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Feedback Inhibition Shapes Emergent Computational
Properties of Cortical Microcircuit Motifs
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Cortical microcircuits are very complex networks, but they are composed of a relatively small number of stereotypical motifs. Hence, one
strategy for throwing light on the computational function of cortical microcircuits is to analyze emergent computational properties of
these stereotypical microcircuit motifs. We are addressing here the question how spike timing-dependent plasticity shapes the compu-
tational properties of one motif that has frequently been studied experimentally: interconnected populations of pyramidal cells and
parvalbumin-positive inhibitory cells in layer 2/3. Experimental studies suggest that these inhibitory neurons exert some form of divisive
inhibition on the pyramidal cells. We show that this data-based form of feedback inhibition, which is softer than that of winner-take-all
models that are commonly considered in theoretical analyses, contributes to the emergence of an important computational function
through spike timing-dependent plasticity: The capability to disentangle superimposed firing patterns in upstream networks, and to
represent their information content through a sparse assembly code.
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Introduction
A promising strategy for understanding the computational

function of a cortical column was proposed by Douglas et al.
(1989), Shepherd (2004), Grillner and Graybiel (2006), and oth-
ers. To probe computational properties of prominent network
motifs of a cortical column, commonly referred to as microcir-
cuit motifs. We are addressing computational properties of one
of the most prominent microcircuit motifs: densely intercon-
nected populations of excitatory and inhibitory neurons. We fo-
cus on motifs in layer 2/3, where parvalbumin-positive (PV�)
inhibitory neurons (often characterized as fast-spiking interneu-
rons, in particular basket cells) are interconnected with nearby

pyramidal cells with very high connection probability in both
directions (see, e.g., Packer and Yuste, 2011; Avermann et al.,
2012; Fino et al., 2013). One usually refers to this type of inhibi-
tion as lateral or feedback inhibition. The dynamics of this mi-
crocircuit motif has frequently been examined in vivo (Wilson et
al., 2012; Petersen and Crochet, 2013; Pala and Petersen, 2015)
and modeled in (Avermann et al., 2012). We examine computa-
tional properties that emerge in model M for this microcircuit
motif under spike timing-dependent plasticity (STDP).

One cannot model this microcircuit motif by the frequently
considered winner-take-all (WTA) model because this model
would require that the firing of a single pyramidal cell (the “win-
ner”) can suppress firing of other pyramidal cells in the motif. But
experimental data show that several pyramidal cells need to fire to
engage feedback inhibition through PV� cells (Isaacson and
Scanziani, 2011; Avermann et al., 2012). Divisive inhibition has
been proposed as a more realistic mathematical model for this
softer type of inhibition (Carandini and Heeger, 2011; Wilson et
al., 2012). Our goal is to understand the impact of this softer type
of inhibition on neural codes and computational properties that
emerge under STDP. There exists a large number of preceding
studies of emergent computational properties of WTA-like mi-
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Significance Statement

We analyze emergent computational properties of a ubiquitous cortical microcircuit motif: populations of pyramidal cells that are
densely interconnected with inhibitory neurons. Simulations of this model predict that sparse assembly codes emerge in this
microcircuit motif under spike timing-dependent plasticity. Furthermore, we show that different assemblies will represent dif-
ferent hidden sources of upstream firing activity. Hence, we propose that spike timing-dependent plasticity enables this micro-
circuit motif to perform a fundamental computational operation on neural activity patterns.
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crocircuit motifs, from Rumelhart and
Zipser (1985) to Nessler et al. (2013). But
they were based on the assumption of
strong WTA-like lateral inhibition.

The functional role of inhibition in this
microcircuit motif can be better approxi-
mated by a variation of the k-WTA model
(Maass, 2000), where several (k) winners
can emerge simultaneously from a com-
petition of pyramidal cells for firing. We
show that this softer competition leads to
the emergence of shared feature selectivity
of pyramidal cells, as in the experimental
data of Lee et al. (2012), where small subsets
of pyramidal cells (assemblies), instead of
single neurons, respond to specific input
features (see Fig. 2).

We also show that an important com-
putational operation, blind source separa-
tion (Földiák, 1990), also referred to as
independent component analysis (ICA)
(Hyvärinen et al., 2004), emerges in this
microcircuit motif through STDP. This
operation enables a network to disentangle
and sparsely represent superimposed spike
inputs that may result from separate sources
in the environments or upstream neural
networks. This modular coding scheme
avoids a combinatorial explosion of the
number of neurons that are needed to en-
code superimposed sources because they
become encoded by superpositions of
neural codes (assemblies) for each of the
sources, rather than by a separate neural code for every superposi-
tion that occurs. An example is given in Figures 4 and 5 for the case of
arbitrarily superimposed vertical and horizontal bars, a well-known
benchmark task for blind source separation (Földiák, 1990). This
distributed coding scheme also supports intracortical communica-
tion and computation based on spike patterns or spike packets as
proposed by Luczak et al. (2015) (see Figure 3).

Materials and Methods
Definition of a data-based microcircuit motif model M
We consider in this article a model for interacting populations of pyra-
midal cells with PV � inhibitory neurons on layer 2/3 that is based on data
from the Petersen laboratory (Avermann et al., 2012) and refer to this
specific model as the microcircuit motif model M.

The microcircuit motif model M consists of two reciprocally con-
nected pools of neurons: an excitatory pool and an inhibitory pool. In-
hibitory network neurons are recurrently connected. Excitatory network
neurons receive additional excitatory synaptic input from a pool of N
input neurons. Figure 1A summarizes the connectivity structure of the
model together with connection probabilities. Connection probabilities
have been chosen according to the experimental data described by Aver-
mann et al. (2012) and listed in Table 1 together with connection-type
specific synaptic parameters. For a connection probability p between two
pools, each individual pair of neurons from these two pools is randomly
chosen to be connected by a synapse with probability p.

Input neurons emit Poisson spike trains with time-varying rates. We
tested several temporal profiles of these rates in different simulations as
described below in the corresponding sections. Let ti

�1�, ti
�2�, . . . denote

the spike times of input neuron i. The output trace ỹi�t� of input neuron
i is given by the temporal sum of unweighted postsynaptic potentials
(PSPs) arising from input neuron i as follows:

ỹi�t� � �
f

��t � ti
� f ��, (1)

where � is the synaptic response kernel (i.e., the shape of the PSP). It is
given by a double-exponential function as follows:

��s� � � c��e�s/�f � e�s/�r�, if 0 � s � T�

0, otherwise , (2)

with the rise time constant �r � 1 ms, a fall time constant �f � 10 ms, and
a cutoff after T� � 50 ms (see also Figure 1B). The constant c� � 1.435 was
chosen to assure a peak value of 1. All synapses in the network have the
same response kernel �. For given spike times, output traces of excitatory
network neurons and inhibitory network neurons are defined analo-
gously and denoted by z̃m�t� and Ij(t), respectively.

