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Abstract
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often
ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic
inference. Several models have been proposed that aim at explaining how probabilistic inference could be
performed by networks of neurons in the brain. We propose here a model that can also explain how such neural
network could acquire the necessary information for that from examples. We show that spike-timing-dependent
plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition
a fundamental building block for that: probabilistic associations between neurons that represent through their
firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive
manner the resulting network is enabled to extract statistical information from complex input streams, and to build
an internal model for the distribution p� that generates the examples it receives. This holds even if p� contains
higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation.
Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision
making, and other types of probabilistic inference.
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Introduction
A large number of experimental data from neuroscience

and cognitive science suggest that the brain performs

probabilistic inference for a large number of probability
distributions p� that describe different aspects of the

Received May 4, 2015; accepted March 3, 2016; First published March 25,
2016.
1The authors declare no competing financial interests.
2D.P. and W.M. designed research; D.P. analyzed data; D.P. and W.M.

performed research; D.P. and W.M. wrote the paper.
3This work was partially supported by the European Union project FP7-

604102 (Human Brain Project). We thank Stefan Habenschuss for helpful
comments on an earlier version of the paper.

Correspondence should be addressed to Wolfgang Maass, Graz University
of Technology, Institute for Theoretical Computer Science, Inffeldgasse 16b/1,
8010 Graz, Austria. E-mail: maass@igi.tugraz.at.

DOI:http://dx.doi.org/10.1523/ENEURO.0048-15.2016
Copyright © 2016 Pecevski and Maass
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International, which permits unrestricted use, distri-
bution and reproduction in any medium provided that the original work is
properly attributed.

Significance Statement

Most memory models focus on pattern completion as computational operation for memory recall. However,
obviously our brains can also answer questions that involve diverse experiences in unexpected ways.
Consider for example the question whether we went with Mr. X more often to lunch than to dinner, or
whether Mr. X would probably like the new restaurant Z. These queries could not be anticipated during the
formation of memory traces. Still we can answer such queries (which are special cases of probabilistic
inference: estimation of a posterior marginal) without any effort. We propose a model based on experimen-
tally observed rules for synaptic plasticity (STDP), which explains how a network of spiking neurons can
acquire this capability.
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environment of the organism and its interaction with the
environment (Griffiths and Tenenbaum, 2006; Bonawitz
et al., 2014). In models for probabilistic inference in net-
works of neurons one has so far (with the exception of
Siegelmann and Holzman, 2010; see Discussion) pro-
grammed the underlying distribution p� into the architec-
ture and parameters of the network model. However
brains have to learn internal models p of salient distribu-
tions p� in their environment from examples that are gen-
erated by p�. We present in this article the first model that
explains how networks of spiking neurons could learn
such internal models p through experimentally supported
local plasticity rules. Furthermore, we show how a net-
work of spiking neurons can store the learnt information in
a way that makes it readily accessible for probabilistic
inference.

Two different approaches how networks of neurons in
the brain could execute probabilistic inference have been
proposed. One approach emulates an arithmetical (deter-
ministic) algorithmic method for performing probabilistic
inference through a suitable distributed organization of
sums and products of probabilities (referred to as belief
propagation or message passing; Steimer et al., 2009).
The other approach for emulating probabilistic inference
in networks of spiking neurons is based on the assump-
tion that a network of neurons can “embody” a distribu-
tion p in such a way that it can generate samples from p.
Probabilistic inference for p can then be performed
through simple operations on these samples, for example
the computation of a posterior marginal just requires to
look at the distribution of the random variable of interest in
these samples. This approach is known in computer sci-
ence as Markov chain Monte Carlo (MCMC) sampling,
and is widely used to perform probabilistic inference also
for complex distributions p for which belief propagation
approaches have no guarantee to provide correct an-
swers. Whereas the previous approach prefers a deter-
ministic network, where every stochasticity is detrimental
for the performance, this second approach requires an
inherently stochastic network of spiking neurons (Buesing
et al., 2011). It has been argued that the dynamics of
networks of neurons in the brain is in fact highly stochas-
tic, both on the basis of inherently stochastic features of
its components (such as stochastic synaptic release), and
on the basis of trial-to-trial variability in neural recordings
and observed variability in behavioral outputs.

The learning model that is presented in this article ties in
to this second approach, and shows that stochastic net-
works of neurons are able to automatically absorb the
relevant statistical information from examples that they
receive. As a result, we have now one first complete
theory for the emergence of probabilistic inference in
networks of spiking neurons through learning. We focus in
this article on somewhat idealized models for spiking
neurons and plasticity rules, which allow us to give rigor-
ous proofs for the convergence of learning.

We first show how an extension of an ubiquitous net-
work motif of cortical microcircuits, interconnected pop-
ulations of pyramidal cells with lateral inhibition (Winner-
Take-All (WTA) circuits; Douglas and Martin, 2004;

Nessler et al., 2013), gives rise to the basic building block
for absorbing probabilistic information from examples.
The output neurons of an array of WTA-circuits form the
hidden layer of a three-layer feedforward learning module,
to which we refer as a “stochastic association module.”
We show that such a module can learn through spike-
timing-dependent plasticity (STDP) and plasticity of the
excitability of neurons (intrinsic plasticity) stochastic as-
sociations between the random variables that are en-
coded by the firing of neurons on its first and third layers.
The module can learn this probabilistic information from
the statistics of activation and coactivation of these neu-
rons when the network processes examples that are pro-
vided by its environment. An important second finding is
that recursive combinations of this network module can
learn even complex probabilistic relationships between
large numbers of random variables. This network learning
capability is in fact universal in the sense that the under-
lying theory implies a proof of principle that an approxi-
mation to any distribution p� over discrete random
variables can be learnt by exposing the network to exam-
ples drawn from p�. In fact, one can show that if the
network is too small or has too few connections for learn-
ing a close approximation of p�, it will still strive toward
approximating p� as well as it can, given its limited re-
sources. The understanding of this learning process is
supported by the theory of Expectation Maximization
(EM).

Results
Previous models for probabilistic inference in networks

of spiking neurons have shown that one can program the
parameters (eg, conditioned probability tables) of a given
distribution p� over discrete random variables into a net-
work of idealized models for spiking neurons, provided
that the network has a suitable architecture. We provide in
this article a proof of principle that these parameters of p�

do not have to be programmed into the network: they can
be learnt by a network � of spiking neurons via simple
local plasticity rules from examples ỹ that are generated
by p�. This does not hold for every neural network �, but
like in any existing model for probabilistic inference in
neural networks, only under suitable assumptions about
the architecture of �. This result provides a proof of
principle that networks of neurons in the brain can not
only perform probabilistic inference for distributions p�

whose parameters are specified in the genetic code, but
also for distributions p� that an organism encounters in its
environment.

The underlying theory of EM does not guarantee that p�

can be learnt perfectly. However it implies that a network
� with a suitable architecture is expected to make prog-
ress in creating an increasingly more accurate internal
model p for p� when it receives more and more examples
that are generated by p�. EM does not guarantee that the
internal model p converges to p�, but it implies that the
network learning process cannot “run around in circles”
where p moves forth and back between better and worse
approximations of p�. This learning result is general inso-
far as it shows that internal models p can be learnt by a
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network � with a suitable architecture for external distri-
butions p� over any number of discrete random variables,
with arbitrary, also higher-order, dependencies among
these random variables. However, although the architec-
ture of � will obviously have to depend on the number of
random variables of p�, we show that it suffices to assume
that it consists of recursive interconnections of different
copies of a simple generic network motif, to which we
refer as a stochastic association module. This network
motif is a three-layer feedforward network of excitatory
spiking neurons with lateral inhibition on the hidden layer
(see Fig. 2). We show that this simple microcircuit motif
can be viewed as an atomic learning module, that extracts
via STDP and intrinsic plasticity from examples probabi-
listic associations between input variables x and output
variable z that are encoded through population coding on
its input and output layer. An example is presented in
Figure 3. We will then show in the following subsection
that this atomic learning module can be recursively com-
bined to form a network that automatically approximates
through STDP and intrinsic plasticity arbitrarily complex
distributions p� over many discrete random variables from
examples generated by p�. In other words, this network
learns an internal probabilistic model p for its stochastic
environment p�. Furthermore, this network has the prop-
erty that it can readily apply this internal model by carrying
out probabilistic inference for p through its inherent sto-
chastic dynamics. Examples are presented in Figures 6–9.

The neurons in our models are stochastic integrate-
and-fire neurons, which have been shown to match bio-
logical data quite well (Jolivet et al., 2006; Mensi et al.,
2011; Gerstner et al., 2014). We assume that a neuron has
at any time t the instantaneous firing probability density

��t� �
1
�

exp �u�t��, where u(t) is its membrane potential
and � is a time constant. When it fires a spike, the neuron
enters an absolute refractory period of duration � after
which it resumes its stochastic firing. The membrane
potential u�t� � �

i
wi�i�t� � b is assumed to be the sum of

the PSPs �i�t� elicited by the spikes from its presynaptic
neurons, where wi is the synaptic efficacy of the i-th
synapse (and b is the bias of the neuron). The theoretically
best tractable shape of a PSP �i�t� would be a step
function of length �. However, we show in Examples 1 and
2 that the relevant learning properties also hold for
�-shaped EPSPs that are commonly considered in theo-
retical neuroscience. On the side, we would like to point
out that for biological neurons the EPSPs vary from
shapes with a pronounced initial peak to shapes with
smooth hills in dependence of the distance of the synapse
to the soma (Williams and Stuart, 2002), and obtain yet
other shapes if amplified through NMDA or Ca spikes
(Larkum et al., 2009).

We use a simple STDP rule, which has the advantage of
being theoretically tractable. Let w be the weight of the
synapse at the connection from some presynaptic neuron
�pre to a postsynaptic neuron �post. At each postsynaptic
spike of neuron �post at time t this weight undergoes an
update: w ¢ w � 	
w, where 	 is the learning rate and


w � �e�(w�w�) � 1, if �pre fired in [t � �, t] ,
�1, if �pre did not fire in [t � �, t] . (1)

The parameter w– is a baseline parameter in the learning rule,
and � is a parameter that corresponds to the duration of
postsynaptic potentials (PSPs). Figure 1A shows the result-
ing STDP curve. The rule exhibits LTP only for pre-before-
post spiking within a time window of duration �, otherwise it
exhibits LTD. The causal part of the STDP window curve has
the same shape as the PSP kernel, which is similar to other
theoretically derived plasticity rules (Toyoizumi et al., 2005;
Pfister et al., 2006). The properties of this plasticity rule were
studied by Nessler et al. (2013). It was shown there that it
supports learning of an internal probabilistic model of the
inputs in a WTA network. It was also shown there that the
weight dependence of �w in Equation 1 fits quite well to
experimental data. Figure 1B shows that the shape of the

Figure 1. STDP curves of the synaptic plasticity rule. A, The STDP curves show the weight change for a presynaptic spike at time
tpre and a postsynaptic spike at time tpost, for different time differences tpost – tpre. The red curve represents STDP for the simple rule
that is used in the theoretical derivations. In computer simulations, we used also an STDP rule shown with the blue curve, that has
a smoother, more biologically realistic shape. B, The change of the synaptic efficacy after a stimulation protocol where both the
presynaptic and postsynaptic neuron fire at a frequency of 20 Hz, for different time differences �t between a postsynaptic and
presynaptic spike. The STDP curve shifts more toward LTP, and depression is no longer time independent due to overlapping PSPs
(Nessler et al., 2013, their Fig. 4). This STDP curve is quite similar to experimental data (Sjöström et al., 2001).
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STDP curve according to Equation 1 looks like the commonly
considered one when applying an intermediate pairing fre-
quency of 20 Hz (Sjöström et al., 2001 shows experimental
data on the dependence of the shape of the STDP curve on
the pairing frequency).
It is well known that the excitability of neurons changes in
dependence of their history of firing activity (Daoudal and
Debanne, 2003; Cudmore and Turrigiano, 2004). We model
this intrinsic plasticity of neurons through a simple rule ac-
cording to which the bias b of a neuron changes at each
spike of the neuron according to b ¢ b � 	� 
b, with:


b � � e�(b�b�) , (2)

where 	� is a learning rate and b– is a baseline parameter.
In addition, we assume that the bias exhibits constant
decay according to the differential equation:

db
dt

� �	� . (3)

A network module for learning stochastic
associations
The atomic learning module in our model is a simple
microcircuit motif that learns associations between some
array of random variables x � �x1, . . . , xI� and another
random variable z from examples �x, z� that are presented
to the network. The variables x and z could for example
represent different higher-level features of an image. Or
the variables x could represent higher level features of
some visual stimulus, and the variable z a feature of a
simultaneously occurring auditory stimulus. More for-
mally, we assume that the network is exposed to exam-
ples �x, z� consisting of concrete assignments of discrete
values to the variables x and z, that are drawn from some

unknown distribution p�(x, z). We want to determine under
what conditions a network module is able to create au-
tonomously from exposure to these examples an internal
model p(x, z) for p�(x, z), that approximates p� when the
number of examples grows. Note that in general the same
input x will occur in combination with different values z(1),
z(2), . . . of z in the training examples, and the goal of
learning is to learn for each value z(i) the probability that it
occurs for input x. Hence, the learning performance will
not be evaluated by counting errors, ie, deviations from a
target output value. Rather, it will be evaluated by how
well the network reproduces for any input value x the
distribution of output values z.

We show that a three-layer network of spiking neurons
with the architecture shown in Figure 2 can accomplish
this learning task through STDP on synaptic connections
from the first to the second layer and intrinsic plasticity of
excitatory “hidden” neurons � on the second layer. The
weights of synaptic connections between the second and
third layers are assumed to be fixed. These weights are
assumed to have a large value, so that the firing of a
neuron � on the second layer causes with very high
probability the firing of the neuron on layer 3 to which it is
connected.

We assume that each of the random variables x and z is
represented by a population of neurons (“population cod-
ing”), with each value of the variable encoded by a sep-
arate neuron in the population, as indicated at the top of
Figure 2 for the variables xi, and at the bottom for the
variable z. The firing of a particular neuron �im in the
population coding of variable xi encodes the fact that xi

assumes the value m in the currently presented example.
Similarly the firing of neuron l in the population � for the
variable z encodes the value l of this variable (Fig. 2).

Figure 2. Structure of a stochastic association module that is able to learn probabilistic associations between multinomial variables
x � �x1, . . . , xI� and z through STDP. Populations of neurons �i (i � 1, . . . , I) on the first layer encode the values of input variables
xi. The population of neurons � on the third layer encodes the value of z. The hidden layer consists of populations of excitatory neurons
�l (I � 1, . . . , L) that are subject to lateral inhibition. STDP applied to the weights wim, j

l of synaptic connections from the first layer to
the neurons � on the hidden layer enables the network to approximate for any network input x through the firing probability of neurons
on the third layer the distribution of values z that were associated with x in previously processed examples �x, z�.
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Finally, we assume that an example �x, z� is presented to
this three-layer network during learning in the following
manner: Those neurons in the first layer that represent the
given values of the variables x are made to fire at a high
rate, whereas the other neurons in the first layer are
inhibited and kept silent. In addition, if variable z has value
l in this example, all hidden neurons outside the corre-
sponding subpopulation �l are inhibited, so that they
cannot fire (actually, it would suffice to block STDP for
these neurons). An alternative view is that only a selected
subset of neurons is disinhibited. New experimental data
(for review, see Caroni, 2015) suggest that in fact inhibi-
tion of synaptic plasticity (especially via Somatostatin-
positive neurons) and disinhibition via VIP interneurons
(Letzkus et al., 2015) play an important role in the control
of plasticity in cortical microcircuits.

When the network does not receive examples, the neu-
rons in this network module fire according to the stochas-
tic dynamics of the model, and no plasticity is assumed to
occur. We present in Materials and Methods a rigorous
proof that after learning the distribution of output values z
for a given network input x approximates in this stochastic
association module the conditional distribution p��z�x� of
the joint distribution p��x, z� from which the values of z
and x are drawn in the training examples. In fact, one can
view this module from a theoretical perspective as an
implicit generative model p�x, z; �� for the examples �x, z�,
and one can prove that the network module performs a
stochastic search (stochastic online Expectation Maximi-
zation) that strives to minimize the Kullback–Leibler diver-
gence DKL�p��x, z��p�x, z; ��� between the external
distribution p� from which the examples are drawn and its
internal model p�x, z; �� (see Materials and Methods, The-
orem 1 and Theorem 1�). The implicit generative model of
the module is encoded in the synaptic weights and biases
of the � neurons.

Because the learning module represents the full joint
distribution p�x, z; ��, not just the conditional distribution
p�z�x; ��, it is the joint distribution that is considered to be
the internal model of the learning module. This is more
than just representing p�z�x; �� as the module also repre-
sents the distribution p�x; ��. The distribution p�x; �� is
represented in a sense that all probability values p�x; ��
for each value of x can be calculated from the synaptic
weights and biases of the � neurons. This can be done by
first calculating p�x, z; �� for each value of z based on the
probabilistic model (see Materials and Methods), and then
marginalizing out z. Another reason why p�x, z; �� is con-
sidered as internal model is that the learning rules are
based on minimizing the Kullback–Leibler divergence
between the internally represented joint distribution
p�x, z; �� and the target distribution p�(x, z) of the exam-
ples. In other words, the module implements generative
model learning. The conditional distribution becomes im-
portant after learning, when the module performs its func-
tion realized through the firing of the output neurons that
approximates p��z�x). This functional property of the
learning module enables composing networks of modules
that can learn larger distributions, as described in the
section “Recursive combinations of the basic learning

module enable efficient learning of complex distributions
from examples.”

