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Abstract

Previous theoretical studies on the interaction of excitatory and inhibitory neu-
rons proposed to model this cortical microcircuit motif as a so-called Winner-Take-All
(WTA) circuit. A recent modeling study however found that the WTA model is not
adequate for data-based softer forms of divisive inhibition as found in a microcircuit
motif in cortical layer 2/3. We investigate here through theoretical analysis the role of
such softer divisive inhibition for the emergence of computational operations and neu-
ral codes under spike-timing dependent plasticity (STDP). We show that in contrast
to WTA models — where the network activity has been interpreted as probabilistic
inference in a generative mixture distribution — this network dynamics approximates
inference in a noisy-OR-like generative model that explains the network input based on
multiple hidden causes. Furthermore, we show that STDP optimizes the parameters
of this model by approximating online the expectation maximization (EM) algorithm.
This theoretical analysis corroborates a preceding modelling study which suggested
that the learning dynamics of this layer 2/3 microcircuit motif extracts a specific
modular representation of the input and thus performs blind source separation on the
input statistics.
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1 Introduction

Winner-take-all-like (WTA-like) circuits constitute a ubiquitous motif of cortical microcir-
cuits [Douglas and Martin, 2004]. Previous models and theories for competitive Hebbian
learning in WTA-like circuit from [Rumelhart and Zipser, 1985] to [Nessler et al., 2013]
were based on the assumption of strong WTA-like lateral inhibition. Several theoretical
studies showed that spike-timing dependent plasticity (STDP) supports the emergence of
Bayesian computation in such winner-take-all (WTA) circuits [Nessler et al., 2013, Haben-
schuss et al., 2013b, Klampfl and Maass, 2013]. These analyses were based on a probabilis-
tic generative model approach. In particular, it was shown that the network implicitly
represents the distribution of input patterns through a generative mixture distribution
and that STDP optimizes the parameters of this mixture distribution. But this analysis
assumed that the input to a WTA is explained at any point in time by a single neuron,
and that strong lateral inhibition among pyramidal cells ensures a basically fixed total
output rate of the WTA. These assumptions, however, may not be suitable in the context
of more realistic activity dynamics in cortical networks.

In fact, recent modeling results [Avermann et al., 2012, Jonke et al., 2017] show that
the WTA model is not adequate for a softer form of inhibition that has been reported
for cortical layer 2/3. This softer form of inhibition is often referred to as feedback in-
hibition, or lateral inhibition, and has been termed more abstractly based on its influ-
ence on pyramidal cells as divisive inhibition [Wilson et al., 2012, Carandini and Heeger,
2012]. It stems from dense bidirectional interconnections between layer 2/3 pyramidal cells
and nearby Parvalbumin-positive (PV+) interneurons (often characterized as fast-spiking
interneurons, in particular basket cells), see e.g. [Packer and Yuste, 2011, Fino et al.,
2012, Avermann et al., 2012]. The simulations results in [Jonke et al., 2017] also indicate
that blind source separation emerges as the computational function of this microcircuit
motif when STDP is applied to the input synapses of the circuit.

The results of [Jonke et al., 2017] raise the question whether they can be understood
from the perspective of a corresponding probabilistic generative model, that could replace
the mixture model that underlies the analysis of emergent computational properties of
microcircuit motivs with hard WTA-like inhibition. We propose here such a model that
is based on a Gaussian prior over the number of active excitatory neurons in the network
and a noisy-OR-like likelihood term. We develop a novel analysis technique based on the
neural sampling theory [Buesing et al., 2011] to show that the microcircuit motif model
approximates probabilistic inference in this probabilistic generative model. Further, we
derive a plasticity rule that optimizes the parameters of this generative model through
online expectation maximization (EM), the arguably most powerful tool from statistical
learning theory for the optimization of generative models. We show that this plasticity
rule can be approximated by an STDP-like learning rule.

This theoretical analysis strengthens the claim that blind source separation [Földiak,
1990] — also referred to as independent component analysis [Hyvärinen et al., 2004] —
emerges as a fundamental computation on assembly codes through STDP in this microcir-
cuit motif. This computational operation enables a network to disentangle and separately
represent superimposed inputs that result from independent assembly activations in dif-
ferent upstream networks. Furthermore, our theoretical analysis reveals that the ability of
this cortical microcircuit motif to perform blind source separation is facilitated either by
the normalization of activity patterns in input populations, or by homeostatic mechanisms
that normalize excitatory synaptic efficacies within each neuron.
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Figure 1: Data-based network model M for a microcircuit motif. A) Network
anatomy. Circles denote excitatory (black) and inhibitory (red) pools of neurons. Black
arrows indicate excitatory connections. Red lines with dots indicate inhibitory connec-
tions. Numbers above connections denote corresponding connection probabilities. B)
Network physiology. Same as in (A), but connection delays δ are indicated. All synapses
are modeled with the same PSP shape using a decay time constant of τf = 10 ms as
indicated on top right. Input synapses are subject to STDP.

2 Results

A data-based microcircuit motif model for the interaction of pyramidal cells with PV+

inhibitory neurons in layer 2/3 has been introduced in [Avermann et al., 2012]. Based
on this study, [Jonke et al., 2017] analyzed the computational properties that emerge in
this microcircuit motif from synaptic plasticity. We first briefly introduce the microcircuit
motif model analyzed in [Jonke et al., 2017] and discuss its properties. Subsequently, we
present a theoretical analysis of this network motif based on a probabilistic generative
model P.

2.1 A data-based model for a network motif consisting of excitatory and
inhibitory neurons

[Jonke et al., 2017] proposed a specific model for interacting populations of pyramidal cells
with PV+ inhibitory neurons in cortical layer 2/3 based on data from the Petersen Lab
[Avermann et al., 2012], see Fig. 1A, B. We refer to this specific model as the microcircuit
motif model M.

The model M consists of two reciprocally connected pools of neurons, an excitatory
pool and an inhibitory pool. M stochastic spiking neurons constitute the excitatory pool.
Their dynamics is given by a stochastic version of the spike response model that has been
fitted to experimental data in [Jolivet et al., 2006]. The instantaneous firing rate ρm of a
neuron m depends exponentially on its current membrane potential um,

ρm(t) =
1

τ
exp(γ · um(t)) , (1)

where τ = 10 ms and γ = 2 are scaling parameters that control the shape of the response
function. After emitting a spike, the neuron enters a refractory period.

The excitatory neurons are reciprocally connected to a pool of recurrently connected
inhibitory neurons. All connection probabilities in the model were taken from [Avermann
et al., 2012]. Excitatory neurons receive excitatory synaptic inputs ỹ1(t), .., ỹN (t) with
corresponding synaptic efficiencies wim between the input neuron i and neuron m. These
afferent connections are subject to a standard form of STDP. Thus, the membrane po-
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tential of excitatory neuron m is given by the sum of external inputs, inhibition from
inhibitory neurons, and its excitability α

um(t) =
∑

i

wimỹi(t)−
∑

j∈Im

wIEIj(t) + α, (2)

where Im denotes the set of indices of inhibitory neurons that project to neuron m, and
wIE denotes the weight of these inhibitory synapses. Ij(t) and ỹi(t) denote synaptic input
from inhibitory neurons and input neurons respectively, see above.

