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ABSTRACT

I¡le start an lnvestlgatlon of strong reduclbllltles ln o- and
p-recurslon theory. In partlcular, we study Myh1l1rs Theorem about
recurslve lsomorphisms (R l, n a B lf A ê A e B), and show that 1t
holds for a ltmlt ordlnal Ê 1f and onty lf olcfþ = ¿4. (In partl-
cular, 1t fa1ls for a1I adrnlsslble c ) ¿¡. ) We polnt out a consequenee
for $-sets (n ) 2) under V = L.

01. ON AND BASTC DEFTNITI

Durlng the last twenty years classlcal recurslon theory (Cnt) nas
been extended to a theory of eomputable functfons on admlssible ordlnals
(o-recurslon theory) respectlvely arbltrary llmlt ordlnals (S-recurslon
theory).

These new theorles concentrated on the study of Turlng-degrees (e.g.
Postrs problern) and of the l-attlce of reeurslvely enumerable sets. So

far recurslve lsomorphlsms and strong reduelbllltles Sf, ln, etc. have
not been consldered ln q,- or Ê-"ecurslon theory (except for a few
elementary reeults on p-recurslve lsomorphisms 1n t14] ). In thls
paper we begln a study of thls latter subJect.

A general experlence has been, that results that ean be proved
rather easlly 1n CRT (:-ffe e,g., the solutlon of Postrs problem) can be
generallzed to all admlsslble ordlnals and even to many lnadmlsslble
ordlnals. On the other hand, results from CRT that requlre more com-
pllcated constructlons (l1ke e.g., mlnlmal palrs) are more dlfflcult
to generallze, and nlght not even hold for all admlsslble ord1nals.

Vle analyze ln this paper an extremely easy (although lmportant)
result from classlcal recurslon theory - Myhll-lts Theorem - and show

that tt hoÌds for no admlsslble ordlnal o ) cu, further that lt holds
for arbltrary 11mit ordlnals Ê 1f and onì.y 1f otcfp = 3¿. By

"Myhll-Its Theorem" we mean here the followlng result (see Rogers [f6],
Theorem 7-VI): Any sets A and B e ûJ are one-one reduelble to each
other (1."., A (f B and 3 l:_ o) :-f ana only 1f A and B are re-
curslvety lsomorphlc (a s f).

The notlon. Sf and r whlch occur ln Myh1llrs Theorem are well
deflned for arbltrary 1lmlt ordlnals Ê. A subset of p (or of tg)
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l-s called Ê-reeurelvely enumerable (Þ- r.e.) tf and only 1f 1t ls El-
deflnable over Lø (tp 1s the collectlon of alt sets that appear 1n
the hl-erarchy of construetlble sets before level Ê, we refer the reader
to Devlln []] for detalls about constructl-ble sets), A functlon f
from p lnto Þ (f may be partlal) ls calleal þ-reeurslve lf and

only 1f the graph of f l-s Þ- r.e. Thus for eubsets A,B of Ê one

says that A s B (A l-s p-recursLvely lsomorphlc to B) lf and onÌy
lf there le p-recursf,ve functlon f that maps þ one-one onto g

euch that f(A) = B. Further A lf B (e ls one-one reduclble to B)
lf and only lf there 1e a p-recurslve one-one map f from p lnto
p such that

vx€Ê(*ea<>f(x)€B).
A r, B l-s an abbreviatlon for A lf B and 3 lf A.

lle would l1ke to polnt out that for certaln ordlnals Ê ) ¿,r the
concepts that are consldered ln the generall-zatlon of Myhltlrs Theorem

to Ê colnclde wl-th wel-I known notlons from deeertptlve set theory, ln
easre v = L. rn partlcular for Ê = *l (where NI 1s the flrst un-
countable L-eardinal) the real numbers ln L can be tdentifi-ed wlth
ùhe ordlnale less than p and a functlon 1s p-recurslve.,lf and onllr
lf the eorresponding functlon from reals lnto reale ls Ei-deflnabte
(further d-ceftna¡le for n ) 2 corresponds to D1 over
<L

NT
,Sr) for some sultable mastercode Sr.,! our results on Myhlllrs

Theorem remaln valld for such adml-sslbl-e structures). Therefore the
statement of Myhlllrs Theorem for Ê = NI ls equlvalent to the questlon
whether for all sets A,B of reals such that A = f-f[B] and

-1 r
B_= g -[A] for some one-one E; functlons f and g there 1s a

'l

Ë deflnable permutatlon h of the reals wlth h[A] = B. We glve a

negatlve answer to thls questlon (under V = L). I'le can even show

(v1a a prlortty argurnent) tfrat there are ¡å sets A and B for
whleh thls statement does not hold.

Thls paper ls largely self-contalned. A reader t,hat ls only lnte-
rested ln q-reeurslon theory may substltute o for p throughout
thls paper. lfe use onJ-y very elementary notlons from p-reeurslon
theorXr, whleh we repeat here for completeness. One wrltes olcfp for
the teast ordlnal 6 < Ê such that there 1s eome þ-recurslve functlon
whose domaln le õ and whose range ls unbounded 1n g (tnus Ê ls
admlsslble lf and only 1f olcfp = Ê). Ê* ls the least ordlnal^ õ < Ê

euch that some p-recurslve functlon maps p one-one lnto 6. Ê ls
the least ordlnal õ < Ê such that some þ-reeurslve functlon maps
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p one-one onto õ (by Frledman [B] one has ô = max(Ê*,olcfÊ) for
a1l- Iln1t ordlnals Ê). An ordlnat õ < Ê 1s called a p-cardlnal 1f
no functlon f e LU maps õ one-one lnto some Y < õ. A set o e LU

ls called 1-flnlte lf and only 1f some functlon f e LU maps o one-
one onto some õ ( olefÊ (see [14] for other equlvalent deflnitlons).

For partlal functions f and g we wrlte f(x) = g(x) lf and

only 1f elther f and g are deflned on x and have the same value
or both functlons are not deflned on x.

In sectlon 2 of thls paper we show that Myhlllrs Theorem falls for
all p wlth olefp ¡ ¿, (1n partlcular for all admlssible o ) c.l). In
sectlon J we show that Myhltlrs Theorem holds 1f olcfB = ûr.

In sectlon 4 we sketch the outllne for a systernatlc development of
the theory of strong reduclbllltles ln d- and p-recurslon theory.
We show that Myhlllrs Theorem can be saved for aII l1m1t ordlnals Ê

lf one conslders the ¡educlblllty <i (where one demands that 1n addl-
tlon the range of the reduclng functlon 1s p-recurslve) lnstead of
<1. l,Ie lntroduce an approprlate generallzatlon of the notl-on of
tracceptable Goedel- numberlng.'r IrIe show for example that for all Ê

a Ê-r.e. set 1s creatlve lf and only 1f 1t 1s m-complete. Further
lf olcfp > 9x these notlons colnclde wlth 1-completeness. More

detalled proofs for results 1n sectlon 4 can be found ln the
Dlptomarbeit [4] of the flrst author.

02. ìr\¡t¡1Î T tc ml¡ÍirìÞlrM TI ô TU 1c faF'A

Let two Ê-recurslve functlons f,g: Ê l-L p and

be glven so that A r, B vla f,B, 1.e., f-l¡A]-=-B
How can we flnd a Ê-recurslve permutatlon fr:A þrrr; Ê

two sets A,B c p
-1and g-[n]=n.

suchthat AeB
v1a h? It does not make sense to deflne h ln terrns of A and B,

slnce h 1s to be p-recurslve, and nothlng ls sald about the deflna-
blltty of A and B. So, glven x € Ê, whlch elements of Þ can we

use as n(x)f ÍIe observe

x e A <+ r(x) e B (â (fe)f(x) e B (â
ç9 (rg)kr(x) e B for any (or all) t . c,r €à
<+ sy € Bqk e o ((re)k(v) = r(x)),

by the deflnltlon of 'l_.
We are thus led to conslderlng the sets of all elements of p whlch
can be reached from f(x) by iteratlng fg o? (re)-1. Analogousty,
to flnd sone tr-1(V) for sorne y € Þ, r¡¡e ean choose fron aI1 x € Ê

reachable from e(v) by lteratlng gf or (sr)-1.
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2.I. Deflnl-tlon.