One may wonder why a two-layer network would not
suffice for learning such stochastic associations between
random variables x and z. The simplest approach would
be a model without hidden neurons, where the strengths
of the synaptic connections between the neurons in the
population codes for x and z encode the probability that a
vector x is encountered in conjunction with a particular
value of z. But this approach would restrict very much the
types of internal models p(x, z) that the network could
learn. In particular, it could not handle a situation where
the distribution p�(x, z � l) is multimodal, ie, when there
are multiple modes in the distribution of x that are likely to
occur in conjunction with a specific value l of z. For
example in Figure 3B for z � 2, the distribution
p�(x, z � 2) has two modes, ie, x1 � 1 can occur in
combination with x2 � 2, and x1 � 2 in combination with
x2 � 1 (whereas the assignments where x1 � x2 do not
occur). The reason for this restriction to unimodal distri-
butions is that the neuron l that represents z � l in the
population code for z would have to represent through the
implicit generative model that is defined by the weights of
afferent synapses and its excitability the marginal distri-
bution p�(x, z � l). However, a single linear neuron can
only represent one mode of a probability distribution of x.
However if one considers more complex neuron models
with nonlinear dendritic processing, they can in principle
also represent multimodal distributions (Pecevski et al.,
2011, their Figs. 4 and 5; Legenstein and Maass, 2011).
Hence, with such more complex neuron models a more
shallow learning network could potentially be used as a
learning module in our architecture.

The three-layer circuit in Figure 2 can be viewed as a
minimal model for allowing multimodal distributions of x
to be associated with a value of z. In fact, if one allows
sufficiently many hidden neurons �, this representation
becomes arbitrarily precise. These hidden neurons � rep-
resent combinations of features represented through the
neurons �i that encode the variables x. This mixed coding
is reminiscent of experimental data on neurons in the
cortex (Rigotti et al., 2013; Mante et al., 2013).

We exploit here a generic property of STDP in WTA
circuits, that was made explicit by Nessler et al. (2013)
and Habenschuss et al. (2013b): if the neurons in the
populations for the variables xi are synaptically connected
to a set of neurons � in a WTA circuit, and these synaptic
connections are subject to STDP, then the neurons �
learn automatically a multimodal internal model for the
distribution of the variables x. The learned probabilistic
model is a mixture of multinomials. More precisely, each
WTA neuron � specializes to fire in response to input
patterns from one mode of p�(x). This specialization is
produced by the plasticity rules (Eqs. 1, 2), which, when a
neuron fires in response to some input pattern, adapt the
weights and biases of the neuron so that in the future it
fires with higher probability in response to the same pat-
tern. At the same time, the competition enforced by the
lateral inhibition between the � neurons tends to prevent
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Figure 3. Learning results for Example 1. A, Structure of the learning module. There are two subpopulations �1, �2 of hidden neurons
that both receive inputs from the two populations on layer 1 that encode the input variables x1 and x2. Each subpopulation of hidden
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that multiple WTA neurons specialize on the same mode
of p�(x).

This emergent property of STDP in WTA circuits was
considered by Nessler et al. (2013) and Habenschuss
et al. (2013b) in a setting where no association of x with
other variables z needed to be learnt. In order to learn
associations with z, we apply this mechanism in parallel
for every possible value of z. In particular, we assume that
in the population � of WTA neurons there are disjoint
subpopulations �l for each possible value l of z. The
subpopulation �l projects to the l neuron with strong
synaptic weights so that a spike of a neuron in �l causes
also the neuron l to fire (Fig. 2). As the WTA subcircuit �l

is allowed to fire only for examples from p��x�z � l) it
learns to approximate this distribution.

Intrinsic plasticity of the excitability of the hidden neu-
rons �l is also essential for successful learning. As they
are not firing during a presentation of example �x, z� with
z�l, the only adaptation in them for such example is a
decay of their intrinsic excitabilities (Eq. 3). This supports
learning of a representation of the marginal probability
p�(z � l) in the biases of the neurons in �l. Hence, the
population �l learns a probabilistic model p�x, z � l; ��
of the target probability distribution p�(x, z � l) �
p��x�z � l) p�(z � l). In this way all populations �l together
learn a generative model p�x, z; �� for the joint distribution
p��x, z� of the presented examples.

Further details can be found in Materials and Methods,
section “Theoretical properties of the basic learning mod-
ule (stochastic association module) and its plasticity.”

Example 1: the learning module extracts complex
stochastic associations from examples
We illustrate the inner workings of the learning module in
an example where the task is to learn an internal model of
an example target distribution p�(x1, x2, z) over binary RVs.
This learning task is nontrivial since the distributions of
values of x that are stochastically associated with the
values z � 2 and z � 1 according to p� are multimodal
(Fig. 3B, gray bars). After learning, the output neurons of
the module should fire for input x according to the con-
ditional probability p��z�x�. The structure of the network
module is depicted in Figure 3A. It has two hidden neu-
rons in the populations �1 and �2, which learn the two

modes of p�(x, z � 1) and the two modes of p�(x, z � 2),
respectively (Fig. 3B). The learning period of the module
lasted 1200 s of simulated biological time. During learn-
ing, examples from p�(x, z) were presented to the module
for 100 ms each. After learning, each WTA subcircuit �l

had in fact acquired an approximation of the distribution
p�(x, z � l), as can be seen in Figure 3B. The learning of
the internal model in the WTA subcircuit �2 is achieved
through a process where each hidden neuron specializes
to represent one of the two modes of p�(x, z � 2) that are
shown in Figure 3B. For the subcircuit �1 the results are
similar (not shown). The learning of an approximation to
p�(x, z) as an internal model automatically produces an
approximation of the conditional p��z�x� by the firing
probabilities of the output neurons (Fig. 3D). A typical
resulting firing pattern is shown in Figure 3F.

Recursive combinations of the basic learning
module enable efficient learning of complex
distributions from examples
The stochastic association module shown in Figures 2
and 3 is self-consistent in the sense that the input vari-
ables xi are encoded through population coding in the
same way as the output variable z. Hence, one can recur-
sively combine these modules so that the output popula-
tion of one module becomes part of the input population
of another module (Fig. 4). The resulting more complex
network is then not only able to learn a single probabilistic
association between RVs, but many such associations
simultaneously. The basic learning modules form here not
only chain connections, but typically also cycles, where
the RV that is the output of the second module is simul-
taneously an input to the first module in the chain (like the
variable yk in Fig. 4).

Elementary results from probability theory imply that
such recursive combinations of probabilistic associations
between RVs have a very powerful, in fact universal,
representation capability: the dependency structure of
every probability distribution p� over discrete RVs can be
represented as a network of probabilistic associations
between each of the RVs yk and a subset of the other RVs
(Bishop, 2006). More precisely, in the representation of an
arbitrary distribution p� one has a subnetwork (module) for
each RV yk of p� that has yk as output variable and the

continued
neurons projects to a different neuron in the population coding of the variable z on layer 3. B, Left, The target probability distribution
p��x, z� of the examples (grey bars) and the internal model p�x, z; �� (blue bars) that is extracted from the examples by the hidden
neurons. The learned probabilities match the target probabilities quite well. Right, The two mixture components
p�x, z � 2, �1

2 fires ; �� and p�x, z � 2, �2
2 fires ; �� represented by the hidden neurons �1

2 and �2
2 in the subpopulation �2. Each has

specialized to represent one of the two modes. The resulting internal model p�x, z � 2; �� is a sum of these two mixture components.
C, Same as the plots on the left in B, but for a larger network where four hidden neurons were used in each subpopulation �1, �2 of
hidden neurons. This larger size of the subpopulations is suggested by the network construction from Pecevski et al. (2011), because
the vector x can assume four different values. However, a comparison with C shows that smaller subpopulations suffice here for good
learning performance. D, Left, The target probabilities p��z�x� (grey bars) compared with the learned firing probabilities of the output
neurons 1 and 2 that represent p�z � 1�x; �� and p�z � 2�x; �� respectively. Right, The probability of firing in response to different
inputs x for the two hidden neurons �1

2 and �2
2 that drive 2 to fire. E, Same as the left plots in D, but for the larger network as in C.

Again, one sees that fewer hidden neurons are needed here than in the construction of Pecevski et al. (2011). F, Firing activity of the
hidden neurons and output neurons in the module in response to two different input patterns �x1, x2� � �1, 1� and �x1, x2� � �2, 1�. The
firing rates of �1

2 and �2
2 correspond to their probabilities of firing shown in D.
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random variables in the Markov blanket yB(k) of yk as input
variables. The Markov blanket defines a set of random
variables so that conditioned on their values, yk becomes
independent from all remaining variables. For example, if
p� can be represented by a Bayesian network, it suffices
to include in yB(k) the parents of yk together with the
children of yk, and their coparents.

Whereas the classical results from probability theory
only imply that one can represent any distribution p� over
discrete RVs as such recursive network of probabilistic
associations, it was shown in (Buesing et al., 2011;
Pecevski et al., 2011) that any such target distribution p�

can also be represented as stationary distribution of a
network of spiking neurons, if suitable parameters
(weights and biases) are programmed into the network.
One only needs to assume that every spike of a neuron
that participates in the population coding for one of the
RVs yk sets the value of yk for a time period of length � (�
standard length of an EPSP) equal to the value encoded
by this neuron. Then a suitably programmed network � of
spiking neurons that results from recursive combinations
of the basic module from Figure 2 can represent any
distribution p� through its spontaneous firing activity
(provided that each module for a RV yk represents

p��yk�yB�k�� as described above). If one decodes the cur-
rent firing activity in the network � at any time t by setting
each RV yk to that value that is indicated by the most
recent firing of a neuron in the population code for yk, the
resulting distribution of value assignments to the
RVs y1, . . . , yK of p� over time is exactly the one given by
p�. In other words, p� is the stationary distribution of the
Markov chain that is defined by this network � of sto-
chastically firing neurons. On the side, we would like to
point out that this holds only after some initial “burn-in”
phase, during which the distribution of network states
becomes independent of the initial network state (Haben-
schuss et al., 2013a).

We now show (Fig. 5) that if one takes the previously
analyzed learning capability of the basic network modules
�k into account, the composed spiking network � learns
from examples ỹ�n� of value assignments to �y1, . . . , yK�
drawn from p� values � for its weights and biases that
provide an approximation p�y; �� of p�(y). This approxi-
mation p�y; �� is represented by the network in the form of
its stationary distribution of network states that result
from its spontaneous firing activity. In order to achieve
that, one just needs to allow each learning module �k to
learn in parallel from those components of the example

Figure 4. Recursive combination of learning modules. The learning module for the RV yk at the bottom has the same structure
as the modules shown in Figures 2 and 3. For learning complex distributions p� its input variables x1, . . . , xl form a Markov
blanket of yk. Each variable xi is encoded by the same population coding as the output variables of learning modules, and can
therefore be produced by the output of another learning module (as shown for the RV xl). As here yk is in the Markov blanket
of xl, yk appears among the input variables of the upper module, and its corresponding input neurons are the same as the output
neurons of the lower module.
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ỹ�n� that concern the random variables that it represents
in the previously described manner. More precisely, each
module �k receives the components �ỹk�n�, ỹB�k��n�� of
each example ỹ�n� that is presented to the network (for
n � 1, 2, . . . ). The network � learns an approximation of
p� from examples ỹ�n� without any additional computa-
tional overhead or teaching signals. Each subnetwork �k

learns through STDP and intrinsic plasticity an internal
model pk�yk, yB�k�; �k� of the marginal distribution
p��yk, yB�k��, as described in the preceding section.

One can rigorously prove that the sum over k of Kull-
back–Leibler divergences between the marginal distribu-
tions p��yk, yB�k�� and the learnt internal models
pk�yk, yB�k�; �k� converges through these adaptive pro-
cesses to a local minimum (see Materials and Methods,
Theorem 2). In this sense the spiking network � learns an
approximation p�y; �� of the distribution p��y�.

As long as the RVs y are not split into inputs and
outputs, this learning process is a typical example of
unsupervised learning (see the definition in standard
textbooks, such as Bishop (2006); Murphy, (2012); Haykin
(2009)). Characteristic for unsupervised learning is that
learning progress is measured in terms of the deviation
between the learnt distribution p�y; �� (� learnt internal
model) and the distribution p��y� from which the examples
are generated. One also refers to this type of learning as
density estimation.

Unsupervised learning has previously already been
studied in a large number of artificial neural networks
models: from Boltzmann machines (Ackley et al., 1985),
neural belief networks (Neal, 1992), up to deep learning
networks (Salakhutdinov and Hinton, 2012; Bengio et al.,
2015). One major motivation of this work has been to
discover learning principles of the brain, based on the
argument that supervision for learning is rare in the brain.
Our learning model provides a complementary approach,
with the main difference being that it is based on networks

of spiking neurons, rather than artificial neural networks,
and that it uses STDP as primary plasticity mechanism. A
major difference between the learning process in Boltz-
mann machines and our model is that our model does not
require separate sleep phases. Its learning process is
more similar to parameter learning in Bayesian networks
(Koller and Friedman, 2009, Chapter 17). There the learn-
ing process also amounts to learning for each RV sepa-
rately and in parallel from examples the conditional
probability table for each RV, conditioned on the values of
its parents. Such learning of a conditional probability table
is analogous to the learning in a stochastic association
module, except that such association module considers
all RVs in the Markov blanket of a given RV, rather than
just its parents. However, our learning approach is more
general than parameter learning in Bayesian networks
insofar, as it also encompasses aspects of structure
learning (Koller and Friedman, 2009, Chapter 18), see
section below, “Small numbers of hidden neurons in the
learning modules often suffice.”

Like other generative models for unsupervised learning,
our model also aims at extracting underlying structure in
the training examples (Hinton et al., 1995), so that it can
even generate fake examples that share the discovered
underlying structure (Fig. 7). On the level of higher cortical
areas such unsupervised learning could detect relation-
ships between different types of features (Figs. 6–9),
between object representations in different sensory mo-
dalities, or how an action modifies the environment.

In contrast to the previously mentioned paradigms for
unsupervised learning in neural networks, and similar to
parameter learning in Bayesian networks, the architecture
that we are proposing has a clear modular structure (Fig.
5). It consists of stereotypical network motifs �k that each
try to determine for one of the RVs yk to what extent
values for yk can be predicted from the values of other
RVs (more precisely: the RVs in its Markov blanket yB�k�).
As soon as this prediction becomes better than chance,
the learning module �k has discovered some underlying
structure in the examples ỹ. One curious feature of this
local prediction learning is that the learning process looks
from the perspective of the learning module �k like super-
vised learning, because ỹk is the prediction target for input
ỹB�k� to this module, and both ỹk and ỹB�k� are part of a
training example ỹ. This holds in spite of the fact that the
whole examples ỹ are in general presented to the network
without any supervision, ie, without any associated target
output. This feature of the learning process is shared with
parameter learning in Bayesian networks, where the learn-
ing of a conditional probability table for a RV y may look
locally like supervised learning, because both the values
of its parent nodes and the value of y are extracted from
each training example.

Boltzmann machines and probabilistic graphical mod-
els such as Bayesian networks that are usually trained
through unsupervised learning can, however, also be
used for supervised learning (Hinton et al., 2006). In that
case, the RVs y are split into two subsets yI and yO, ie, the
target output ỹO is combined with the vector ỹI to form the

Figure 5. Schematic description of the learning approach. Se-
quence of examples ỹ�0�, ỹ�1�, . . . drawn from the target distri-
bution p��y� are presented to the neural network �. The neural
network is composed of learning modules �k, one for each RV yk.
�k learns from the components �ỹk�n�, ỹB�k��n�� of examples ỹ�n�
an approximation pk�yk, yB�k�; �k� of p��yk, yB�k�� as indicated in
Figures 2 and 3. The theory based on EM ensures that the total
network � learns in this way an approximation p�y; �� of p��y�.
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examples ỹ � �y I, yO� used for training. The goal is to learn
a mapping from yI to yO, ie, to learn the distribution
p��yO�y I�. We consider here the general case where the
mapping from inputs to target values is stochastic, either
due to present noise in the target values or their inherent
stochastic relation to the inputs. Typical classification
problems where the mapping is assumed to be a deter-
ministic function represent a special case of the stochas-
tic formulation. For example, for supervised learning of
image categorization in Boltzmann machines one simply
adds the target category like an additional feature to the
feature vector of an image. The learning process remains
exactly the same (ie, unsupervised learning from exam-
ples ỹ), and for learning one does not have to tell the
network which variables are inputs and which are outputs.

The only difference is that after learning only the compo-
nents yI of new test examples are provided and the
network has to produce a guess for values of the com-
ponents yO. The same principle applies to the neural
network in our approach: If y is partitioned into yI and yO

it can learn the input–output mapping by learning an
internal model of the full joint distribution p��y I, yO� of the
examples. After the learning process has finished, the
network can estimate the probabilities of the target values
p��yO�y I� given a particular input yI. However, note that, as
it learns the joint distribution, the network can additionally
also answer any other probabilistic inference queries
based on the probability distribution p� of the examples
(see section “Flexible retrieval of learnt statistical informa-
tion through probabilistic inference”).