Inhibitory contributions to the membrane potential of pyramidal cells have in this
neuron model a divisive effect on the firing rate. This can be seen by by substituting
eq. (2) in eq. (1), see also eq. (23) in Methods, thus implementing divisive inhibition (see
[Carandini and Heeger, 2012] for a recent review). Divisive inhibition has been shown to be
a ubiquitous computational primitive in many brain circuits (see [Carandini and Heeger,
2012] for a recent review). In mouse visual cortex, divisive inhibition is implemented
through PV+ inhibitory neurons [Wilson et al., 2012]. Although the inhibitory signal
is common to all neurons in the pool of excitatory neurons, contrary to the inhibition
modeled in [Nessler et al., 2013] it does not normalize the firing rates of neurons exactly
and therefore the total firing rate in the excitatory pool is variable and depends on the
input strength. Importantly, in contrast to [Nessler et al., 2013] where inhibition strictly
enforced that only a single neuron in the excitatory pool is active at any given time, the
data-based model M allows several neurons to be active concurrently.

2.2 Emergent properties of the data-based network model: From WTA
to k-WTA

The computational properties of this data-based network model M were extensively stud-
ied through simulations in [Jonke et al., 2017]. In order to compare the properties of
this data-based network model M to previously considered WTA models, they examined
the emergence of orientation selectivity, which we briefly discuss here. For details, please
see [Jonke et al., 2017]. Pixel-representations of noisy bars in random orientations were
provided as external spike inputs (Fig. 2A). Input spike trains were generated from these
pixel arrays by converting pixel values to Poisson firing rates of input neurons (black pixel:
75 Hz; white pixel: 1 Hz). Randomly oriented bars were presented to the network for 400 s
where each bar was presented for 50 ms, see Fig. 2B (STDP was applied to synapses from
input neurons to excitatory neurons). The resulting network response (Fig. 2D) shows the
emergence of assembly codes for oriented bars. The resulting Gaussian-like tuning curves
of excitatory neurons (Fig. 2E) densely cover all orientations, resembling experimental data
from orientation pinwheels (see Fig. 2 d,e in [Ohki et al., 2006]). Also consistent with
experimental data [Kerlin et al., 2010, Isaacson and Scanziani, 2011], inhibitory neurons
did not exhibit orientation selectivity (not shown).

In contrast, previously considered models with idealized strong inhibition in WTA-
circuits [Nessler et al., 2013] show a clearly distinct behavior, see Fig. 2F. For this model,
at most a single neuron could fire at any moment of time, and as a result at most two
neurons responded after a corresponding learning protocol with an increased firing rate
to a given orientation (see Fig. 2F and Fig. 5 in [Nessler et al., 2013]). In the simulations
of the data-based model M, on average k = 17 neurons responded to each orientation
with an increased firing rate. This suggests that the emergent computational operation
of the layer 2/3 microcircuit motif with divisive inhibition is better described as k-WTA
computation, where k winners may emerge simultaneously from the competition. This
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Figure 2: Emergent computational properties of the data-based network model
M. A) Network inputs are given by images of randomly oriented bars (inputs arranged
in 2D for clarity; pixel gray-level indicates effective network input ỹi(t), see eq. (22)). B)
Input neuron spike patterns (every 4th neuron shown). Presence of a bar in the input with
orientation indicated in panel A indicated by gray shading. C, D) Spike responses of a
subset of excitatory neurons in M to the input in (B) before (C) and after (D) learning
(neurons sorted by preferred orientation). E) Tuning curves of excitatory neurons in with
preferred orientations between 90 and 120 degrees. F) Orientation tuning curves in a
WTA model [Nessler et al., 2013, Habenschuss et al., 2013b]. Figure modified from Fig. 2
in [Jonke et al., 2017].
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number k is however not a strict constraint in the data-based model M. The actual
number of winners depends on synaptic weights and the external input. Its computation
is thus better describe as an adaptive k-WTA operation. The k-WTA characterisitcs of
the layer 2/3 microcircuit motif is quite attractive, since it is known from computational
complexity theory that the k-WTA computation is more powerful than the simple WTA
computation (for k > 1) [Maass, 2000].

2.3 Theoretical framework for understanding emergent computational
properties the layer 2/3 microcircuit motif

Fig. 2 demonstrates that significantly different computational properties emerge in the
data-based model M through STDP as compared to previously considered WTA mod-
els [Nessler et al., 2013, Habenschuss et al., 2013b]. The main aim of this article is to
understand this different emergent computational capability theoretically, in particular
since the analysis from [Nessler et al., 2013] and [Habenschuss et al., 2013b] in terms of
mixture distributions is only applicable to WTA circuits. The novel analysis technique
that we will use is summarized as follows. First, using some simplifications on the network
dynamics, we formulate the network dynamics in the neural sampling framework [Buesing
et al., 2011]. This allows us to deduce the distribution p(z|y,W ) of activities z of excita-
tory neurons in the network for a given input y and for the given network weights W . We
then show that this distribution approximates the posterior distribution of a generative
probabilistic model P. This generative model is not a mixture distribution as in the WTA
case [Nessler et al., 2013], but a more complex distribution that is based on a noisy-OR-
like likelihood. We make the nature of the approximation explicit and evaluate its severity
through simulations. Finally, we derive a plasticity rule that implement online EM in this
generative model, thus implementing blind source separation. We find that this plasticity
rule can be approximated by an STDP-like learning rule.

2.3.1 Formulation of the network dynamics of M in the neural sampling
framework

The neural sampling framework [Buesing et al., 2011] provides us with the ability to
determine the stationary distribution (defined in the following) of network states for the
given network parameters and a given network input. In order to be able to describe the
probabilistic relationships between input and network activity, we describe network inputs
by binary vectors y(t) and responses of excitatory neurons in M by binary vectors z(t).
The vectors y(t) and z(t) capture the spiking activity of ensembles of spiking neurons in
continuous time according to the common convention introduced in [Berkes et al., 2011]
and [Buesing et al., 2011]: A spike of the ith neuron in the ensemble at time t sets the
corresponding component yi(t) (zi(t)) of the bit vector y(t) (z(t)) from its default value
0 to 1 for some duration τ (that can be chosen for example to reflect the typical time
constant of an EPSP), see Methods. Note the difference between the vectors y(t), z(t)
and the output traces ỹ(t), z̃(t) used in eq. (2) (and defined in eq. (22) in Methods). The
former constitute an abstract convention to describe the momentary state of the network
based on its current firing activity, while the latter describe the impact that the neurons
have on their postsynaptic targets in terms of real-valued double-exponential EPSPs.