The network consists of 400 excitatory neurons, modeled as stochastic
spike response model neurons (Jolivet et al., 2006) that we define in the
following. The stochasticity of the model stems from its stochastic spike
generation, where spikes are generated according to a Poisson process
with a time-varying rate (the instantaneous firing rate of the neuron).
The instantaneous firing rate �m of a neuron m depends exponentially on
its current membrane potential um as follows:

Figure 1. A data-based microcircuit motif model M. A, Network anatomy. Circles represent excitatory (black) and inhibitory
(red) pools of neurons. Black arrows indicate excitatory connections. Red lines with dots indicate inhibitory connections. Numbers
above connections indicate corresponding connection probabilities. B, Network physiology. Same as in A, but connection delays �
and PSP shapes with decay time constant �f are indicated for synaptic connections. Input synapses are subject to STDP. C, Standard
STDP curve that is used in M. Shown is the change of the synaptic efficacy in our model for 10 pre-post pairings in dependence on
the time difference � t � tpost � tpre between a postsynaptic spike at time tpost and a presynaptic spike at time tpre. D, Divisive
normalization in model M. The response of an excitatory neuron in the circuit to a visual bar-stimulus at various orientations (for
details, see Materials and Methods) in control condition (black) and for simulated increased firing of inhibitory neurons (red). Note
the divisive nature of inhibition (stronger responses are more strongly depressed in absolute terms). Compare with Wilson et al.
(2012, their Figs. 2e,3f).

Table 1. Neuron-type specific synaptic connection parameters in Ma

Connection
Connection
probability (%) Symbol

Synaptic
weight (a.u.)

Synaptic
delay (ms)

Input¡E 100 w 0.01, 1 0, 10
E¡I 57.5 w EI 13.57 1
I¡E 60 w IE 1.86 1
I¡I 55 w II 13.57 1
aConnection probability, synaptic weight, and synaptic delay. Weights from inputs to excitatory network neurons
are plastic and bounded to the given range. The corresponding delays are uniformly distributed in the given range.
Synaptic efficacies can be motivated from a theoretical perspective (see Discussion).
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�m�t� �
1

�
exp�	 � um�t��, (3)

where � � 10 ms and 	 � 2 are scaling parameters that control the shape
of the response function. After emitting a spike, the neuron enters an
absolute refractory period for 10 ms during which the neuron cannot
spike again. These excitatory neurons project to and receive inputs from
a pool of inhibitory neurons. Thus, the membrane potential of excitatory
neuron m is given by the sum of external inputs, inhibition from inhib-
itory neurons, and its excitability 
 as follows:

um�t� � �
i

wimỹi�t� � �
j�Jm

wIEIj�t� � 
, (4)

where Jm denotes the set of indices of inhibitory neurons that project to
neuron m, and w IE denotes the weight of these inhibitory synapses. Ij(t)
and ỹi�t� denote synaptic input (output traces) from inhibitory neurons
and input neurons, respectively (see above). We used 
 � �5.57. These
parameter values can be motivated from a theoretical perspective (Le-
genstein et al., 2017).

Apart from excitatory neurons there are 100 inhibitory neurons in the
network. While Jolivet et al. (2006) provide a stochastic model for pyra-
midal cells, no such model is available for PV � inhibitory neurons. Ex-
perimental data indicate that, in these neurons, the relationship between
the synaptic drive and the firing rate, that is, the frequency-current (f-I)
curve, is rather linear over a large range of input strengths (Ho et al.,
2012; Ferguson et al., 2013). We therefore modeled inhibitory neurons as
stochastic spike response neurons with an instantaneous firing rate given
by the following:

�m
inh�t� � �rect�um

inh�t��, (5)

where �rect denotes the linear rectifying function �rect (u) � u for u  0
and 0 otherwise. The absolute refractory period of inhibitory neurons in
the model is 3 ms. Inhibitory neurons receive excitatory inputs from
excitatory network neurons as well as connections from other inhibitory
neurons. The membrane potentials of inhibitory neurons are thus given
by the following:

um
inh�t� � �

i�Em

wEIz̃i�t� � �
j � JJm

wIIIj�t� � uopt, (6)

where z̃i�t� denotes synaptic input (output trace) from excitatory net-
work neuron i, Em (JJm denotes the set of indices of excitatory (inhibi-
tory) neurons that project to inhibitory neuron m, w EI (w II) denotes the
excitatory (inhibitory) weight to inhibitory neurons, and uopt denotes an
external optogenetic activation of inhibitory neurons. uopt was set to 0 in
all simulations except for the simulation shown in Figure 1D, where
optogenetic activation was modeled by setting uopt � 50 (arbitrary
units). The synaptic weights from excitatory network neurons to inhib-
itory neurons imply that a single spike in the excitatory pool induces a
spike in a given postsynaptic inhibitory neuron with a probability of 0.17,
consistent with experimental findings that several excitatory neurons
have to be active to induce robust spiking in PV � interneurons (Aver-
mann et al., 2012).

Synaptic connections from input neurons to excitatory network neu-
rons are subject to STDP. A standard version of STDP is used with an
exponential weight dependency for potentiation (Habenschuss et al.,
2013b) (Fig. 1C). All input weights wij are updated as follows. For each
postsynaptic spike at time tpost, all presynaptic spikes in the preceding 100
ms are considered. For each such pre-before-after spike pair with time
difference tpost � tpre, the weight is increased by the following:

�wij�tpost � tpre� � �e�wij�1 e�
tpost�tpre

�� , (7)

with �� � 10 ms. The learning rate � is 0.01, except for Figure 4 where
� � 0.02 to speed up learning. For each presynaptic spike at time t, all
postsynaptic spikes in the preceding 100 ms are considered. For each
such postspike-before-prespike pair with time difference tpre � tpost, the
weight change is given by the following:

�wij�tpre � tpost� � � �e�
tpre�tpost

�� , (8)

with �� � 25 ms. Synaptic weights are clipped to wmin � 0.01 and wmax � 1.
In all simulations, initial input weights were drawn from a uniform distribu-
tion in the interval (wmin, wmax). This concludes the definition of the micro-
circuit motif model M.

Details to computer simulations of model M
Here, we provide details to the computer simulations reported in Results.
It is recommended that the reader skip this section at first reading. Ref-
erences to the individual subsections are given at the appropriate places
in Results.

All simulations were performed in PCSIM, a spiking neural network
simulator written in C�� that provides a Python interface, which was
extended to support simulation of the model. All simulations were per-
formed with a discretization time step �t of 1 ms. Simulation code is
available at https://github.com/zjonke/EImotif.

Details to simulations for Figure 1
For Figure 1D, the input to M was given by simulated visual bars stimuli
at various orientations (see Details to simulations for Fig. 2). Orien-
tation-tuned neurons emerged in a learning phase that lasted 400 s of
simulated biological time. The tuning curve of one excitatory neuron was
evaluated in the original circuit. Then, optogenetic stimulation of inhib-
itory neurons was mimicked by setting the external activation uopt in
Equation 6 to uopt � 50 (arbitrary units) in all inhibitory neurons, with
the effect of increasing the total rate of inhibition. The tuning curve of the
same excitatory neuron was then evaluated in this modified network. All
procedures in the learning and evaluation phase were the same as de-
scribed below in Details to simulations for Figure 2.