Let
A)ls

xrxt,yryl € Þ.
xr (ttx and xr are 1n the eame A-classtr): (Ð

0ke c,r)(x = (sr)k(x') v x' = (gr)k(x))(
Bã yr ("y

t
t
A

(

(sk € û,) (y
xlA: = [x' e

ylB: = [yt e

patr ([x]4,
1ff e(v) e

and yr are 1n the same B-class'r): (ê
- (re)k(y') v y' = (rc)k(v))
plx' -A x]
Þlv' -B vJ

[v]B) r" catred an orblt 1f r(x) e [y]B
[*]A lff uke crr(x= (er)ke(v) vy= (re)kr(x))

Note. All these notlons should carry a subserlpt "f,grr, whlch we

omlt. The superscrlpts rrA'r and rrBrr do not lndlcate that the orblts
depend on the sets A,B but only that they should be thought of as

subsets of F, as the domaln of h and f (e-elasses) or as the range
of h and domaln of g (e-claeses) respectlvely.
l{e state a trlvlal fact:

(*) ([*]A.A¡ [f(x)]A.s) v (txlAnA= tr(*)lBñB=/), foratl
x e Ê.

(In faet, (*) ls equlvalent to the deflnltlon of rrA rl B v1a f,g")
Now the ldeas dlscuesed above can be made more preelse as follows:

the members of tr(*)lB can serves as n(x)
the members of te(v)]A can serve as rr-l(v).

The famltlar proof of Myhlllrs Theorem 1n CRT, as lt ean be found, e.g.
ln Rogers [16], works along these llnes: Let A,B tr ¿.¡, A -l B vla
f,g. h ls deflned 1n u stages:

Stage 2n. If n ls already ln aom(h), go to Stage 2n+1. otherwlee,
not yet 1n ran(n) by lnspectlngtr(")lBlook for some member of

f (n) , (fs)f (n) , etc. rf
1n that way, cleflne h(x)

y 1s the flrst suitable element encountered

=y.

Stage 2n+1. If n ls already 1n ran(n), go to Stage 2n+2, Otherwlse.
choose anal-ogously some x e [g(n)]A not yet rn 'ctorn(h) and deflne
h(x) = n.

Vle observe one fact, whleh seeme trlvlal, but 1s essentlal for the
constructlon to work:
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At every stage ln the constructlon, lf (t*lA.tvlB)
ls an lnflnlte orblt, there are lnflnltely many eIe-
ments of [*]A (resp. [y]B), whtch have not yet
entered aom(n) (resp. ran(n)). so you ean be

sure that at every stage of the constructlon you w111

be able to flnd a sultable counterpart for n.

Now, what happens lf one trles to construct such an h ln the same

way for some admlsslble ø) @? Agaln, let A,B tr o, A -t B vla f,g.
One trles to construct h 1n c many steps. ft ls easl1y seen that
[*]A and tVlB are o-flnlte sets (of o-cardlnallty u or less),
for atl xry € o. slnce h ls o-recurslve and totaÌ, there 1s some

stage at whtch h must be deflned on all of [*]A (by admlsslblllty).
But now: how ean you make sure that at thls stage g!! elements of

tf(*)]B are ln ran(h)? Let us look at a speclal orblt to make thls
dtfflculty apparent: Assune there ls sone *O (we cannot compute l-t
from x) such that [*]A = [xo,(ef)(xo),...). Now there may be an

element y9 such that e(V6) = xO or not. (yO would be another

element of tf(x)lo.) Aut at some stage you have to flnlsh deflnlng
h on [*]4. If some Vn as descrlbed emerges after that stage, we

have to- choose fr-l(yo) outslde of [x]4, and lt ls no longer guar-
anteed that yO € B <+ h-^(yo) e A.

Thls feature of the enumeratlons of f and g, and the ø-recurslve
lsomorphlsns - h has to settle down on every o-flnlte set of o-
eardlnallty 5!, c, but orblte may ehange "latertt - ls used ln the fotlow-
lng to construct a counterexaople to Whlllrs theoren for all o ) ¡¡¡.

Remark. In the case o* < cl there existe a counterexample for trlvlal
reaaons: Spllt o lnto two o-recurslve unbounded sets A and o - A.

Choose q-recursl-ve mapplngs fr:A So* and fr:o-A l-lo-o*. (fr
exlsts by the definltton of o*. ) Choose any o-recurglve functlons
S1 :q*+A and Br:o-o*l$c-4. Then A r:, o* vla fl U f2,
81 U B' but A s c* ls lnposslb1e, slnee o* 1s o-flnlte and A

le onto.

The followlng theorem provldes counterexamples for all admlsslblee
q ) ø. The counterexamplee produced there for the case q* ( o 1s

dlfferent fron that Just given 1n that the ranges of the functlons f
and g are o-regular.

2 .2. lfheorerr
For att adnlsslble o ) o there are o-r.e. sets A,B tr o so that
¡lfB and BíA,butnot ArB.
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Proof.
Let o ) ¿¡l be some flxed admlssible ordlnal. Fl-x a slmultaneous o-
recurslve enumeratior [h!]o<o,€(o* of the partlal o-recurslve 1-I
functlons wlth domaln and range subsets of o. (Such an enumeratLon
exlsts by an appropriate appllcatlon of Er-Unlformlsatlon for Lo to
some unlversal o-recuralve functlon. ) We want to deflne o-recurgive
functlons f,g:c l-1>o and o-r.e. sets A,B e o such that the
followfng reeulrements are satlsfled:
(**) A r, B v1a f,B
(R") 1f h" 1s total and onto, then he[A] / B, for art e ( o*.

How can thls be done? l{e choose functions f and g as follows:

f(õ)=õ+1 foraII õ(o
g(õ+l) - õ+1 for all õ(o.

The vaLues of g at llmlt ordlnals are golng to be determlned durlng
the constructlon. Assumlng for a monent that g has already been
eompletely defJ-ned, we observe that the orblts l-nctuded by f and g

ean be gkctched as follows:

,¡*1 o {--- --

ro¡+Jo

o¡+2 o

ar¡+ I o

0¡tr o

o ø¡+)

o or¡+ I

o trt+z
=lT

o 0rf.

( -+ means f
<--- means g

+ur¡+{o

u¡+)o

o¡+2o

o¡'+1o

@fo

o crr+ lt

" o1+7

o (¡)fr2 Br=
o-uû)

Dr

ß

. ur+ 7

" Àdran(f)

If cur = q(l)Tf ur4nan(q)

Flgure 1
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We deflne A.yt = [ ¿dY+ n In ( ol)

D?r = (o?+n+rln(ol

fo, 1r uy / ran(e)

"vt=1
Lo, u t^, 1f ø"r= e(l).

It ls obvlous that 1er.rr), ?(o. are the orblts here.
The requlrenemt (*i) can now easlly be satlsfled: Frorn (*) above

we have for all sets A,B c cl:

A =, B vl-a f ,8 1ff
(x**) V"(o((Rrce and Brca) v (AynA = ByñB = ø)).

Thus, 1n the constructlon to follow we ensure (**) bV maklng (**x)
true:

whenever a nember of O., 1s to enter A or a member

of 
"., 

ls to enter B, put all elements of O., lnto
A and all elements of 

"., 
into B.

Hoû to make R" true?' Remember the dlscusslon followlng the descrlp-
tlon of the proof of Myh11lrs Theorem 1n CRT above. f and g have

been chosen so as to enable us to create dellberately the sl-tuatlon
recognlzed above as hazardous to a proof of Myhlllrs Theorem for o)ar:
walt untll h" has settled down on Ar, then plck some 1 y' h"[Arl
and deflne g(t): = qrry, thus addlng I to 

"r. 
Then of course

h;I(r) / A.r. lrle have now the opportunlty to åchleve he[A] / B by

trylng to ènsure h;r(r ) / A <è I e B, wlthout hurtlng (***) ¡ 1f
hel(r) is already 1n A, we keep all elements of o., outslde A and

all elements of B, outslde B; 1f he'(l) ls not yet 1n A, we put

all etements of llter) lnto A(n), and hope that h;1(À) w1lL stav
out of A forever.

We want to deserlbe the strateglr for R", as lt 1s used l-n the eon-

structlon below. lfe may assume for thls dlscusslon that h" is total
and onto. We enumerate the palrs [(f,g(f))lf<o 11m1t] and the sets
A and B ln stages o ( o. 

(o^
¿--Flx some stage oO. Assume that o-flnlte parts A v of A and

B-'0 of B have been enunerated and that an o-f1n1te part of the

set [(f,e(r)): t a llmltJ has been deternlned.

Steo 1: Start an attenpt for R",
mentloned ln the constructlon so far.

o = ó, 3¡y not yet ln ran(g).
choose some Y whlch
ln partlcular, Ay n A

has not been
^ctu = þ, DynB
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Step 2: Contlnue thls attempt:
Ïlhen some stage o, ) oO 1s reached at whlch

so far that
exl-st slnce
¡ y' h" [Arl
stage 01.

