(gn), by the construction and 3.3.(2).
By (2) there is exactly one x' ¢ [x]ﬁ n dom(hn).
By (1) 1t follows that (gf)k(x') £ x' for all k > O.
Hence by 3.7.(2)
[xqﬁ-dom(h<n)| > 2.

Therefore

[x]ﬁ'd°m(h<n+l) = ([x']ﬁ-dom(h<n))-dom(hn) % 8.
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Case 2. [x]ﬁ n dom(hn) = g.
A
If n = 0, then h<n+l =hy=h, hence xe [x]n-dom(h
If n > 0, then by the induction hypothesis is

<n+1)'

[x]ﬁ_l-dom(h<n) # 8, hence [x]ﬁ-dom(h<n+1) £ 8.

(4) By induction on n:
If n=0 and [x]) 1s infinite, then [x]h-dom(h,) 1is infinite
by (2).
Now let n > 0. By (2), it suffices to prove that [x]ﬁ-dom(h<n)
is Infinite.

Case 1. For some x' ¢ [x]ﬁ is [x']ﬁ_l infinite.

By the induction hypotheslis 1is [x']ﬁ_l-dom(h<n)
infinite; hence [x]ﬁ-dom(h<n) is infinite (3.9.(1)).

Case 2. There are infinitely many (pairwise disjoint!)

classes [x']ﬁ_1 < [x]ﬁ.

By (3) for all these classes holds
A
[x']n_l-dom(h<n) # 83
A
hence [x]n-dom(h<n) is infinite.

(The proofs for ran(h) are the same.)

5.15. Lemma.
Let ([x]A,[y]B) be an orbit. Assume that (gf)k(x) £ x for all
k > 0. Then x ¢ dom(h) and y e ran(h).

Proof.

We prove by induction on 1lim dsg(x) that x ¢ dom(h). (The proof of
n=oo
"y ¢ ran(h)" 1is similar.)

By 3.9.(4) we know that the set

— A A A _
D := {x' e [x] |;Eﬂgdsn(x') < ;fg;dsn(x)}

1s finite. The inductlion hypothesis tells us that D < dom(h). Choose
N so large that

min([x]A)e [x]ﬁ and D ¢ [x]ﬁ and D ¢ dom(h<N) and
and ([x]ﬁ.[Y]g) is an n-orbit.

The choice of N immediately implies that
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ash(x') = 1tmasd(x') for a1l x' e [x12 m >,
n~co L

in particular
A 1 A l t A
ds (x') < ds (x) 1iff x'eD (for all x'e [x]m).
If we can show that for some m > N holds
[x]5 N dom(h ) # #
m m ’
then by the construction (3.7.(3)) either x e dom(h<m) or xe dom(hm),
and we are done. Consider two cases:

Case 1. [x]ﬁ is infinite for some m > N,

By 3.12., both [x]‘:l-dom(h<m) and [y]ﬁ-ran(h<m) are infinite.
Hence 3.7.(1), (2), and (3) 1s satisfied for some x' ¢ [x]:,
y!' e [y]ﬁ. So [x]g n dom(hm) £ 8.

A

Cage 2. [x]m is finite for all m > N,

By 3.12.(3) we know that there are elements
X, € [x]Aidom(h ) and y, e [ ]B-ran(h )
1 N <N 1€ Wiy <N/t
Since [x]A 18 infinite, for some stage my > N holds

[x]QA-[xl;‘,‘,A_l 44, te.,

A

there is an x" ¢ [x]A such that [x"]
mA mA-l

A

nix). _,=28.
my 1

By 3.12.(1) and (3) there exists an element

e [xn]A

~y=dom(h_ ).
mA-l <mA

X2
Analogously, we find my > N and an element

B

-dom(h
gy <mg
Congider m := max(mA,mB).
Either for some stage n, N < n < m, holds

([x)5 x [¥1D) nh # 4,

¥p € (Iy] ))-[y]ﬁB_l.

or
[xl,xQJ c [x]ﬁ—dom(h<m) and {ylfyel c [y]g-ran(h<m).

Since xq #£ X, and y, # Yo, in the latter case 3.7.(1), (2), and
(3) 1s satisfied for some x' € [x]g, y' e [y]g at stage m.
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Hence [x]ﬁ X [y]ﬁ Ah, £ 8.