Details to simulations for Figure 2
Here, we tested the behavior of M on an input distribution that mimics
visual bar patterns of various orientations. In this simulation, network
inputs were generated from 180 2D binary pixel arrays of size 20 � 20. A
prototypical horizontal bar of width 2 pixels centered on the array was
rotated in steps of 1 degree to obtain 180 pixel arrays that span the space
of possible bar orientations. These pixel arrays were then transformed
into 400-dimensional rate vectors where each entry had a rate of 75 Hz if
the corresponding pixel was on (i.e., the bar covered that pixel) and 1 Hz
otherwise. During a simulation, a rate vector was chosen randomly (uni-
formly out of the 180 vectors). The ith component of this rate vector then
defined the firing rate of input neuron i to the network. One rate vector
was presented to the network for 50 ms. During this time, input neurons
produced Poisson spike trains with the rate as defined in the correspond-
ing entry of the chosen rate vector. Between the presentation of two
consecutive bar patterns, all input neurons spiked with a rate of 2 Hz for
a duration drawn from a geometric distribution with a mean of 50 sim-
ulation time steps �t, corresponding to 50 ms simulated biological time.

During the learning phase, the network was presented with such pat-
terns for 400 s. In a testing phase, STDP in the network was disabled and
input patterns were presented to the network in the same manner as in
the training phase for 100 h of simulated time. Average firing rates of
excitatory and inhibitory neurons were computed conditioned on spe-
cific bar orientations for Figure 2E–G.

In the simulation for H, the same network input was presented to a
WTA network model proposed by Nessler et al. (2013). This model was
termed spike-based expectation maximization (SEM) network. We used
a model consisting of 400 neurons that competed in a WTA-like manner
(for details on the model, see Nessler et al., 2013). The SEM network was
simulated with a time step of 1 ms with rectangular PSPs of length 10 ms,
a total output rate of 100 Hz, initial weights chosen from a uniform
distribution in [�0.5, 0.5], nonadaptive biases of 0, and a learning rate of
� � 0.02 (for details on the simulated SEM model, see Habenschuss et al.,
2013b). The learning phase and the testing phase were performed in the
same manner as for model M.

Details to simulations for Figure 3
Here we tested our microcircuit motif model M on input that was created
by the nonlinear superposition of 150-ms-long spatiotemporal patterns.
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Creation of basic rate patterns. Input spike trains to the circuit were created
by the superposition of two basic rate patterns. We first describe the creation
of basic patterns; the superposition of these patterns will be discussed below.

Let Ri denote the i th basic rate pattern. Formally, a rate pattern Ri is a
matrix Ri � 	rn,s

i 
n�1, . . . ,N;s�1, . . . ,S with rn,s
i denoting the firing rate of

the pattern in channel n at frame s and S is the number of frames of the
pattern. Each frame defines the firing rates of channels (corresponding to
the rates of input neurons) for a discrete time bin of length � t � 1 ms.

For Figure 3, we defined a set of two basic rate patterns R1, R2, each
consisting of N � 200 channels with S � 150 frames (i.e., the length of
basic patterns was 150 ms). The firing rate for each channel was
obtained by an Ornstein–Uhlenbeck (OU) process drawn indepen-
dently for each pattern and each channel. More precisely, it was
calculated as rj,s

i � 1.5 exp� xj,s�t
i �, where xj,t

i is given by a maximum-
bounded OU process. The maximum-bounded OU process for a vari-
able xt is defined as dxt � �OU��OU � xt�dt � �OUdWt if xt �
log(50) and dxt � 0 otherwise. Here, t denotes continuous time,
OU � 0 is the changing rate (speed), �OU � 0 is the mean, �OU � 0 is
the noise variance, and Wt is the standard Wiener process. The parameters
were �OU � 0, OU � 5, and �OU � 0.5. The initial values for xt in the OU
process were drawn from a normal distribution with zero mean and unit
variance. The first 50 ms of the OU process were discarded.

Superposition of basic rate patterns. Input spike trains were created by
the superposition of a number of patterns, or more precisely their rates,
from the set of basic patterns P � �R1, R2, . . .�. Because the procedure
will below also be used for the superposition of bar patterns, we describe
it here for an arbitrary number of basic patterns.

We first describe the procedure that determines which basic patterns
to be superimposed at which times (i.e., the timing of bars in Fig. 3B,
top). Given is a set of basic patterns P � �R1, R2, . . .�, each pattern of
length S time steps. Let nmax denote the maximum number of basic
patterns that can be superimposed at any time t. We define nmax registers
v1, . . . ,vnmax

. Each register holds at any time step t either no pattern
(empty register) or one basic pattern, with the constraint that the regis-
ters hold different patterns at any given time step t. The following proce-
dure ensures that at any time, the probability that a given register holds
some pattern is ploaded. At time step t, each empty register vi is loaded with
some pattern independently from other time steps and other registers

with probability
1

1 � S�1 � ploaded�/ploaded
. If a register is loaded at time

step t, the basic pattern to be loaded to this register is chosen uniformly
from the set of basic patterns that are currently not held by any register.
This basic pattern is then kept in the register for the length of its duration
S (afterward the register is empty, but can be loaded again right away).
Whether a basic pattern is in register vi or vj at some time t is irrelevant
with respect to the produced superimposed patterns.

This defines for any time step t, which basic patterns are to be super-
imposed and also the frame at which each of these patterns is at that time.
Superposition of basic patterns is then accomplished as described above
to obtain the rate for each input neuron. Poisson spike trains are drawn
from the resulting rates.

Patterns were first superimposed linearly; then a nonlinearity was ap-
plied. Consider a time t when a set of patterns should be superimposed
(these patterns overlap at this time point). For the linear superposition,
the rate of a particular channel in the superposition at time t is given by
the sum of the rates of this channel in all patterns that overlap at time t.
More formally, let S(t) denote the set of indices of patterns that over-
lap at time t and let si(t) denote the frame at which pattern i is at time
t (if the pattern presentation started at time t�, the pattern is in frame

si�t� �
t � t�

�t
� 1 at time t, with �t being the discretization time

step). Then the linearly superimposed rate rj
linear�t� for channel j is

given by the following:

rj
linear�t� � �

i�S�t�
rj,si�t�

i . (9)

In the final nonlinear step, the firing rate rj(t) of input neuron j at time t
is squashed by a sigmoidal nonlinearity as follows:

rj�t� �
fH

1 � exp� �
2�

fH
�rj

linear�t� � 0.5fH��, (10)

where fH � 75 Hz is the maximum attainable rate and � � 5 sets the width
of the sigmoidal function. To avoid completely silent periods in the input
between pattern presentations, the rate of each input neuron is set to 2 Hz
at times t when no patterns are superimposed (i.e., S(t) � {}).

For Figure 3, we used 2 basic patterns with a maximum number of
superimposed basic patterns of nmax � 2 and each register had a load
probability of ploaded � 0.5 (i.e., each register was loaded with some basic
pattern half of the time).