Step t 3 Complete thls at
I'Ihen some stage a 

") 
o,

so far that r . 
".n(no2)stage e2 exlsts slnce

d"r(h:l) e Ay, we contlnue thls attempt (sueh a stage rnust

A 1s c-flnlte and h" 1s total): Choose some

noï yet rn ¿om(s) ancl actd the palr (t,øv) to g at

h
e

has been enunerated

tempt:
1s reached at whlch h" has been enumerated

, then we may eomplete thls attempt (such a

h" 1s onto): By the construetlon we know

h;l(r) . Ay, for some 't/, I l. Let A<o2A

A enumerated so far.
that h;l(r) /
be the part of

Hence

Case 1:

Case 2:

thls attempt.rr) Hope that the elements of Ay, w111

stay out of A forever.

Problems oecur, of course, when one trles to treat alÌ q-recurglve
permutatl-ons slmultaneously. Confllcts between dlfferent o-recurglve
permutatlons may arlge 1n Step J of the strategy: for the sake of eome

h"r, e' / e, perhaps the elements of Ay, wltI be put lnto A later.
To solve such confllcts, the approprlate tool 1g the o-f1n1te l-n-

Jury prlorlty method (ttre Cnf-verslon of thle nethod was lnvented by
Frledberg and Muchnlk ln 1956). One essentlal requlrement for this
nethod to work 1s satlefled: one may start an attempt at obtalnlng
he[A] / B unboundedly often. (The stage oo 1n the sketch above was

arbltrary. )

It 1s rather easy to see that for o wlth the property À2cfa = o
(e.g., 1f q 1g a regular L-cardlnal) a prlorlty constructlon whlch
uses <
eucceede wlthout compllcatlone.

To nake the constructlon work for aII c, ¡re wlll have to adopt a
technlque for creatlng a prlorlty ordertng of length 

^2cta. 
l{e uee

Shore Blocklng here (Shore [21] ), foll-owlng the expositlon of thls
method tn Slmpson [22]. Proofs of the folÌowlng propoelttons coneernlng
Ãrefø nay be found there.
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2 .1 . Deflnl-t1on.
Ã"cfa ls the least 6 ( cl such that some þ(r,o)-runctlon maps õ

eoflnal-ly lnto o.
Arefc.x 1s the least õ I o* such that some Er(Lo)-runctlon maps 6

coflnally lnto o*.

2.4. Lemma.

^2efo 
= Â2cfo*

Let v(Arcfo. ff [l*lr(vl
sequenee of o-flnlte eets Ig,

2.5. Lemna.

There are an o-recurslve functlon
functlon H:A2cfo -)o* such that

fi,o, Âr"fo ì o* and a
^2(Lo)-

(1)
(il )

(1) H ls nondecreaslng and contlnuous! H(0)
1n o*.

(rr) For each o(o the functlon v p È(o,v)
contlnuous; fi(o,o) = o, û(o,n) < o.

(ttt) ror eaetr v ( ôrcfc there 1s some s(o
(vF < v)(vr )o)(fi(t,p) = u(r.)).

ls a slnultaneously o-r.e.
then U[ I,, lrr ( v) 1s o-f 1nlte.

= o; ran(x) 1s coflnal

le nondecreaalng and

such that

2.6. Deflnltton. (The change functlon).
changes l-ts value at Btage o lffÌle say that n(v)

-r(sr(o)(vor)(r(o? (o ì fi(ot,t ¡ = ft(o,l¡)) .

The change functlon ch gl-veo the lnlt1aI segment of o* 1n whlch no-
thing changes:

ch(o): = Ûf"(o,v)l for no F(v does n(p) change lts
value at stage o).

The egeentlal property of eh ls the second aseertlon of the followlng
lemma. (tne proof 1s trlvlal.)

2.7. Lernma.

(r)

( 11)

For all e(ch(o) there 1s exactly one v euch that
ff1o,v) ( e ( fi(o,w+)¡ and nelther u(v) nor H(\,+1)
change thelr value at stage o.
If tt(v) ( e ( H(wl), and the lnterval tH(v),u(r¡rr)[ reaches
1te flnal- posltlon at stage o (1.e.. o ls leagt such that for
arl I > o fr(r,v) =n(v) and û(r,url) =H(wr)) tnen ch(o) (e.
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We use iI to glve prlorltles ( Ârcfo to the R"tu ln the follow-
1ng manner: Asymptotlcally (as o goes to o), the prlorlty of e(o*
ls v ( Árefa 1f U(v) < e < U(wf ). fr "i has prlorlty v, (t = 1.2).
then "1 has hlgher prlorlty than e2 lff vr(vr. Slnce H ls 1n
general not o-reeurslve, we use Ê lnstead, and treat e as lf lt
had prlorlty v at stage o lf ff(o,v)<"<È(o,\¡Fr). Slnce for each
e(a* there 1s a stage oe such that for all o ) oe hol-ds ch(o) )e,
these "guessed" prlorltl-es are the true onee after boundedly man¡r stages
for each lnltlal segment of e*.

It 1s essentlal for the eonstruetlon to work that a new attempt at
satlsfylng R" l-s started at stage s 1f e e [H(v).tt(urf) and thls
lnterval reaches 1ts flnal posltfon at stage o. thts ls what we use
the change funetlon for.

rf "1,"2 e tfi(o,u),ft(o,\¡Fl)t, they are treated at stage o as lf
they had the same prlorlty. If a confllct between sueh "I,"2 occurs
at stage o, we glve prlorlty to that "1 whleh 'teomes flrst[, 1.e.,
for whlch an attempt 1s to be completed at stage o. Thls causes no

harm, slnce lf an attempt for R" 1s completed at stage o, thle
attempt 1s not lnJured at a later stage for the sake of an s t of the
same prlorlty (cf. the proofe of 2.9 and 2.10).

As last of our prellrnlnaries, we choose some c-recurslve partl-
tlon [2")"ao* of q. (E.g., let Z" - _[(e
o-reeurslve biJeetton (, ): o* t " ffi>

,ô): õ(oJ for some flxe
a. ) only o., wlth ^( <z

w111 be used 1n the strategy for R" as descrlbed above.

The constructlon
By slmultaneous recurslon on o<o we enumerate sets A,B s c,, and

defl-ne s t tf lt < ø llmt) . Let A<o and B<o be the parts of A

and B respeetlvely enumerated before stage cr.

Stage o.

d

e

Tn {rr¡{ aa aarraa¿l }rrr aha¡æao af u

AJ-1 atternpte for R" such that e ) ch(s) are lnJured now.

Strateav for R :e-

Determlne the unlque e ( o* such that o e Ze. Conelder
three cases:

Case 1. (conesponde to Step I above).
If all attempts for R" started before stage o have been
lnJured ln the meantLme, then @ R" as

foLlows:
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Choose some wltness "l e Ze so large that no member of OV

or O", has occured ln the constructlon so far.

Caee 2. (eorresponds to Step 2).
If at some stage oO ( o an attempt for R" has been started
and not been 1-nJured fn the meantlme, whlch used Y aB wlt-
ness, and A, s h!, and cff ls not yet ln ran(g), then contlnue
thls attemot as foll-ows : Choose some llrnlt I = sJE, E e Ze, whlch
has not occured l-n the constructlon before (ln partleular
x / hetA.yl). Add the palr (r,,,ry) to graph (e) now.

Caee 1. (corresponds to Step l).
If an attempt for R" has been started at some stage oO,
uslng "( as wltness, such that
(f) tt has been contlnued at some stage or)cO, by putttng

(1, c.r'Y) lnto graPh (g).
(u) I e ran(ho) r,or r as rn (r).
(lU) tfrfs attempt has not been lnJured nor has lt been comp-

leted ln the meantlrne.
(r") h;l(r ) / r1a ,

then complete this attempt as follows:

(l) Enumerate all members of o., lnto A

of B, = [f] U D, 1nùo B now.
(2) All attempts concernlng only er wlth

than e are l-nJured now. (These are
er ( o* so that " < fi(o,v) I e' for

(t) compute y, sueh ühat h;I(r) e A.r,
lt e Zot. If er has the same prlorl
fi(o,u)-<e, e'(fi1o,wr) for sorne v(

and all members

lower prlorlty
the ordlnals
some v<^2cfo.)

and er sueh that
ty e (t.e.,
arcfo) and the

current attempt for Rer, 1f any 1s golng on. uses Yr

as wltness, then thls attenpt C-s lnJured now. (Observe
for later use that ln thls case holds Ar, n A(6 = ó, by
(rv) auove. )

Make sure that q wll1 be total:
If c¡,¡o ls not yet ln dom(e) then let

g(t,ro):=o. (the o-th membere of zd.
(we can safely assume that ho = ø.)
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o-recursl-ve, total, and one-one.
B are c-r.e. subsets of o.
vla f,B.

