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Major Subsets and Automorphisms of
Recursively Enumerable Sets

WOLFGÄNG MAÄSSI

1. Introduction. For recursively enumerable (r.e.) sets M and r4 with M c A one
says that M is a major subset of A (McnA) if A- M is infinite and if
AUW:N+ MUW:*N for every r.e. set W (:* means equality up to
finitely many numbers, N is the set of all natural numbers).

According to Lachlan [4] every nonrecursive r.e. set A has a major subset M.
An abundance of results has been proved about major subsets (see Soare [7] for
a survey) since they are of critical importance for questions concerning decidabil-
ity and automorphisms of the lattice of r. e. sets á*.

In Maass and Stob [13] it was shown that for any M c ^A and Ii[ C,,Å there
is an effective isomorphism between the intervals E*(A - M) and S*(A - M).
In this paper we point out some consequences of this result and answer two
related questions.

The Leitmotiv of a large part of this paper is the structural resemblance

between semilow- sets and sets in an interval bounded by a major subset. One

calls an r.e. set D semilow* if there is a total recursive function / s.t., for all
eeN,

W"^ D infinite o W<"¡infinite.

If we consider sets M C^A and D with M c D c*A, then D c,,A and

therefore the effective isomorphism from [3] supplies a recursive function / s.t.,

foralle€N,

W" n D 1,(A - M) infinite o WtG)^Q - M) infinite.
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The outer splitting property is another common feature of semilow, , sets and sets

in an interval bounded by a major subset [0, 13].

In $1 we use the splitting property from [12] in order to give a negative answer
to a question of M. Lerman: Assuming M c,,A and ú.,,1, is there an

isomorphism Q: E*(A)--+ E*(A) with iÞ(M*) : M*?
In $2 we consider automorphisms of ,,t//*:: E*(A - M) for M C,,,4. We

generalize the notions promptly simple and semilow to ¿//* and show that
promptly simple semilow sets are automorphic in,,t//*.

In $3 we use another slight extension of the isomorphism construction from

[13] in order to derive a few basic facts about the homomorphisms of Boolean

algebras that are generated in E* by major subsets.

In $4 we provide the antithesis to the previously exploited lowness properties of
major subsets by showing that no major subset (and thus no r-maximal set) is
semi-loq.

For an arbitrary set S c N one defines

á(s):: {w¡slwr.e.}.
á(.S) is a lattice under set-theoretic union and intersection.

We write

sr(S),: {UlUe8(S) andS- Ues(S)}

for the sublattice of complemented elements in á(S). Obviously á.(S) is a

Boolean algebra.
We write Z* for the equivalence class of ? w.r.t. the equivalence relation :* .

We write á*(^S), Eë(S) for the corresponding quotient lattices.

CoNv¡NrroN. (1) Capital letters denote r.e. sets (unless we say "an arbitrary
set").

(2) We say that an r.e. setl is semilow, semiloq5, etc. instead of saying that
the complement of I has these properties as in the original definitions in Soare

[16] and Bennison and Soare [1].
I would like to thank Alistair Lachlan, Bob Soare, Michael Stob and Martin

Ziegler very much for stimulating discussions on the subject of this paper.

2. The splitting property for major subsets. M. Lerman has raised the following
question. Assume that M and Ñ[ are two major subsets of an r.e. set l. Does there

exist an automorphism iÞ of E*(A) with iÞ(M*) : U*?
It is tempting to believe that such an automorphism exists. Soare [15] has

shown that any two maximal sets are automorphic in E* and the construction of a
major subset of a given set A can be arranged to look very similar to the
construction of a maximal set inside the universe l. In both cases, A - M
consists of the final resting places of infinitely many markers 1., e e N, that seek

to maximalize their e-state w.r.t. certain arrays of r.e. sets (see Soare [7, Theorem

8.2]). Nevertheless, the answer to the question above is no.
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TnronEu 2.1. Assume A is nonrecursiue. Then lhere are major subsets M, M of A
such that Þ(M*) + fu* for euery automorphismÞ of E*(A).