Figure 6. Description of the perceptual explaining away example. A, The two visual stimuli used in the experiment from Knill and
Kersten (1991). Both surfaces, top and bottom, have identical shading profiles in the horizontal direction. Nevertheless, subjects
perceive that the reflectances of the two halves of the bottom panel are the same, whereas they perceive the left half of the top panel
as being darker than the right half. The different contours of the two panels suggest different 3D shapes (flat vs cylindrical), which
influences subjects’ perception of the reflectance of the two halves of each surface. B, The “explaining away” Bayesian network
proposed by Kersten and Yuille (2003) that models the effect from A. It consists of four RVs y1, y2, y3, and y4. The relative reflectance
y1 of the surfaces can have two values: y1 � 2 for different and y1 � 1 for the same reflectance of the two parts of the surface. The
3D shape of the surfaces (y2) is either cylindrical (y2 � 2) or rectangular (y2 � 1). The relative reflectance and the 3D shape are direct
causes of the shading or the luminance change of the surfaces (y3), which can have the profile like in the bottom part of B (y3 � 2)
or a different one (y3 � 1). The 3D shape of an object causes different 2D contours (y4), which can be either straight (y4 � 1) or curved
(y4 � 2). The observed variables are the contour (y4) and the shading (y3) of the surfaces. Subjects infer the value of the relative
reflectance (y1) and the 3D shape (y2) based on these observed cues. C, The structure of the neural network � that corresponds to
the Bayesian network in B. For each RV yk in the Bayesian network there is a learning module �k composed of a population of neurons
that outputs yk in population coding, and a population of hidden neurons �k. The learning modules are interconnected according to
the Markov blankets of the RVs in the Bayesian network as indicated in Figure 4. For example, the RVs in the Markov blanket of y1

are y2 and y3, and therefore the learning module �1 receives connections from �2 and �3. D, Structure of the learning module �1 for
the RV y1 in the neural network in C.
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Classical learning of associative memory (like in a Hop-
field network) also appears as a special case of the type of
network learning that we are investigating: If p��y� is non-
zero only for some set ỹ�0�, . . . , ỹ�M � 1� of M memory
items. For these memory items the network learns then
input completion. Such input completion can be accom-
plished through the learnt internal model p�y; �� in our
framework: If one clamps some of the neurons to the
values of some given incomplete pattern ŷI, and lets the
other neurons fire according to the stochastic dynamics
of this internal model. But note that the learning task of
our model is more demanding than classical learning of
associative memory, because it also has to learn the
probability distribution (frequency) of the patterns ỹ�n�.

The underlying learning theory for our model (based on
Expectation Maximization) does not guarantee that the
internal model p�y; �� converges to the target distribution
p��y�. Rather, as in all known cases of nontrivial unsuper-
vised learning and self-organization it can only guarantee
that a local optimum is achieved (which cannot get worse
if learning continues). However, even this weak form of
a theoretical guarantee is actually quite rare in the
literature on neural network learning via STDP. Most
known successful methods for unsupervised learning or
self-organization in machine learning are supported
theoretically in the same weak manner via Expectation
Maximization. However many of these methods work
very well in practice. The learning speed and quality
depend for the learning framework that we have intro-
duced on the nature of the target distribution p�. We are
demonstrating in Example 2 that this learning scheme
works well for an example of p� where it is well known
that humans are able to learn a good approximation of
probabilistic inference for p�.

Flexible retrieval of learnt statistical information
through probabilistic inference
After learning, the network � from Figure 5 has an ap-
proximation p�y; �� to p��y� as its stationary distribution.
This holds under the convention that the firing of a neuron
that represents a specific value l of a variable yk sets this
variable to value l for a duration � equal to the duration of
a generic EPSP. The learned distribution is manifested in
the spontaneous activity of the network, ie, when no
neurons in the network are clamped. Information can be
extracted from this learnt internal model p�y; �� through
probabilistic inference via neural sampling. This type of
information retrieval goes far beyond input completion,
which is the only form of information retrieval in classical
neural network models for memory. In particular, after
inserting evidence into � by exciting or inhibiting some of
the neurons that represent a subset ye of the variables, the
spiking activity of the rest of the network generates ac-
cording to Pecevski et al. (2011) samples from the con-
ditional posterior distribution p�ys�ye; ��, where ys is the
subset of variables that are not in ye. Furthermore, the
posterior marginal probabilities p��yk�ye� of the variables yk

in ys can be read out from the resulting firing rates of the
neurons that represent these variables. Thus, information
gathered from the examples ỹ�n� that had been presented

to the network � (Fig. 5) can be extracted from this
network in very flexible ways through probabilistic infer-
ence. This will be demonstrated for an example in Figures
6–9. In particular, the network can produce estimates of
posterior marginal probabilities of the type indicated
through examples in the Significance Statement. Note
that these marginal probabilities, that are represented by
the firing rates of corresponding neurons in �, integrate
automatically information from many modes of the learnt
approximation p�y; �� to p�. Hence, if these modes rep-
resent individual memory items of a memory model, the
network � can combine information from many different
memory items (episodes), also in ways that could not be
anticipated during learning.

Small numbers of hidden neurons in the learning
modules often suffice
The structure of the network � in Figure 5 is very similar to
the structure of a constructed network of spiking neurons
that directly mimics a representation of p� by a Bayesian
network according to Pecevski et al. (2011). However,
there the number of hidden neurons �k for a random
variable yk was required to be exponentially large in the
number of variables in the Markov blanket of yk. In con-
trast, in the learning approach of this article, one can
employ in principle any number, also a very small number,
of hidden neurons in �k. The described learning approach
will approximate the marginal distribution of p� over yk and
the Markov blanket of yk with a mixture distribution whose
number of modes is determined by the chosen number of
hidden neurons in �k. For example, in Example 1 we had
chosen just two hidden neurons in � for each of the two
possible values of z, instead of two times four that were
used in the construction of Pecevski et al. (2011) for
representing all four possible assignments of values to the
inputs x of a module. But as the comparison of Figure 3,
B and C (and of D and E) shows, the network with the
smaller number of hidden neurons � works in this case
about as well as the larger network. This effect is pre-
dicted from general results in learning theory: a learning
network with fewer parameters sacrifices representation
power, but gains generalization capability. Furthermore,
naturally occurring distributions can often be approxi-
mated quite well by mixture distributions with a relatively
small number of components (modes). This suggests that
real world distributions p� of examples can often be learnt
by relatively small networks �. An ideal scenario from a
biological perspective would be one where a population
of hidden neurons in � can become larger if the size
provides insufficient resolution or prediction capability for
the examples that it receives.

Note that with this approach a spiking network � can in
principle learn an approximation of a given distribution p�

even without prior information on the dependency struc-
ture among RVs of p�. One can set up the network � so
that each module �k extracts the probabilistic association
between RV yk and all other RVs y\k (ie, replacing yB(k) by
all RVs other than yk). The size (ie, number of hidden
neurons �; Fig. 2) of �k determines the quality of the
resulting learnt approximation of p��yk�y\k�. Whereas a
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good approximation can only be theoretically guaranteed
if the number of hidden neurons in �k is exponential in the
number K of RVs of p�, acceptable results may emerge
with drastically fewer hidden neurons, provided that their
number is in the same range as the sum of the number of
main modes of the distributions p��y\k�yk � l� for different
values l (Fig. 3 provides an illustration).

Example 2: autonomous learning of explaining away
in perceptual inference
We demonstrate learning in recursive combinations of the
basic learning module for a concrete example with four
modules (Fig. 6C). We apply it to the task of learning a
complex distribution p� that represents a standard exam-
ple for explaining away in visual perception. The famous
experiment of (Knill and Kersten, 1991), depicted in Figure
6, had first demonstrated that nontrivial inference is in-
volved in visual perception. A subsequent study (Kersten
and Yuille, 2003) proposed that this perceptual effect can
be understood as “explaining away” in probabilistic infer-
ence, and a Bayesian network with 4 RVs, y1, . . . , y4 (Fig.
6B) was introduced to demonstrate this. The probability
distribution of the Bayesian network is p�y1, y2, y3, y4� �
p�y1�p�y2�p�y3�y1, y2�p�y4�y2�, and the inference task is to
calculate the marginal posterior probability distributions
p�y1�y3, y4� and p�y2�y3, y4�.

In the experiment of Knill and Kersten (1991), the dem-
onstrated different perception of the shading in the two
surfaces in Figure 6A (see legend for more details) can be
explained by two different competing causes, either by
different relative reflectance of the two abutting surfaces
(y1), or by their cylindrical 3D shape (y2). An observed
curved contour of the surfaces is a cue that increases the
probability of a cylindrical 3D shape. Because a cylindrical
3D shape alone is enough to explain the shading, it re-
duces the probability that the relative reflectance is dif-
ferent. Hence, one of the competing causes, the
cylindrical 3D shape, “explains away” the other possible
cause, the different reflectance of the surfaces. In the
other case, when a flat contour is observed as an addi-
tional cue, this increases the probability of a rectangular
3D shape. As a rectangular 3D shape cannot explain the
observed shading, the probability of the second possible
cause for the shading, the different reflectance is in-
creased. This type of explaining away in probabilistic
inference can only occur for distributions p� that have
higher-order interactions between three or more RVs, like
between the two competing causes and the observed
shading in this example.

We show that the underlying distribution p� can be
learnt (approximately) from examples for this visual per-
ception task, and that the network � which learns this
approximation learns simultaneously to deal with the ex-
plaining away effect as an emergent phenomenon.

The structure of the neural network � suitable for learning
this target probability distribution p� is given in Figure 6C. It
consists of four interconnected learning modules, where the
connections between the learning modules reflect the de-
pendencies between the RVs in the Bayesian network in
Figure 6B. Additionally, the structure of one of the learning

modules, the learning module �1 for the RV y1, is given in
Figure 6D in detail. Each subgroup �1l of hidden neurons has
two neurons. This number of hidden neurons is smaller than
the number of hidden neurons in the exact neural implemen-
tations of this Bayesian network by Pecevski et al. (2011),
(their Implementation 2), equal to the total number of assign-
ments of values to the RVs in the Markov blanket, which in
this case is four. But we show that the smaller neural
network can nevertheless learn the distributions
p��y2, y3�y1 � l�, because these distributions do not have
more than two modes. In fact, we use here just two hidden
neurons in the subgroups �kl of all learning modules, also
for the learning module �3, where the total number of
assignments of values to the RVs in the Markov blanket is
8. As we will see in the results, two hidden neurons in the
learning module �3 are enough to learn a good approx-
imation of p��y1, y2, y4�y3 � l�.

We performed computer simulations of learning with this
network, where examples drawn from the target probability
distribution p� were presented to the network successively
during learning. The distribution p� was defined according to
Table 4 in Materials and Methods in order to capture the
visual perception scenario of Figure 6 in a qualitative man-
ner. The learning phase took 1200 s of simulated biological
time, and each example was presented for a time period of
100 ms. The weights and biases of the neurons were ran-
domly initialized before learning.

We first analyzed the stationary distribution of network
states in the network � from Figure 6C after learning.
Figure 7A shows that the network switches spontane-
ously between different network states, and occasionally
remains longer in one of the network states that have high
probability under the stationary distribution (Fig. 6B). One
can relate the firing activity of this network � to an ap-
proximation p�y; �� of the target distribution p��y� by
assuming in the usual manner (Berkes et al., 2011; Bues-
ing et al., 2011) that the firing of a neuron in the population
code for variable yk sets the value of this variable for a
time period of length � to the value encoded by this
neuron. The distribution over 4 binary random variables
y1, . . . , y4 obtained in this way from the spontaneous
firing of the network � is shown in Figure 7B and com-
pared with the target distribution p�.

In Figure 8A we examined how the learning in the
modules progresses in time. In each of the four learning
modules in the network (one for each problem variable yk;
Figs. 5, 6C) the Kullback–Leibler (KL) divergence between
the marginal target distribution p��yk, yB�k�� that it learns to
approximate and its internal model pk�yk, yB�k�; �� de-
creases and stabilizes to a local minimum after about
300 s. The same is true for the sum of all KL divergences
of the modules (Fig. 8B). As a result, the difference be-
tween the model distribution p�y; �� of the network and
the full target distribution p��y� also decreases, as shown
in Figure 8C. This is because after learning a good internal
model of the marginal target distributions p��yk, yB�k��, the
firing probability of the output neurons of the learning
modules approximate well the conditionals p��yk�yB�k�� of
p�, as shown in Figure 8D, which according to the theory
leads to a good approximation of p� by the network.
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The PSPs and STDP curves in the simulated network
have a more biological smoother alpha shape, which
differs from the rectangular shape used in the theory.
This can introduce minor deviations of the learning
convergence from the theoretically optimal one, as for
example the slight increase of the KL divergence in
Figure 8C in the second half of the learning
process.

This network � can extract the information that it has
acquired from the examples in a very flexible manner
through probabilistic inference. For example, if evidence e
is entered for some of the problem variables y1, . . . , y4

(by inducing corresponding neurons in their population
codes to fire at high rates) the conditional marginal prob-
abilities of other variables yi can be read off from the firing
rates of neurons that represent yi through population
coding. In particular, we demonstrate in Figure 9 that the
network � has acquired autonomously from examples the
capability to carry out nontrivial probabilistic inference

that involves explaining away (ie, higher order dependen-
cies among random variables).

Finally, we would like to point out that our approach is
not restricted to Bayesian networks; it can be applied to
any type of graphical models, eg, also to Markov random
fields and factor graphs. The network connectivity is de-
termined by the Markov blankets of the random variables,
which can easily be read out from the graph structure of
any graphical model.

Materials and Methods
We first present a rigorous learning theory that supports
the learning results that are presented. After that, we
provide details to the computer simulations.

Theoretical properties of the basic learning module
(stochastic association module) and its plasticity
In this section, we give additional details about the
structure of the module, the firing of the output neurons

Figure 7. Analysis of the stationary distribution of network states of the network from Figure 6C after learning. A, Random sample of
spontaneous activity of the network (without any external input). The network switches stochastically between different network states
(some of which are labeled by colors), in a manner that is qualitatively similar to experimental data from networks of neurons in the
cortex (Abeles et al., 1995; Jones et al., 2007). The spike trains of neurons that encode a problem variable yk through population
coding are underlined by blue lines. Spike trains immediately above are from the hidden neurons �k that drive this neuron to fire (as
in Fig. 2). B, Frequency of network states that encode particular assignments to the problem variables yk (shown on the x-axis)
resulting from the learned stationary distribution (spontaneous activity) p�y; �� of the network are shown as green bars. The coloring
of the network states labels is the same as for corresponding network states in A. Black bars indicate the probabilities of the same
value assignments under the distribution p� that had produced the examples for learning.
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and the learning procedure. In particular, the subse-
quent subsection titled “Implicitly represented genera-
tive model” defines the probabilistic model p�x , z; ��
represented in the module. After that, in the two sub-
sections “Firing probability of the output neurons re-
sulting from the internal generative model” and
“Deriving the probability distribution of the firing of the
neurons �” the firing of the output and the alpha neu-
rons in the module is expressed through the repre-
sented probabilistic model. The last subsection “The
plasticity rules minimize the KL divergence through
Expectation Maximization” continues with the explana-
tion how the plasticity rules implement learning of the
stochastic associations between the variables x and z
through EM.

The neurons � in the learning module are intercon-
nected through inhibitory interneurons (data not shown in
Fig. 2) that enforce strong lateral inhibition between them.

The role of the lateral inhibition is to ensure that if one of
the � neurons fires at time t, no other neuron in � will fire
within the interval (t, t � �). Each neuron in population �
receives input synaptic connections from all input neu-
rons � such that the firing of the population �i encodes the
value of the input variable xi (Fig. 2). For each non-zero
value of the input variable xi � m there is a dedicated
neuron �im, and if �im fired in the time period (t – �, t], the
value of xi at time t is xi � m. The firing in the population
�i is such that no two neurons fire in the time interval
(t – �, t], ie, after a spike there is no spiking period of
duration �. If there is no spike in the interval (t – �, t], then
the value of xi is 0.

All neurons in the population �l connect to their corre-
sponding output neuron l. These synaptic connections
are not subject to synaptic plasticity and have a fixed
strong efficacy. The strong weights of these synapses
achieve that whenever any of the neurons in �l fires, it

Figure 8. Performance of the recursive combination of learning modules from Figure 6C in learning the perceptual inference task of
Knill and Kersten (1991) from examples. A, Evolution of the KL divergence between the target distribution p��yk, yB�k�� of the examples
(denoted in the plot as pk

�) and the distribution of the internal model pk�yk, yB�k�; �k� during learning, for each of the learning modules
�k in the network (k � 1, 2, 3, 4). B, Evolution of the sum of the KL divergences shown in A. C, Evolution of the KL divergence between
the internal model distribution p�y; �� represented by the whole network and the target distribution p��y� of the examples during
learning. D, The plots show the target conditional distributions p��yk�yB�k�� (black bars), and the learned conditional distributions
pk�yk�yB�k�; �k� (green bars), for each problem variable yk. The bit string labels on the x-axis denote the assignment of values to the
problem variables on which each distribution is conditioned.
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drives the output neuron l to fire. The output neurons fire
only if they receive input spikes, otherwise they remain
silent. Thus, the spikes that the neuron l emits can be
seen as a union of all spikes of the hidden neurons in the
group �l.