Proof.
(f) ana (ff) fof:-ow lmmedlately from the constructlon. TnJectlvlty of
g ls guaranteed by the fact that each attempt for any R" ls contlnued
at nost once.
(f:-f) O¡vfously, by Step J 1n the construetlon, condltlon (+**) 1s

satlsfl-ed.

2.9. The fnjury Lemma.

For aIl v ( Ârcfo holds:
(r) The ln-1urv set

(l) s ls
(rr) A and
(ru) a r, n

hence

(r)

wlthv

1s o-f1nlte.
(11) The completlon set

cut = [o ( o I at' stage o an attempt for some R" wlth
e (li(o,wf ) ls completedJ

l-s ø-flntte.

Proof.
(f) an¿ (ff) are proved slmultaneously by lnductlon on v(Ârefo.

So, 1et such a v be glven, and assume by the lnduetlon hypothesls
that the sets I and C are a-flnlte for all f¡ ( v. 0f eourse,t¿ t¡
the famllles [ru I u ( v) and [c, I rr ( v) are slmultaneouely o-r,e.,
so by Lemma 2.4.'(1f) the set U[cu I u(v) 1s a-flnite. Choose a

strlct upper bound o.(o of this set. Frorn Lemma 2.!. (111) and the
deflnltlon of the change functlon 1t follows that we can ehoose some

o, )oO such that:

ch(o) ) ù(o,wr) = H(\¡FI) for all c ) o'

: = [o ( v I at stage o €n attempt for sone

e < fi(o , wr ) ls tnJured)

(vo )or)(ve<tt(r¡rr) ) (e < ch(o)).

It 1s clear fron the deflnltlon of oO that

(z) (vo)o1)(ve<¡l(r¡rr)) (no attempt for sone Rå wlth
hlgher prlorlty than Re ls completed at stage o).

R
er
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b: = [(e,o) I o)o, and an attempt for R" 1s eompleted at
stage o and tt(v)(e<H(vFl)).

tfe show that b 1g a functlon. So assume (e,o") e b. Now the attempt
for R" whlch ls completed at stage oe can not be lnJured after stage

oe. (ch(a))e, slnee we are beyond sl. No er wlth hlgher prlorlty
can lnJure e now, eince we are beyond oO' No er wlth the same

prtorlty can !-nJure thls attemptfor R" now, sl-nce AytrA then; cf'
Case 1 ln the constructlon. ) Hence never a new attenpt for R" Le

started after oe. Thus for no c ) oe can hold (e,o") e b' A1!u)
ls an o-flntte set by El-separatlon below o*; so b and ran(U)

are o-flnlte ag well by ãdnleslblllty. Choose a strLct upper bound

o")oy of ran(u). sV (f), (z), and the deflnltlon of b we conclude

tñat ño attempt for any e (H(v+1) can be lnJured after stage 02.

Thue orlc- l-s an upper bound of Iv. Slnce Iu ls clearly o-

recurslve, lt ts o-fintte by Âr-seiaratton' ffrus (1) ls proved'

Next we must ehow that Cu 16 o-flnlte ag well'- Slnc¡ tV 
-tt ll

recurslve, lt sufflces to show that C.rñ[o(o I o)orì le bounded' It
ls elear by the deflnltlon of oO and 

- o1 that thts eet equal-e

[o)oo I an attenpt for gone R" so that n(v)(e(H(v+r) 1s conpleted
' at stage o).

But for each e e [H(v),n(Wf)[ at most one attenpt ls conpleted after

stage oe. Argulng as above for the set b, we see that the o-r'e'
get

¡ (e,o) I o )o, and e (U(wf ) and an attempt for R" ls conpleted at
etage ol

Next we deflne an o-r.e. set b c H(wl) x o:

1s a functton wlth domaln bounded below o*, hence ls o-flnlte. So

fts range ls o-flnlte, aB waa to be shown.

2.10. Lenma.

For each e ( o the requirement R" ls satlsfled.

Proof.
Let e be guch that h" 1s total and onto. Flx the unlque v( Atcfo
euch that tt(v) (e(tt(v+f ). From the InJury Lemma 2.9 It foUowe that
there le sone stage after whlch no attenpt for R" ls lnJured. Hence

there nust be a 18Bt attenpt for Re. (Ze ls unbounded!). lte show

that lt succeedg. Let oO be the stage at whlch thts last attempt
for Re ls started. By the conetructton, e(ch(o) for all o)o6.
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Henee tt(v) and H(\,+1) dontt ever change thelr value after stage
sO. I.e., that the sets [e' I er has ]-ower (nfgher) prlorlty than
e at stage 6J afe lndependent of o for o)o.. Since h" ls total,
and A", ls o-flnl-te, there ls some stage ) oO after whlch
aom(h!) = A.y. So there 1s a stage o, ) oO such that thls attenpt
for R" ls contlnued (agatn because Z. ts unbounded). So we have
g(f ) = c,l"y for some

stage ) oI at whl
¡ y' h"[4r1.

ch I enters
Slnce h" le onüo. there is some

ran(tr"). Let oz be the least
stage l-n 7.e after that. Consl-der two cases:

Case l. rrll(r) e n
loz

Then all elemente of By stay outelde B

forever by the constructlon.
he[A] I B.

So \/B but h;l(r) e A, hence

-1 (oo
Case 2. h;'[f] y' A '. Then by the eonstructlon. all elemente of 

"yare put lnto B at stage o2. Hence I e B. Ìrle must show that
h;l(r) / t. There ls a unLque yr such that rr]1(r) e A,yr. Ftx the
unlque er sueh that ^ft € Z.r. If er has lower prlorlty than e

at stage o* tlte current attempt for et ls lnJured! slnce attempts
for er started later nust uee soüe nen rrYrr ag wltnegg, the nemberc
of Ay, are never put lnto A after stage oZ. ff et has hlgher
prlorlty than e at stage o2, then no attempt for er ean be comp-
leted after stage oZ (otherwlse the last attempt for R" would be

lnJured then, contradtctlon), hence A.rtñA = é remalns true. If
et haE the same prlorlty as e at 6tage 02, and the current attempt
for er has yt ae lts wltness, then thls ls lnJured at stage cz
(Case I (f) l" the eongtruetlon). If er does not use tÍt ln a

current attempt, 'yr wlll never be chosen ag wltness for eome attempt
for R"r, slnce 1t ls not ttnewtt-

This flnlshes the proof of Theorem 2.2.
If we look at Theorem 2.2 t¡om a p-recurclontetts polnt of vlcw,

we get

2.11. Theorem.
Myhlllrs Theoren falIs for all 1lm1t ordlnals Ê wlth olcfÞ)c¡1.

Proof.
Case 1. Ê is weakly adnisslble, 1.e., Þ* I olcfþ. In thls case, we

can reduce the proposltlon for p (there are Þ-r.e. sets A,B s Ê

eo that A r, B but not A r B) to the same proposltlón for an adnlesl-
ble etructure <f,cr€,T), where o - olcfg, T c q ls an o-regular set
whlch codee the ÀO-oatlsfactlon relatlon of Lþ. ü 1s the admlgaible
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collapsr of LU, as deflned Ln [l]1. The proof of Theoren 2.2. works

equally well fôr q. It ts easlly seen that the counterexanple for U

obtalned ln thlg eay can be traneforrned lnto a counterexample for LÊ

by the l-nverse of the eollapslng firnetlon.

Case 2. Þ ls strongly lnadmisel-ble, 1.ê., Ê+ ) olcfp ¡ 6. In [4] 1t
ls shown that there are sets A,B c p and þ-recursLve l--1 functlons
f,g:Ê -) Ê so that A r, B vla f,g, but A,B are not p-recurslvely
lsomorphle. The proof uses an enumeratlon of the Gödel Numbers of the

þ-reeurslve permutatlons of LU, whlch 1s, of eourse, not a B-r.e.
set. (Aut ft 1s easlty seen that A,B can be choeen 8o as to be dc-
flnable over t^. )

Þ

lt. Ifnlrrü.rs TIIEOR !ú HOIÐS IF olcfÊ = c,l

In 02, we dlsproved Myhll1's Theorem for all Ê with olcfp ) trl.

How ls the sltuatlon 1f slcfÞ = c¡J? We know that for Þ = ¿,r the
theorem holds. If â = ,, Myhlllrs or1glna1 proof works Just as well.
But even for arbltrary llmlt ordlnals Ê with slcfÊ = ü, the theorem

le true:

J.1. Theorem.