Pattern selectivity and activity plots in Figure 3B, C. Network activity
was analyzed after a learning period of 400 s of simulated biological time.
Neurons were classified as preferring pattern 1 (green pattern), as pre-
ferring pattern 2 (blue pattern), or as nonselective based on a procedure
similar to the one used by Harvey et al. (2012). First, an activity trace for
each neuron was obtained by convolving its spike response with a double
exponential kernel Equation 2 with �r � 1 ms, �f � 20 ms, and cutoff time
T� � 200 ms. A neuron was considered to be active if it had at least 2
spikes during the simulation time. We classified a neuron as pattern
modulated if it was an active neuron and if it had a twice as high average
activity trace during presentations of patterns than during the times
without patterns. From the pattern modulated neurons, a neuron was
classified as pattern selective if it had significantly different activity traces
during presentation of blue and green patterns. This was determined by
a two-tailed t test with significance value set at p � 0.05. If a neuron was
pattern selective, its pattern preference was decided based on the average
activity trace during blue and green pattern presentations: the preferred
pattern was defined as the pattern for which the mean of the activity trace
is higher. Finally, we call a neuron that is not pattern selective a nonse-
lective neuron.

For average activity plots in Figure 3C, the green and blue patterns
were presented to the network in isolation, 200 presentations per pattern.
Activity traces of all pattern selective neurons were averaged over all
presentations of the pattern and subsequently normalized to their peak
average activity. Neurons were then sorted by the time of their peak
average activity at presentation of their preferred pattern, and average
activity was plotted in the sorted order for both patterns. In Figure 3B,
spike trains were also plotted separately for green pattern preferring neu-
rons, blue pattern preferring neurons, and nonselective neurons. The
sorting of the former two groups was the same as in Figure 3C.

Details to simulations for Figure 4
For this simulation, basic rate patterns were superimposed as described
above for Figure 3. The experiment, however, differed in the number and
choice of basic patterns. Network responses, precision measures, and
synaptic weight vectors were evaluated and plotted after a learning period
of 400 s simulated biological time.

Creation of basic rate patterns. Basic patterns consisted of 64 channels
that were representing horizontal and vertical bars in a 2D pixel array of
size 8 � 8 pixels. The pattern length was 50 ms (50 frames); and in
contrast to the basic patterns for Figure 3, the rate in each individual
channel was constant over the period of the pattern (i.e., rn,s

i � rn
i for s �

1, . . . ,S). Each of the 64 channels, rn
i in a basic pattern Ri corresponded to

one pixel in an 8 � 8 pixel array. We defined 16 basic patterns in total,
corresponding to all possible horizontal and vertical bars of width 1 in
this pixel array. For a horizontal (vertical) bar, all pixels of a row (col-
umn) in the array attained the value 75, whereas all other pixels were set
to 0. The channel rates rn

i were then defined by the values of the corre-
sponding pixels in the array.

Superposition of basic rate patterns. Basic rate patterns were superim-
posed as described above for Figure 3. A maximum of nmax � 3 basic
patterns were allowed to be superimposed at any time with a load prob-
ability of ploaded � 0.9 (for a definition, see Details to simulations for Fig.
3). In addition to the rates defined by this superposition, a noise rate of
rnoise�t� � 3�3 � npat�t�� Hz was added to each channel, where npat (t)
denotes the number of patterns that are superimposed at time t.

Precision measure. Our aim was to quantify how well neurons prefer
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particular basic patterns (i.e., are tuned to particular basic patterns). To
measure tuning properties, we computed the precision measure (van
Rijsbergen, 1974) Precisionij for each pair of excitatory neuron i and basic
pattern (bar) j. To this end, we say that a neuron i indicates the presence
of a pattern whenever the neuron spikes. The precision Precisionij is then
the fraction between the number of times the presence of pattern j is
correctly indicated by neuron i divided by the number of times that
neuron i indicates that pattern. Hence, the precision measures how well
one can predict the presence of a pattern j, given that neuron i spiked. The
precision measures whether the pattern is present whenever there is a
spike, and not whether the neuron spikes whenever the pattern is present.
Because many neurons are jointly representing a pattern, the latter ques-
tion does not make sense on the individual neuron level (it will be quan-
tified later in Fig. 5C on the population level).

Figure 4C shows for each pair of excitatory neuron i and basic pattern
(bar) j the precision measure Precisionij. Formally, the precision measure
is defined according to van Rijsbergen (1974) as follows:

Precisionij �
TPij

TPij � FPij
, (11)

where TPij denotes the true-positive count and FPij denotes the false-
positive count for that pair. The true-positive count TPij is given by the
number of times that neuron i spikes while basic pattern j is present in the
input. A pattern that starts at time t is defined to be present in the interval
[t, t � S�t � �]. Here, S�t is the length of the pattern and � � 10 ms
corrects for PSPs that increase the firing rates of excitatory neurons, even
after the pattern disappeared. The false-positive count FPij denotes the
number of times that neuron i spikes when pattern j is not present.

We say that a neuron i prefers basic pattern j if the neuron has maxi-
mum precision for pattern j and this precision is larger or equal to 0.8,
and if the second largest precision that neuron i has for any other pattern
is �0.7. A neuron is said to be pattern-selective if it prefers some pattern
and nonselective otherwise. In Figure 4B, C, pattern-selective neurons
are shown and sorted according to their preferred basic pattern.

Details to simulations for Figure 5
Figure 5 shows the behavior of M over the course of learning in the
overlapping bars task (same setup as Fig. 4). Ten independent simulation
runs were performed, each for 1000 s of simulated biological time.

In Figure 5A, a neuron is considered to be recruited if it is pattern
selective. In Figure 5B, a pattern is considered to be represented if at least
on neuron prefers that pattern. Because several excitatory neurons in the
circuit can specialize on a given basic pattern, the network performance
shown in Figure 5C was evaluated over ensembles of neurons, where
ensemble Ei is given by the set of neurons that prefer basic pattern i. To
quantify how well basic pattern i is represented by ensemble Ei, we com-
puted the F1 measure (Van Rijsbergen, 2004). The F1 measure is at its
maximum value of 1 if the following holds true: a neuron in the ensemble
Ei is active if and only if basic pattern i is present in the input. False-
positives (i. e., some neuron in the ensemble is active in the absence of the
basic pattern) and false-negatives (i. e., the basic pattern is present in the
input, but no neuron of the ensemble is active) reduce the measure, and
the minimum possible value of the measure is 0. Hence, the F1 measure
for basic pattern i measures how well this basic pattern is represented by
the ensemble Ei. Formally, we computed the F1 measure (Van Rijsber-
gen, 2004) for ensemble Ei defined as follows:

F1i �
2TPi

2TPi � FNi � FPi
, (12)

where FNi denotes the false-negative count. The true-positive count TPi

is given by the number of times that basic pattern i is present and detected
by ensemble Ei, where the pattern active during [t, t � S�t] is detected if
some neuron of the ensemble fires at least one spike within [t, t � S�t �
�]. The false-negative count FNi denotes the number of times when the
pattern i is active, but there is not a single spike from ensemble Ei. To
calculate the false-positive count FPi, we split the time between two pre-
sentations of the pattern (time without pattern i) into periods of [t, t �
S�t � �] (where the last period can be shorter). Then the false-positive

count FPi denotes the number of such periods during which there is at
least one spike from ensemble Ei. In Figure 5C, the mean F1 measure over
all 16 basic patterns is plotted, thus indicating how well all the patterns
are represented by the network. For comparison, a SEM network as used
for Figure 2H was trained on the same input for 2000 s simulated time.