We want to describe the distribution of network states z(t) for given inputs y(t)
and network parameters W in terms of a probability distribution p(z|y,W ). In this
distribution, the activities of network inputs and excitatory neurons in M are represented
by two vectors of binary random variables: y = (y1, . . . , yN ) (termed input variables in the
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following) and z = (z1, . . . , zM ) (termed hidden variables or hidden causes). The network
state y(t),z(t) at time t is interpreted as one specific realization of these random variables.

In order to make this mapping between network activity in M and the distribution of
network states feasible, one has to make three simplifying assumptions about the dynamics
of the neural network models similar as in [Buesing et al., 2011]. First, PSPs of inputs
and network neurons are rectangular with length τ (chosen here to be τ = 10 ms) and
network neurons are refractory for the same time span τ after each spike. Second, synaptic
connections are idealized in the sense that the synaptic delay is 0 (i.e., a presynaptic spike
leads instantaneously to a PSP in the postsynaptic neuron). And finally, the weights of
recurrent synaptic connections are symmetric (i.e., the weight from neuron i to neuron j is
identical to the weight from neuron j to neuron i). This necessitates that lateral inhibition
is not implemented through a pool of inhibitory neurons. Instead, the network dynamics
is defined by only one pool of M network neurons (the same number as the number of
excitatory network neurons in M). Since the inhibitory neurons in M show linear response
properties, the inhibition in the network depends linearly on the activity of excitatory
neurons in the network. One can therefore model the inhibition in the network by direct
inhibitory connections between excitatory neurons (where synaptic delays are neglected)
with weight β. For clarity, we provide the full description of the approximate dynamics
in the following.

The approximate dynamics is described by M network neurons. Network neurons
have instantaneous firing rates that depend exponentially on their membrane potential,
as given in eq. (1). Whenever neuron m spikes, the output trace z̃m(t) of neuron m is set
to 1 for a period of duration τ (this corresponds to a rectangular PSP; the same definition
applies to output traces ỹm(t) of input neurons). After emitting a spike, the neuron enters a
refractory period of duration τ = 10 ms, during which its instantaneous spiking probability
is zero. Note that for this definition of the output trace, the state vector z(t) is identical
to the vector of output traces z̃(t). Lateral inhibition in the network is established by
direct inhibitory connections between excitatory neurons, leading to membrane potentials

um(t) =

N
∑

i

wimỹi(t)−
∑

j 6=m

βz̃j(t) + cm, (3)

where cm denotes some neuron-specific excitability of the neuron that is independent of
the input and network activity. Each network neuron receives feedforward synaptic inputs
ỹ1(t), . . . , ỹN (t) whose contribution to the membrane potential of a neuron m at time t
depends on the synaptic efficiency wim between the input neuron i and the network neuron
m. Network neurons are all-to-all recurrently connected. The second term in (3) specifies
this recurrent input where β is the inhibitory recurrent weight of the connection between
network neuron j and network neuron m. It has been shown in [Buesing et al., 2011] that
for such membrane potentials, the distribution of network states is given by the Boltzmann
distribution:

pNetwork(z|y,W ) =
1

Z
exp







γ ·





∑

i,m

wimyizm +
1

2

∑

m6=l

βzmzl +
∑

m

cmzm











, (4)

where Z is a normalizing constant.
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Figure 3: Relationship between the data-based model M and the generative
probabilistic model P. A-C) Schema of the response of model M to superimposed
bars. Network inputs (left) are schematically arranged in a 2D array for clarity of the
argument. Black indicates highly active inputs neurons. A) A vertical bar with added
noise is presented to M. This input activates an excitatory neuron (filled circle, spiking
activity is indicated), similar as in hard WTA models. B) Another neuron is activated
by a horizontal bar, also similar as in hard WTA models. C) A combination of these
two basic input patterns activates both neurons in M. This response is inconsistent with
a WTA model, and with any generative model based on mixture distributions. But it
can still be viewed as approximate inference of the posterior distribution p(z|y,W ) over
hidden causes z for the given inputs y in the probabilistic model P shown in D. D)
Schema of probabilistic model P. The joint p(z,y|W ) is defined by the prior p(z) and the
likelihood p(y|z,W ). Synaptic efficacies W implicitly define the likelihood over inputs y
for given hidden causes z (probability values for inputs yi indicated by shading of squares;
σLS denotes the logistic sigmoid function). In the likelihood model, a given input yi is 1
(corresponding to a black pixel in this example) with high probability if it has a large wim

to at least one active hidden cause zm. In the depicted example, yi belongs to two bars
(see A, B) with corresponding active hidden causes. Due to the nonlinear behavior of the
likelihood, its probability is comparable to one where only one of the hidden causes zm is
active. The inset on the right depicts the Gaussian prior p(z) on hidden causes z with
µ = 4 and σ = 2.5. The prior implicitly incorporates in P the impact of the inhibitory
feedback in the data-based model M (therefore indicated with dashed lines).
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2.3.2 A probabilistic model P for the layer 2/3 microcircuit motif:

Fig. 3A-C illustrates the putative stochastic computation performed by the model M,
i.e., how network input leads to network activity in the model. Assume that we have a
probabilistic model P for the inputs y defined by a prior p(z) and a likelihood p(y|z,W ).
These distributions describe how one can generate input samples y by first drawing a
hidden state vector z from p(z) and then drawing an input vector y from p(y|z,W ).
Therefore, such a probabilistic model P is also called a generative model (for the inputs).

If the distribution of network states (4) is the posterior distribution given by

p(z|y,W ) =
p(z)p(y|z,W )
∑

z′ p(y,z′|W )
, (5)

then the network performs probabilistic inference in this probabilistic model P. The
inference task described by eq. (5) assumes that y is given and the hidden causes z (such
as the basic components of a visual scene) have to be inferred. This inference can intuitively
also be described as providing an ”explanation” z for the current observation y according
to the generative model P. In the following, we describe a probabilistic model P and show
that eq. (4) approximates the posterior distribution of this model. This implies that the
simplified dynamics of the data-based model M approximate probabilistic inference in the
probabilistic model P.

The probabilistic model P is defined by two distributions, the prior over hidden vari-
ables p(z) (that captures constraints on network activity imposed for example by lateral
inhibition) and the conditional likelihood distribution over input variables p(y|z,W ) that
describes the probability of input y for a given network state z in a network with pa-
rameters W . These two distributions define the joint distribution over hidden and visible
variables since p(z,y|W ) = p(y|z,W )p(z), see Fig. 3D. The specific forms of these two
distributions in the probabilistic model P considered for M are discussed in the following
and defined by eqs. (6)-(8) below.

In previously considered hard WTA models [Nessler et al., 2013, Habenschuss et al.,
2013b], strong lateral inhibition was assumed. This corresponded to a prior where only a
single component zj of the hidden vector z can be active at any time. The biologically
more realistic divisive inhibition in M allows several of them to fire simultaneously. This
corresponds to a prior that induces sparse activity in a soft manner (“adaptive” k-WTA):
It does not enforce a strict ceiling k on the number of z-neurons that can fire within a
time interval of length τ , but only tries to keep this number within a desired range. Hence
we use as prior in P a Gaussian distribution

p(z) =
1

Zprior
exp



−
1

2σ2

(

M
∑

m=1

zm − µ

)2


 , (6)

where Zprior is a normalizing constant, µ ∈ R is a parameter that shifts the mean of the
distribution, and σ2 > 0 defines the variance (see Fig. 3D). Note that the Gaussian is
restricted to integers as the sum runs over binary random variables z1, . . . , zM .