Let olefÊ-ûJ. Then ArtBåAsB, forall A,BcÊ

Proof.
Let A,B Ê Ê and Ê-reeurslve firnctlons f,g:Ê t-t>Ê be glven so

that A r, B vla f,g. lüe use the central ldea of Myhlllrs proof (as

:recalled at the beglnning of !2). The constructlon of a P-recurElve
lsonorphlsm h between A and B ls carrled out 1n u stages, and

thue ühe growth of aom(n) and ran(h) durlng the constructlon can

be controlled ln such a way that at each etage n, lf x 1s a candl-
date to enter aom(h), we can guarantee that at some stage m ) n a

posslble lmage for x under h 1s avallable. (Recalllng the deftnl-
tlon 1n 02 of the orblts lnduced by f and g we remark that thls
must be an element of tr(x)lB not yet ln ran(tr).)

Vle ehall deflne a Ê-recurslve functlon h and show 1n a serles
of lemmas that h ls an leomorphlsm between A and B, 1.e., h ls
totat, onto, one-one, and h[A] = B. The deflnitlon of h wlll ln-
volve f and g only, A and B.are not mentloned. Recalllng state-
ment (*) of 12 we aee that to achleve h[A] = B vre have to deflne h

1n sueh a way that
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tt I [*]A maps [*]A one-one onto [f(*)]B, for all x e Ê.

The probLem wlth thls alm 1s that the orblts cannot be dealt wlth tn a

Ê-recurslve way. (E.g., the questlons 1f [*]A . ran(g), or lf [*]A
te flnlte or lnflnlte, are not p-reeursl-vely decldable.) So we have
to use approxlnatlong to the orblts.

Slnee olcfþ = ar, there are two ft(L')-seOuences (f' I n e rrÞ and

<+, l" 6 aÞ, foq fl c 12...., and Bo tr Bl c gz ..., such that

f = U[fn Ine co) and e = Utsr, Ine co).

If Ê* = ûJ, we can addltlonally assume that lfrrl < n and lerrl 5 "for all n ê ûr. (If necessary, take some p-reeurslve funetlon

r: ûr õtr+ P, and replace

ï.2. Deflnltlon.

f n % by f' I r[n], e' l' r[n] respectlvely. )

Let n € qr. ((errrrr)
For xrxr,yryt e P

* -l *r: ê (at< e ø)(x - (errrrr)k(x') v *' - (Bnfr,)k(*))

y -: y': <> (sk e o)(y - lrrrsrr)k(y') v y' - (fnen)k(v))

t*lå:=[x'l*'4*]
tvfl : = [v' I v' -l vl

A palr (f*lå,fyl|) of equlvalence classes ls called an n-orb1t
(w.r.t. (fr, In e aÞ, <% l" e c,"ù) lf and only 1f

(rk € ûr)(x - (enfrr)ksr.,(v) v y - (fr.Brr)krrr(x) )

o, = lfrrsrr¡o, = rau. )

we deflne:

are equlvaÌence relatlons on Ê whleh are reflne-
and -8, "".p""tlve1y,

l.l. Lemma

(r) -A and -Bnn
ments of -A

(2) Let x,t € Ê.
(t*lA,tvlB) 1s an orblt lf and only lf

(en e c,r) t ( f *lå, f vll) 1g an n-orblt ) .

(ni e Þ)((t*lå,ftf:)) le an n-orblt 1r and onlv 1r

x e dom(f,.,) U ran(g.).
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y e dom(gn) u ran(rrr).
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are Ê-recurslve relatlons of
(t) AX -r,

v-Bvr" n"

xr nrx,xl

D,V.Yl

The mapplngs (n,x) u [x]l (",v) > tvll are p-recurslve.(4)

(5)

and

For each
mapplng.

¡ e ûJ, the set of n-orblts ls a partlal one-one

Proof.
Trlvl-a1.

V,le shatl need a kind of llnear orderlng (of order type ( sJ) of
each class f*lå and tvll. For thls sake, we flrst choose a dlstln-
gulshed representatlve ln each equlvalence class and then deftne some

notlon of 'rdlstance from the dlstlnguished element. "

t.4. Deflnltlon.
Let n € ûr.

'lt*13 = mrn(txll)

'ft"l: = mrn(tvll)

a"l{*) ' =

for

for

x€Ê

x€Ê

L:
a"l{v)

1f

1f

and

1f

and

* = rf;{*)

k>o and x-(qfrr)klrl{*)) and

(v¡)(o < J < k ) x I (s,rr,r)J1ml{*)))

k>o and x-(Brrfrr)-*ftrft*l) and

.(sJ > o)(x - (snrrr)Jf.fif*lll .

byB
1s defined analogously (exchange

and x by V).
f n and grr, replace A

3.5. Renark.
To make the meanlng of .Aosn dsBn
* = n'l{*).

clearer, we conslder two cases. Éet
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case l-. f*l* 1s "cycl1c", 1.e., (sJ > o)((grfr)J(x) = x). Let Jo
be the l-east such J. Then

[*]A = t*lå = [(snrrr)k(*) I o _< k ( Jo], and

asl{{srrrrr)k(*)) = er for atr k, o < * a Jo.

1s not trcycllc."

xt e [x]f; there l-s exaetly one lnteger z such that

x'= (errrrr)z(x) ; and

asfi(x')=22, if z20
osf(xt)=-22-L,rf z(o.

Caee 2. r*lå
Then for each

J.6. Lemma.

(r) rl{*l 1s a Þ-recurslve functlon of n and xi
* -l *, if and onty lf rl{") = rl{*').
Analogously for rÎ.

(z) a"fl{*) and a"l{v) are Þ-recurslve funetlons of D,x (respect-
lvely n,y).

(l) For all n € üJ and all x,I € Þ are
one-one functlone.

Proof.
Trlv1a1.

1 7 l'lnnsf-nrrnt-{ an nf h

asA I r*lA andn.-n u.å rvll

By lnductlon on n € ö an fr(L')-seeuence (h' lne aÞ of partlal
mapplngs hn . LÊ ls deflned. h 1s obtalned as the unlon U[hrrlne c¿).
(t'totethat hrrñh*=/ for n/m).
Abbrevlatlon: har, := U[h* | m( nJ.

hr, ,= [(x,y) e Þ2 I x,y satlsfy (f ) ano (e) ano (¡))

where (t), (Z) and (1) are the foflowlng condltl-ons:

(1) ( t*:å, tvll) ls an n-orblt and x y' dom(harr) and y y' ran(harr)

(z) (sJ > o) (* - (errrr,)J (*) ) ,
v (lt*l*-dom(rra,.,)l ) 2 and ltr'11-ran1h<n)l > 2)
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Ol (vx' )(xr e [x]f;-aom(nar,) + asl(x') > dså(x))

(w')(y' e tylf;-ran(h<r,) ì a"l{v'¡ 2 o"l{v) )

t*lå ' tvll

mugt flnalty ttsettJ-e downtt , !.e.,
large enough.

and

must be constant for n

2.8. Remark.
Thls construetlon nay seem to be too lnvolved. Why not acld as many

palrs (x',yt) e to h at stage n as posslble, if
(t*lå, tvll) 1s an n-orblt? At the flrst glance, thl-s gtrategìt¡ would
perhaps make h total and onto. But, then lt could happen that at
some stage n e.g., [*]A c dom(harr), and t*l: gets a new element at
stage n+1. Then we couLd never make h onto. The solutlon to thls
problen 1s as fotlows: At most one element of t*]å ls allowed to
enter dom(h) at stage n. Condttlon (Z) tfren wllt ensure that

txlf-aom(trar*r) ì/ ø or ¡xlA = ¡x1l 1s f1n1te.

thls wtll- sufflce to gu.arantee that for all n € o

lf [*]A ls lnf1ntte, then ¡x1A-aom(rr<.,+r) ls lnflnlte.

So the construetlon never breaks down for lack of suitable elenents ln
[x]A-oom(harr). (Îhe stratery concernlng the yts ls the same.)

It Just remalns to make h total and onto. For thls purpose.

the flrst elemente of txlfl-aom(narr) , tvlf-ran(narr) (w1th respect
to the dlstanee functlone d"å and dsi) are chosen to enter aom(hrr).

ran(nrr), 1f any are. For thle ldea to work, the dlstance functlons
a"fl{* )

The detalls are glven ln the followlng lemmas.

J.9. Lenma.

Let x,V € Ê.
(r) For alt n € ûr hordst t*lå. t*lå+r and tvll. tvll*1,

[*]A = Utt*lå | n e co) and [y]B = Uttvll I neco).

(z) rrm f (x) = mrn([x]A) and rrm m:(y) = mln(tvlB).
n{@ " n-@ ¡¡

(t) ttm ds*(x) exlete and Ilm dsl(v) exlstg.
nr6 ¡¡ n{@
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(4) rhe mapplngs * r]tå a"l{*) and 
" "å* a"l{v) are one-one

on the respeetlve equlvalence classes, e.g., lf
x -A xr ancl rrrn osfl(xr) = rlm asl(x), then x = x'.

nr@ " nr@
(ttre ttmtts are all ln the dlscrete topologr on þ respectlvely rr¡.)