In order to prove this theorem we consider the following property.
DnrlurrroN 2.2. Assume B c D c ,4. We say that D has the splitting property in

A - B if onecanspliteveryr.e. set W c A intor.e. setsW',W" s.t.W' c D and

(A - W)u Bnot r.e.- (A - W') u B,(A - W")U,Bnorr.e.,

If we take A :: N and B :: Ø this definition coincides with the weak splitting
property from Maass, Shore and Stob [12].

Notice that one can define the splitting property in A - B by an elementary
definition over E*(A - B). We show in Lemma 2.3 that every nonrecursive set,4
has a rnajor subset M that has the splitting property in A, and in Lemma 2.5 that
every nonrecursive set Ahas, as well, a major subset M that has not the splitting
property in ,4. This will finish the proof of Theorem 2.1. Observe that this
argument exploits the structural resemblance to low sets, where the splitting
property can be used to show that not all low sets are automorphic in E*.

Lnulrn 2.3. Assume A is not recursiue. Then there is a major subset M c nA s.t.
M is promptly simple in A and therefore has the splitting property in A.

Pnoor'. A standard construction of a major subset M C - A as e.g. in Soare

[7, Theorem 8.2] can obviously be combined with the satisfaction of the standard
finitary positive requirements that make M promptly simple in,4. According to
Theorem 2.2 inll2) prompt simplicity implies the splitting property and this still
holds if we substitute the universe N by A.

L¡tutvt¡, 2.4. Assume B c D c A, E*(A - D) ls not a Boolean algebra and the
Turing degree of D is half of a minimal pair. Then D does not haue the spliiling
propertyinA-8.

Pnoor. This is shown in Theorem 3.1 in Maass, Shore and Stob [12] for the
case A : N and B : Ø. The same argument works as well in this more general

situation.

L¡vtul 2.5. Assume A is not recursiue. Then there is a major subset M c 
^A 

s.t.
M has not the splitting property in A.

Pnoor. Let h be a high Turing degree that is half of a minimal pair (see

Lachlan [2]). Since h is high there exists a major subset M C n l of degree h
(Lerman [5]). We then apply Lemma 2.4 with B :: Ø and D i-- M, and see that
M d,oes not have the splitting property in l.

One could as well construct directly a set M with the desired properties.
R¡u.tnx 2.6. Assume M C 

^ 
A. One can use the splitting property in A - M in

order to show, for various properties P, that not all sets D in 8(A - M) with
property P are automorphic in E*(A - M):: l/*. For many P it is easy to
construct a set D with property P that has, in addition, the splitting property in
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A - M.If there exist, in addition, sets D with property P in every high degree,

one can use Lemma 2.4 with B i: M in order to get some D with property P that

does not have the splitting property in A - M.

3. Automorphisms of .//*.lt is not so easy to find sets that are automorphic in

ú*, since there are no sets with few supersets in -y'/* (like e.g. maximal sets in

á*). We show here that there are analogies of promptly simple and semilow sets

in.,r//* and that sets with both properties are automorphic tntØ*.
Since it is easy to make sets in tr* promptly simple and semilow, and since all

these sets realize the same 1-type in.y'l*, we suggest as the next step to look for a
decision procedure for Vf -sentences in .l/*, which have a promptly simple

semilow set in.y'/* as parameter (a decision procedure for Vil-sentences without

parameters in ¿l/* is given in Stob [f8). This will supply valuable experience

towards a decision procedure for the 3V3-theory of .y'/* .

DpnlNrrrou 3.1. Consider sets B, D, A with B c D c A.
(a) We say that D is promptly simple in A - B if A - D is infinite and if there is

a recursive function/and an enumeration of all r.e. subsets (4)r=¡n of ,4 s.t.

Vi e N(Uj 
^(A - 

B) infinite + 1x,s(x e U¡., - \.,-t
AxêBAxr- rr,",)).

(b) We say that D is semilow in A -,8 if there is an enumeration of D and all

r.e. subsets (U,) , = rv of ,4 s.t.

vi((ut\D) n (A - B) infinite - (u¡ - o) n('t - .a) infinite).