As in other generative models we assume for the sake of theoretical tractability that
the conditional likelihood p(y|z,W ) factorizes, so that each input yi is independently
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Figure 4: Likelihood model of P. (A) Likelihood that an input yi is 1 (red) or 0
(black) for the proposed likelihood model (8) (full lines) and for the noisy-OR likelihood
(9) (broken lines). The likelihood of an input yi depends on the hidden causes z through
the weighted contribution ai = γw̄T

i z of the hidden causes to this input. For large ai, the
likelihood of yi = 1 approaches 1. While for ai = 0, the likelihood of yi = 1 is 0.5 in the
proposed likelihood model, whereas it is 0 in the noisy-OR model. B Approximation of
log(1 + exp(ai)) (black full line) by ai (red broken line) as used in Eq. (11).

explained by the current network state z:

p(y|z,W ) =

N
∏

i=1

p(yi|z,W ). (7)

A probabilistic model for hard WTA circuits can only explain each input variable yi by
a single hidden cause zm. In contrast, in probabilistic models with soft inhibition and
the prior (6), several hidden causes can be active simultaneously and explain together an
input variable yi. We define w̄i as the vector of weights w̄i = (wi1, . . . , wiM )T that define
the likelihood for variable yi. We consider the following likelihood model

p(yi|z,W ) =
exp(γw̄T

i z)
yi

1 + exp(γw̄T
i z)

=
exp(ai)

yi

1 + exp(ai)
= σLS ((−1)yiai) , (8)

where we have defined ai = γw̄T
i z, and σLS is the logistic sigmoid σLS(u) = 1

1+exp(−u) .
This likelihood function is shown in Figure 4A together with the often used noisy-OR
likelihood. Note that if none of the hidden causes zm is active, i.e., zm = 0 for all m, then
yi = 1 with probability 0.5. Each active hidden cause zm = 1 with wim > 0 increases the
probability that input variable yi assumes the value 1, see also Fig. 3D). This likelihood,
allows the generative model to deal with situations where an input neuron can fire in the
context of different hidden causes, for example with pixels in the network inputs that lie
in the intersection of different patterns, see Fig. 3). The soft Gaussian prior (6) allows the
internal model to develop modular representations for different components of complex
input patterns. This likelihood is quite similar to the frequently used noisy-OR model
(see e.g. [Neal, 1992, Saund, 1995]):

pnOR(yi = 0|z,W ) = exp(−ai)
1−yi(1− exp(−ai))

yi (9)
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One difference is that (for purely excitatory weights), the probability of an input yi being
zero is at most 0.5 in the proposed likelihood, while it can become 0 in the noisy-OR
model. Such a model may reflect the situation that network inputs are noisy, so their
firing rates are never zero.

We now analyze the relationship between the probabilistic model P and the descrip-
tion of the data-based model M in the neural sampling framework. We will see that M

approximates probabilistic inference in P. Finally, we show that adaptation of network pa-
rameters inM through STDP can be understood as an approximate stochastic expectation
maximization (EM) process in the corresponding probabilistic model P.

2.3.3 Interpretation of the dynamics of M in the light of P:

Using the likelihood and prior of P, the posterior of hidden states z for given inputs y

and given parameters W is

p(z|y,W ) =
1

Z
exp







γ ·





∑

i,m

wimyizm −
1

2

∑

m6=l

βzmzl +
∑

m

αzm −
1

γ

∑

i

log(1 + exp(ai))











,

(10)

where Z is a normalizing constant, β = 1
γσ2 , and α = 2µ−1

2γσ2 . The terms including β and α
stem from the prior, while the last term stems from the normalization of the likelihood.
When we compare this posterior to the posterior of the network model eq. (4), we see that
they are quite similar with β denoting the strength of inhibitory connections and α being
the neural excitabilities.

The last term in eq. (10) is problematic since the ai’s depend on z and thus the whole
posterior is not a Boltzmann distribution and can therefore not be computed by the model
M. It turns out however that this last term can be approximated quite well by a term that
is linear in z. Note that for zero ai (i.e., for zero weights or for the zero-z-vector), this
last term evaluates to log(2). But as ai increases, one can neglect the 1 in the logarithm
and the expression quickly approaches ai. We can thus write

∑

i

log(1 + exp(ai)) ≈
∑

i

ai = γ
∑

i

∑

m

wimzm = γ
∑

m

zm

(

∑

i

wim

)

, (11)

where the term in the brackets on the right is just the L1-norm of the weight vector of
neuron j. Note that for a given weight matrix, an increased γ leads to a better approxi-
mation. The approximation of log(1 + exp(ai)) by ai is illustrated in Fig. 4B. Hence, the
first approximate posterior we consider is given by

pA1(z|y,W ) =
1

Z
exp







γ ·





∑

i,m

wimyizm −
1

2

∑

m6=l

βzmzl +
∑

m

αzm −
∑

m

zm
∑

i

wim











.

(12)

This is a Boltzmann distribution of the form (4) and the last term accounts to a neuron-
specific homeostatic bias that depends on the sum of incoming excitatory weights. Match-
ing the terms of this equation to the terms in eq. (4) and performing the same match
in the membrane potential (3), we see that the membrane potential of neurons in this
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approximation is given by

um(t) =
N
∑

i

wimỹi(t)−
∑

j 6=m

βz̃j(t) + α−
∑

i

wim. (13)

If excitatory weight vectors are normalized to an L1-norm of wnorm =
∑

i wim for all m,
this simplifies to

um(t) =
N
∑

i

wimỹi(t)−
∑

j 6=m

βz̃j(t) + α− wnorm. (14)

Note that wnorm can be incorporated into α. Such constant weight sum could be enforced in
a biological network by a synaptic scaling mechanism [Turrigiano and Nelson, 2004, Savin
et al., 2010] that normalizes the sum of incoming weights to a neuron. For the data-based
model M, [Jonke et al., 2017] used uniform excitabilities α for all excitatory neurons and
no homeostasis for simplicity, see eq. (2). We will argue below under which conditions this
approximation is justified. We consider the posterior distribution of such circuits as our
second approximation of the exact posterior:

pA2(z|y,W ) =
1

Z
exp







γ ·





∑

i,m

wimyizm −
1

2

∑

m6=l

βzmzl +
∑

m

zm(α− wnorm)











. (15)

Note that in this case, wnorm effectively leads to a smaller mean of the Gaussian prior.
A detailed discussion about how parameters of the generative probabilistic model P can
be mapped to parameters of the data-based microcircuit motif model M is provided in
Network parameter interpretation in Methods.