This finishes the proof of Theorem 3.1.

§4. A FEW FURTHER RESULTS ON STRONG REDUCIBILITIES IN PB-RECURSION
THEORY .

As we have seen in §2, when one defines PB-recursive isomorphism
classes and :l-classes of subsets of B, then these notlons differ
(in some important cases even for P-recursive sets), whereas in CRT
they coincide. Therefore we consider here some stronger notion of re-
ducibility, namely g{ (see Rogers [16]). (The definition was given
in §1.) S{ induces an equivalence relatlion Ei, and glves rise to
the following pleasing result, whose proof uses as main idea the proof

of the Cantor-Schrdder-Bernstein Theorem from set theory.

4.1. Theorem.
Iet B be any limit ordinal. Then A si B=>A=B for all A,B c8.

Proof.

If oglcff = @, we use Theorem 3.1. So let glcfp > w. Let

f,g:B —l:l>B be given so that f,g are PB-recursive and have B-
recursive range. We construct some PB-recursive h:8 fﬁ%@’ﬁ so that

hix) =y => (f(x)) =y v gly) = x),
which obviously 1implies
(A -{ B via f,g => h[A] = B),

for all sets A,B ¢ B. We define three subsets of pB:

xeX & (Inew)(ax'ep)((gf)™(x') = x and x'¢#ran(g))

even®

odd | & (Inew)(Tye B8)((ef) eg(y)

xeX x and y ¢ ran(f))

xeX; ot S & sequence(so,sl,...) so that sy=x and
and <Vi€w)(f(s’21+2)=s‘21+1 and g(s21+l)=321).

It 1s easily seen that xeven' xodd’ xinf are a8 f-recursive partition

of B, and that the PB-recursive function h defined as follows i1s
total and onto:

h(x) =y : > (xe X yonUX e and £(x) = y) vV (xeX 44 and g(y) =x).
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We now turn to the structure of the minimum and the maximum m-~degree
of PB-r.e. sets. The situation in the set of the PB-recursive sets 1s
nearly the same as in CRT (cf. e.g., Odifreddi [15]).

4,2, Theorem.
(1) The structure of the PB-recursive l-r-degrees under the g{-
ordering is as follows:

KOO A> € re e KD KB <L < 2x | x<B>
<LB><<LB-1>< ...<<LB-w><...< <LB-6> <...<<f2x | x<B}>

(6 < B 1is a P-cardinal).
We know by 4.1. that the 1-r-degree of a set A coincides with
its isomorphism type <A&>.)

(11) If B* > olcfp, then the B-recursive 1-degrees and the B-
recursive isomorphism types colncide. The gl-ordering of these
degrees 1s the same as in (1).

(111) If olefBf > B*, then the isomorphism types <B*>, <[2x | x<B}>,
and <B-p*¥> are all contained in the same 1l-degree. All the
other PB-recursive lsomorphism types are 1l-degrees.

(The proof can be found in [4].)

We now turn to the study of the maximum pB-r.e. m-degree. (AgmB
if f-l[B] = A for some PB-rec. £: —> B. A 1s m-complete if A
is pA-r.e. and for all pB-r.e. sets B £f holds B gm A.) The situa-
tion 1s entirely similar to that in CRT if B¥ = glcfp. Here the m-
complete sets form a single isomorphlsm type. If B* £ glcfB, there
are 1l-complete sets which are not P-recursively 1somorphic. But at
least the m-complete sets are the same as the 1l-complete sets.

To prove these facts, we use as an aid the notion of a "creative
set" or "constructively non-p-recursive set." These sets play a simi-
lar role in the PB-r.e. m-degrees as they do in the m-degrees in
CRT. We prove that, for all B, the creative sets are the same as the
m-complete sets.

Since the definition of the notion "creative set" requires some
notion of an "acceptable numbering" of the partial pB-recursive func-
tions and the PB-r.e. sets, we first study some aspects of such num-
berings and prove some elementary facts, e.g., the recursion theorem.
The main result concerning numberings is that they are all eguivalent
in a strong sense. The major problem with these notions 1s to find
the correct definitions. Nearly all proofs of the propositions below
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are adaptations of methods from CRT. (Complete proofs may be found
in [4].)