Proof.
Stralghtforward (use 1.6. ).

J.fO. Lemma.

(1) h ls a partlal one-one functlon: For all x,xr,y,yr € p hotds
that lf (*,y)r(xt,yt) e h, then x = xr ê y = yr.

(z) rf h(x) - y, then y -B t(x) (1.". , ( [*]4, [v]B) 1g an orblt. )

Proof.
(1) Let n ) ûr, (x,y) e h, , (x',yt) . hrr.

Assume flret that x = xr. Then n must be equal to m. (ff
n ) n, then x e dom(hr-), hence x y' aorn(n-) t .7.(1). )

slnce ( t tfi, f vtfi) "tà" 1 f *lå, tv' l3) are totrr orblts, by
t.t.$) lt fouows that tvll = tv']f,. y and both satisfy
t.T.(t) and hence are l-dentical.
lhe other dlrectlon 1e proved s1mlÌarly.

(z) rt
(tx

hrr, then ( f *lå, fvll)(

]A

x )

l
v
v

e

)

l-s an n-orblt, hence,

t
B ts an orblt øV I .7 . (Z) .

1.11. Lenma.

If x€Ê and

If y€Ê and

(gr)k(x) - x
(re)k(v) = v

for sone

for some

k ) 0, then
k ) O, then

x r tlon(h).
y e ran(n).

Proof.
IÍe prove the flrst assertlon by lnductlon on

(gr)k(x) = x for k ) o, both [*]A and tf
have the same cardlnallty).

Choose n so large that f I [x]A
Thenforall n)m holds:

r-1m ds*(x). slnce

(?)Þ are frnlte (and

. f, and s I tf(x)lB = qo.

for all xt
(ef . 1.9. þ)) .

¡x1A = ¡x1fi and

(r*lå,tr(*)tl)
tr(x)lB = Ir(x)lÏ and

1s an.n-orblt and

A holds osf;(x'¡ = asf;(x')€ [x]
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By the l-nductlon hypothesls choose n ) m so large that

(vx' e f*lA)(as*(x') < a"fi{*) -) xr e aom(h¡rr)).

If x e dom(harr), we are done. If not, then

tr(x)lf-ran(nrn) / /,
too, stnce lf*lål = l[f(x)]f;1, "tta h<., is one-one, and
n.ittxlil tr txl; by f .1o.

Thls means that f.7.(I), (Z), and (]) ls satlsfled for x and
some v e [r(x)]B. (wote rhat (re)k(v) = v for att v e [r(x)]B.)
so x e dom(hrr) uy the eonstructlon. The assertlon concernlng ran(rr)
ls proved sl-rnllarly.

I . 12. Lemna

Let x,J € Ê be such that (t*lA,[V]B) 1s an orblt. Assume that
(gf)k(x) I x för alL k > O. Then the followlng assertlons hold:
(1) For att x' e [x]A and alt k > O rs (gr)k(x,) / x,,

for all y' e [y]B and all k > o rs (rg)k(y,) I y,,
(2) rf (f*l*,¡vll) is an n-orbir, rhen

It*låx fvllnhr,l = lt"l*noorn(hn)l = ltvllnran(nr,)le [0,lJ.
(l) txlfl-aom(tr<n+r) / ø and tvlf-r"n(nan+t) / l, aLL n € qr.

(4) rr 
^(¡x11,¡y]l) 

ls an n-orblr, and f*lå 1s lnflnlte, rhen
[x]ff-dom(h<*rr) and [v1i-ran(n<r,+r) are both lnfrntre.

Proof.
(r) rs trlvl-al, and (2) follows immedlately from the constructlon J.T.
(l) sv lnductlon on n:

case r. f*lå n aoø(hn) / É.
. Then x e dom(frr) U ran(q), ¡y the congtructlon and l.t.(2).

sv (z) there is exaetly one. x' . f*lå n alom(hn).
¡v (r) it fotlows that (gf)k(x,) I x, for aII k > o.
Hence W 3.7.(z)

[xr]fl-aom(nar,)l > a.

Therefore

txlfi-aom(rr<n+r) = ([x' 1f;-aomlnarr) )-dorn(hn) I ø.



Case 2.
Tf

(a) ¡y lnductton on

ff n=O and

uv (z).
Nowlet n)0.
ls lnflnlte.

and

The cholce of

110

Assume that
y e ran(h).

If n ) O, then by the lnductlon h¡pothesls ls

txlf-r-oorn(h<n) / f, hence txlf-aom(nan+) I ø

t*l*neom(hrr)=1.
n = O, then h<n+l - hO hrr, henee x e txlf-oom(trarr*r).

l*'lå-r tnflnlte.
Ixr]f;-r-aom(har.,)
ls lnfinlte (r.9.(1))

(er)k(x) / x for all

n:
t*lå 1s lnflnlte, then ¡xlf;-aom(tro) is rnflnlte

By (2), lt sufflces to prove that ¡x1f;-aom(h.,r)

case I. For some x' e [x]l 1s

By the lnductlon h¡ryothesis ls
lnflnlte; hence ¡x]fl-aom(narr)

Caee 2. There are lnflnltely many (palrwlse dlsJolnt!)
crasses t*'lå-r . t*lå.

BV þ) for all these claeses holde

tx' ll-r-aorn(nar,) / l;
¡x1f-aom(nan) is inflnite.

ran(h) are the same. )

hence

(The proofs for

J.lJ. Lemma.

Let (t*lA,[v]B) be an orblt.
k > o. Then x e dom(h) and

Proof.
lle prove by tnductlon on that x e dom(h). (tne proof of

"y e ran(h)" ls eIm11ar.)
BV ).9.(4) we know that the get

o ,= {*' e [x]A ¡ r:'a"f{*') . J*o"lt*l}
ls flnite. The fnductlon h¡rpothesls tells us that O s dom(h).
N so large that

mrn([x]A). t*l* and o c txl$ and o c dom(ha*) and

Choose

l-im dsAlx)
nioo n'

(t*l*,tu1fi) r" a" n-orblt.

N lmmedlately fmpllee that
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asfi(x') = ;gael{*') ror arl x' e txlfl' m ) N.

ln partlcular

asfi(x') < dså(x) 1rr x' q D (ror a1t x, e txlfl).

If we ean show that for some ur ) N holds

f*:åndom(hm)/ø,

then by the constructlon (1.7 . O ) ) either
and we are done. Conslder two cases:

case l. lxll 1e lnfln1te for some m ) N.--m
W t.L2., both ¡x1fi-aom(nar) and tv1fl-ran(nar)
Hence 7.7.(I), (z), an¿ (l) ls sattsfled for some

v' . tvlfl. so f*lå n dom(hm) / l.
case 2. lxll 1s flnlte for all rn ) N.--m

BV t.Lz.(t) we know that there are elements

x, e txlfi-aon(ha) and vr . tvlfi-ran(n*).

Slnce [*]A ls tnflnlte, for some stage mO ) N holds

f *låo-t*låo -, / /, t.e.,

there ls an x" e [xlfio such that [*"]åo-rn t*låe-r=1.

By 7.12.(r) ana (f) there exlsts an element

x, e [x"1fio-r-oom(ha*o).

Analogously, we flnd mB > N and an element

yz € ( tv1fu-aom{h<mB) )- tv1fl"-1.

Consider ur := max(mArmB).

Elther for some stage n, N S n ( m, holds

(r*lå x tv:l) ^ "n/ ø,

or

[x'xr] c txlfi-aom(h<m) and [v'vr) c [y]fl-ran(h<,n).

x e aorn(ha*) or x e dom(h*),

are lnf1n1te.
x' e [x]fi,

Slnce *L,l *z and Va / y* tn
(f) fe satlsfled for some xr €

1.7.(t), (e), and

at stage m.

the latt case

[*]å, v' tvlfl
er
€



Hence

Thls flnishes the proof of Theorem l.l.

c4. A FEVI ¡'TJRTHER RESULTS ON STRONG REDUCIBILTTTES ÏN Ê.RECURSION
THEORY.

As we have seen 1n !2, when one deflnes Ê-recurslve lsomorphlsm
classes and -r-classes of subsets of p, then these notlons dlffer
(ln some lmportant cases even for þ-reeurslve sets), whereas 1n CRT

they co1nc1de. Therefore we conslder here some stronger notlon of re-
duclblJ-lty, namely <i (see Rogers tf6l). (the oetlnltlon was glven
fn 0f. ) { lnduces an equlvalence relatlon ef, and glves rlse to
the followlng pleaslng result, whose proof uses as maln ldea the proof
of the Cantor-Schröder-Bernsteln Theorem from set theory.