We evaluated the impact of these two approximations in Földiak’s superposition-of-
bars problem [Földiak, 1990]. This is a standard blind-source separation problem that has
also been used in [Jonke et al., 2017] to evaluate the data-based network model M. In
this problem, input patterns y are two-dimensional pixel arrays on which horizontal and
vertical bars (lines) are superimposed, see Fig. 5A. Input patterns were generated with a
superposition of 1 to 3 bars from the distribution that was used in [Jonke et al., 2017].
We performed inference of hidden causes by sampling from the approximate posterior
distribution pA1(z|y,W ) given by eq. (12) for a network of 20 hidden-cause neurons. We
performed approximate stochastic online EM in order to optimize the parameters of the
model. The synaptic update rule (20) used for parameter updates is discussed in detail
below. We compared the approximated posterior to the exact one (10) by computing
the Kullback-Leibler (KL) divergence DKL(p(z|y,W )||pA1(z|y,W )). The KL divergence
was small throughout learning, with a slight decrease during the process, see Fig. 5B
(mean KL divergence during the second half of training was 0.55). To evaluate what that
KL-divergence means for the inference, we considered the hidden state vector zmax with
the maximum posterior probability after learning in the exact and approximate posterior
and used this to reconstruct the input pattern by computing ŷ = σLS(W

Tzmax). The
reconstructed inputs for the 8 example inputs of Fig. 5A are shown in Fig. 5C for the exact
posterior (top) and the approximate posterior (bottom). The approximate reconstructions
resemble the exact ones in many cases, with occasional misses of a basic pattern. The final
weights of the 20 neurons are shown in Fig. 5D in the two-dimensional layout of the input
to facilitate interpretability. Note that all basic patterns were represented by individual
neurons with additional neurons that specialized on combined patterns.
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Figure 5: Empirical evaluation of approximations in a superposition-of-bars
task. A) Sample input patterns, depicted on the 8×8 grid. Patterns consist of a varying
number of superimposed horizontal or vertical bars. B) Evolution of the Kullback-Leibler
divergence between the exact posterior and the posterior of approximation A1 during
learning (red). As a comparison, the KL-divergence to a uniform distribution is indicated
in blue. C) Example reconstruction of inputs from panel A from the posterior according
to the hidden states with maximum probability in the exact posterior (top row) and the
posterior of approximation A1 after learning (bottom). Scale between 0 (white) and 1
(black). D) Weights vectors of network neurons depicted on the 8×8 grid as the input
in panel A. Scale between 0 (white) and 6 (black). E) Evolution of the Kullback-Leibler
divergence between the exact posterior, the posterior of approximation A2 during learning
(red), and the posterior of approximation A2 with an adjusted sparsity prior d (yellow)
during learning. As a comparison, the KL-divergence to a uniform distribution is indicated
in blue.
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The approximate posterior pA2 is equivalent to the approximate posterior pA1 if the
synaptic weights of each neuron are normalized to a common L1 norm. It turned out
in [Jonke et al., 2017] that such a normalization is not strictly necessary. In this work, the
data-based model M managed to perform blind source separation with a posterior that
can be best described by pA2 without normalization of synaptic efficacies. We found that
for the superposition-of-bars problem, the posterior distribution pA2 differs significantly
from the exact posterior if we set wnorm = 0 in eq. (15), see red line in Fig. 5E. This
difference is mostly induced by the tendency of pA2 to prefer many hidden causes due to
the missing last term in eq. (15). If the prior was corrected to reduce the number of hidden
causes, we found that the approximation was significantly improved, in particular as the
network weight vectors approached their final norm values, see yellow line in Fig. 5E. A
closer inspection of eq. (15) in comparison with eq. (12) shows that this approximation
is effective if basic patterns consist of a similar number of active units, because otherwise
patterns with strong activity are preferred over weakly active ones (this is exactly what
the last term in eq. (12) compensates for).

We conclude from this analysis that the microcircuit motif model M approximates
probabilistic inference in a noisy-OR-like probabilistic model of its inputs. The prior on
network activity favors sparse network activity, but does not strictly enforce a predefined
activity level. Such a more flexible regulation of network activity is obviously important
when the network input is composed of a varying number of basic component patterns. We
show below that this network behavior in combination with STDP allows the microcircuit
motif model M to perform blind source separation of mixed input sources. Our analysis
above has shown that the computation of blind source separation in M can be facilitated
either by the normalization of activity in input populations, or by homeostatic mechanisms
that normalize excitatory synaptic efficacies within each neuron.

2.3.4 STDP in the microcircuit motif model M creates an internal model of
network inputs:

After we have established a link between a well-defined probabilistic model P and the
spiking dynamics of microcircuit motif model M, we can now analyze plasticity in the
network. The probabilistic model P defines a likelihood distribution over inputs y that
depends on the parameters W through

p(y|W ) =
∑

z

p(z)p(y|z,W ), (16)

where the sum runs over all possible hidden states z.
We propose that STDP in M can be viewed as an adaptation of the parameters W so

that p(y|W ) as defined by the probabilistic model P with parameters W approximates
the actually encountered distribution of spike inputs p∗(y) within the constraints of the
prior p(z). Since the prior typically is defined to favor sparse representations, this tends to
extract the hidden sources of these patterns, an operation called blind source separation
[Földiak, 1990].

More precisely, we show that STDP in M approximates stochastic online EM [Sato,
1999, Bishop, 2006] in P. Given some external distribution p∗(y) of synaptic inputs,
EM adapts the model parameters W such that the model likelihood distribution p(y|W )
approximates the given distribution p∗(y). More formally, the Kullback-Leibler divergence
between the likelihood of inputs in the internal model p(y|W ) and the empirical data
distribution p∗(y) is brought to a local minimum. The theoretically optimal learning
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rule for EM contains non-local terms which are hard to interpret from a biological point
of view. In the following, we derive a local approximation to yield a simple STDP-like
learning rule.

The goal of the EM algorithm is to find parameters that (locally) minimize the
Kullback-Leibler divergence between the likelihood p(y|W ) of inputs in the probabilis-
tic model P and the empirical data distribution p∗(y), that is, the distribution of inputs
experienced by the network M. This is equivalent to the maximization of the average
data log-likelihood Ep∗[log p(y|W )]. For a given set of training data Y and corresponding
unobserved hidden variables Z, this corresponds to maximizing log p(Y |W ). The opti-
mization is done by iteratively performing two steps. For given parameters W old, the
posterior distribution over hidden variables p(Z|Y ,W old) is determined (the E-step). Us-
ing this distribution, one then performs the M-step where Ep(Z|Y ,W old)[log p(Y ,Z|W )]
is maximized with respect to W to obtain better parameters for the model. These
steps are guaranteed to increase (if not already at a local optimum) a lower bound

L = Ep(Z|Y ,W old)

[

log p(Y ,Z|W )

p(Y ,Z|W old)

]

on the data log likelihood, that is, L ≤ log p(Y |W ).