One can give an analytical description for the firing
probability density of the output neuron l according to the
model. To do that, first we need to introduce some nota-
tion. With wim, j

l we denote the efficacy of the synaptic
connection from the input neuron �im to the neuron �j

l from

the group �l. For the bias (intrinsic excitability) of the
neuron �j

l, we write bj
l. We also introduce, for simplicity,

binary RVs xim corresponding to each neuron �im. The
binary RV xim assumes value 1 at time t if the current value
of the RV xi is equal to m, and 0 otherwise. The current
value of xim at time t can be determined just from the
spikes of the neuron �im, ie, it is 1 if �im fired within the
time interval [t, t – �], and 0 otherwise. With this notation,
we can describe the firing probability density of l at time
t by:

Figure 9. Demonstration that the network � from Figure 6C has learnt explaining away. A, B, Results of probabilistic inference
(estimate of posterior marginal probabilities) by the network through observation of the firing rates of neurons that encode y1 and y2

(whereas other neurons are “clamped” to encode the evidence e) are shown as green bars. The results are from a single run with
duration 400 ms per evidence value. Black bars indicate corresponding values for p� (“ground truth”). The network estimates the
probabilities p�y1 � 2�e; �� (indicating different relative reflectance according to Figure 6B) and p�y2 � 2�e; �� (indicating a cylindrical
3D shape) for two different evidence values e � (y3, y4) through sampling from its stationary distribution of network states. In the first
inference we assume e � (2, 2) (indicating an observation with discontinuous shading of the object and curved contour), and in the
second e � (2, 1) (observation of discontinuous shading and straight contour). C, The spiking activity of the network � during online
inference of hidden causes, where the evidence e was switched after t � 3s (red vertical line) from e � (2, 2) to e � (2, 1). Spike trains
of neurons from population codes for problem variables yk are underlined by blue lines (as in Figure 7A). D, Firing rates (estimated with

a sliding alpha kernel K�t� �
t
�

exp � t
��, t � 0.1 s) of the neurons encoding y1 � 2 (different relative reflectance, dashed line) and

y2 � 2 (cylindrical 3D shape) during the inference simulation run shown in C. The “explaining away” effect is clearly visible from the
complementary evolution of the firing rates of the two neurons that represent the two potential hidden causes “cylindrical 3D shape”
and “different relative reflectance.”
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�l(t) � �
j�1

Jl

1
�

exp �uj
l(t)�

� �
j�1

Jl

1
�

exp �bj
l � �

i�1

I

�
m�1

M(xi)

wim,j
l xim(t)	 , (4)

where uj
l is the membrane potential of neuron �j

l, Jl is the
number of neurons in the subpopulation �l, and M(xi)
denotes the maximum integer value that xi can assume.
The firing probability density of the output neuron l is
equal to the sum of the firing probability densities of all
neurons in the subpopulation �l, which follows from the
specific connectivity structure in the learning module. The
sums with the indices i and m iterate over all input neurons
�im.

During learning, we assume that examples
�z̃�0�, x̃�0��, �z̃�1�, x̃�1��, . . . , �z̃�n�, x̃�n��, . . . drawn from
the joint probability distribution p��z, x� are presented to
the WTA circuit in succession, one by one. In an example
the variable z has an integer value from the set

1, . . . , M�z�� (M(z) denotes the maximum integer value
that z can assume), and each of the variables xi assumes
a value from the set 
1, . . . , M�xi��. Each example
�z̃�n�, x̃�n�� is presented for several tens or hundreds of
milliseconds. During this time period, the input neurons
fire according to the values of the input variables x̃�n�. In
particular, if x̃i�n� � m, then the input neuron �im fires with
a high firing rate, whereas all other input neurons in the
population �i are silent. The value z̃�n� in the example is
given to the network via inhibitory currents in a subset of
the neurons �. More precisely, if in the current example
z̃�n� � l, then all neurons in � that do not belong to �l

are inhibited with a strong negative external current
which prevents them from firing. At the same time the
neurons in the group �l do not receive any external
inhibitory currents and are free to fire according to their
firing probabilities determined by their inputs. At the
beginning of the learning process, it is assumed that the
biases of the � neurons have large values so that they
fire with high firing rates regardless of what the pre-
sented input x̃�n� is.

As stated above, in the presented examples during
learning the variables z and xi (i � 1, . . . , I) assume values
from the sets 
1, . . . , M�z�� and 
1, . . . , M�xi��, respec-
tively. These values could represent states of the external
environment, internal beliefs or any other behavior related
variable value. However, in the population coding of val-
ues of the variables z and xi (i � 1, . . . , I) by their corre-
sponding neuron populations in the learning module, the
variables can have an additional value of zero. A neuron
population that encodes a variable through population
coding assigns value zero to this variable if none of the
neurons fires for a period longer than �. There is not a
dedicated neuron whose firing signals a zero value, as is
the case for the rest of the non-zero values of the variable.
The assumed spike based encoding with a zero value is
the same as in the neural sampling theory (Buesing et al.,
2011; Pecevski et al., 2011). It defines a value for the

variable at each moment in the continuous time dynamics
of the neural network model.

The zero values in the population coding of the learning
module do not represent states of the external environment.
The reason for this is that the learning module does not learn
the probabilities p�x, z; �� in its internal model where some
of the variables z and xi (i � 1, . . . , I) have zero value. These
probabilities have very fixed small (close to zero) values (see
section “Firing probability of the output neurons resulting
from the internal generative model”). Therefore, it is as-
sumed that the examples contain only the encoded variable
values whose stochastic relations can be learnt by the learn-
ing module.

Implicitly represented generative model
The learning theory of the module is based on its internally
represented generative model p�z, x; ��, as it is discussed
in Results, section “A network module for learning sto-
chastic associations” (see also section “The plasticity
rules minimize the KL divergence through Expectation
Maximization”). In order to define the implicitly repre-
sented generative model, we first define an additional
compound RV a in form of a vector of binary RVs, that we
will relate to the stochastic activity of the neurons in the
population �. More precisely, the RV a is defined as a
population code, represented as a set of binary RVs aj

l,
one for each neuron �j

l. The generated values of aj
l over

time during the activity of the WTA circuit are defined by
the spiking of �j

l in the same way as the spiking of the
input neurons � define the values of x. The value of a0

0,
which does not have a corresponding neuron in the pop-
ulation �, is defined as a0

0 � 1 � �
l, j

aj
l. Note that as there

can be no two neurons in � spiking within the time win-
dow (t – �, t) because of the lateral inhibition, it follows that
the vector RV a has a restricted domain of allowed values,
consisting only of values where exactly one aj

l is equal to
1, and the others are 0. The value of a where only
aj

l � 1 and the rest are 0 will be denoted by a � �l, j�.
Having defined a, we can now write the parametrized

form of the generative model as follows:

p(a, z, x; �) �

�
1

A(�)
p(z�a) exp ��

i,m
�
l, j

ŵim,j
l xim aj

l � �
l, j

b̂j
l aj

l	 ,

(5)

where A��� is the normalization constant. In the sum over
the indices i and m, the index i iterates through all input
variables from x1 to xI. For each value of the index i, the
index m iterates from 0 to M(xi), ie, through the set of
possible values of the RV xi. In the two sums with the
indices l and j, l iterates through all possible values of z
from 0 to L, and j iterates from 1 to Jl (note that J0 � 1, as
there is not a group of neurons in � for l � 0, and hence
only 1 parameter). The parameter vector � consists of all
parameters ŵim, j

l and b̂j
l which are encoded in the synaptic

weights and biases of the alpha neurons. After learning,
the marginal distribution p�z, x; �� of Equation 5 becomes
an internal model of the distribution p��x , z� of the

Theory/New Concepts 16 of 35

March/April 2016 , 3(2) e0048-15.2016 eNeuro.sfn.org



presented examples. The probability p�z�a� in Equation
5 is not parametrized and specifies the deterministic
relations between a and z. It is defined as follows:
p�z � l1�a � �l2, j�� � 1 if l1 � l2, and � 0 otherwise, for
all l1�
0, . . . , L�, and all (l2, j) that are valid values of a.
These probability values express the fact that when the
neuron �j

l fires and sets the value of a to be (l, j), then this
also uniquely determines z, ie, sets the value of z to z � l.

A sufficient condition for having a normalization con-
stant A��� � 1 are the following constraints on the param-
eters:

�
m

exp (ŵim,j
l ) � 1 for all i � 
1, . . . , I�,

j � 
1, . . . , Jl� and l � 
0, . . . , L�, and

�
l

�
j

exp (b̂j
l) � 1 . (6)

As we will see later, one property of the plasticity rules is
that they move the parameter vector toward the region of
the parameter space where these normalization con-
straints are approximately satisfied, ie, they try to keep the
internal probabilistic model normalized. If one assumes
that the normalization constant satisfies A��� � 1, then the
generative model in Equation 5 obtains the form:

p(a, z, x; �) � p(a; �) p(z�a) �
i�1

I

p(xi�a; �) . (7)

By marginalizing a in the full generative model
p�a, z, x; ��, we obtain the marginal probability distribu-
tion p�z, x; ��, which has the form of a mixture of multi-
nomials. The marginal probabilistic model p�z, x; ��
models the probabilistic relations between the RV z, en-
coded by the firing of the output neurons, and the RVs x,
which are encoded in the inputs. These relations are
modeled through the vector of auxiliary RVs a, which are
also called hidden RVs. In the mixture model the condi-
tional probabilities p�z�a� and p�xi�a; �� for i � 1, . . . , I are
the likelihoods, and p�a; �� is the prior.

It can be easily shown from Equation 5 that by assum-
ing A��� � 1, the likelihoods p�xi�a; �� for i � 1, . . . , I are:

p(xi � m�a � (l, j); �) �

� exp (ŵim,j
l ) for all l, j and m . (8)

Similarly the priors are:

p(a � (l, j); �) � exp (b̂j
l) for all l, j . (9)

Hence, given that the normalization constraints in Equa-
tion 6 hold, the parameters ŵim, j

l are equal to the log of the
conditional probabilities from the likelihood ŵim, j

l �
log p�xim � 1�aj

l � 1; ��, whereas b̂j
l represent the log

probabilities of the prior b̂j
l � log p�aj

l � 1; ��.
For convenience, Table 1 lists the mathematical nota-

tion that is used in the definition of the learning module.

Firing probability of the output neurons resulting from
the internal generative model
Here we will express the firing probability density of

the output neurons through the probabilistic model
p�z, x; ��. This will show that by learning the internal
model p�z, x; �� of the target distribution p��z, x�, the out-
put neurons actually learn to fire according to the condi-
tional p��z�x�. Thus, as discussed in Results, section “A
network module for learning stochastic associations,” the
module exhibits the learned stochastic associations be-
tween the variables z and x through the firing of its output
neurons given input x. Furthermore, this particular form of
firing enables to recurrently interconnect multiple mod-
ules in larger networks to learn more complex distribu-
tions. Networks of interconnected learning modules are
presented in Results, section “Recursive combinations
of the basic learning module enable efficient learning of
complex distributions from examples,” and further dis-
cussed in Materials and Methods, section “Theoretical
properties of networks of recursively interconnected
basic learning modules.”

As a prerequisite to the derivation, we first establish a
relation between the parameters ŵim, j

l and b̂j
l of the prob-

abilistic model p�a, z, x; ��, and the synaptic weights wim, j
l

and biases bj
l of the neurons in �. For the synaptic weights

wim, j
l we assume that they are equal to the corresponding

parameters ŵim, j
l shifted by a constant baseline value

wim, j
l � ŵim, j

l � w�. Similarly, the biases of the neurons �
represent linearly translated values of the parameters b̂j

l,
ie, bj

l � b̂j
l � b�. The relation is defined through the

following equations:

wim,j
l � ŵim,j

l � ŵi0,j
l � ŵim,1

0 � ŵi0,1
0 , and

bj
l � b̂j

l � b̂1
0 � �

i�1

I

�ŵi0,j
l � ŵi0,1

0 � .
(10)

This entails that the modification of synaptic weights and
biases via synaptic and intrinsic plasticity during learning
results in adaptation of the parameters of the represented
generative model. Not all parameters in the generative
model are learned, however. We assume that the param-
eters:

ŵi0,j
l for all i, all j and all l � 0,

ŵim,1
0 for all i, all m � 0,

ŵi0,1
0 for all i, and

b̂1
0 ,

(11)

that do not have a corresponding synaptic weight or a
bias, have fixed values that are not subject to learning. In
particular, ŵi0, j

l , ŵi0, 1
0 and b̂1

0 are assumed to have the
following values:

ŵi0,j
l � � V for all l � 0, i and j,

ŵi0,1
0 � � V for all i, and

b̂1
0 � � V ,

(12)

where V is a large positive constant. We assume that the
constant V is large enough so that the probabilities
p�z, x; �� where at least one of the variables z and xi (for
i � 1, . . . , I) has zero value are much smaller than the
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probabilities of value assignments where all variables
have non-zero values (Eq. 5).

The fixed parameters are all subsumed in the baseline
values w– and b–:

w� � ŵi0,j
l � ŵim,1

0 � ŵi0,1
0

for all i, j, l � 0 and m � 0, and

b� � b̂1
0 � �

i�1

I

�ŵi0,j
l � ŵi0,1

0 �

for all l and j . (13)

From this it follows that one can write the synaptic
weights and the biases as:

wim,j
l � ŵim,j

l � w� ,
bj

l � b̂j
l � b� .

(14)

Hence, we have a one-to-one mapping between the
synaptic weights and biases of the neurons �, and the
parameters in the generative model that are subject to

adaptation during learning. Note that from Equations 12
and 13, it follows that:

ŵim,1
0 � w� for all i and m � 0, and
b̂1

0 � b� .
(15)

If we now substitute the synaptic weights and biases
from Equation 10 in the expression for the firing probabil-
ity density �l(t) of the output neuron l from Equation 4, we
obtain:

�l(t) �

�
1
�
·
�
j�1

Jl

exp �b̂j
l ��

i�1

I

ŵi0,j
l ��

i�1

I

�
m�1

M(xi)

(ŵim,j
l � ŵi0,j

l ) xim(t)	
exp �b̂1

0 ��
i�1

I

ŵi0,1
0 ��

i�1

I

�
m�1

M(xi)

(ŵim,1
0 � ŵi0,1

0 ) xim(t)	 .

(16)

Table 1. Mathematical symbols used in the definition of the learning module

Symbols related to the RVs of the inputs and the outputs
x Vector of all multinomial RVs �x1, . . . , xI� corresponding to the inputs
xi i-th multinomial RV from the vector x
z RV corresponding to the output neurons
M( . . . ) Operator that gives the maximum integer value of the RV given as an argument; for example M(xi) and M(z)

denote the maximum values of xi and z, respectively.
p��x, z� Target probability distribution learned by the learning module

The output and input neurons in the learning module
�i Population of input neurons that together encode the value of the RV xi through population coding
�im Input neuron in �i whose firing signals the value m of the RV xi

xim Binary RV that assumes value 1 if and only if xi � m; it corresponds to the coding property of the input neuron �im.
� Population of output neurons that encode the value of the RV z
l Output neuron in � whose firing signals the value l of the RV z

The WTA populations of neurons in the learning module and their associated RVs
� The whole WTA population of neurons that represent the auxiliary RVs a
�l Subpopulation of neurons in � that connects to the output neuron l

Jl Number of neurons in �l

�j
l A neuron from the subpopulation �l

aj
l Binary RV which value corresponds to the coding property of the neuron �j

l

al Vector of all RVs aj
l (for all j � 1, . . . , Jl) that corresponds to the subpopulation of neurons �l

a Vector of the union of the RVs in the vectors al for all l � 0, . . . , L; corresponds to the WTA population �

Synaptic weights and biases and their corresponding parameters in the generative model
bj

l Bias (intrinsic excitability) of the neuron �j
l

wim, j
l Synaptic weight of the synaptic connection that connects the input neuron �im to the neuron �j

l

p�x, z, a; �� Probability distribution of the generative model implicitly represented in the module
b̂j

l Parameter in the generative model p�x, z; ��; every such parameter, except for l � 0,
is represented in the learning module by the bias bj

l through the relation bj
l � b̂j

l � b�.
ŵim, j

l Parameter in the mixture generative model p�x, z; ��; every such parameter, except the ones with l � 0 or
m � 0, is represented in the network by the synaptic weight wim, j

l through the relation wim, j
l � ŵim, j

l � w�.
� Vector of all parameters of the generative model of the module; it includes all b̂j

l (for all l and j) and all
ŵim, j

l (for all l, i, m and j) as components.
Indices used throughout all symbols
l Index that iterates through the output neurons l, and through their corresponding WTA subpopulations �l

as well as through the binary RVs zl

j Index that enumerates the individual neurons in the subpopulation �l

i Index that iterates through the RVs xi, and also through their corresponding populations of input neurons �i

m Index that enumerates the binary RVs xim that represent individual values of the input RV xi, and their
corresponding input neurons �im in the population �i
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In this expression, we can combine the two sums over the
index i that iterates through 1, . . . , I (we do this both in the
denominator and in the numerator), and by using the equality

1 � �
m�1

M�xi�

xim�t� � xi0�t� (where xi0 is a binary RV, such that xi0 �

1 if and only if xi � 0), we get the simplified form:

�l(t) �
1
�

·
�
j�1

Jl

exp �b̂j
l � �

i�1

I

�
m�0

M(xi)

ŵim,j
l xim	

exp �b̂1
0 � �

i�1

I

�
m�0

M(xi)

ŵim,1
0 xim	 , (17)

where we write simply xim instead of xim(t), as we assume
it is implicitly understood that it is a function of time. It is
clear that the denominator is equal to p�z � 0, x; ��. In the
numerator, we can rewrite the sum by iterating over val-
ues of the RV a as:

�l(t) �
1
�

·
�

a

p(z � l�a) exp ��
l�, j

b̂j
l�aj

l��

� �
l�, j

�
i�1

I

�
m�0

M(xi)

ŵim,j
l� ximaj

l�	
p(z � 0, x; �) A(�)

(18)

where the sum indexed by a iterates over all possible
values of the compound RV a having only one aj

l � 1 and
others equal to 0, and in both sums inside the exp func-
tion indexed by l� and j, the index l� iterates over all
possible values of z which are 
0, . . . , L�, and j iterates
from 1 to Jl�. It is now easy to see that the numerator is
equal to p�z � l, x; �� A���, and finally we obtain:

�l(t) �
1
�

·
p(z � l�x(t); �)

p(z � 0�x(t); �)
. (19)

Thus, the firing probability of the output neuron l is
proportional to p�z � l�x; ��, and if the internal model
p�x, z; �� is close to p��x, z�, it will be proportional to
p��z � l�x� (as pointed out in Results, section “A network
module for learning stochastic associations”). For how
this result is used in the theory for networks of inter-
connected learning modules that learn to perform prob-
abilistic inference in larger distributions see section
“Theoretical properties of networks of recursively inter-
connected basic learning modules.”