RrunRr 3.2. Because of Theorem 5.1 below not every characterization of
semilow can be generalized to an interval A - M with M C 

^l' Of course the

preceding definition is equivalent to the standard definition of semilow if A - B
: N. Note that sets inEr(A - B) are always semilow inA - B.

Tnnonnu 3.3. Assume M c 
^A. 

Then there is a set D with M c D c A s.t. D is
promptly simple in A - M and D is semilow in A - M.

Pnoor. We use similar arguments as in Stob [18].
We construct a recursive enumeration of a set D s.t. M c D c A and s.t. with

respect to the standard enumeration of (W")".* the following requirements are

satisfied for all k, i, n, j c N:

No: lA - Dl>- k,

N,.^: (w,\D) n (A - M) infinite -l(w, - r) n (t - u)l>- n

and

P¡, Y aU - M) infinite + 1x, r(" e Wj," À('5, - W,,-r) n l" ,

AxêMnxeQ).
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We define in the usual fashion (see [13]) nondecreasing recursive functions

('movable markers') l"o(t), I",.,,(t), I"r(s) s.t.

"lim 
l"^(s) : oo iff lA - Dl< k,

lim f". (t) : - iff the conclusion of -{,, does not hold
.sâæ ,'¡ r

and

lim f. (s) : oo iff the conclusion of P, does not hold-
.s-æ 'J

Tn¡ coNSTnUCTION. We fix enumerations of I and M. For x e A we define

sx :: p^ç(x = A").
Stage s. We ccnsider all x e r4". We place x in D if x € M, or if there exists

somej e N s.t.

x € w¡., î(A" - W,,"_r) i, A"-1,

f"r(s") > x'

f"*(s")<x forall kç7,s
f*.,,(s") < x for all (i, n) <"r withx € W,," ,

(in this case we say that P, forces x into D).

L¡vru¡. 3.4. Euery requirement P¡ forces only finitely many elements of A - M
into D.

Pnoon. If P, forces some element of (A - M) into D then lim"- - l"r(s) < oo'

LEIvrun 3.5. Euery requirement Nois satisfied.

Proon. Otherwise, I"*("") > x for almost allx e A - M.

Lrvlu¡, 3.6. Every requirement {,, is satisfied.

Pnoor'. Assume {,, is not satisfied. Thus (I4{\D) n (A - M) is infinite and

lim,--f".,(t): oo. Since M c-l we have f*.,(s") > x for almost all x e
A - M. Therefore, almost all of the infinitely many elements of (ttlr\D) n
(A - M) can only be forced into D by P, withj . (i,n)' Thus N,,,, is satisfied

since these P, together force only finitely many elements of A - M into D
according to Lemma 3.4, a contradiction.

Lruu¡, 3.7. Euery requirement Pt is satisfied.

Pnoon. This follows easily from Lemmas 3.5 and 3.6.

This finishes the proof of Theorem 3.3.

TnnonEIvr 3.8. Assume M C 
^ 

A and Ñ[ . 
^ 

Ã. Further assume that M c D c A,

*t C b c Ã and D, b are promptly simple and semilow in A - M, resp. Ã - li[.
Then there is an isomorphism

Q: E*(A - M) - 6.1Ã - u) with Q(D*) : þ*.
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Pnoon. First we notice that D c^A and, b c-Ã.Therefore there exists an
effective isomorphism [13]

.þ:E*(A-D)-5.(A-b).
More exactly, there are simultaneously recursively enumerable arrays (U,),.",
(Ù,),.*, (Ù),=* and (V,),=* s.t., for every i e N, (1,: *W : *V, and s.t., for
every state z (see [10] for notation), infinitely many elements of A - D have state
,/ w.r.t. (U,),.¡u, (V,),.* iff infinitely many elements of ,1 - b have state z w.r.t.
(Û),=*, (v,),.*.

It follows from Lemma 5.5 in [13] that, in addition, the following weak
covering property (*) holds (notation as in [13]).