4,3, Definition. (Acceptable numberings)
A two-placed partial function g with dom(g) = B* x LB is called an
acceptable numbering i1f and only if

(1) g 1s partial B-recursive

(2) for all partial pB-recursive functions h with dom(h)csp*xL
there i1s a pB-recursive function r:B*-l:l>B* with ran(r)
B-recursive such that

h(e,x) =~ g(r(e),x) for ell e < B* and x e Lg-

Remark. (Existence and Uniqueness)
There exlists an acceptable numbering. (Such & numbering can be cons-
tructed from a universal pB-recursive function, as may be found in
Devlin [3].)

Any two acceptable numberings are PB-recursively isomorphic in
the following sense:

If g and h are acceptable numberlngs, then there 1s some

= ak 1=l o
p-recursive (total) function ¢t:B Sata B” such that
g(e,x) = h(t(e),x) for all e < B* and all x ¢ L.

(t can be constructed as in the proofs of Theorems 3.1 and 4.1.)

4.4, Proposition.
Let g be an acceptable numbering. Then g has the following pro-
perties:

(1) (The enumeration property)
If f 1s any partial PB-recursive functlion, then for some

e < B* holds:

£(x) ~ g(e,x) for all x e LB'

(Any such e is called an index for f with respect to g.)
(2) (The iteration property)

There 1s a PB-recursive function s:B* X LB —> g* such that for
all e < B* and all z,x e Ly holds

gle,(z,x)) =~ g(s(e,z),x).

s can be assumed to be one-one.
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If glefp < B¥, we can even find such an s with B-recursive
range.

(3) (The recursion theorem - with parameter)

If f 1s a partial pB-recursive function with dom(f)<p*xI,xL

B —> B* such that

f(n(a),a,x) = g(n(a),x), for all a,x e L

BB’

then there is a PB-recursive n:L

B
n can be assumed to be one-one.

In particular, if f 1s a partial pE-recursive function with
dom(f) e B* x LB’ then for some e < B* holds f(e,x) = g(e,x)
for all x € Lﬁ'

Proof. Immediate from the definition.

4.5. Lemma.
Let ¢leff > B*. Then the definition of an acceptable numbering can

be weakened as follows:

Assume that g 1is a partial B-recursive function, and that for g
the following condition 1s satisfled:

For all partial Pp-recursive h with dom(h) :B*xLB
there 1s some PAB-recursive function r:p*¥ — p* such

that h(e,x) = g(r(e),x), for all e < p¥*, all erLB.

Then g 1s an acceptable numbering. (This 1s proved as in CRT, using
the recursion theorem %4.4(3); cf. Schnorr [18]1.) In order to be able
to use the familiar notation for the enumerations of the partial p-
recursive functions and the pB-r.e. sets, we single out one acceptable
numbering and use it as our standard numbering. In view of the remark
following Definition 4.3, it does not matter which we choose.

4,6. Definition.
Let g be some fixed acceptable numbering.

(1) For each e < B* let (e} be the partial function defined by

{e}(x) :~ g(e,x), for all x ¢ LB'

We can think of {e}] as an n-placed function as well:
(2) [e}(xl,...,xn) 2o g(e,(xl,...,xn))

for all n > 2, all x x € L,.

110X, 8
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4.7. Proposition. (The s-m-n-theorem)
For all m,n > O there 1s a pP-recursive function

s® s g% x LM ALy gyen that
n B
[e}(yl,..., m,xl,...,xn)e-[Sr“;(e,yl,...,ym)J(xl,...,xn)

for all e < ¥, all Yys%y € L
to have PB-recursive range.

ge If p* > glcfp, Sg can be assumed

(This follows from the ilteration property 4.4(2).)

4,8. Remark.
The notion of an acceptable numbering as it is defined in 4.3 (ecf.
Schnorr [18]) is essentlally the same as that used in Rogers [16]:

A partlal function g with dom(g) c B* x LB is an acceptable
numbering 1f and only if there are PB-recursive functions

r,s: 8% —> g* such that

(1) g(e,x) = {r(e)}(x) for all e < B¥, all x e L.
(2) (e}(x) = g(s(e),x) for all e < B¥, 811 x ¢ LB'

(3) s 1s one-one and has PR-recursive range.