Deriving the probability distribution of the firing of the
neurons �
We show in this subsection that the firing of the neurons
� in the WTA circuit during the presentation of an example
�x̃�n�, z̃�n�� generates samples from the distribution
p�a�x̃�n�, z̃�n�; ��. This result is used in section “The plas-
ticity rules minimize the KL divergence through Expecta-
tion Maximization,” where the link between the plasticity
rules, the activity of the neurons, and different calcula-
tions of the EM algorithm are discussed. In particular, it is

explained there that, as the RVs a are the hidden variables
in the probabilistic model, the samples generated by the
activity of the � neurons together with the presented
examples, form samples from the complete data distribu-
tion, which represents the expectation step of the EM
algorithm. The result is further used in the section “Proof
that the plasticity rules minimize the objective function
���� through Expectation Maximization” in that the proof
is based on analyzing mean weight updates of the plas-
ticity rules over the complete data distribution.

During the presentation of a single example, in the
periods when it is not inhibited by the lateral inhibition due
to a spike by another neuron in �, the firing probability
density of each neuron �j

l in � ideally remains constant
over time. Let us denote the stationary distribution of its
associated RV aj

l during the presentation of the example
�x̃�n�, z̃�n�� with p�n��aj

l�. We will also here use the assump-
tion that the total firing rate of the �l neurons is very high
upon presentation of an example with z̃�n� � l irrespective
of what the input x̃�n� is. That this assumption is true can
be seen from the following. As we stated previously, we
assume that the initial values of the biases of the �
neurons are high. This implies that in the beginning of
learning, for each presented example there will be active
� neurons that fire in response to the example. In addition,
as b– has a large negative value (Eqs. 13, 15), it follows
that the plasticity rule for the biases defined in Equations
2 and 3 will drive and stabilize the biases of the active �
neurons toward very large values. Thus, when an example
with z̃�n� � l is presented, there will be always a subset of
the neurons in � that have high firing rates. Consequently,
during the presentation of the example almost all the time
there will be a neuron in �l active and p�n��a1

0 � 1�  0.
If we use the fact that p�n��a1

0 � 1�  0 for p�n��aj
l� we can

write:

p(n)(aj
l � 1) �

�j
l

�
j��1

Jl

�j�
l

if z̃(n) � l , (20)

and equal to 0 otherwise. Here �j
l denotes the firing prob-

ability density of �j
l, which is constant during the presen-

tation of the example. If we substitute now the firing
probability density in Equation 20 with:

�j
l �

1
�

exp �bj
l � �

i�1

I

�
m�1

M(xi)

wim,j
l x̃im(n)	 , (21)

and additionally substitute the synaptic weights and bi-
ases with their related model parameters according to
Equation 10, we get:

p(n)(aj
l � 1) �

�

exp �b̂j
l � b̂1

0 � �
i�1

I

�
m�0

M(xi)

(ŵim,j
l � ŵim,1

0 ) x̃im(n)	
�
j��1

Jl

exp �b̂j�
l � b̂1

0 � �
i�1

I

�
m�0

M(xi)

(ŵim,j�
l � ŵim,1

0 ) x̃im(n)	 ,

(22)
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if z̃�n� � l and 0 otherwise. Then, if we use the definition of
the generative model in Equation 5, we can write both the
numerator and denominator as:

p(n)(aj
l � 1) �

�
p(a � (l, j), x̃(n), z̃(n); �)/p(a � (0, 1), x̃(n); �)

�
j��1

Jl

p(a � (l, j�), x̃(n), z̃(n); �)/p(a � (0, 1), x̃(n); �)

.

(23)

By multiplying now both the numerator and denominator
by p�a � �0, 1�, x̃�n�, z̃�n�; �� and by using the fact that:

�
j��1

Jl

p(a � (l, j�), x̃(n), z̃(n); �) � p(x̃(n), z̃(n); �) , (24)

we finally arrive at:

p(n)(aj
l � 1) � p(a � (l, j)� x̃(n), z̃(n); �) . (25)

Hence, the neurons � sample from p�a�x̃�n�, z̃�n�; ��. As
we pointed out at the beginning, this derivation is an
important step in the proof that the plasticity rules imple-
ment the Expectation Maximization algorithm (see next
subsection).

The plasticity rules minimize the KL divergence through
Expectation Maximization
Here we further discuss the key property of the learning
module pointed out in Results, section “A network module
for learning stochastic associations,” that the plasticity
rules modify the synaptic weights and biases in a way that
minimizes the KL divergence between the full joint distri-
bution of the generative model p�z, x; �� and the corre-
sponding target joint distribution p��z, x�. We denote the
KL divergence between p�z, x; �� and p��z, x� as the ob-
jective function ���� ie,

�(�) � DKL(p�(z, x) ||p(z, x; �)) . (26)

By using Equation 26, the key property of the learning
module can be reformulated in form of the following the-
orem:

Theorem 1. The synaptic and intrinsic plasticity rules
introduced in Equations 1, 2, and 3 change the parame-
ters � so that they always converge to a local minimum of
���� subject to the normalization constraints (Eq. 6).

The complete proof of the theorem is given in the next
section “Proof that the plasticity rules minimize the objec-
tive function ���� through Expectation Maximization.” In
this section we discuss the approach and the main steps
of the proof, and we also describe how the convergence
is carried out through the EM algorithm, ie, how the firing
of the neurons and the synaptic weight updates by the
plasticity rules implement different steps of EM. The com-
plete details to the EM implementation can be found in the
section “Proof that the plasticity rules minimize the objec-
tive function ���� through Expectation Maximization.”

The proof of Theorem 1 uses results from the Robbins–
Monro methods for stochastic approximation (Kushner

and Yin, 2003). What is shown in the proof is that first,
STDP and intrinsic plasticity drive the parameters � to-
ward satisfying the normalization constraints in Equation
6. As a second step, it is shown that given that � satisfy
the normalization constraints, then the mean update of
the parameters averaged over many presented examples
is in the direction of the negative gradient of the objective
function ����. From these two intermediate steps, it fol-
lows that the parameters converge to a local minimum of
���� under the normalization constraints.

By reducing the KL divergence between p��z, x� and
p�z, x; ��, the module also aims to approximate the target
conditional p��z�x� by its internal model conditional
p�z�x; �� that defines the firing of the output neurons. In
particular, the objective function ���� is an upper bound
of the function

�(�) � �DKL(p�(z�x)��p(z�x; �))�p�(x) , (27)

which is the mean KL divergence between the target
conditional and the model conditional, averaged over the
distribution p�(x) of the inputs. This is easy to see from the
equality:

�(�) � �(�) � DKL(p�(x) ||p(x; �)) . (28)

Thus, EM aims to reduce the measure of how much the
two conditionals differ ���� through minimizing its upper
bound ����. If the upper bound during learning de-
creases, this does not always mean ���� will decrease as
well. Nevertheless, if the upper bound ���� converged
during learning to a certain small value C, then after
learning ���� � C. And if C is small enough so that
p�z�x; �� is a good approximation of p��z�x�, in such a way
the minimization of the upper bound would lead to good
learning of the conditional. Furthermore, in the simulation
experiments we showed that the learning based on min-
imizing the upper bound ���� works well.

The update of the synaptic weights and the biases of
the neurons in the WTA circuit can be understood as
performing an online stochastic approximation of the EM
algorithm. The EM algorithm is an iterative optimization
algorithm that finds a local minimum of ���� indirectly
through another function called the complete data log-
likelihood. In order to establish the link with the neural
network learning, we will consider a stochastic version of
the EM algorithm (Wei and Tanner, 1990; Jank, 2006), that
we describe in the following. We will also assume the
more common version used in the literature where we
have a finite sequence of examples �z̃�n�, x̃�n�� for n �
1, . . . , N, instead of an infinite sequence drawn from
p��z, x�. In the case of a finite sequence, the target distri-
bution p��z, x� is defined as the histogram of all examples.
The main idea in EM is that we can substitute the original
learning objective: to update the mixture generative model
p�z, x; �� so that it gets close to p��z, x� by another learn-
ing objective: to update the full (complete data) generative
model p�a, x, z; �� (together with the hidden RVs a) to get
closer to the complete data target distribution:

p�(a, x, z; �) � p(a�x, z; �) p�(x, z) . (29)
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As there are not any complete data samples to learn the
generative model p�a, x, z; ��, but just incomplete data
examples for the RVs x, z, in stochastic EM one com-
pletes the data samples by generating sample values for
the hidden RVs a from the generative model itself, ie,
through the conditional distribution p�a�x, z; ��. This is
done for all examples x̃�n� for n � 1, . . . , N. Then one
updates the parameters so that the likelihood that the
complete data examples were generated by the complete
data generative model p�a, x, z; �� is increased. The com-
pletion of the data samples is called the “expectation”
step, whereas the update of the parameters of the com-
plete data generative model to increase the likelihood of
the complete data examples is called the “maximization”
step. The EM optimization is performed iteratively, where
in each iteration one repeats these two steps. We can link
the above two steps in the EM algorithm to concrete
mechanisms in the dynamics of the WTA circuit during
learning. Specifically, the expectation step is imple-
mented through the firing of spikes by the neurons �
during the presentation of the data examples �x̃�n�, z̃�n��.
Indeed, the firing of � generates samples from the con-
ditional distribution p�a�x, z; �� (see section “Deriving the
probability distribution of the firing of the neurons �”). The
presented data examples together with the generated
samples by the neurons � form complete data samples
from p� in Equation 29. The plasticity rules update the
synaptic weights and biases exactly based on these com-
plete data samples encoded in the spikes. Furthermore,
given that the normalization constraints hold, the mean
update of the parameters over the infinite sequence of
examples (where the same finite sequence is repeated in
succession infinitely) is in the direction of the gradient of
the complete data log-likelihood (for details see section
“Proof that the plasticity rules minimize the objective func-
tion ���� through Expectation Maximization”). In view of
this established link between the offline mean update of
the weights and the EM algorithm, we see that the online
plasticity rules in the neural network implement an online
stochastic approximation of the EM algorithm in the spirit
of Monte Carlo EM (Wei and Tanner, 1990; Jank, 2006).

During learning of the distribution p��x�z � l� by the
WTA circuit �l, the neurons in �l self-organize so that each
of them specializes to fire in response to one cluster of
similar, frequently occurring input patterns. In the proba-
bility distribution p��x�z � l�, this cluster corresponds to
one mode of the distribution. A mode of the distribution
can be described as a region of high probability in the
probability space, surrounded by regions of low probabil-
ity. The theoretical basis of the learning strategy via EM
proves that the plasticity rules change the synaptic
weights and biases to reduce the difference between the
distribution of the inputs p��x�z � l� and the represented
generative model p�x�z � l; ��. At the end, the learning
process yields a mixture distribution where each neuron in
�l represents one mixture component in the form of the
unimodal distribution p�x, aj

l � 1; �� centered at one of the
clusters of input patterns. The full generative model
p�x�z � l; �� is then retrieved as a sum of the unimodal
distributions. The unimodal mixture component is implic-

itly represented in the weights and the bias of the corre-
sponding neuron, where the vector of synaptic weights of
the neuron actually represents the center of the mixture
component, ie, the location in the input pattern space
where its mode peaks with maximum probability.

Proof that the plasticity rules minimize the objective
function ���� through Expectation Maximization
We will give in this subsection a proof of Theorem 1 from
the previous subsection “The plasticity rules minimize the
KL divergence through Expectation Maximization.” The
theorem captures the main property of the learning mod-
ule discussed in Results, section “A network module for
learning stochastic associations,” ie, that the plasticity
rules install in the module an internal representation of the
stochastic associations between the variables x and z in
the presented examples.

Before we present the main part of the proof, we first
introduce some needed definitions and derivations.

Definitions and assumptions
According to the learning procedure, independent and
identically distributed examples �x̃�0�, z̃�0��, �x̃�1�, z̃�1��,
. . . , �x̃�n�, z̃�n��, . . . drawn from the target probability
distribution are presented to the learning module one by
one, each presented for a certain period of time �tE. The
learning procedure was explained in section “Theoretical
properties of the basic learning module (stochastic asso-
ciation module) and its plasticity.” The time interval �tE for
the presentation of the examples should be several times
larger than the duration of the PSPs �. The reason for this
is that at the beginning of a time period �tE when a new
example �x̃�n � 1�, z̃�n � 1�� is presented to the module,
the values of the RVs x determined by the firing of the
input neurons � do not immediately change to the new
example. Additionally, the neurons � do not immediately
start to sample from the new conditional distribution
p�a�x̃�n � 1�, z̃�n � 1�; ��. There can be residual active
EPSPs at the synaptic inputs connecting from the input
neurons that encode the values x̃�n� from the previous
time period �tE. Similarly, there can be residual EPSPs
from active neurons in � that prevent the other � neurons
to immediately start sampling correctly from the new
conditional distributions p�a�x̃�n � 1�, z̃�n � 1�; ��. There-
fore, for a time period of duration of one EPSP � at the
beginning of the presentation of a new example, the
update of the synaptic weights and biases might be in-
correct. Nevertheless, if � is several times smaller than
�tE, this incorrect contribution to the learned weight (or
bias) update should be insignificant.

As �tE is larger than �, this means that for each example
�x̃�n�, z̃�n�� the WTA circuit generates several samples
from the conditional p�a�x̃�n�, z̃�n�; �� as the neurons �
spike several times during �tE (see section “Deriving the
probability distribution of the firing of the neurons �”). For
simplicity of notation and formulation, in the convergence
proof we will assume that for each x̃�n� exactly one
sample ã�n� from p�a�x̃�n�, z̃�n�; �� is generated. The con-
vergence proof can be easily extended for the more gen-
eral case when several samples are generated from
p�a�x̃�n�, z̃�n�; ��. Given this assumption, the presented
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data example �x̃�n�, z̃�n�� together with the generated
sample ã�n� by the neurons � represent one complete
data example �x̃�n�, z̃�n�, ã�n�� drawn from the complete
data distribution p��x, z, a; ��.

If with ��n� we denote the parameter values before
applying the learning rule for the n-th example, and with
��n � 1� we denote the values after the application of the
learning rule, then:

�(n � 1) � �(�(n) � 	(n)
�(n)) , (30)

where 	(n) is the learning rate used in the n-th iteration,

��n� is the update according to the learning rules defined
in Equations 1, 2, and 3 (for easier reference, the synaptic
and intrinsic plasticity rules are also given in Table 2), and
���� is a function that clips the parameter values within
the intervals � wmin � ŵim, j

l � 0 and � bmin � b̂j
l � 0. The set

of values � that are within these intervals we will denote
with D���. The subset of D��� where the normalization
constraints (Eq. 6) are satisfied we will denote with C�. As
the update rule for the biases bj

l in Table 2 is defined in
continuous time, we need to transform it into a form
consistent with the previously stated simplification that
the updates are performed for one data example drawn
from p��x, z, a; ��, or in other words, that the population of
neurons � fires one spike during the presentation of a
data example �x̃�n�, z̃�n��. We can do that easily by as-
suming that the examples are presented for a period of
� (corresponding to one spike sample), which yields the
following update for the model parameters encoded in
the biases:


b̂j
l � � aj

l exp (�b̂j
l) � � . (31)

Although in Table 2 the learning rates are different for
the weights and the biases, here for simplicity we assume
that the learning rate is the same for all parameters. We
additionally assume that the sequence of learning rates
	�n� satisfies:

�
n�1

�

	(n) � � and

�
n�1

�

	(n)2 � � .

(33)

The initial values of the parameters ��0� are randomly
drawn from D��).

As pointed out previously (see section “Theoretical
properties of the basic learning module (stochastic asso-
ciation module) and its plasticity”), in the joint distribution
p��x, z� of the examples zero values of z and xi do not
occur, ie, p��xi � 0� � 0 for all i � 1, . . . , I, and additionally
p��z � 0� � 0. In the implicitly represented generative
model p�x, z; �� the probabilities where at least one of the
RVs z and xi (i � 1, . . . , I) has zero value are represented
by the fixed parameters (see Eq. 11 and accompanying
text) and are not learned. The fixed parameters assume
values (see Eq. 12) so that the corresponding probabilities
over zero values are very small, ie, close to zero. Ideally,
for the theoretical analysis we set these parameters so
that:

p(xi � 0; �) � 0 for all i � 
1, . . . , I�, and
p(z � 0; �) � 0 ,

(34)

in order to match the values p�(xi � 0) � 0 and p�(z � 0) � 0.
In simulations, the probabilities over zero values represent
a very small, insignificant portion of the mass of the
learned generative model. This is also true when learning
with a network of interconnected learning modules (see
section “Theoretical properties of networks of recursively
interconnected basic learning modules”).

The assumption (Eq. 34) can be easily achieved by
letting in (Eq. 12) the constant V to converge to V ¡ ��.
Indeed, from V ¡ �� it follows that ŵi0, j

l ¡ �� and
b̂1

0 ¡ � �. The weight offset w– remains constant at any
time during the limit process (Eqs. 12, 13). The offset
value for the biases does not remain constant, however, it
converges to b� ¡��. To emulate this idealized condition
in simulations it is sufficient to set b– to a very large
negative value. This ensures that the biases of the active
� neurons converge to large positive values, which then
entails that there is always a non-empty subset of �
neurons that have high firing rates upon presentation of
an example (see section “Deriving the probability distri-
bution of the firing of the neurons �”). High firing rates of the
� neurons imply p�a � �0, 1��x; ��  0 and consequently
p�z � 0; ��  0 in Equation 34. In the section “Theoretical
properties of networks of recursively interconnected basic
learning modules,” we also demonstrate that after the con-
vergence of the weights and biases during learning to a local
optimum, large negative value of b– implies p�z � 0�x; �� 
0, which is consistent with Equation 34.