Details to simulations for Figure 6
Figure 6 shows analysis regarding the temporal relation between excita-
tion and inhibition in M in the experiment of Emergent computation on
spike patterns (Fig. 3) after learning. Figure 6A depicts the mean firing
rate of excitatory neurons in the network (blue represents mean taken
over all excitatory neurons) and the mean firing rate of inhibitory neu-
rons (red represents smoothed through a 100 ms boxcar filter) as well as
the scaled mean firing rate of inhibitory neurons (dashed green). The
mean firing rate of inhibitory neurons is scaled down by the ratio of
the average excitatory and inhibitory firing rates (average taken over the
whole simulation time) to facilitate comparison.

The lag between excitation and inhibition was quantified in a similar
manner as by Okun and Lampl (2008). The cross-correlation function
between excitatory and scaled inhibitory firing rate for a duration of 10 s
was computed (plotted in Fig. 6B). The lag was then given by the offset of
the peak in the cross-correlation function (plotted in Fig. 6C) from 0. To
evaluate the influence of connections between inhibitory neurons, we
performed the same simulations without I-to-I connections and quanti-
fied the lag in the same manner (Fig. 6C). To facilitate a fair comparison,
in addition to removing I-to-I connections we also scaled down synaptic
weights of I-to-E connections by factor of 0.1155 to obtain the same
excitatory firing rate as in the case with I-to-I connections.

Results
A data-based model for a microcircuit motif consisting of
excitatory and inhibitory neurons
We analyze computational properties of densely interconnected
populations of excitatory and inhibitory neurons. In particular,
we analyze a model for interacting populations of pyramidal cells
with PV� inhibitory neurons on layer 2/3 that is based on data
from the Petersen laboratory (Avermann et al., 2012) (Fig. 1A,B).
We refer to this specific model as the microcircuit motif
model M.

The excitatory pool in M consists of M stochastic spiking neu-
rons, for which we use a stochastic version of the spike response
model that has been fitted to experimental data in (Jolivet et al.,
2006). In this model, the instantaneous firing rate �m(t) of neu-
ron m is approximated by the exponential function applied to the
current membrane potential (see Eq. 4). These excitatory neu-
rons project to and receive inputs from a pool of inhibitory neu-
rons, which are also interconnected among themselves, with
connections probabilities taken from Avermann et al. (2012).
Each excitatory neuron m in the network also receives excitatory
synaptic inputs ỹ1�t�, . . ,ỹN�t� from external input neurons,
whose contribution to its membrane potential at time t depends
on the synaptic efficiency wim between the input neuron i and
neuron m. We assume that these afferent connections are subject
to a standard form of STDP (Fig. 1C, definition of a data-based
microcircuit motif model M; see Materials and Methods).

Negative (inhibitory) contributions¥j�Jm wIEIj�t� to the mem-
brane potential of pyramidal cell m have according to the neuron
model a divisive effect on its firing activity because its instanta-
neous firing rate �m can be written (by substituting Eq. 4 in Eq. 3)
as follows:

�m�t� �
1

�

exp�	�i
wimỹi�t� � 	
�

exp�	�
j�Jm

wIEIj�t��
. (13)

Here, the numerator includes all excitatory contributions to the
firing rate �m(t), that is, the synaptic inputs (unweighted sum of
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EPSPs) ỹi�t� from input neurons weighted by the corresponding
synaptic weights wim. 
 denotes the neuronal excitability, and �
and 	 are scaling parameters that control the shape of the re-
sponse function of the neuron. The denominator in this equation
for the firing rate describes inhibitory contributions, thereby re-
flecting divisive inhibition (Carandini and Heeger, 2011). Here,
Ij(t) denotes synaptic input from inhibitory neuron j weighted by
some common weight w IE (Jm denotes the set of all inhibitory
neurons that connect to neuron m).

Divisive inhibition has been shown to be characteristic for the
interaction of pyramidal cells with PV� inhibitory neurons (Wil-
son et al., 2012). To test also on a functional level the divisive
character of inhibition in the model, we artificially increased the
firing rate of inhibitory neurons in the circuit by a constant,
corresponding to the in vivo experiment described by Wilson et
al. (2012), where activity of the PV� neurons was increased
through optogenetic stimulation. The response of pyramidal
neurons to this increased inhibition in M resembles the experi-
mental data (Fig. 1D).

Emergent neural codes: from WTA to k-WTA
In our first test of emergent computational properties of this
microcircuit motif model M, we examined the emergence of ori-
entation selectivity. We provided as external spike inputs pixel-
wise representations of bars in numerous random orientations
with superimposed noise (Fig. 2A). Bars were transformed into
high-dimensional spike inputs by representing each black pixel of
an oriented bar for 50 ms through a Poisson input neuron with a
Poisson rate of 75 Hz, whereas all other input neurons had a
Poisson rate of 1 Hz (for a typical resulting spike input pattern,
see Fig. 2B). The initial network response is shown in Figure 2C,
and the network response after applying STDP for 400 s to all
synapses from input neurons to excitatory neurons in Figure 2D.
One clearly sees in Figure 2D the emergence of assembly codes for
oriented bars. A closer look at the resulting tuning curves of
excitatory neurons in Figure 2E, F shows a dense covering of
orientations by Gaussian-like tuning curves similar to experi-
mental data from orientation pinwheels (Ohki et al., 2006, their
Fig. 2d,e). In contrast, inhibitory neurons did not become
orientation-selective (Fig. 2G) in accordance with experimental
data (Kerlin et al., 2010; Isaacson and Scanziani, 2011).

The tuning curves of excitatory neurons in Figure 2E, F dem-
onstrate a clear difference between the impact of divisive inhibi-
tion in this data-based model M and previously considered
idealized strong inhibition in WTA circuits (Nessler et al., 2013)
(for emergent computational properties, see Fig. 2H). In the
data-based model M, several (on average k � 17) neurons re-
spond to each orientation with an increased firing rate. This sug-
gests that the emergent computational operation of the layer 2/3
microcircuit motif with divisive inhibition is better described as a
k-WTA computation, where k winners may emerge simultane-
ously from the competition. In contrast, for the WTA model with
idealized strong inhibition (Nessler et al., 2013), at most, a single
neuron could fire at any moment of time and, as a result, at most
two neurons responded after a corresponding learning protocol
with an increased firing rate to a given orientation (Fig. 2H)
(Nessler et al., 2013, their Fig. 5).

From the perspective of computational complexity theory,
the k-WTA computation is known to be for k � 1 more pow-
erful than the simple WTA computation (Maass, 2000). How-
ever, the number k of winners in this microcircuit motif is not
fixed. It depends on synaptic weights and the external input.