4.1. Theorem.
Let P be any llmlt ordlnal. Then n-laâA=B for all A,B tr Ê

Proof.
If olcfP = ¿¡, wê use Theorem ,.1. So let qtcfp ) ø. Let
f,g:Þ t-1>Ê be glven so that f,B are þ-recursl-ve and have Ê-
recurslve range. trrle construct some fl-recurslve h:Ê t*aU so that

h(x) = y + (f(x)) = y v g(y) = x),

whlch obvlously lrnplles

(A ET B v1a f,g 5> h[A] = 3),

for all sets A,B c p. I'Ie deflne three subsets of

* . x"*r"r,: (à (sn. ø )(s*' e p)( (er)"(x') = x and

x € xodd : (à (sne cd)(sye Ê)((er)ns(v)

112

t*lå , tv1fl n h'-/ ø.

=x and

x e Xrrr,' : (à g sequenee (s.,sr,...) so that

and ( vt e c,r ) (f ( szr+z ) = srr*t and c( s
"o

Þ:

xr y' ran(g) )

y y' ran(r) )

-x and

zt+t) = set)'

are a p-reeursive partltlon
h deflned as follows 1s

It ls easlly seen that Xeven, Xodd, Xlnf
of p, and that the p-recurslve functlon
total and onto:

h(x)=y:<=> (*.X"u".,UXt'f and f(x) = y) v (xeXoOO and g(y)=x).
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ï'Ie now turn to the structure of the nlnlmum and the maxlmum m-degree

of Ê-r.e. gets. The sltuatlon 1n the set of the Þ-recurslve sete 1s

nearly the same as ln CRT (cf. e.g., Odffreddl t15l).

4.2. Theorem.
(1) The structure of the p-recurslve l-r-degrees under the <i-

orderlng ls as follows:

<o> < <1> < ... ( (co) < ... <

<LÊ><("F-t)<...<
(o<p lsa P-eardlnal).

lle know by 4.1. that the l-r-degree of a set A colncldes wlth
lte lsomorphlsm t¡rye <A>. )

(11) If Ê* 2 otcfÞ, then the p-recurslve l-degrees and the Ê-
recurslve lsomorphlsn types colnclde. The l1-orderlng of these
degrees 1s the aane as fn (f).

(rr:-) rf olcfþ ) þ*, then the lsornorphtsm types (Ê*), ([2x I x(ÊJ),
and <Þ - P*> are all- contalned in the same 1-degree. All the
other Þ-recurslve leomorphlsm types are l-degrees.

(Îhe proof ean be found ln [4]. )

lle now turn to the study of the maxlmum Þ-r.e. m-degree. (AS'B
lf f-f¡41 = R for some Ê-rec. f:Þ ì Ê. A ls m-complete lf A

Ls Ê-r.e. and for all þ-r.e. sets B s Ê holds B I, l.) The eltua-
tl-on ls entlrely slmllar to that ln CRT lf p* = slefp. Here the m-

eomplete eets forn a slngle lsomorphlsm type. If Ê* ( olcfp, there
are l-complete sets whlch are not Ê-recurslvely lsomorphle. But at
least the m-complete sets are the same as the l-complete sets.

To prove these faets, v¡e use as an ald the notlon of arrcreatlve
settt or ttconstructlvely non-Ê-recurslve get.tr These sets play a slml-
1ar role ln the Þ-r.e. m-degrees as they do ln the m-degrees 1n

CRT. We prove that, for all þ, the creatlve sets are the same as the

m-complete sets.
Slnce the deflnltlon of the notlon rrcreatlve setf requlree some

notlon of an 'raeceptable numberlng" of the partlal þ-recurslve func-
tlons and the Ê-r.e. sets, we flrst study some aspects of such num-

berlngs and prove some elementary facts, ê.8., the recurslon theorem.

The maln result concertrlng numberlngs 1s that they are all eoulvalent
1n a strong sense. The maJor problem wlth these notlons 1s to flnd
the correct deflnltlons. Nearly all proofs of the proposltlone below
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are adaptatlons of methods from CRT. (Complete proofs may be found
rn Ia]. )

4.1. Deflnltlon. (Acceptable numberlngs )
A two-placed partlal functlon g wlth dorn(g) s Þ* x

acceptable nunbering l-f and only 1f "Ê
l-s ealled an

(r)
(2)

g 1s partlal Ê-recurslve
for aLl partlal p-recurslve functlons h wlth ¿om(fr) s Þx x
there 1s a Ê-reeu?slve functlon r:p+ Èþ U* wlth ran(r)
p-recurslve such that

h(e,x) - g(r(e),x) for all- e ( Ê* and x e LU.

LÊ

Remark. (Extstence and Unlqueness)
There exlsts an aceeptable nunberlng. (Such a numberlng can be cons-
tructed from a unlversal p-recurslve function, as may be found 1n

Devlln [1]. )

Any two acceptable numberlngs are p-reeurslvely lsomorphlc ln
the followlng sense:

If g and h are acceptable numberlngs, then there ls sorne

Þ-recurslve (totar) functlon t:e* ffi>Þ* such that

g(e,x) - h(t(e),x) for al-l e ( Ê* and a1l x e LU.

(t can be conetructed ae 1n the proofs of Theorems r.l anO 4.1.)

4.4. Propogltlon.
Let g be an acceptable numberlng. Then g has the followlng pro-
pertles:

(r) (The enuneratlon property)

If f 1s any partlal Ê-recurslve functlon, then for sone

e ( Ê* holds:

f(x) - g(e,x) for all x € LÊ.

wlth respect to C. )(Any such e 1s called an lndex for f
(z) (The lteratlon property)

There le a p-recursive functlon s:Ê* x

all e ( Þ* and all z,x e LU holds

eG,þ,x)) - g(e(e, z),x).
s can be assumed to be one-one.

"g 
è Ø* such that for
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If olcfp < Þ*, we can even flnd such an s wlth þ-recurslve
range.

þ) (The recurslon theorem - wlth parameter)

If f 1s a partlal Ê-recurslve functlon wl-th ¿om(f)sÞ*xLUxLU,
then there le a þ-recurslve n:LU + Ê* such that

f(n(a),ê,x) - g(n(a),x), for all a,x e LU.

n can be assumed to be one-one.

fn partlcular, 1f f ls a part'lal p-reeurslve functl-on wlth
aom(f) s Ê* x LU, then for some e ( Ê+ holds f(e,x) - g(e,x)
forall xeLU.

Proof. Irnmedlate fron the deflnltlon.

4.5. Lemma.

Let olcfÊ > Ê*. Then the deflnltlon of an acceptable numberlng can

be weakened as follows:

Aseume that g Is a partlal p-recurslve functlon, and that for C

the followlng condltlon ls satlsfled:
For at1 partl-a1 Þ-recurslve h wfth aon(h) s Ê* x LÊ

there l-s gome p-recursl-ve functlon r:Ê* + Ê* euch

that h(e,x) - g(r(e),x), for alt e I p*, all xeLU.

Then g ts an acceptable numberlng. (fnts ts proved as 1n CRT, uslng
the reeurelon theoren 4.4(7); cf. schnorr t181.) In order to be able
to use the famlltar notatlon for the enumeratlons of the partial Ê-
recurslve functlons and the Ê-r.e. setE, we slngle out one acceptable
numberlng and use lt ag our standard numberlng. In vlew of the remark

followlng Deflnltlon 4.1, tt doeg not matter whlch we choose.

4.6. oeflnltion.
Let g be some flxed acceptable numberl-ng.

(1) For eaeh e ( Þ* Iet [e) be the partlal functlon deflned by

[e](x) :- g(e,x), for all x e LU.

I{e can thlnk of fel as an n-placed functlon as well:

(z) [e](xr,...,*r) :- g(e,(*1,...,*rr))
for all n ) 2, all *1,...rx' e LU.



4.7. Proposltlon.
For all m,n ) O
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(rne s-m-n-theorem)
there ls a Þ-recurslve functlon

^mon Lä E> sueh that

IeJ (yr, ...,]r,x1, ...,*r) - ¡s[(e,11, . . .,yr)l (xr, . . .,*.)

for all e ( Þ*, a1t ¡r¡rx1 e LO. If F* ) otcfÊ, Sn ean be assuned
to have p-recursl-ve range.

(tnts tottows frorn the lteratlon property a.a(z).)

4.8. Remark.
The notlon of an acceptabLe numberlng as 1t ls deflned in 4., (cf.
Schnorr [18] ) ls essentlally the same as that used ln Rogers [16]:
A parttal functlon g wlth dom(S) s Þ* x LÊ le an acceptable
numberlng 1f and only 1f there are p-reeurslve functlons
r,s: þ* -> Ê* such that

(1) g(e,x) - [r(e)](x) for all s ( p*, all x e LU.

(z) [e](x) - s(s(e),x) for atl s ( p*, alt x e LU.