Finding a local minimum of ���� through Expectation
Maximization
We describe here the EM algorithm applied to the con-
crete case of finding a local minimum of the objective
function ���� in Equation 26, without any reference to the
learning module and how it is implemented there. After we

Table 2. Synaptic and intrinsic plasticity rules in the neural
network of the basic learning module

Synaptic plasticity
At each postsynaptic spike of the neuron �j

l, at time t, the
synaptic weight wim, j

l undergoes an update wim, j
l ¢ wim, j

l �
	 
wim, j

l where 	 is the learning rate and


wim, j
l � �e��wim, j

l
�w���1, if �im fired in �t��, t� ,

�1, if �im did not fire in �t��, t� .
The parameter w– is a baseline parameter, and � is a
parameter that corresponds to the duration of PSPs.

Intrinsic plasticity
At the time of each spike of the neuron �j

l the bias
instantaneously changes its value according to
bj

l ¢ bj
l � 	� 
bj

l, where


bj
l � � e��bj

l
�b�� ,

	� is the learning rate and b� is a baseline parameter for the
bias. In addition, between spikes the bias exhibits continuous
decay according to the differential equation

ḃj
l � � 	� .
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give the convergence proof that the plasticity rules drive
the synaptic weights and biases to a local minimum of
����, we return to the question what mechanisms in the
dynamics of the learning module implement different
steps of the EM algorithm.

The objective function ���� can be written as follows:

�(�) � ��(�) � �p�(x, z) , (35)

where

�(�) � �p�(x,z)�log p(x, z; �)� (36)

is the log-likelihood function and

�p�(x, z) � � �
x,z

p�(x, z) log p�(x, z) (37)

is the entropy of the RVs x and z with respect to the target
joint distribution p��x, z�. As �p��x, z� does not depend on
the parameters �, the constrained local minima of ����
match the constrained local maxima of ����.

In the following we will explain the steps of the EM
algorithm that finds a local maximum of ����. EM opti-
mizes ���� indirectly through another function called the
complete data log-likelihood

�˜ (�) � �p�(a,x,z; �)�log p(a, x, z; �)� , (38)

where p��a, x, z; �� is the complete data probability dis-
tribution in Equation 29. It is an algorithm that updates the
parameters � in iterations. We will denote the values of
the parameters in current iteration as �old. Let ���, �old� be
the complete data log-likelihood �˜ ���, where in the prob-
ability distribution in the expectation we have the param-
eter values �old from the current iteration, ie,

�(�, �old) � �p�(a,x,z; �old)�log p(a, x, z; �)� . (39)

The iteration in the EM algorithm consists of two steps:
Expectation step: calculate ���, �old� as the expectation
in Equation 39.
Maximization step: find parameter values �new that sat-
isfy:

�(�new, �old) � �(�old, �old) , (40)

and then set �old ¢ �new.
This is a formulation of EM called the generalized EM

algorithm (Dempster et al., 1977). The essence of the
algorithm lies in the fact that Equation 40 implies also that:

�(�new) � �(�old) , (41)

which means that in each iteration we increase the value
of the log-likelihood. In fact, it also holds that:

��(�, �old)
�� ����old

� �p�(a,x,z; �old)� �
��

log p(a, x, z; �)�
�

��(�)
�� ����old

. (42)

We will refer to this equation when we show that the
learning module implements an online stochastic approx-
imation of the generalized EM algorithm outlined here (see
text after the convergence proof).

Definition of an auxiliary function ���� used in the con-
vergence proof
We define here an additional function ����, which will be
used in the convergence proof. A useful property of
���� is that within the parameter domain where the nor-
malization constraints (Eq. 6) are satisfied, it is equal to
the log-likelihood function ����. Hence, in order to dem-
onstrate in the proof that the plasticity rules minimize
����, it will be sufficient to show that the rules drive the
weights and biases to satisfy the normalization con-
straints, and when the normalization constraints are sat-
isfied, they maximize ����.

The ���� function is defined as follows:

�(�) � �p�(x,z)�log q(x, z; �)�, (43)

where q�x, z; �� is the marginal of the probability distribu-
tion:

q(x, z, a; �) �

� p(z�a)

exp ��
i,m

�
l, j

ŵim,j
l xim aj

l � �
l, j

b̂j
l aj

l	
Â0(�) �

l, j

�Âij
l (�)�aj

l
.(44)

The numerator of this distribution is the same as in the
definition of the generative model p�x, z, a; �� in Equation
5. The difference in the definition between p and q is the
denominator. In the denominator in Equation 44, Â0��� is
defined as:

Â0(�) � �
l

�
j

exp (b̂j
l) , (45)

whereas

Âij
l (�) � �

m

exp (ŵim,j
l ) for all i � 
1, . . . , I�,

j � 
1, . . . , Jl� and l � 
0, . . . , L� . (46)

It can be easily seen that if the normalization constraints
(Eq. 6) are satisfied, ie, if ��C�, then

q(x, z, a; �) � p(x, z, a; �) , (47)

from which it follows that:

�(�) � �(�) for all � � C� . (48)

The derivatives of ���� with respect to the parameters
ŵim, j

l are:

��(�)
� ŵim,j

l
� �q�(x,z,a; �)� �

� ŵim,j
l

log q(x, z, a; �)� (49)

where q��x, z, a; �� is
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q�(x, z, a; �) � p�(x, z) q(a�x, z; �) . (50)

If we now substitute q�x, z, a; �� in the term inside the
expectation in Equation 49 with Equation 44 and simplify,
we obtain:

��(�)
� ŵim,j

l
� �q�(x,z,a; �)�ximaj

l� � �q�(x,z,a; �)�aj
l� exp (ŵim,j

l )
1

Âij
l (�)

.

(51)

Similarly, for the derivative of ���� with respect to b̂j
l we

have the following:

��(�)
� b̂j

l
� �q�(x,z,a; �)� �

� b̂j
l
log q(x, z, a; �)� , (52)

and if we substitute Equation 44, we arrive at:

��(�)
� b̂j

l
� �q�(x,z,a; �)�aj

l� � exp (b̂j
l)

1
Â0(�)

. (53)

Deriving the local minima of ���� under the constraints
As we stated previously, the constrained local minima of
���� match the constrained local maxima of the log-
likelihood ����. Additionally, the constrained local max-
ima ���� also match the constrained local maxima of
����, because ���� � ���� for all ��C�. Here we derive
the local maxima of ���� under the normalization con-
straints in Equation 6 in analytical form. The result is used
in the main proof in the subsection “The convergence the-
orem and the proof” where we will show that the sequence
��n� during learning converges exactly to these local max-
ima.

The local maxima of ���� can be found by calculating
the derivatives of the Lagrangian function of ����:

�(�, �) � �(�) � �0��
l�1

L

�
j

exp (b̂j
l) � 1	 �

� �
l�1

L

�
j, i

�ij
l��

m�1

M(xi)

exp (ŵim,j
l ) � 1	 . (54)

The set of constrained local maxima is a subset of the
solutions of the following equations obtained by setting
the derivatives of the Lagrangian to 0:

��

� b̂j
l

� �q�(x,z,a; �)�aj
l� � (�0 � 1) exp (b̂j

l) � 0

for all l � 0 and j, and
��

� ŵim,j
l

� �q�(x,z,a; �)�ximaj
l� �

� ��ij
l � �q�(x,z,a; �)�aj

l�� exp (ŵim,j
l ) � 0

for all l � 0, j and m � 0 .

(55)

By summing the left and right sides of all equations
in which �0 occurs, and by using the equalities �

l�0, j
aj

l � 1

and �
l�0, j

exp �b̂j
l� � 1, we obtain a solution for the La-

grange multiplier equal to

�0 � 0 . (56)

Similarly, if we sum the left and right sides of all equations
where �ij

l occurs, and if we use the equalities �
m�0

xim � 1

and �
m�0

exp �wim, j
l � � 1, we arrive at:

�ij
l � 0 for all l � 0, i and j . (57)

Interestingly, as all Lagrangian multipliers are 0, the criti-
cal points of the Lagrangian are also critical points of
����, which means that the constrained local maxima of
���� are also its unconstrained local maxima.

Based on these solutions for the Lagrange multipliers,
we get from Equation 55 the following implicit solutions
for the parameters ŵim, j

l and b̂j
l:

b̂j
l � log �q�(x,z,a; �)[aj

l] � log q�(aj
l � 1; �) and

ŵim,j
l � log

�q�(x,z,a; �)[ximaj
l]

�q�(x,z,a; �)[aj
l]

� log q�(xim � 1�aj
l � 1; �) ,

(58)

where q��aj
l; �� and q��xim�aj

l; �� are marginal and condi-
tional distributions derived from q��x, z, a; �� in Equation
50. Note that these are implicit solutions, since q��aj

l; ��
and q��xim�aj

l; �� depend on the parameters �. It can be
easily verified that the solutions of Equation 58 fulfill the
normalization constraints. Indeed:

�
l, j

exp (b̂j
l) � �

l�0, j

q�(aj
l � 1; �) � 1 , (59)

and also:

�
m

exp (ŵim,j
l ) � �

m�0

q�(xim � 1�aj
l � 1; �) � 1 . (60)

Therefore, we can substitute in the implicit solutions the
probability distribution q��x, z, a; �� with p��x, z, a; ��
from (29), which yields:

b̂j
l � log p�(aj

l � 1; �) and
ŵim,j

l � log p�(xim � 1�aj
l � 1; �) .

(61)

We will denote the set of all finite points � that satisfy
Equation 61 as G. It is assumed that the bounds of the
parameters wmin and bmin are chosen so that G�D���. The
critical points of the Lagrangian in G are either local
maxima, local minima, or saddle points of the objective
function ���� in Equation 26 under the normalization con-
straints in Equation 6.

The convergence theorem and the proof
After introducing the necessary definitions and notations
in the previous subsections, we use them here to restate
the Theorem 1 from the subsection “The plasticity rules
minimize the KL divergence through Expectation Maximi-
zation” in more technical terms.

Theorem 1�. The infinite sequence ��n� in Equation 30
converges with probability 1 to the set of local minima of
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���� in Equation 26 subject to the normalization con-
straints (Eq. 6).

Proof: We define a “mean limit” ordinary differential
equation (ODE) that corresponds to the sequence ��n� as
�̇ � h� ���, where h� ��� � �p��x, z, a; ���
��. Here 
� is defined
with the plasticity rules in Table 2. As for all n the param-
eters ��n� remain in the bounded set D���, it follows that
sup

n
�p��x, z, a; �����
���� � � and sup

n
�p��x, z, a; ����
��2� � �.

In order to prove convergence, we use the stochastic
convergence Theorem 3.1 in Chapter 5 from Kushner and
Yin, (2003) which states that, under the above assump-
tions, the sequence ��0�, ��1�, . . . , ��n�, . . . from Equa-
tion 30 converges with probability 1 to the stable points of
the limit set of the mean limit ODE for all initial conditions
��0��D���. The limit set of the mean limit ODE with re-
spect to a set of the initial conditions ��0��A, which we
denote as F(A), is defined as:

F(A) � lim
s¡�

�
���A


�(s�), s� � s : �(0) � ��� . (62)

Convergence to the limit set F(A) with probability 1 means
that for all stochastic realizations of the sequence ��n� it
holds that:

lim
n¡�

min
��F(A)

��(n) � �� � 0 . (63)

The main part of the proof will be to show that
F�D���� � G, ie, that the limit set of the ODE with the set
of initial values D��� is equal to the critical points of the
Lagrangian ���, ��, which are also critical points of ����.
We will show that in two steps. First, we will show that all
trajectories of the ODE asymptotically converge to the set
C� where the normalization constraints (Eq. 6) are satis-
fied. Then in the second step, we will show that all trajec-
tories with initial conditions ��0��C� converge to G.

Let c0��� and cij
l ��� be the functions that express how

much the sums in the normalization constraints (Eq. 6)
deviate from 1, ie:

c0(�)� �
l

�
j

exp (b̂j
l) � 1

cij
l (�)� �

m

exp (ŵim,j
l ) � 1 .

(64)

For all points � in the set C�, where the constraints are
satisfied, we have c0��� � 0 and cij

l ��� � 0 (for all l�0
and all i and j). We now analyze how the values of
c0��� and cij

l ��� change when � progresses along a
solution trajectory of the mean limit ODE. For that
purpose we calculate the dot products between h� ���
and the gradients of c0��� and cij

l ���. The non-zero
components of the gradient of c0��� are:

�c0

� b̂j
l

� exp (b̂j
l) . (65)

Similarly the gradient of cij
l ��� has the following non-zero

components:

�cij
l

� ŵim,j
l

� exp (ŵim,j
l ) . (66)

Thus, for the dot products we have:

h� (�)·
dc0

d�
� �

l�0
�

j

(�p�(x,z,a; �)[aj
l] exp (�b̂j

l) � 1) exp (b̂j
l) �

� �c0(�) , (67)

and

h� (�)·
dcij

l

d�
� �

m�0

(�p�(x,z,a; �)[aj
l xim] exp (�ŵim,j

l ) �

� �p�(x,z,a; �)[aj
l]) exp (ŵim,j

l ) � �p�(aj
l � 1; �) cij

l (�) ,
(68)

where p��aj
l � 1; �� is a marginal of p��x , z, a; ��. From

these equations we can conclude that lim
s¡�

c0���s�� � 0
and lim

s¡�
cij

l ���s�� � 0 for all l � 0 and all i and j. Thus,

because h� ��� is continuous and differentiable in D���, it
follows that the limit set of the ODE for initial conditions
��0��D���\C� is inside C�, ie, F�D���\C��	C�. Addition-
ally, the differentiability and continuity of h� ��� imply
that F�A� � F�F�A�� and F�A1�	F�A2� if A1	A2, for all
A, A1, A2	D���. By using these properties, we can de-
rive that:

F(D(�)\C�) � F(F(D(�)\C�)) 	 F(D(�) 
 C�) . (69)

We continue now with the second step of the proof
where we show that trajectories starting within C� con-
verge to the critical points of the Lagrangian ���, ��. First,

from Equations 67 and 68, it follows that h����·
dc0

d�
� 0 and

h����·
dcij

l

d�
� 0 for all ��C�. This means that trajectories ��s�

with ��0��C� remain in C�, ie, ��s��C� for all s � 0. Further-
more, it is easy to show that the set of critical points G of the
Lagrangian ���, �� written in implicit form in Equation 61 is
the same as the set of the stationary points of the mean limit
ODE obtained as a solution of the equation �̇ � 0. What
remains to be shown is that the trajectory always converges
with probability 1 to one of the stationary points in G, ie, that
for example it does not enter a limit cycle. We do that by
analyzing how the function ���� changes along the trajec-
tory of the ODE by calculating the dot product between

h���� and the gradient
�����

��
given in Equations 51 and 53. As

for ��C� it holds that Â��� � 1 and Âij
l ��� � 1, the dot product

is:

h� (�) ·
��(�)

��
�

� �
l�0

�
j

exp (�b̂j
l)��p�(x,z,a; �)[aj

l] � exp (b̂j
l)�2 �

� �
l�0

�
j

�
m�0

exp (�ŵim,j
l )��p�(x,z,a; �)[ximaj

l �

� exp (ŵim,j
l ) aj

l]�2 � 0 , (70)
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and becomes equal to zero for the set of stationary points
�̇ � 0 which is the same as the set G. Hence, the ODE
trajectories do not have any limit cycles and always
converge to the critical points of the Lagrangian G, ie,
F�D���
C�� � G. Together with the conclusion (Eq. 69) of
the first step, we finally obtain that the limit set of the ODE
is:

F(D(�)) � F(D(�)\C�) � F(D(�) 
 C�) �

� F(D(�) 
 C�) � G . (71)

According to the stochastic convergence Theorem 3.1
in Chapter 5 from Kushner and Yin (2003), the infinite
sequence ��n� converges to the stable points of the limit
set G. Stochastic fluctuations would drive the sequence
to escape from the unstable points in the limit set. We
have shown in Equation 70 that ���� increases along an
ODE trajectory that starts within ��C�. This implies that
also ���� increases as ���� � ���� for ��C�. Thus, it
follows that the stable points of the ODE in G are the local
constrained maxima of ����, subject to the normalization
constraints, which concludes the proof.

By using results from the proof, we can now more
precisely relate the update of the synaptic weights and
biases by the plasticity rules to the maximization step of
the EM algorithm, as discussed in subsection “The plas-
ticity rules minimize the KL divergence through Expecta-
tion Maximization.” In the WTA circuit the plasticity rules
update the weights and biases online, after each spike of
a neuron in �. If we instead consider an offline update
where the updates are averaged over many spikes of the
� neurons (theoretically infinitely many), and then after-
ward they are applied to the weights and biases, then this
offline update of the parameter vector in the limit of infinite
number of spikes would be equal to:

h� (�) � �p�(x,z,a; �)[
�] . (72)

The vector h� ��� is the gradient of the ODE trajectory,
which means that for a sufficiently small learning rate the
offline mean update will always increase the expected
log-likelihood ���� provided that ��C�. This follows from
the fact that ���� increases along the ODE trajectory as
we have shown in the proof (Equation 70 and the text
afterward). Furthermore, the off-line mean update in-
creases ���� by calculating an expectation over the com-
plete data samples from the distribution (Eq. 29) which
represents the expectation step of the EM algorithm. In
the subsection “The plasticity rules minimize the KL di-
vergence through Expectation Maximization,” we already
showed that the spikes of the neurons � together with the
presented examples represent the complete data sam-
ples drawn from Equation 29. This clarifies that the offline
mean update of the plasticity rules indeed implements the
maximization step of the generalized EM algorithm as
defined in Equations 42 and 40. From this, it follows that
the online plasticity rules implement an online stochastic
approximation version of the maximization step of EM.