Hence, one can best describe its computation as an adaptive
k-WTA operation.

Emergent computation on spike patterns
Simultaneous recordings from large numbers of neurons dem-
onstrate the prominence of large-scale activity patterns in net-
works of neurons (Luczak et al., 2015). They are commonly
referred to as assemblies, assembly sequences, or assembly phase
sequences. Since Hebb (1949), they have been proposed to reflect
tokens of brain computations that connect the fast time-scale of
spikes (milliseconds) to the slower time-scale of cognition and
behavior (100s of milliseconds). But their precise role in neural
coding and computation has remained unknown. Luczak et al.
(2015) proposed that they serve as basic information compo-
nents in global cortical communication, where each of these ac-
tivity patterns is initiated by a particular cortical region and
broadcast to all areas to which it projects. We show here that our
microcircuit motif model M is able to perform a computational
operation on large-scale activity patterns that is fundamental for
such a global communication scheme. It can demix superim-
posed spike patterns that impinge on a generic cortical area and
represent the presence of each pattern in their input stream
through the firing of separate populations of neurons. This sug-
gests that the layer 2/3 microcircuit motif has an inherent capa-
bility to solve the well-known cocktail party problem (blind
source separation) (Cherry, 1953) on the level of larger activity
patterns. This capability emerges automatically through STDP, as
demonstrated in Figure 3 for our data-based model M.

The input to the microcircuit motif model M is generated in
Figure 3 by 200 spiking neurons. Two repeating activity patterns
(green and blue patterns) are superimposed for the generation of
Poisson spike trains (shown for every second neuron in the top
row of Fig. 3B). These two large-scale activity patterns consist of
two time-varying rate patterns for the 200 input neurons (Fig. 3A,
middle) that are nonlinearly superimposed with random offsets
in the continuous spike input to our model. Despite these ran-
dom offsets and the large trial-to-trial variability of spike times in
each of the two patterns (Fig. 3A, right panels), STDP in the
synaptic connections from inputs to the excitatory neurons in
the model was produced after 400 s two assemblies (Fig. 3B,
middle row, green and blue spikes). Each responded to just one of
the two input patterns and represented its temporal progress
through a stereotypical sequential firing pattern (Fig. 3C). This
effect occurs even if none of the two input patterns is ever pre-
sented in isolation during learning, as shown for illustration pur-
poses for test inputs after learning on the right side of Figure 3B.
Such emergent demixing of superimposed spike patterns in the
layer 2/3 microcircuit motif could enable downstream neurons to
selectively respond to just one of the patterns. Furthermore, the
sequential activation of the two assemblies can also inform down-
stream networks through the firing of specific neurons about the
current phase of each of the two input patterns.

Emergent modular sparse coding
Földiák (1990) suggested that complex objects or scenes are en-
coded in the brain through a sparse modular code, where each
neuron signals through its firing the presence of a particular fea-
ture in the network input. In this way, a combinatorial explosion
of the number of neurons is avoided, which would be required if
each complex external object or scene is encoded as a whole by
separate neurons. Földiák (1990) proposed to use superpositions
of bars (lines), as in Figure 4A (top), as benchmark inputs to test
sparse modular coding capabilities of neural network models. A
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neural network is able to avoid the combinatorial explosion of the
number of neurons that are needed to encode such complex in-
puts if it learns to represent them in a modular fashion, where
each neuron encodes the presence of one of the bars (in a partic-
ular location) in the composed input. A key question is how such

codes can emerge in a network autonomously if only composite
images (consisting of several superimposed bars) are presented as
network inputs. A WTA circuit is not able to develop a good
modular code because it does not allow inputs to be represented
through the firing of more than one neuron. Hence, a natural

Figure 2. Emergent neural codes in the microcircuit motif model M. A, Bars at various orientations serve as network inputs. Shown are network inputs arranged in 2D for clarity. Gray-level of each
pixel indicates the resulting effective network input ỹi�t� (see Eq. 1) at some time point t. B, Resulting spike pattern of input neurons (every fourth neuron shown) for different bar orientations. Gray
shading represents the presence of a bar in the input with orientation indicated in A. C, Example spike pattern of a subset of excitatory neurons in the circuit to this input before learning. D, Spiking
activity of the same neurons for the same input after applying STDP to all synapses from input neurons to excitatory neurons for 400 s. Only responses of orientation-selective neurons are shown,
sorted by preferred orientation. Spiking activity of a random subset of non– orientation-selective neurons and inhibitory neurons to the same input is shown below. E, Emergent tuning curves of
orientation-selective excitatory neurons. F, The same as in E, but zoomed in on orientations between 90 and 120 degrees. G, Inhibitory neurons are not orientation-selective. H, Emergent tuning
curves of neurons in a previously considered WTA model (Habenschuss et al., 2013b; Nessler et al., 2013).
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Figure 3. Emergent computation on large-scale spike patterns. A, Two spatiotemporal patterns. Each pattern consists of 200 time-varying firing rates over 150 ms generated by an OU process
(middle, only every second channel shown for clarity). These rate patterns give rise to highly variable spike patterns, as shown on the right. Basic rate patterns are superimposed nonlinearly with
arbitrary relative timing. Left, One realization of superimposed patterns for a time segment in B. Spikes are colored according to the basic pattern that most probably caused the spike (i.e., the one
with the higher rate at that time). B, Firing response of the neurons in our model M for a test input stream after letting STDP be active for synaptic connections from input neurons to excitatory
neurons in M. Two subpopulations emerged (green and blue), where each neuron specialized on a specific pattern and on a particular time segment within this pattern. Spiking activity of a subset
of nonselective neurons (black) and inhibitory neurons (red) are shown below. C, Average firing rate of neurons preferring the green (top) and blue (bottom) input pattern when the green (left) and
blue pattern (right) is shown in isolation. Neurons are ordered according to their peak firing rate for the preferred pattern as in B. Resulting selective firing responses are qualitatively similar to data
from sensory cortices (Luczak et al., 2015) and higher cortical areas (Harvey et al., 2012).
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Figure 4. Test of the emergence of modular sparse codes for a common benchmark test. A, A difficult version of superposition-of-bars problem with asynchronously varying numbers of up to 3
superimposed bars (Földiák, 1990). Each of the 16 bar positions is indicated by a separate color, and its presence in the resulting spike input stream (see middle row) is indicated by a horizontal
colored line above the spike raster. Six of 696 possible composed input patterns are shown for arbitrarily chosen time points indicated by gray vertical lines. The pattern at the bottom of each line
indicates the effective spike input that the network receives at that moment in time (see Eq. 1). B, Emergent modular assembly codes in model M after 400 s. A small assembly of neurons emerges
for each of the 16 bar positions (color code at left axis and background shading). Activity of nonselective excitatory neurons is shown at the bottom. C, Quantitative analysis of the precision of the
emergent assembly codes measured according to van Rijsbergen (1974) for each of the 310 neurons from B (top) on the x-axis. Dark shading represents high precision for encoding the bar position
plotted on the y-axis. D, Typical weight vectors of neurons from the 16 assemblies that had emerged.
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question is whether biologically more realistic softer lateral inhi-
bition, as implemented in our model M, supports the emergence
of sparse modular codes through STDP. Figure 3 demonstrated
already some weak form of modular coding for superpositions of
two spatiotemporal patterns in the input.