These steps are iterated until convergence of parameters to a local optimum [Bishop,
2006]. Computation of the M-step in the probabilistic model P is hard. In the generalized
EM algorithm, the M-step is replaced by a procedure that just improves the parameters,
without necessarily obtaining the optimal ones for a single M-step. This can be done for
example by changing the parameters in the direction of the gradient

∆wim ∝
∂

∂wim
Ep(Z|Y ,W old)[log p(Y ,Z|W )]. (17)

Since in our model, we assume that synaptic efficacy changes are instantaneous for each
pre-post spike pair, we need to consider an online-version of the generalized EM algorithm.
In stochastic online EM, for each data example y(k), a sample z(k) from the posterior
is drawn (the stochastic E-step) and parameters are changed according to this sample-
pair. As shown above, the M network implements an approximation of the stochastic
E-step. In the M-step, each parameter wim is then updated in the direction of the gradient
∆wim ∝ ∂

∂wim
log p(y(k),z(k)|W ). As the prior p(z) in P does not depend on W , this is

equivalent to ∆wim ∝ ∂
∂wim

log p(y(k)|z(k),W ). For the likelihood given by eq. (8), this
derivative is given by

∂

∂wim
log p(y(k)|z(k),W ) = γzm

(

yi −
exp(ai)

1 + exp(ai)

)

= γzm (yi − σLS(ai)) , (18)

where σLS denotes the logistic sigmoid function. Hence, the synaptic update rule for
weight wim is given by

∆wim = ηzm (yi − σLS(ai)) , (19)

where η > 0 is a learning rate. This learning rule is not local as it requires information
about the activation of all output neurons as well as values of all synaptic weights origi-
nating from input neuron i. In order to make this biologically plausible we approximate
rule (19) by

∆wim = ηzm (yi − σLS(γwim)) , (20)

This rule uses only locally available information at the synapse. What are the consequences
of this approximation during learning? If only a single neuron in the network is active, then
the approximation is exact. Otherwise, the approximation ignores what other neurons
contribute to the explanation of input component yi. This means that for yi = 1, the
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weight will further be increased even if yi = 1 is already fully explained by the network
activity. For yi = 0, the decrease will in general be smaller than in the exact rule (since
weights are non-negative). Note however that only the magnitudes of weigh changes are
affected, but not which weights change and the sign of the change. Hence, we can conclude
that the angle between the approximate parameter change vector and the exact parameter
change vector is between 0 and 90 degrees. In other words, the inner product of these
two vectors is always non-negative and the updates are performed in the correct direction.
This was confirmed in simulations. In the learning experiment described in Fig. 5, we
compared the approximate update (that was used to optimize the model) with the update
that was proposed by the exact rule (18) at every 50th update step. The angle between
the exact and approximate update vector was between 0◦ and 84◦ with a mean of 57◦.

In the simplified dynamics, a value of z
(k)
m = 1 is indicated by a spike in network neuron

m when pattern y(k) is presented as input. We therefore map this update to the following
synaptic plasticity rule: For each postsynaptic spike, update weight wim according to

∆wim = η (yi(t)− σLS(γwim)) . (21)

According to this learning rule, when the presynaptic neuron i spikes shortly before the
postsynaptic neuron this results in long-term potentiation (LTP) which is weight depen-
dent according to the term σLS(wim). Due to the weight dependence, large weights lead to
small weight changes, with vanishing changes for very large weights. When a post-synaptic
spike by neuron m is not preceded by a presynaptic spike by neuron i (e.g. when the pre-
synaptic spike comes after the post-synaptic spike), this results in long term depression
(LTD). LTD is also weight dependent, but to a much lesser extent as the weight-dependent
factor varies only between 0.5 and 1. This behavior is mimicked by the standard STDP
rule implemented in the data-based model M that a standard weight dependence where
updates exponentially decreased with wim for LTP and did not depend on wim for LTD.

Hence, the dynamics and synaptic plasticity of the data-based model M can be under-
stood as an approximation of EM in the probabilistic model P, that creates an internal
model for the distribution p∗(y) of network inputs. This internal probabilistic model is
defined by a noisy-OR-like likelihood term and a sparse prior on the hidden causes of the
current input pattern. Hence, STDP can be understood as optimizing model parameters
such that the observed distribution of input patterns can be explained through a set of
basic patterns (hidden causes). It is assumed that the input at each time point can be
described by a combination of a sparse subset of these patterns. In other words, STDP in
the microcircuit motif model M performs blind source separation of input patterns.

3 Discussion

We have provided a novel theoretical framework for analyzing and understanding com-
putational properties that emerge from STDP in a prominent cortical microcircuit motif:
interconnected populations of pyramidal cells and PV+ interneurons in layer 2/3. The
computer simulations in [Jonke et al., 2017], that were based on the data from [Avermann
et al., 2012], indicate that the computational operation of this network motif cannot be
captured adequately by a WTA model. Instead, this work suggests a k-WTA model, where
a varying number of the most excited neurons become active. Since the WTA circuit model
turns out to be inadequate for capturing the dynamics of interacting pyramidal cells and
PV+ interneurons, one needs to replace the probabilistic model that one had previously
used to analyze the impact of STDP on the computational function of the network motif.
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Mixture models such as those proposed by [Nessler et al., 2013] and [Habenschuss et al.,
2013b] are inseparably tied to WTA dynamics: For drawing a sample from a mixture model
one first decides stochastically from which component of the mixture model this sample
should be drawn (and only a single component can be selected for that). We have shown
here that a quite different generative model, similar to the noisy-OR model, captures the
impact of soft lateral inhibition on emergent network codes and computations much bet-
ter (Fig. 3). The noisy-OR model is well-known in machine learning [Neal, 1993, Saund,
1995], but has apparently not previously been considered in computational neuroscience.
Our probabilistic model P further suggests that the varying number of active neurons in
the circuit may depend both on a prior that is encoded by the network parameters and
the familiarity of the network input.

We have shown that the evolution of the dynamics and computational function of
the network motif under STDP can be understood from the theoretical perspective as an
approximation of expectation maximization (EM) for fitting a noisy-OR based generative
model to the statistics of the high dimensional spike input stream. This link to EM is
very helpful from a theoretical perspective, since EM is one of the most useful theoretical
principles that are known for understanding self-organization processes. In particular,
this theoretical framework allows us to elucidate emergent computational properties of
the network motif for spike input streams that contain superimposed firing patterns from
upstream networks. It disentangles these patterns and represents the occurrence of each
pattern component by a separate sparse assembly of neurons, as already postulated in
[Földiak, 1990].

The established relationship between the network M and the probabilistic model P
allows us to relate the network parameters α and wIE (eq. (2)) of M to the parameters
of the generative model P. Briefly (for a detailed discussion, see Network parameter

interpretation in Methods), the excitability α of pyramidal cells is proportional to 2µ−1
2σ2 ,

see eq. (26). The strength of inhibitory connections wIE to the pool of pyramidal cells is
proportional to 1

σ2 , see eq. (30). Hence, a large µ in combination with a small σ2 (i.e.,
a sharp activity prior), leads to a large spontaneous activity that is tightly regulated by
strong inhibitory feedback. On the other hand, a broad prior (larger σ2) leads to weaker
inhibitory feedback, thus allowing the network to attain a broader range of activities.