The proof of Theorem 1 (reformulated in Theorem 1� in
this subsection) completes the theory behind the learning

mechanisms and learning capabilities of the learning
module described in Results, section “A network module
for learning stochastic associations.” In particular, it rig-
orously shows that the learning module learns, via the EM
algorithm, an internal model of the probabilistic relations
between a set of variables x and another variable z in the
presented examples.

Theoretical properties of networks of recursively
interconnected basic learning modules
This section contains additional details on the learning
approach with networks of recursively connected learning
modules, that we described in Results, section “Recursive
combinations of the basic learning module enable effi-
cient learning of complex distributions from examples.”
After presenting the learning procedure for such net-
works, we will formulate in this section Theorem 2 which
contains the theoretical basis of learning with networks of
learning modules. Theorem 2 is derived from Theorem 1
(see section “The plasticity rules minimize the KL diver-
gence through Expectation Maximization”), and shows
that the plasticity mechanisms in a network of modules
minimize another objective function that pertains to the
represented probabilistic model in the whole network.
This minimization then leads to learning an internal model
of the stochastic associations between all variables yk of
the presented examples.

The population of neurons that encodes the values of
the RV yk(t) over time t we denote with �k (these are the
output neurons of the learning module �k). For each
non-zero value l of yk, there is a neuron �kl whose firing
signals this value. In particular, a spike of the neuron �kl at
time t sets the value of yk to yk � l for a time period of
duration �, after which the value changes to yk � 0. To
ensure a valid value of yk, no other neuron in �k should fire
in the time interval [t, t � �). This is ensured by the lateral
inhibition between the �k neurons, which drive the �k

neurons to fire.
The network learns from presented examples ỹ�0�,

ỹ�1�, . . . , ỹ�n�, . . . drawn from the target probability
distribution p��y�. In the examples the RV yk assumes an
integer value drawn from the set 
1, 2, . . . , M�yk��. An
example is presented to the network in form of injected
currents in the neurons. These injected currents are as-
sumed to originate from external neurons. The neurons in
�k are driven by the injected currents such that their firing
reflects correctly the values of the RVs yk in the current
example ỹ�n�. More precisely, for ỹk�n� � l the neuron �kl

receives strong positive current and fires with a high firing
rate, whereas the other neurons in the population �k re-
ceive a strong negative current, which prevents them from
firing. The neurons � also have currents injected during
learning, that give information about the current example,
exactly in the same way as explained for a single learning
module (see section “Theoretical properties of the basic
learning module (stochastic association module) and its
plasticity”), where the presented example �x̃�n�, z̃�n�� is
here for the learning module �k equal to �ỹB�k��n�, ỹk�n��
(Fig. 5).
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The mathematical symbols that are used in the defini-
tion of the neural network are listed in Table 3.

As we stated in the section “Theoretical properties of
the basic learning module (stochastic association module)
and its plasticity,” only the non-zero values of z represent
meaningful states of the external environment and are learned.
The probability of the zero value p�z � 0�x; �� is not learned,
and converges always to a very small value during learn-
ing. This can be easily seen if we express p�z � 0�x; ��
through the firing probability densities �j

l�x� of the � neu-
rons given input x:

p(z � 0�x; �) �
1

1 � �
l�1

L

�
j�1

Jl

�j
l(x)

. (73)

From the inequality �j
l�x� �

1
�

exp �uj
l�x�� �

1
�

exp �bj
l� it

follows that:

p(z � 0�x; �) �
1

1 � �
l�1

L

�
j�1

Jl

exp (bj
l)

. (74)

If we substitute Equation 14 for the biases and use
b– � �V, which follows from Equations 12 and 15, we
obtain:

p(z � 0�x; �) �
exp (�V)

�
l�0

L

�
j�1

Jl

exp (b̂j
l)

. (75)

According to the proof of Theorem 1� (Eq. 67), during
learning the plasticity rules drive the synaptic weights and
biases of the � neurons toward satisfying the normaliza-
tion constraints in Equation 6, which simplifies Equation
75 to p�z � 0�x; �� � exp � � V�. As V is a very large
positive constant (Eq. 12 and accompanying text), we
finally arrive at:

p(z � 0�x; �)  0 . (76)

Hence, we have shown that after learning, the sum of the
firing probabilities of the output � neurons is always very
high (when inhibition is not active), regardless of the cur-
rent input x. Similarly, in case of a network of learning
modules, after learning, the output �k neurons in each
module in the network are in strong competition and
pk�yk � 0�yB�k�; �� is very small. From this it follows that in
the stochastic dynamics of the spiking neural network
states where there is a RV yk with value yk � 0 occur for
very short time intervals, ie, they have very small proba-
bility in the internal model distribution p�y; ��. Note that in
the examples drawn from the target probability distribu-
tion p� such states are not present as the RVs yk in the
examples have values from 1 to M(yk). The zero values
occur only in the neural network dynamics and they do
not refer to meaningful values of variables in the external
environment.

In order to show that if each learning module �k learns
an approximation of p��yk, yB�k�� in its internal model
pk�yk, yB�k�; �k� then the stationary distribution of the whole
network is close to p��y�, we use as a theoretical basis the
neural computability condition (NCC) from Pecevski et al.,
(2011) and Buesing et al. (2011). The NCC has been

Table 3. Mathematical symbols used in the definition of the network of interconnected learning modules

Symbols related to the RVs in the target probability distribution
y Vector of all multinomial RVs �y1, . . . , yK� from the target probability distribution p��y�
yk k-th multinomial RV from the vector y
M�yk� The maximum integer value the multinomial RV yk can assume
p��y� Target probability distribution learned by the neural network
yB�k� Vector of the RVs from y that are in the Markov blanket of the RV yk

�k The learning module in the network that approximates the r.h.s of the NCC in Equation 77 for
the neurons �k encoding the RV yk

Output (and input) neurons of the modules �k and their associated RVs
�k Population of neurons in the network that together encode the value of the RV yk through

population coding
�kl Neuron in �k whose firing signals the value l of the RV yk

ykl Binary RV that assumes value 1 if and only if yk � l; it corresponds to the coding property
of the neuron �kl.

Other symbols
k Superscript index used to indicate that the symbol describes an element of the learning

module �k

�k, �kl, �j
kl, Jkl, aj

kl, akl, ak Symbols for the neurons in � and their associated RV have the same meaning as the symbols
for a single learning module in Table 1; the additional superscript index k indicates that the
element belongs to the module �k.

bj
kl, wim, j

kl , ŵim, j
kl , b̂j

kl, �k Synaptic weights, biases and the parameters of the generative models have the same
meaning as the symbols for a single learning module in Table 1; the additional superscript
k identifies that the element belongs to the module �k.

pk�yB�k�, yk; �k� Probability distribution of the mixture generative model implicitly represented
in the module �k

� Vector of union of all parameters in the neural network � � ��1, . . . , �k� from all generative models
(corresponding to the learning modules �k)
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identified there as a sufficient condition for representing a
particular distribution p� as stationary distribution of a
network of spiking neurons. If the NCC is satisfied, then
the stochastic dynamics of the resulting network pro-
duces (after some burn-in phase, whose length depends
on the choice of its initial state) spontaneously network
states (samples) that are drawn according to p�. The
network state is represented here as the vector of the RV
values y(t) at time t, where the value of each RV yk(t) at
time t is encoded in the spikes of the population of
neurons �k as described above. In order to have p� as a
stationary distribution of network states, the NCC requires
that the firing probability density of �kl should be equal to

�kl(t) �
1
�

·
p��yk � l�yB(k)(t)�
p��yk � 0�yB(k)(t)�

, (77)

if the current value of yk is yk(t) � 0, and otherwise the
neuron should be silent. If p��yk � 0�yB�k��t�� ¡ 0, as we
assumed is the case in the presented examples, the NCC
transforms as follows: the firing probability density of �kl at
time t should be proportional to p��yk � l�yB�k��t��

�kl(t) � p��yk � l�yB(k)(t)� , (78)

if yk(t) � 0, and should be 0 otherwise. Additionally, the
firing probability densities �kl for all principal neurons in
the population �k should be large enough so that if the
spike of the last neuron was at time t, a new neuron fires
almost immediately after t � �, ie, the in-between time
period where yk(t) � 0 should be very short (ideally its
duration should be equal to 0).

The firing probability density of the neuron �kl in the
network is, according to Equation 19, equal to:

�kl(t) �
1
�

·
pk(yk � l�yB(k)(t); �k)

pk(yk � 0�yB(k)(t); �k)
, (79)

as it is one of the output neurons of the learning module
�k. In addition, as we have shown above, the probability
pk�yk � 0�yB�k��t�; �k� after learning has a very small value,
which makes the firing probabilities �kl�t� very high. We
see that Equation 79 has the same form as the firing
probability (Eqs. 77 and 78) in the NCC, except that here
we have the model conditional pk�yk�yB�k�; �k� instead of
the target conditional p��yk�yB�k�� in the NCC. Thus, as the
plasticity rules during learning change the weights
and biases toward reducing the difference between
pk�yk, yB�k�; �k� and p��yk, yB�k��, which is an upper bound of
the difference between the corresponding conditionals
(Eq. 28), this then should bring the firing probability �kl�t�
from Equation 79 closer to the desired firing probability in
the NCC (Eq. 78).

The objective function �̂��� for learning in the whole
network can be formulated as the sum of the objective
functions ���� of all learning modules �k:

�̂(�) � �
k

DKL(p�(yk, yB(k)) || pk(yk, yB(k); �k)) . (80)

Using �̂��� we can state the following theorem for learning
in the whole network:

Theorem 2. The synaptic and intrinsic plasticity rules in
Equations 1, 2, and 3 change the parameters � in a way so
that they always converge to a local minimum of �̂���
subject to the normalization constraints (Eq. 6).

Theorem 2 directly follows from Theorem 1 and from
the fact that each of the KL divergences in the sum are
parametrized by a separate set of parameters �k. If
�̂��� � 0 then according to the NCC we have that
p�y ; �� � p��y�. If the parameters converge to a good
local minimum of �̂��� so that the learning modules in
the network learn a good approximation of the firing
probability densities of the NCC, then the stationary
probability distribution p�y ; �� of the network would
approximate well the target distribution p��y�.

During its spontaneous activity the neural network en-
ters states where there is at least one RV yk with zero
value. These states are not part of the target distribution
p�. Nevertheless, as that the output neurons after learning
fire with very high firing rates when not inhibited (Eqs.
73–76), the states with zero values occur only for very
short time intervals and should not affect the correct
Markov chain Monte Carlo sampling process of the sto-
chastic network. Therefore, if the output neurons of the
modules learn to fire approximately according to the NCC
(78) and fire with very high firing rates, the distribution of
the network states during spontaneous activity p�y; ��
should be a good approximation to p��y�, as we show in
our computer simulations.

If it satisfies the NCC, the neural network cannot only
generate samples from p�, but it can also perform via
sampling probabilistic inference based on p� (described in
Results, section “Flexible retrieval of learnt statistical in-
formation through probabilistic inference”). In a typical
probabilistic inference task evidence is provided for a
subset of the RVs ye, ie, their values are known, and one
wants to calculate the posterior distribution p��ys�ye� for
some of the unknown RVs ys given the evidence. In the
neural network, the evidence is presented by clamping
the neurons with injected input currents. For example, if
the value of the RV yk is yk � l, then positive current from
exogenous neurons is injected in the neuron �kl such that
it fires with high firing rate, whereas all other neurons in
the population �k are kept silent through a negative in-
jected current. A basic property of the network is that
when evidence is injected in it, it changes its dynamics
such that the neurons for the unknown RVs ys generate
samples exactly from the posterior p��ys�ye�. The posterior
probabilities can then be estimated simply by counting
the generated samples.

Details to computer simulations
Details to the computer simulation in Example 2
All computer simulations were carried out with NEVESIM,
an event-based neural network simulator developed in
C�� with a Python interface (Pecevski et al., 2014). The
simulator NEVESIM builds on techniques developed in the
simulator PCSIM (Pecevski et al., 2009). In all simulations
we used the stochastic point neuron model from Buesing
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et al. (2011) and Pecevski et al. (2011). The parameter �
that defines the encoding of values of the RVs by the
spikes was equal to � � 15 ms. The neurons had
absolute refractory period of duration �. The lateral
inhibition in the WTA circuits was implemented with a
population of five inhibitory neurons, where all neurons
in the population � connect to these inhibitory neurons
with a synaptic weight we2i � 80. The bias of the
inhibitory neurons in the lateral inhibition was set to
binh � �10, and the bias of all neurons corresponding
to the RVs y was also set to bpp � �10. The weights of
the strong input synaptic connections to each neuron
�kl, that originated from its corresponding group of
neurons in �kl that drive it to fire, were set to wpp � 20.
During learning, the evolution of all synaptic weights
was confined within a range [wmin, wmax], where
wmin � 0, wmax � 4 for the synapses of the � neurons in
the learning modules �1, �2 and �3, and wmax � 2 for
the synapses of the � neurons of module �4. Synaptic
weight changes induced by the plasticity rule that
would go below wmin, or above wmax, were clipped to
wmin, or wmax, respectively.

At the beginning of each probabilistic inference simu-
lation, the state of the network (defined by the RV values
y(t)) was initialized according to a random state drawn
from a uniform distribution over all possible initial network
states. This was done by injecting very short current
pulses in the neurons in the populations �k. During the
probabilistic inference simulations, evidence for the
known values of the RVs was given to the network by
injecting external currents in the �k neurons of the known
RVs. The currents were injected in exactly the same way
and with exactly the same amplitudes as during the pre-
sentation of the examples in the learning process (see
below).

During learning, the presented examples were gener-
ated from the Bayesian network in Figure 6B, with the
values for the conditional probabilities given in Table 4.
The prior probabilities p�y1 � 2� and p�y2 � 2� were both
equal to 0.5.

During the presentation of the examples, the neuron �kl

had injected a strong positive current Ipp� � 30 if yk � l in
the example, or a strong negative current Ipp– � �30 if in
the example yk � l. Additionally, if in the current example
yk � l, then a strong negative external current with ampli-
tude IF� � �80 was injected in each of the neurons in the
population �k that are not in the subpopulation �kl,
whereas the neurons in �kl did not receive any external
current.

Each subpopulation �kl in every learning module in the
network consisted of two neurons. All excitatory neurons
in the network had an alpha shaped EPSP defined by the
kernel:

��(t) �

� ��0·e·� t
��

� t1	·exp ��� t
��

� t1		 �
1
2

if 0 � t � (t2 � t1)��,

0 otherwise .
(81)

Here �0 � 2.8 is a scaling factor, t1 and t2 and are the points
in time where the basic alpha kernel of the form

e·t·exp ��t� is equal to
1
2

, and �� � 8.5 ms is the time

constant of the alpha kernel. The same shape of the EPSPs
was also used by Pecevski et al. (2011). After an incoming
spike at the synapse at time t1

f , the time course of the EPSP
is equal to w���t � t1

f � (w is the synaptic efficacy) until the
next spike at t2

f after which it is set to w���t � t2
f �. The PSPs

at the synapses connecting from, and to, the inhibitory
neurons of the lateral inhibition had a rectangular shape with
duration of � � 15 ms. The rectangular IPSPs of the inhibi-
tory neurons approximate the effect that fast-spiking burst-
ing inhibitory neurons with short duration IPSPs would have
on the membrane potential of the neurons �. The synaptic
weights of the connections from the inhibitory neurons in the
lateral inhibition to the neurons � were all equal to wi2e � �7.

Before the start of learning, the synaptic weights of all
neurons in � were initialized randomly from a Gaussian
distribution with mean winit � wmax/3 and SD �w0 � 0.1. If the
randomly drawn value was not in the interval [wmin, wmax],
then it was redrawn again until the new value was in the
interval (the same type of redrawing was done for the initial
values of the biases). The initial biases of the � neurons were
randomly drawn from a Gaussian distribution with mean
b� init � 5 and SD �b0 � 0.1. The evolution of the biases of the
neurons in � was restricted to be in the range [bmin, bmax]
with bmin � –30 and bmax � 5. If the intrinsic plasticity
changed the bias above bmax or below bmin, the bias was
clipped to bmax or bmin, respectively. In the learning rules we
introduced an additional scaling factor T � 0.58 in the
potentiation part. In particular, the potentiation part of
the learning rule (Eq. 1) for the weights had the form

w � e�T�w�w�� � 1, and the potentiation part of the learning
rule (Eq. 2) for the biases had form 
b � � e�T�b�b��.

The learning process lasted 1200 s of biological time.
During the first 600 s of learning, the learning rate for the
synaptic weights was decreasing linearly from 	 � 0.002 at
t � 0 to 	 � 0.0006 at t � 600 s. In the second 600 s of the
learning, after t � 600 s, the synaptic plasticity was not
active, ie, the learning rate was set to 	 � 0. The learning rate
for the biases during the first 600 s was constant and equal
to 	� � 0.01. In the second part of learning, after t � 600, it
had another constant value equal to 	� � 0.02.