If oglcfp > B*, this equivalence holds as well if we drop (3). (The
proof uses 4.5.)

4.9. Definition. (Enumeration of the BA-r.e. sets; creative sets)
(1) W, oi= dom((e}) ={x ¢ lefe}(x) is defined}, for e < B¥.

(2) K := (e < B*|le ¢ Wl
(3) A B-r.e. set A c LB i1s called creative if and only 1f there

is a partial pB-recursive function f with dom(f) £ ¥ such
that

(ve<p*)(W,NA = g —> ecdom(f) and f(e) ¢ W, U A).
We say then that A 1s creative via £,

4.10. Proposition.

(1) A set Bgc LB is pB-r.e. if and only if W, = B for some e<p¥,
(We say that e is a PB-r.e. index for B if Wy = B.)

(2) Creative sets are not B-recursive.

(3) K 1is creative.
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(4) The notion of a "creative set" does not depend on the particular
numbering we have chosen.

(Proofs are as in CRT, (4) follows from the remark following Defini-
tion 4.%.)

4,11, Lemma,.
(1) 1f A,Bc LB are p-r.e., A 1is creative, and A < B, then B

is creative.
(2) All m-complete sets are creative.

(Proofs as in CRT.)

4.12. Lemma.
A B-r.e. set AcL is creative i1f and only if it 1s creative via

some f with dom(f) = B*.
(Proof as in CRT, using the recursion theorem 4.4.(3%).)

4.,13. Corollary.
(1) A B-r.e. set A c La is creative if and only if it 1s wm-complete.
(2) A B-r.e. set A e LB 18 1-r-complete if and only if it 1s a

creative cylinder.

(The proof uses the recursion theorem 4.4.(3), and 4.11.,4.12,)
(A set Ac LB is called a cylinder if A = h[{<x,y>:x¢e B, ye"LB]]
for some PB-recursive permutation h of LB’ and some PB-recursive
pairing funetions < , >:LBxILB-€%%%> LB’ and some B & LB' For
this notion, cf. Rogers [16].)
We can improve the result %.13. in the case that B 1is not strongly

inadmissible, i.e., if B¥ < glcfB:

4,14, Lemma.

Let B* < olefp.

A B-r.e,. set AcL 1s creative 1f and only if it 1s creative via
gome P-recursive function f which has domain B* and i1s one-one.

(The proof combines the method of proving the corresponding theorem

of CRT with manipulations of pA-r.e. indices of sets lnvolving the
recursion theorem, similar to those used for handling indices of hyper-
arithmetic sets, cf. Hinman [10].)
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4,15, Theorem,
Let PB* < glcfp. Then for all A ¢ LB holds A 1is creative if and

only if A 1s l-complete if and only if A 1s m-complete.
(Proof as in CRT, uses 4.13. and 4.14,)

The following two results deal with speclal kinds of not strongly
inadmissible B. If olcfp=p%, the situation inside the maximum B-
r.e. m-degree 1s the same as in CRT:

4,16. Theorem.
Let olcfp = p*.
Then all creative sets are Pp-recursively isomorphic.

(Proof as in CRT, involving 4.7. and 4.10.)

Theorem 4.17. tells us that in the case PB* < glcfB all creative
sets which are contained in some 1-finite set are PB-recurslvely iso-
morphic (ef. Kripke [12]). The sets which are creative and cylinders
form a different isomorphism type (of l-complete sets).

4.17. Theorem.
Let B* < glefp. Then the following assertions hold:

(1) If A,Be LB are creative sets and a,b € L, are i-finite such
that A ca and Bc b, then A and B are PB-recursively iso-
morphic. (K 1s such a set.)

(2) If A,Bc LB are creative cylinders, then A and B are B-
recursively isomorphic. (K x LB 1s a creative cylinder.)

(3) A pB-r.e. set A 1is creative if and only if for some function
fe LB holds:

dom(f) = B* and f£:8* 27I31  and £[K] = A N ran(f).

B
(4) A set Ac LB i1s creative 1f and only if there is some B-r.e.

set B¢ LB-B* such that A = KUB,

(The proof employs ideas from #,1., and uses 4.11., 4.13., 4,15.)
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