Related work

A related theoretical study for WTA circuits was performed in [Nessler et al., 2013, Haben-
schuss et al., 2013a, Kappel et al., 2014] and extended to sheets of WTA circuits in [Bill
et al., 2015]. It was assumed in these models that inhibition normalizes network activity
exactly, leading to a strict WTA behavior. The analysis in the present work is much more
complex and necessarily has to include a number of approximations. Out analysis reveals
that the softer type of inhibition that we studied provides the network with additional com-
putational functionality. There exists also a structural similarity of the proposed learning
rule (21) to those reported in [Nessler et al., 2013, Habenschuss et al., 2013a, Kappel et al.,
2014]. This is insofar significant as it raises the question why the application of almost
the same learning rule in one motif leads to learning and extraction of a single hidden
cause and in another to the extraction of multiple causes. The answer most likely lies in
the interplay between “prior knowledge” in the model (e.g. in the form of the intrinsic
excitability of neurons), the learning rule and inhibition strength: As there are multiple
neurons in the proposed microcircuit motif model which can spike in response to the same
input, each one of them can adapt its synaptic weights to increase the likelihood of spiking
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again whenever the same or a similar input pattern is presented in the future, possibly in
conjunction with other different input components. This is manifested through increased
total input strength to those neurons when the pattern is seen again. But this results also
in increased total inhibition to all other neurons, thereby effectively limiting the number
of winners. As there is no fixed normalization of firing rates (probabilities), as soon as the
input strength caused by a single feature component is strong enough to trigger the spike
in some neuron, the neuron will respond to each pattern which consists of that particular
feature. On average this will force neurons to specialize on a single feature component.
Therefore, after learning, each spike can be interpreted as indication of a particular feature
component.

The noisy-OR model eq. (9) is tightly related to the likelihood model used in this
article. It is one of the most basic likelihood models that allows to combine basic patterns.
Noisy-OR and related models have previously been used in the machine learning literature
as models for nonlinear component extraction [Saund, 1995, Lücke and Sahani, 2008], or
as basic elements in belief networks [Neal, 1992], but they have so far not been linked to
cortical processing.

The extraction of reoccurring components of input patterns is closely related to blind
source separation and independent component analysis (ICA) [Hyvärinen et al., 2004].
Previous work in this direction includes implementations of ICA in artificial neural net-
works [Hyvärinen, 1999], see also [Lücke and Eggert, 2010]. These abstract models are
only loosely connected to computation in cortical network motifs. [Savin et al., 2010] in-
vestigated ICA in the context of spiking neurons. Theoretical rules for intrinsic plasticity
were derived which enable neurons in combination with input normalization, weight scal-
ing, and STDP, to extract independent components of inputs. An interesting difference
is that the inhibition in [Savin et al., 2010] acts to decorrelate neuronal activity. Intrinsic
plasticity on the other hand enforces sparse activity (this sparsening has to happen on the
time scale of input presentations). In our probabilistic model P, sparse network activity
is enforced by a prior over network activities, implemented in M through the inhibitory
feedback that models experimentally found network connectivity [Avermann et al., 2012].
This inhibition naturally acts on a fast time scale [Okun and Lampl, 2008], while the time
scale for intrinsic plasticity is unclear [Turrigiano and Nelson, 2004].

4 Methods

4.1 Definition of M: Data-based network model for a layer 2/3 micro-
circuit motif

The layer 2/3 microcircuit motif was modeled in [Jonke et al., 2017] by the data-based
model M. The model is described here briefly for completeness. See [Jonke et al., 2017]
for a thorough definition. The model M consists of two reciprocally connected pools
of neurons, an excitatory pool and an inhibitory pool. Inhibitory network neurons are
recurrently connected. Excitatory network neurons receive additional excitatory synaptic
input from a pool of N input neurons. Fig. 1A summarizes the connectivity structure of
the data-based model M together with connection probabilities. Connection probabilities
have been chosen according to the experimental data described in [Avermann et al., 2012].

Let t
(1)
i , t

(2)
i , . . . denote the spike times of input neuron i. The output trace ỹi(t) of

input neuron i is given by the temporal sum of unweighted postsynaptic potentials (PSPs)
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arising from input neuron i:

ỹi(t) =
∑

f

ǫ(t− t
(f)
i ), (22)

where ǫ is the synaptic response kernel, i.e., the shape of the PSP. It is given by a double-
exponential function with a rise time constant τr = 1 ms and a fall time constant τf = 10
ms. For given spike times, output traces of excitatory network neurons and inhibitory
network neurons are defined analogously and denoted by z̃m(t) and Ij(t) respectively.

The network consists of M = 400 excitatory neurons, modeled as stochastic spike
response model neurons [Jolivet et al., 2006], see eqs. (1) and (2). See Sec. 4.2 for a
motivation of network parameter values from a theoretical perspective.

The instantaneous firing rate ρm of neuron m can be re-written (by substituting eq. (2)
in eq. (1)) as:

ρm(t) =
1

τ

exp (γ
∑

i wimỹi(t) + γα)

exp
(

γ
∑

j∈Im
wIEIj(t)

) . (23)

Here, the numerator includes all excitatory contributions to the firing rate ρm(t). The
denominator in this term for the firing rate describes inhibitory contributions, thereby
reflecting divisive inhibition [Carandini and Heeger, 2012].

Apart from excitatory neurons there are Minh = 100 inhibitory neurons in the net-
work. Inhibitory neurons are also modeled as stochastic spike response neurons with an
instantaneous firing rate given by

ρinhm (t) = σrect(u
inh
m (t)), (24)

where σrect denotes the linear rectifying function σrect(u) = u for u ≥ 0 and 0 otherwise.
The membrane potentials of inhibitory neurons are given by

uinhm (t) =
∑

i∈Em

wEIz̃i(t)−
∑

j∈IIm

wIIIj(t), (25)

where z̃i(t) denotes synaptic input (output trace) from excitatory network neuron i, Em

(IIm) denotes the set of indices of excitatory (inhibitory) neurons that project to inhibitory
neuron m, and wEI (wII) denotes the excitatory (inhibitory) weight to inhibitory neurons.

Synaptic connections from input neurons to excitatory network neurons are subject to
STDP. A standard version of STDP is employed with an exponential weight dependency
for potentiation [Habenschuss et al., 2013b], see [Jonke et al., 2017].

The simulations for Fig. 2 are described in detail in [Jonke et al., 2017].