For every state ,/: if infinitely many elements of I - D have
state r/ w.r.t. (U,),=r, (t,),.* at some point of the enumera-

(-) tion then there is a state vt 4 v s.t. infinitely many elements

of Ã - b have state ¡r1 w.r.t. (U,),=" , (V,),=* at some point of
the enumeration * symmetrical counterpart.

We proceed then analogously as for low sets in Maass [11]. We relativize the
prompt and low shrinking property of [11] to the interval A - M. Since D is
promptly simple and semilow in A - M, D has the prompt and low shrinking
property in A - M (this is proved exactly as in the unrelativized case [11]).
Analogously å has the prompt and low shrinking property in Å - ¡7. llnis
implies via a relativized version of the Shrinking Lemma in [11] that we can
shrink the sets Z, to sets Vi e V,and the sets U, to sets Ui c Ù,s.t.

vi .(A - D) --* fi,n(t - D), ui ìG - i¡) :* u,n(Ã - b),
and s.t., in addition, the covering property (**) of the following Extension
Theorem for l/ is satisfied. The conclusion of the Extension Theorem for "t//
implies that we can continue the isomorphism ry': E*(A - D) - E*(Ã - A; to
an automorphism iÞ: E*(A - M) - E*(A - tit¡witttO(D\: b*.

TnBonEu 3.9 (ExrrNsro¡¡ TsEonEM FoR J/). Assume M c^D and tø c^b.
Further essume that there is a simultaneous enumeration of M , D, i4 , b and arrays

(U,) ,.*, (vi) ,.*, (li) ,.*, (v,) ,.* s.t. for euery i e N
D"Vi :Ø and i;'"U; :ø,

and s.t. the following couering property (**) holds.

For euery state vi if infinitely many elements of D - M enter D
¡n state v w.r.t. (U,),.N, (Vi),.¡u then there is a state ¡r1 < ¡/ s.f.
infinitely many elements of b - i[ enter b in state v\ w.r.t.
(Ui),.*, (V,),.¡u + symmetrical counterpart.

(* *)

Then one can extend the sets Vi , Ui to sets V¡, U, s.t., for euery i e N,

v,nD: vi .D UiÀD:UlaD,
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(lnd s.t. for euery slate v infinitely many elemenß of D - M haue slate v w.r.t.
(U,),.*, (t,),.* iff infinitely many elemen* of b - iÍ haue state v w.r.t. ((J),=*,
(V,),=w.

Pnoon. The construction is a trivial extension of the construction in [13]. The

only difference in the proof occurs at the beginning of the verification of Claim 3

in the proof of [13, Lemma 5.5]. At this point one uses covering property (*x)
instead of the argument: "Of course o, * Ø .. .".

4. On the structure of subalgebras and homomorphisms of Boolean algebras

generated by major subsets. If S, S are two arbitrary infinite sets with S c S, then

the Boolean algebra ,B' of intersection with S of r.e. sets that look recursive on S
(i.e. {(R n S)*lR* € á*(^S) and (S - R)* € á*(S)}) is a subalgebra of the
Boolean algebra B of r.e. sets that look recursive on S (i.e. {t/*lU* e á*(S) and
(s - U)* e á*(S)) :: áj(s)' In general when S grows, fewer sets look recur-

sive on S and thus the subalgebra B' '-+ B shrinks.
We consider here only the case where ^i :: N (thus the sets that look recursive

on S are the real recursive sets) and 
^S 

:: I - M for r.e. sets A and M.
Discussions with M. Stob led to the observation that the Owings Splitting

Theorem restricts the subalgebras B' '--> B that arise in this way: if B' '-+ B is
represented as above then one can split every element of B - .B' into two
elements of B - ,B'. It is not difficult to see that there are embeddings of Boolean

algebras into the countable atomless Boolean algebra which do not have this
special property.

The characterization of all subalgebras of Boolean algebras that arise inE* in
this way is an interesting although quite difficult project.