(l) s is one-one and has p-recurslve range.

If olefÊ ) Þ+, thls equl-valence holds as well lf we drop (:). (rne
proof uses 4.5.)

4.9. Deflnltlon. (Enumeratlon of the Ê-r.e. sets; ereatlve sets)
(1) W" t= dom([e] )= [x e r,Ulte](x) 1s deflnedJ, for e < Ê*.
(z) K ¡= [e ( g*le e If"].
(l) A p-r.e. set A c LU ls called creatlve lf and onty 1f there

ls a partlal Ê-reeurslve functlon f wlth Aom(f) c Ê* sueh
that

(ve(Ê*)(w. n.R = ó è e e dom(f) and t(e) / l,re U A).

lle say then that A 1s ereatlve vla f.

4.10. Proposltlon
(r)

Ê*x

A set B c LU ls Ê-r.e. 1f and only 1f W"

(We say that e 1s a Þ-r.e. lndex for B

Creatlve sets are not p-reeurslve.
K 1s creatlve.

= B for sone e(Ê*
1f We = B.)

(2)
(t)
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(4) The notlon of a'rcreatlve setrtdoes not depend on the partleular
numberlng we have chosen.

(Proofs are as 1n CRT. (4) foltows fron the rernark followlng Deflnl-
tlon 4.r. )

4.11. Lemma.

(f) If A,B s LÊ are p-r.e., A ls creatlve, and A Ç B, then B

ls creative.
(2) All m-complete eets are creatlve.

(Proofs as ln cRT. )

4.I2. Lemma.

A Þ-r.e. set A c
aome f wlth dom(

LÊ

f)
1s creatlve 1f and only 1f lt 1s ereatlve vla

= Ê*.

(proof as ln CRT, uslng the recursl-on theoren 4.4.(l).)

4.11. Corollary.
(r) A Ê-r.e. set A c
(z) A p-r.e. set A c

creatlve cyllnder.

ls creatlve 1f and only 1f lt ls n-complete.
ls l-r-conplete lf and only lf 1t 1s a

LÊ

LÊ

(The proof uses the recurslon theorem a.U.(l), and 4.11.,4.12.)
(R set A c LU ls called a cyllnder lf A - h[[(x,y):xe B, Ve Lg)l
for some Þ-recurslve permutatlon I of LU, and some þ-recurslve
palrlng functl-ons < , ):LÞ x Lg õIf) Lg, ãnd some B c LU. For
thls notlon. cf. Rogers t161. )

'ble can l-mprove the result 4.1r. ln the case that Ê 1e not strongly
lnadrnlsslble, 1.e., lf p* ( sIcfP:

4.14. Lemma.

Let Ê* ( slcfÊ.
A p-r.e. set A c LU l-s creatlve lf and only lf 1t ls ereatlve via
some Þ-recurslve functlon f whlch has domaln 9* and ls one-one.

(The proof conblnes the method of provlng the correspondlng theorem
of CRT wlth manlpulatlons of Þ-r.e. lndlces of sets lnvolving the
recurslon theorem, slmllar to those used for handllng lndlces of hyper-
artthmetlc sets, cf. Hlnman tlO].)
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4.15. Theoren.
Let Ê* ( olcfp. Then for all A c LU holds A 1s creatlve lf and

only 1f A 1s l-complete lf and only 1f A ls m-eomplete.

(Proof as 1n CRT, uses 4.1f. and 4.14.)

The followl-ng two results deal wlth speclal klnds of not strongly
lnadmlsslble ø. If olcfþ-Ê*, the sltuatlon lns1de the maxlmum Ê-
r.e. m-degree l-s the same as 1n CRT:

4.16. Theorem.
Let olcfþ = Þ+.
Then all creatlve sets are p-reeurslvely lsomorphlc.

(proof as 1n CRT, lnvolvlng 4.f. and 4.10. )

Theorem 4.17. tells us that 1n the case Ê* ( olcfp all creatl-ve
eets whlch are contalned l-n some l-flnlte set are p-recurslvely 1so-
morphlc (cf. Krlpke [fa]). The sets whlch are creative and cyllnders
form a dlfferent lsomorphlsm t¡pe (of l-conrplete sets).

4.17. rheorem.

Ê* ( olcfp. Then the followlng aseertlons hotd:

If A,B c LÊ are creatlve sets and a,b e LU are l-flnlte such
that Aca and Bcb, then A and B are p-reeurslvelylso-
rnorphlc. (K ls such a set. )

If A,B c LU are creatlve cylÍnders, then A and B are ø-
recurslvely lsomorphlc. (f x f,U 1s a creatlve cy]1-nder.)

A Ê-r.e. eet A ls creatlve lf and only 1f for some functlon
f e LU holds:

clom(r) = p* and f :Ê* SlU and f [K] = A n ran(f ).
A set A c LU ls creatlve lf and only lf there le sone Þ-r.e.
set BcLU-Þ* suchthat ATKUB.

proof employs ldeas from 4.I., and uses 4.11., 4.1r., 4.15.)

Let

(1)

(2)

(t)

(4)

(rne



119

REFERENCES

l1l J. K. Barwlse, Adml-sslble sets and structures (Sprlnger, Berl1n,
1975).

Lzl K. J. Devll-n, Aspects of constructtbllfty, Lecture Notee 1n
Mathematlce 754 (Sprlnger, Berlln, L97r).

lr1 K. J. Dev11n, Constructlblllty, in: J. K. Barwlse (ed.), qand-
book of Mathêmattcal Loglc (worth-Ho1land, Amsterdam, 1977).

|.41 M. Dletzfelblnger. Strong reduelb1lltles ln c- and p-recurslon
theory (olptomãr¡étt, t',1üñcnen, 1982).

t51 F. R. Drake, Set theory: An lntroductlon to large cardlnals
(North-Hol1ánd, Amsterdam, L974).

t6] J. E. Fenstad, General recurslon theory: an axlomatlc approach
(Sprlnger, Berlin, 19BO).

lTl S. D. Friedman, Recurslon on lnadnlsslble ordl-na1s, Ph.D. Thesls,
M.I.T., Cambrlilge, MA. , L976.

t8] S. D. Frledman, p-recurslon theory, Trans. Atn. Math. Soc. 255
(L979), tTt-2oo.

t9] S. D. Frledman and G. E. Sacks, Inadmlsetble recurslon theory,
8u11. Am. Math. Soe ., g7 (L977), 255-256.

tlol P. G. Hlnman, Recuraion-theoretlc hlerarchies (Sprlnger, Bertln,
t97B).

[11] R. B. Jeneen, The flne structure of the constructlble hlerarchy,
Ann. Math. Lógic, 4 (L972'), 229-to!.

112] S. Krlpke. Transfinlte recur.slons on adnlsslble ordlnals II
(abeträct), J. slmb. Loglc, 29 (L964), t6t-t62.

[]rl tl. Maass, Inadmlsstbl-llty, tame r.e. sete and the admlsslble
collapsei Ann. Math. Logic, It (1978), 149-170.

[14] vl. Maass, Reeurslvely lnvarlant Ê-recurslon theory, Ann. Math.
Loglc, 21 (198r), 27-71.

t15l P. Odlfreddl,.strong-reduc1bll1t1es, 8u11. (new Serles) Rm. Uatn.
soc., 4 (rgef), t7-86.

t16] H. Rogers, It.,, Theory of recursive functlons and effectlve
computablÍ1ty (Uecraw-Ht[, New York, 1977).

tI7] G. E. Sacks and S. G. Stmpson, The o-f1n1te 1nJury method, Ann.
Math. Loglc, 4 (]1972), lZl-l6i

l1S] C. P. Schnorr,.Rekurslve Funktlonen und thre Komplexltät (Teubner,
Stuttgart, 1974).

t19] R. A. Shore, E- sets whlch are 
^--lneomparable 

(unlformly),
J. S¡rurb. Lo'eLc,ntg og74), 295-to4.n

[20] R. A. Shore, o-recurslon theory, ln: J. K. Barwlse (ed.)r.Tand-
book of Mathematlcal Loglc (Ivorth-Holland, Ansterdam, L974),



120

[21]

l22l

lztl

R. A. Shore, Spllttlng an o-r.e. 6et, Trans. Am. Math. Soc.,
2o4 (L975),'65-7e.

S. G. Slmpson, Degree theory on adnlselble ordlnels, ln: J. E.
Fenetad. Þ. c. ¡ttnman (eds.), Generallzed reeurslon theory
(North-Hot1and, Ameterdam, 1974) .

. Slrnpson, Short course on adnleslble recurslon theory, 1n:

. fenàtaA, G. E. Sacks (eds.),.Generallzed recurglon theory
North-Hol1and, Amsterdam, 1978).

s. G
J.E
II(