4.2 Network parameter interpretation:

In the section Interpretation of the dynamics of M in the light of P, we have established
a relationship between the parameters of the probabilistic model P and network param-
eters. This relationship was however derived based on a simplified network model that
included for example rectangular EPSPs and direct inhibitory connections without explicit
inhibitory neurons. Nevertheless, one can also determine reasonable parameter settings
for the data-based model M based on a prior on network activity that is defined in the
probabilistic model P. These parameters are the excitability α and the synaptic weights
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between and within excitatory and inhibitory network neurons.
In this section we start by assuming such a prior eq. (6) with parameters µ = −3.4

(this includes already a correction of the prior for the missing wnorm) and σ2 = 0.35 as well
as a fitting parameter γ = 2 (eq. 1) and deduce the parameters used in the simulations.
As shown above, the neural excitability α is then given by α = 1

γ
2µ−1
2σ2 . We obtain for the

chosen γ = 2:

α =
1

γ

(

2µ− 1

2σ2

)

= −5.57. (26)

The inhibition strength β of the approximate dynamics eq. (3) is replaced by the weight
wIE from inhibitory neurons to excitatory neurons in M. From the probabilistic model,
we determined β as β = 1

γσ2 under the assumption of rectangular inhibitory PSPs. In M

we use double-exponential PSPs instead of rectangular ones. One therefore has to correct
for differences in the PSP integrals. Using this correction, one obtains

β′ = cPSPβ =
cPSP
γσ2

= 1.114, (27)

where cPSP is the ratio between the integrals over the rectangular PSPs used in the ap-
proximate dynamics and the double-exponential PSPs used in M (cPSP = 0.78 for the
shapes used for M).

The weights wIE can be determined by comparing eq. (2) with eq. (3) with corrected
inhibition strength

∑

j∈Im

wIEIj(t) =
M
∑

j=1

β′zj(t). (28)

Under the assumption that the number of spikes in the pool of inhibitory neurons is at
any time (with a slight delay) approximately equal to the number of spikes in the pool of
excitatory neurons, we obtain

pIEwIE = β′, (29)

where pIE denotes the connection probability from inhibitory to excitatory network neu-
rons. This yields

wIE = β′ 1

pIE
=

cPSP
γσ2pIE

= 1.86. (30)

We now first consider the weights wEI from excitatory to inhibitory neurons under the
assumption of no I-to-I connections. In this case, in order to obtain the same number of
spikes in the inhibitory neurons as in the excitatory neurons, each spike from an excitatory
neuron should induce on average one spike within all inhibitory neurons, that is,

wEI,no IIǭMinhp
EI = 1, (31)

where ǭ = 0.01/cPSP is the integral over the alpha-PSPs, pEI is the connection probability
from excitatory to inhibitory neurons, andMinh = 100 is the number of inhibitory neurons.
We obtain

wEI,no II = cPSP/p
EI = 1.357. (32)

Without I-to-I connections, this guarantees that excitation is balanced by inhibition. How-
ever, the single spike (on average) will occur on average with a delay of 5 ms. Interestingly,
the I-to-I connections can help to decrease this delay. In particular, if one demands that
the inhibitory spike is elicited with a delay of less than one ms on average, then one can

20



simply increase the weights wEI by some factor cEI = 10, leading to

wEI = wEI,no IIcEI = cPSPc
EI/pEI = 13.57. (33)

Now, each spike in the excitatory population induces in the inhibitory population for
approximately 10 ms a total rate of 1000 Hz, leading to an average delay of 1 ms. Without
I-to-I connections this would however lead to too many successive spikes within these 10
ms. The I-to-I connections can compensate this too large excitation. For an approximately
correct compensation, the first inhibitory spike has to balance out this excitation, which is
approximately achieved by providing exactly the same amount of inhibition to inhibitory
neurons, leading to

wII = cPSPc
EI/pII. (34)

Since pII ≈ pEI, we used wII = wEI for simplicity. These are the parameter values used for
the M model in [Jonke et al., 2017].

4.3 Details to simulations for Figure 5

Creation of basic patterns: Basic patterns were 64-dimensional vectors, each repre-
senting a horizontal or vertical bar on an 8×8 two-dimensional pixel array. We defined 16
basic patterns x(1), . . . ,x(16) in total, corresponding to all possible horizontal and vertical
bars of width 1 in this pixel array. For a horizontal (vertical) bar, all pixels of a row
(column) in the array attained the value 1 while all other pixels were set to 0. The entries
of the basic pattern vectors were then defined by the values of the corresponding pixels in
the array.

Superposition of basic patterns: To generate an input pattern, basic rate patterns
were superimposed as follows. The number of superimposed basic patters nsup was chosen

between 1 and 3 drawn from the distribution p(nsup = k) = 0.9k0.13−k
∑

3

l=1
0.9l0.13−l

. Then each basic

pattern to be superimposed was drawn uniformly from the set of basic patterns without
replacement. This corresponds to the distribution used in [Jonke et al., 2017]. The input
vector y was then given by y = max{1,

∑nsup

i=1 x(bp(i))}, where bp(i) denotes the ith basic
pattern to be superimposed and the max operation is performed element-wise.

Optimization of the generative model: The generative model (6)–(8) with 20 hidden
causes z was fitted to this data in an iterative manner. One iteration of the fitting
algorithm was performed as follows:

1. draw an input vector y as described above;

2. draw a sample from the approximate posterior pA1(z|y,W ), eq. (12);

3. update the parameters W of the model according to eq. (20).

Since the posterior in step (2) is intractable, it was approximated by assuming that a
maximum of 4 hidden causes are active in the posterior distribution (state vectors with
more active hidden causes usually had negligible probabilities). This allowed us to compute
the partition function and therefore to sample hidden state vectors in a straight-forward
manner. Further, we did not consider hidden state vectors with no active hidden state
since those would not lead to any parameter changes.

Parameters of the model and learning rule: A prior distribution p(z) with param-
eters µ = 6 and σ2 = 0.35 was used. The scaling parameter γ was set to 1. Weights wij
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were initialized with values drawn from a uniform distribution in [0, 0.1]. Weights were
clipped between a minimal value of 0 and a maximal value of 6. A constant learning rate
of η = 0.1 was used. Training was performed for 15000 updates. Network characteristics
(such as KL divergences) were computed every 50th update.

Figure 5B: Every 50th update, we computed the KL-divergence between the true pos-
terior and the approximate posterior DKL(p(z|y,W )||pA1(z|y,W )). In addition we also
computed the KL-divergence between p(z|y,W ) and a uniform distribution over state
vectors. In all these divergences, we only considered the distribution over vectors with
at most 4 active hidden causes for tractability (see above). For Fig. 5B, the data was
smoothed using a box-car filter of size 10.

Figure 5C: We considered the input patters given in panel A and computed the hidden
state zmax with the maximum posterior probability (computed as described above) after
learning in the exact and approximate posterior. This hidden state vector was then used
to reconstruct the input pattern by computing ŷ = σLS(W

Tzmax). Note that this is not a
sample of y but it defines the probability of each individual pixel to be 1.

Figure 5E: Every 50th update of the simulation described above, we computed the KL-
divergence DKL(p(z|y,W )||pA2(z|y,W )) between the true posterior and the posterior
according to approximation A2. For the red curve we used pA2 with wnorm = 0 and the
same µ = 6 as given for the original model. For the yellow curve, we corrected the prior of
the model to have µ = −12. The KL-divergence to the uniform distribution was computed
as described above.
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