The offset parameter in the synaptic plasticity rule was
equal to w� � 2.5 log �0.2�, whereas the offset parameter
of the intrinsic plasticity in the neuron �j

kl was:

b�
k �

2.5
T

·���B(k)�log (0.2) � �
i�IB(k)

log (M(yi) � 1) � log (0.02)	 ,

(82)

where �B�k�� is the number of RVs in the Markov blanket
of yk, IB(k) is the set of indices of the variables yi that are in
the Markov blanket of yk, T is the scaling factor in the

Table 4. Values for the conditional probabilities in the Bayes-
ian network in Figure 6B used to generate examples for
learning in Example 2

p��y3 � 2�y1 � 1, y2� p��y3 � 2�y1 � 2, y2� p��y4 � 2�y2�
y2 � 1 0.13 0.87 0.13
y2 � 2 0.87 0.13 0.87
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learning rule (see above) and M(yi) denotes the largest
value of the RV yi. As the neurons �k in different learning
modules have different number of input synapses, the
bias offset parameter was set for each neuron to counter-
balance appropriately the average total input it receives
from the input synapses.

In Figure 7B, the frequency of the network states was
calculated from the spontaneous activity of the neural
network after learning, simulated for 20 s biological time.
The neural network was initialized to be in a random
network state at t � 0. In Figure 8C, the KL divergence
was calculated at 1 min time intervals, ie, at time points
t � 60i seconds (i � 0, . . . ,19). At each time point, the
distribution p�y; �� was estimated by simulating the neural
network with the values of the synaptic weights and bi-
ases of the neurons at the particular time point. The
network was simulated for 1500 s, and the estimated
probabilities were calculated from the network states in
the time interval t��100s, 1500s� of the simulation. In
Figure 8 Panels, A, B, and D, the distributions
pk�yk, yB�k�; �k� and pk�yk�yB�k�; �k� of the learning modules
were calculated analytically by using Equation 5, and
then marginalizing �.

Details to the computer simulations in Example 1
The target probability distribution p��x1, x2, z� from which
examples were generated is given in Table 5. The scaling
factor T in the learning rules (see section “Details to the
computer simulation in Example 2”) was set to T � 0.4.
The maximum weight value was in this example wmax � 5.
Before learning, the synaptic weights of all neurons in �
were initialized randomly from a Gaussian distribution
with mean winit � 3.0 and SD �w0 � 0.1. All other param-
eters in this example that define the learning module, as
well as the learning process, were the same as the pa-
rameters of the learning modules in the computer simu-
lation in Example 2 (see section “Details to the computer
simulation in Example 2”).

Discussion
Numerous models for probabilistic inference in networks
of neurons have been proposed, and many models for the
impact of learning on network computations have been
proposed. However, surprisingly, these two lines of re-
search have so far (with a few exceptions that are dis-
cussed below) not been brought together. We propose in
this article a new model for learning and memory organi-
zation in recurrent networks of spiking neurons that
makes the information that is gathered from numerous
experiences immediately available for complex and un-
foreseen memory retrievals in the form of probabilistic
inference. The network is able to perform such probabi-

listic inference just through its inherent stochastic dynam-
ics. More precisely, we assume that the network receives
samples (�examples) from some unknown multivariate
distribution p�, and show that a suitably structured recur-
rent network of spiking neurons is able to build through
STDP and intrinsic plasticity of the excitability of neurons
an internal model for p� in such a way, that it can answer
a diverse repertoire of probabilistic inference queries
about the stored knowledge through sampling. Early
models for memory storage and retrieval in recurrent
networks of artificial neurons (Steinbuch, 1961; Hopfield,
1982, 1984) had focused on the storage of isolated mem-
ory items in attractors of a deterministic network dynam-
ics. The only memory queries that are considered in these
models are input completion tasks, or finding the most
similar memory item to the input pattern. Answering que-
ries that require the combination of several stored mem-
ory items is virtually impossible in such model, especially
because the stored memory items were required to be
scrambled (orthogonalized) before they were committed
to the network. This is inconsistent with experimental data
on human memory, which require a substantially more
structured memory organization (Stickgold and Walker,
2013).

We have shown in this article, that very simple network
motifs (Fig. 2) provide learning modules, which can ex-
tract probabilistic relationships between random variables
from examples, simply by applying STDP and intrinsic
plasticity. One feature of these network motifs is that
different groups of neurons on layer 2 project to different
neurons on layer 3. Such nonconvergent synaptic con-
nections are difficult to identify with current experimental
methods, but have already been found in the mouse
cortex (Chen et al., 2013), where largely nonoverlapping
populations of pyramidal cells in layer 2/3 of area S1
project to areas S2 and M1. Somewhat similar fine-scale
connectivity patterns had previously been found within a
cortical column of rat visual cortex (Yoshimura et al.,
2005; Kampa et al., 2006). It remains to be tested whether
these fine-scale network structures in the brain support
the learning of stochastic associations as predicted by
our model.

These simple stochastic association modules can be
recursively combined (Figs. 4, 5), and are then able to
learn also complex stochastic relationships, including
higher order moments (eg, explaining away), from exam-
ples. We have demonstrated this for a well-known visual
inference task from Knill and Kersten (1991), which is
known to require explaining away (Figs. 6–9), but where it
has been an open question whether brains could in prin-
ciple acquire this capability through learning. Further-
more, we have shown that this impressive learning
capability of recurrent networks of spiking neurons can be
understood for simple rules for STDP and intrinsic plas-
ticity of neurons on the basis of a rigorous mathematical
theory (Expectation Maximization).

The representations of statistical knowledge in net-
works of spiking neurons that are shown here to result
from learning are structurally very similar to previously
proposed ones by Pecevski et al. (2011) that were based

Table 5. The target probability distribution p��x1, x2, z� in Ex-
ample 1

p��x1, x2, z � 1� p��x1, x2, z � 2�
x1 � 1, x2 � 1 0.04 0.04
x1 � 1, x2 � 2 0.21 0.21
x1 � 2, x2 � 1 0.04 0.21
x1 � 2, x2 � 2 0.21 0.04
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on construction instead of learning, with one important
difference: whereas the constructed networks required
very large numbers of auxiliary neurons for representing
random variables with larger Markov blankets, we show
here that similar networks but with realistic numbers of
hidden (auxiliary) neurons can still provide good approx-
imations. These smaller modules automatically learn to
make optimal use of the number of auxiliary neurons that
are available to them. They learn automatically to approx-
imate complex stochastic associations between random
variables that emerge from examples, with a mixture dis-
tribution whose maximal number of components (modes)
fits to the available number of auxiliary neurons. We have
demonstrated this important feature of our learning ap-
proach in Figure 3 (compare panels B,D and C,E) and in
our model for explaining away in Figure 6 (where the
number of auxiliary neurons in the learning modules (Fig.
6D) is smaller than the number required by the construc-
tion of Pecevski et al.(2011)).

One other interesting general feature of our model is
that it shows how noise in networks of neurons can be
beneficial. In fact, noise provides here a necessary ingre-
dient both for the self-organization of the network through
STDP, and for the use of learnt probabilistic relationships
for probabilistic inference via MCMC sampling (Haben-
schuss et al., 2013a). The necessary stochasticity in the
neurons can come from different sources like for example
the unreliable neurotransmitter release from the vesicles
at the presynaptic site, or the stochastic closing and
opening of membrane ion channels (Faisal et al., 2008).

Finally, we would like to point out that our network
model produces answers to probabilistic inference que-
ries (Fig. 9) in the form of firing rates, which is obviously
useful for communicating such answers to downstream
networks. Internally however, the network works with a
spike-based encoding of network states, where every
spike has an impact on the network state (Fig. 7).

Our model and theory has identified concrete plasticity
mechanisms and network architectures that would enable
networks of neurons in the brain to build probabilistic
internal models for their stochastic environment. We have
focused here on an idealized model in order to keep it
theoretically tractable. Further work will have to explore to
what extent similar learning phenomena arise in more
complex neural network models that sacrifice theoretical
tractability for additional biological details.

Related work
There are several studies that propose neural implemen-
tations of probabilistic inference in general graphical
models where, as in our approach, the present indepen-
dencies of the distribution are directly exploited for reduc-
ing the complexity of the neural network structure. The
majority of these base their implementations on the loopy
belief propagation algorithm (Rao, 2006; Steimer et al.,
2009; Siegelmann and Holzman, 2010; Litvak and Ullman,
2009). Except for Siegelmann and Holzman (2010), to the
best of our knowledge, none of these studies proposes a
way how these neural structures could emerge through
learning from examples. The model of Siegelmann and

Holzman (2010) is formulated on a more abstract level. It
is based on the observation that belief propagation (mes-
sage passing) requires only three arithmetical operations:
summation, multiplication, and division (for normaliza-
tion). Their network model is based on symbolic compu-
tational units (interpreted as multicompartment neurons)
that carry out these arithmetical operations on real num-
bers. The resulting real numbers are interpreted as prob-
abilities or messages that are sent to other units during
belief propagation. Estimates of conditional probability
tables are extracted from examples through online accu-
mulators, assumed to be implemented as plasticity of the
weight of a dendritic branch that represents a specific
value assignment for a set of random variables (more
precisely, for the Markov blanket of a random variable).
Hence, this learning model is not based on synaptic plas-
ticity, but rather on a plasticity mechanism that changes
the weight of a whole dendritic branch. We are not aware
of an attempt to implement this approach with spiking
neurons, or with more local plasticity rules.

An alternative framework for probabilistic inference in
neural circuits developed by Ma et al. (2006) and Beck
et al. (2008, 2011, 2012) is based on representation of
probability distributions in probabilistic population codes.
To the best of our knowledge, the question of how the
neural implementations in those studies can emerge
through learning with local plasticity mechanisms has so
far not been addressed.

We have focused in this paper on the task of learning
time-invariant distributions p� over static patterns. Com-
plementary to this, in several studies (Deneve, 2008;
Rezende et al., 2011; Brea et al., 2013; Kappel et al., 2014)
the authors developed neural network models for learning
time-varying distributions, restricted to dynamical Bayes-
ian networks that do not have dependencies between the
RVs in the same time step, which simplifies the learning.
In these models, the network learns to reproduce se-
quences of patterns, by developing latent representations
as a memory about the recent history of patterns, and
learning the stochastic transitions between the patterns in
the sequence. In contrast to this, the neural networks in
our approach learn a probability distribution of static pat-
terns as their stationary distribution, where the distribution
can contain arbitrary dependencies between the random
variables without any restrictions.

The problem of learning a probability distribution from
examples has been well studied in the artificial neural
network community. The Boltzmann machine is one of the
earliest developed neural networks that can learn general
probability distributions (Ackley et al., 1985). The learning
in the Boltzmann machine is however difficult for learning
higher-dimensional probability distributions with a larger
number of RVs (Hinton, 2002; Carreira-Perpinan and Hin-
ton, 2005). Building on the Boltzmann machine idea, more
recently developed deep belief networks have consider-
ably improved the efficiency and scalability of learning by
using a Boltzmann machine with a two-layer bipartite
graphical model structure, called restricted Boltzmann
machine, which is easier to train than the general Boltz-
mann machine (Hinton et al., 2006). Deep belief networks
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learn multilayer latent representations of the input data in
a generative model by training layer-by-layer restricted
Boltzmann machines. As in our approach, the learned
probability distribution is embodied as a stationary distri-
bution of the network states. However, the structure of
Boltzmann machines and deep belief networks exhibits
symmetric weights between the neurons which are not
found in biological networks of neurons, and also the
biological plausibility of layerwise training and the learning
rules in these networks is not clear.

These approaches derive their learning rules from the
maximum likelihood learning principle. Our learning ap-
proach for network of interconnected learning modules,
on the other hand, is more reminiscent to maximizing the
pseudo-likelihood (Besag, 1975), an alternative parameter
estimation method in statistical learning, where the objec-
tive function can be formulated through the Kullback–
Leibler divergences between the target and the model
conditional distributions of one variable given the rest of
the RVs. The difference is that in the pseudo-likelihood
objective function the conditional distributions are all de-
rived from a single probabilistic model, whereas in our
approach each learning module learns a separate gener-
ative model of a marginal of the target probability distri-
bution.

Experimentally testable predictions of our model and
other questions for further research
Our model makes significantly different predictions com-
pared with previous models for memory in neural net-
works with regard to the architecture of the neural
networks involved. Models based on Hopfield networks
and Boltzmann machines predict that memories are
stored in homogeneous networks of only excitatory neu-
rons with symmetric synaptic connections. In contrast,
our model predicts that memories are stored in large
assemblies of highly structured generic microcircuit mo-
tifs, each consisting of excitatory and inhibitory neurons.
Our model gives rise to a concrete hypothesis, why dif-
ferent species have different learning capabilities, which
cannot be explained in terms of the different numbers of
neurons in their brains. It proposes that the structure or
structural predisposition of interconnections between
neurons is an important factor for learning performance.
In particular, it predicts that the superior learning capabil-
ities result from a genetically more precisely structured
interaction of excitatory and inhibitory neurons. Our
model of a probabilistic learning module (Fig. 2) proposes
in fact two different functional roles of inhibitory neurons:
lateral inhibition among excitatory neurons that induces
each of them to specialize on different presynaptic firing
patterns, and another type of inhibition that prevents hid-
den neurons that learn a probabilistic relationship be-
tween random variables �x, z� for a specific value z � l, to
engage plasticity for examples �x, z� with z � l. This
architecture provides concrete hypotheses for the analy-
sis of data on the role of inhibitory neurons in the organi-
zation of plasticity (Caroni, 2015; Letzkus et al., 2015).

Furthermore, our model for an atomic probabilistic
learning module predicts that pyramidal cells within a

network can represent probabilistic, rather than only de-
terministic relationships. This can in principle be tested
experimentally by exciting (eg, through optogenetic meth-
ods) a subset A of these neurons, and observe the result-
ing firing probability of pyramidal cells B. Furthermore our
model predicts that this firing probability of neurons in B
can be changed upward through trials where both neu-
rons in A and B are made to fire, and changed downward
through trials where neurons in A are made to fire and
neurons in B are inhibited.

In contrast to preceding memory models, our model
does not predict that synaptic connections between neu-
rons are in general symmetric. This would actually be
impossible for synaptic connections between excitatory
and inhibitory neurons. But also for synaptic connections
between pyramidal cells in the cortex a symmetry of
synaptic weights between them is not really consistent
with the currently available experimental data (Song et al.,
2005; Haeusler et al., 2009, their Fig. 4). With regard to the
plasticity mechanisms involved, our model points to an
essential contribution of intrinsic plasticity of the excitabil-
ity of pyramidal cells for memory formation (Mozzachiodi
and Byrne, 2010).

An interesting functional prediction of our model is that
memory recall cannot only take the form of input comple-
tion (like in a Hopfield network), but can engage the full
power of probabilistic inference. Furthermore, it proposes
that this inference is implemented through the inherent
stochastic dynamics of networks of neurons in the brain.
Such implementation has previously already been pro-
posed on the basis of data from cognitive science (Deni-
son et al., 2013; Vul and Pashler, 2008). Furthermore our
model predicts that memory recall and imagination of
possible scenarios are closely related brain computations,
that engage similar network mechanisms. This prediction
appears to be consistent with recent experimental data,
which suggest that memory recall and imagination/fabu-
lation engage largely the same brain systems (Schacter,
2002).

Finally, our model predicts that the development of
suitable brain networks that store basic insights about
typical causal roles and dependencies of the objects and
phenomena we encounter is essential for learning. This
prediction is in line with experimental results from cogni-
tive science, which argue that such basic knowledge
about dependencies in the real world is already known to
2-year-old children (Landau et al., 1988). Because our
learning approach emphasizes the role of probabilistic
inference, it also provides a theoretical framework for
integrating innate or previously learnt knowledge in the
form of priors.

The learning paradigm that we have presented was
designed to provide an alternative to other neural network
models for higher-level memory. Such higher-level mem-
ory system in the brain receives high-dimensional inputs y
from numerous brain areas, in particular also higher-level
features that are extracted from sensory inputs by other
learning systems.

It is at this point an open question to what extent the
proposed model for learning in networks of spiking neu-
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rons can also provide insight into the organization of lower
level learning systems in the brain, for example in the
visual system. The underlying mathematical approach is
quite general, and guarantees convergence to an internal
model for any external distribution p� over discrete RVs
that generates the examples y that are presented to the
network. How good this internal model will become is
related to the question how well p� can be approximated
by a Bayesian network with small degrees of nodes, or
more generally, by a simplified distribution where all RVs
have small Markov blankets. However, a precise answer
to this question is even more difficult, because our model
is in principle also able to approximate some distributions
with large Markov blankets, see the remarks at the end of
Results section “Small numbers of hidden neurons in the
learning modules often suffice.” Numerical tests for a
number of practically relevant distributions p� are likely to
provide further insight into this question.

In principle, it is also possible to boost the learning
capability of our approach by stacking multiple copies of
the learning network. The � neurons in the network learn
to encode salient combinations of values of different RVs,
similarly as feature detectors on the first hidden layer of a
deep learning network. Hence, it would make sense to
send the output of these � neurons also as input to a
version of the same type of learning network on a second
level. One would then expect that the second level net-
work learns in the same unsupervised manner to detect
and represent salient combinations of values in these �
neurons. The analysis of the performance of such a
stacked learning architecture based on spiking neurons
and STDP is a topic for future research.

Summary
Altogether, we have shown that some forms of probabi-
listic inference can be learnt through STDP, even in cases
where the nontrivial “explaining away” effect occurs (Figs.
6–9). We propose, that this new paradigm for network
learning provides an alternative to previous models for
associative learning that were based on learning categor-
ical rather than probabilistic associations. In addition, in
contrast to earlier memory models, this new model is
compatible with basic properties of biological networks of
neurons, such as spikes, trial-to-trial variability, stereotyp-
ical microcircuit motifs, and STDP.
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