Emergent neural codes for the superposition-of-bars problem
(Földiák, 1990) are examined in Figures 4 and Figure 5 for our
model M with 400 excitatory and 100 inhibitory neurons as be-
fore. Superpositions of up to 3 bars were presented through 64
spiking input neurons in a pixel-wise encoding. Each Poisson
input neuron signaled for 50 ms through an increased firing rate
if the corresponding pixel was covered by a bar (each bar covered
8 horizontal or 8 vertical pixels in an 8 � 8 pixel array). Each of
the 16 possible bar positions is indicated in Figure 4A through a
different color. Composed network inputs were created by ran-
domly drawing superposition of bars from the pool of 696 com-
binations of up to 3 bars. Obviously, our model M would not be
able to represent each of these input patterns by a separate neu-
ron. Nevertheless, a complete and noise robust modular code
emerged in M.

A typical spike input stream from the 64 input neurons is
shown in Figure 4A (middle row). The 6 squares at the bottom of
Figure 4A show for 6 representative time points (indicated by
gray vertical lines) the resulting pixel-wise code that represents
the network input (darkness of red color indicates the output
trace of that input neuron at that time, i.e., its output spike train
convolved with the synaptic response kernel). After representing
such a continuously varying input stream for 400 s to the network,
subpopulations of a few neurons (19.4 on average) emerged that
each indicated through their firing the presence of a bar at a partic-
ular position in a noise robust manner through the firing of several
neurons (bar position indicated in Fig. 4B, left, and through a corre-
sponding shading in the background of the spike raster). In this way,
each composite input image is represented through an emergent
sparse modular neural code. This holds despite the fact that the im-
age presentations were not synchronized (i.e., individual bars ap-
peared and disappeared at random time points) and the number of
simultaneously present bars varied.

We quantified the learning performance of our model M in
extended simulations where the network was exposed to this in-
put for 1000 s of simulated biological time. The evaluation based
on 10 runs with independently drawn initial synaptic weight set-
tings and input patterns is shown in Figure 5 (for details, see
Materials and Methods). Figure 5A shows the number of neurons
recruited for modular neural coding during learning. Figure 5B

shows that the network rapidly and robustly learns to represent
all 16 bar positions. In Figure 5C, network coding performance is
plotted against learning time in terms of the F1 measure (Van
Rijsbergen, 2004). This measure is suitable for analyzing the reli-
ability of assembly codes, where several neurons in an assembly
can become selective for the same feature (here: bar position) in
the network input. The F1 measure was separately computed for
each bar position. An F1 measure of 1 for a bar position indicates
that the bar is correctly reported by those neurons that are selec-
tive for a bar at this position (i.e., at least one of the neurons in the
corresponding emergent assembly is active if this bar is present
and all are inactive otherwise). Hence, a high F1 measure indi-
cates a robust encoding of bar positions by excitatory neurons in
M. In Figure 5C, the average F1 measure over all bar positions is
plotted. After, 1000 s of learning, an average F1 measure of 0.87
was attained. The network already represents the input very well
after about 200 s of learning (Fig. 5C), although only �200 neu-
rons have become pattern selective at this point (Fig. 5A). Subse-
quently, the ensembles that represent basic patterns become
larger, but this has only a small impact on network performance.
For comparison, a WTA network with idealized strong inhibition
(as used for Fig. 2H) was trained on the same input. In the WTA
circuit, neurons did not develop a modular code but specialized
on combinations of bars.

Comparing the resulting temporal dynamics of inhibition
with experimental data
We analyzed the resulting temporal dynamics of inhibition in
model M after the learning experiment of Emergent computation
on spike patterns (Fig. 3). Figure 6A shows the time courses of the
average firing rates of excitatory neurons (blue) and inhibitory
neurons (red represents scaled inhibitory rate in green for better
comparison) during an example time interval of 500 ms. Consis-
tent with experimental findings (Okun and Lampl, 2008), inhi-
bition tracks excitation quite precisely, with a small time lag.

We quantified the lag between excitation and inhibition as in
Okun and Lampl (2008) as the temporal offset of the peak of the
cross-correlation function between the excitatory and scaled in-
hibitory firing rates (Fig. 6B, plotted as black line). The resulting
lag of 3 ms is comparable with the measured mean lag of 3.5 ms in
vivo (Okun and Lampl, 2008).

In accordance with the data in Avermann et al. (2012), we
included inhibitory connections within the pool of inhibitory
neurons (I-I connections) in the microcircuit motif model M. We
found that these connections play an important role because they

Figure 5. Quantitative analysis of emergent coding properties in the benchmark task of Figure 4. A, Evolution of the number of bar selective (blue) and nonselective (red) neurons during learning.
B, The number of bar positions represented by the network rises rapidly during learning. A bar position is considered to be represented if at least one excitatory neuron is selective for it. C, Average
F1 measure of pattern-selective neural ensembles during learning. High F1 measure (maximum is 1) indicates emergence of highly selective assemblies of neurons for all bar positions (see Materials
and Methods). In all plots, saturated colors represent mean, and light colored shading represents SD over 10 runs.
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decrease the lag between excitation and inhibition. This is quan-
tified in Figure 6B, where the black line indicates the resulting
correlation between excitation and inhibition in the model, and
the gray line for a variation of the model where all I-I connections
have been deleted. The average lag between excitation and inhi-
bition increased through this deletion from 3 ms (Fig. 3C, black
bar) to 9 ms (Fig. 3C, gray bar). With intact I-I connections,
inhibition is sharpened because early inhibitory responses to ex-
citation reduce subsequent inhibitory spikes with a larger lag. For
further details on these experiments, see Details to simulations
for Figure 6.

Discussion
We have investigated the computational properties of intercon-
nected populations of pyramidal cells and PV� interneurons in
layer 2/3 (Fig. 1), one of the most prominent motifs in cortical
neural networks. Our analysis was based on data from the Pe-
tersen laboratory for layer 2/3 of mouse barrel cortex as summa-
rized by Avermann et al. (2012). We have shown that the
dynamics of inhibition in a simple model M for this microcircuit
motif is consistent with additional experimental data. Figure 1D
shows that the resulting feedback inhibition is consistent with
data from Wilson et al. (2012). Furthermore, inhibition follows
excitation in our model with a lag of �3 ms (Fig. 6A), a value that
is close to the experimentally measured mean lag of 3.5 ms (Okun
and Lampl, 2008). Model M has produced, in addition in Figure
6B, C, a hypothesis for the functional role of synaptic intercon-
nections among PV� cells in this context. It suggests that these
connections contribute to the small value of this lag.

We found that the role of inhibition in this microcircuit motif
cannot be captured adequately by a WTA model. We are propos-
ing to consider instead a variation of the k-WTA model, where
the k most excited neurons are allowed to fire. The k-WTA model
is well known in computational complexity theory and tends to
produce more computational power than the simple WTA model
(Maass, 2000). A closer look shows that the dynamics of the mi-
crocircuit motif can be captured even better by an adaptive
k-WTA model. In this model, the actual number of neurons that
fire in response to a network input may vary.

We have investigated the computational properties that
emerge in model M under STDP for spike input streams that
contain superimposed firing patterns. We found the emergent
capability to disentangle these patterns and represent the occur-

rence of each pattern by a separate sparse assembly of neurons
(Figs. 2–4). Hence, we propose that the ubiquitous microcircuit
motif of densely interconnected populations of excitatory and
inhibitory neurons provides an important atomic computational
operation to large-scale distributed brain computations. Through
this operation, each network module may produce one of a small
repertoire of stereotypical firing patterns, commonly referred to
as assemblies, assembly sequences, or packets of information
(Luczak et al., 2015). If these assembly activations are fundamen-
tal tokens of global cortical computation and communication, as
proposed by Luczak et al. (2015), then cortical columns have to
solve a particular instance of the well-known cocktail party prob-
lem (Cherry, 1953). They have to recognize and separately repre-
sent spike inputs from different assemblies that are superimposed
in their network input stream.

The existence of blind source separation mechanisms of this
type had already been postulated by Földiák (1990) as a prereq-
uisite for avoiding a combinatorial explosion in the number of
neurons that are needed to represent the information contained
in complex spike input streams. We have shown in Figures 3–5
that blind source separation for spike patterns emerges automat-
ically in the microcircuit motif model M through STDP. This
holds even for a more demanding version of the benchmark task
that (Földiák, 1990) had proposed. Disentangling and represent-
ing superpositions of bars not only for a fixed number, but also
for varying numbers of superimposed bars.

Relation to theoretical models for cortical microcircuit motifs
It is natural to ask whether a theoretical analysis can be performed
to better understand the emergence of this fundamental compu-
tational capability. Unfortunately, the analysis from Nessler et al.
(2013) and Habenschuss et al. (2013b) in terms of mixture dis-
tributions is only applicable to WTA circuits. A novel theoretical
analysis in Legenstein et al. (2017) shows that one can relate some
parameters of model M, such as the neural excitability 
 and
various synaptic efficacies in the network, to parameters of a
probabilistic model for softer divisive inhibition. Synaptic effi-
cacy parameters and neural excitabilities used in the simulations
for this article can be related to this probabilistic model.

Related work
Learning in networks of excitatory and inhibitory neurons was also
studied by Litwin-Kumar and Doiron (2014). However, they did not

Figure 6. Time course of excitation and inhibition in model M. A, Time course of the average firing rate of excitatory (blue) and inhibitory neurons (red) during 500 ms after learning in the
experiment shown in Figure 3. Dashed green line indicates a scaled version of the average inhibitory rate for better comparison. B, Cross-correlation function between the excitatory and inhibitory
rate reveals a small lag of �3 ms between excitation and inhibition, comparable with in vivo data. Shown is the cross-correlation with intact connections among inhibitory neurons (black) and
without these connections (gray). Inset, Zoom into the dotted rectangle. C, Quantification of the lag between excitation and inhibition from B. Intact inhibition among inhibitory neurons significantly
reduces the lag between excitation and inhibition.
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study plasticity of synaptic connections from inputs to the network.
Consequently, their model could not learn to perform any feature
extraction from input patterns, which is the primary emergent com-
putational property of model M. Rather, self-organization led in
the model of Litwin-Kumar and Doiron (2014) to an associative
memory-like network behavior. An interesting feature of their
model was the use of a fast Hebbian STDP rule for synaptic
connections from inhibitory to excitatory neurons (iSTDP),
which was in their model essential for maintaining a balance of
excitation and inhibition. We did not find a need for such fast
inhibitory plasticity. Instead, we set the strengths of inhibitory
connections to fixed values. However, it would be interesting to
study which types of iSTDP would lead to a self-organization of
inhibitory dynamics that also supports blind source separation.

A soft WTA model for cortical circuits with lateral inhibition
was previously studied by de Almeida et al. (2009). Consistent
with our model, the authors arrived at the conclusion that lateral
inhibition in cortical circuits gives rise to an adaptive k-WTA
mechanism, rather than a strict k-WTA computation. However,
because it was essential for their study that the circuit operates in
the limit of no noise, their model is hard to compare with the
stochastic model that we have examined. Further, the authors did
not incorporate synaptic plasticity into their model, which is the
focus of this paper.

Model M is also somewhat similar to other models (Haben-
schuss et al., 2013a; Nessler et al., 2013; Kappel et al., 2014).
However, these studies did not model inhibition through feed-
back from inhibitory neurons. Instead, inhibition was provided
in a symbolic manner as a normalization of network activity,
leading to strict WTA behavior.

The emergent computational operation in our model, the ex-
traction of superimposed components of input patterns, is
closely related to ICA (Hyvärinen et al., 2004). Previous work in
this direction includes the classical work by Földiák (1990) and
implementations of ICA in artificial neural networks (Hyvärinen,
1999). It was shown by Bell and Sejnowski (1997) that ICA pre-
dicts features of neural tuning in primary visual cortex. A more
recent model for a similar computational goal was proposed by
Lücke and Eggert (2010). This model is more abstract and only
loosely connected to cortical microcircuit motifs. ICA with spik-
ing neurons was previously considered by Savin et al. (2010). The
authors derived theoretical rules for intrinsic plasticity (i.e., rules
for homeostasis of neurons) which, when combined with input
normalization, weight scaling, and STDP, enable each neuron to
extract one of a set of independent components of inputs. Al-
though closely related in terms of the computational function,
the data-based form of inhibition in our model M has quite dif-
ferent features. In Savin et al. (2010), the main purpose of inhi-
bition is to decorrelate neuronal activity so that different neurons
extract different features. Sparse activity is enforced there by in-
trinsic plasticity. Intrinsic plasticity in their model is thus re-
quired to work on a fast time-scale (the time-scale of input
presentations). In contrast, sparse network activity in our data-
based model M is enforced by inhibition. It is known that feed-
back inhibition is very fast and precise (Okun and Lampl, 2008),
although it is unclear whether this is also true for intrinsic plas-
ticity (Turrigiano and Nelson, 2004).

Experimentally testable predictions of our model
A main prediction of our model (Fig. 3) is the emergence of blind
source separation of superimposed spike patterns. In addition,
our model predicts that each of the identified basic patterns of the
spike inputs becomes represented through some separate assem-

bly of pyramidal cells. Our model predicts that this effect takes
place for any type of network input (e.g., also for artificially gen-
erated stimuli that the organism is never exposed to in a natural
environment). This hypothesis can be tested experimentally (e.g.,
through optogenetic control).

In addition, our model predicts a specific role of synaptic
connections among PV� inhibitory cells (Fig. 6). They contrib-
ute to the experimentally found small time lag of just a few mil-
liseconds by which inhibition trails excitation. This prediction
can be tested experimentally by silencing synaptic connections
among PV� cells and measuring the impact on the lag between
excitation and inhibition.
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