We restrict our attention here to those subalgebras that arise in the case where

M c^A. lt is well known that the subalgebra B' '-+ B that is represented by

^S 
:: t{and S :: A - M(withM, A r.e.)as above satisfies

vb e B(b+ 0 + 1a e B(a < b A a ê B'))

iff M c- I (this follows as well from Corollary 4.5). In particular, .B is always the

atomless countable Boolean algebra if M c 
^ 

A.
In the case M c . A we have the special property that every recursive set R has

(up to :* ) a unique continuation from A onto M. Thus the function

Hn.r: s[(A) + s¿(A - M)

defined by (R À A)* ,-+ (.R n (l - M))* for recursive sets R is independent of
the choice of R and therefore well defined. Obviously Hn., is a homomorphism
of Boolean algebras where Range(Ht.v) is the previously considered subalgebra

B'. By choosing suitable,4 we thus get some control over the subalgebra B'.
Observe that Hn., is 1-1 if M is a small major subset of A and Range(I1r.r) is

just the 0-1 Boolean algebra if M is an r-maximal major subset of l.
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These maps Hn., are of interest with regard to the characterization of orbits of

r.e. sets under automorphisms of á*. The characterization of the orbit, in which

an r.e. sets,4 lies, requires a full understanding of the function

S*(Ð = (W 
^ 

A)* *, {X*lx c l,Xr.e. and X u(W - A) r.e.} c A*(A).

The preceding homomorphisms Hn., are embryos of these functions, where we

consider only recursive sets W and restrict our attention to the smaller lattice

E*(A - M) (instead of E*(A)) where the continuation of the recursive set lZ is
still unique.

THEonEu 4.7. Assume M C 
^ 

A, ÑI c 
^ 

Å and, for euery recursiue set R,

R n(l - M) :* Ø e Rr\(Å - u) :* ø'
Then there is an isomorphism

e: E*(A - M) - s.(Ã - tû)

s.t., for euery recursiue set R,

o((n n (A - M)).): (n n (A - M)). .

Pnoon. This is another inessential extension of the isomorphism construction in

Maass and Stob [f3]. We fix a simultaneous enumeration of aî array (Rr)r=r that

contains exactly the recursive sets: at Stage s we enumerate x in R, if

ó,."(r) = 1 and vy. r(0,,"(y)1 ando,,"(y) e {0,1})'

LEIvrua 4.2. Assume e e N. Almost all x e. A - M haue lhe property

{i < elx € R,} : {; < "1". R,,,^, wheret,i: pr(x = A,)}-

The same hotds for A - li[.

Pnoor. If R¡ n (A - M) is infinite, then x € R¡,¡, for almost all x e Rr Ô

(A - M).
We need an extension of the construction in Maass and Stob [13] similar to the

one that was needed for the proof of the Extension Theorem for 'ú. We have to

take into account that elements are already in certain sets R, before they appear

in the construction. But unlike the situation in the Extension Theorem, we do not

even have to extend these R, to get an exact matching of states on both sides.

Lemma 4.2 enables us to perform the construction of [13] simultaneously but

separately inside every e-state of the Rt.

States z are now 4-tuples (e,o,r, p) (instead of tuples (e,o,r) as in [13]) with

o,T,pce-l 1.

For the construction in A - M we say that x e I has state (e, o, r, p) at Stage

sif
o -- {i < elx e U.,"}, ,: {i < elx e 4,"}

and

P : {i s elx e R,,,,} ,
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where /" is the stage where the simultaneous enumeration function g enumerated

x inlo A
For the construction inA - ú wesay that i, e,4 has state (e,o,r, p) at Stage

sif
o: {i ( elx e U,."}, ,: {i { elx e I2,,,}

and

P: {,(elxeR,,,,},
where l, is the stage where Í entered,4.

For z : (e,o,r, p) and v' : (e',o',1', P') we say that z < z'(z'extends z) if
€ I ê',o : o' n (e + 1)," : r' ñ(e+ 1)and p : p' n (e + 1).

rùy'esaythatv> z'(zcoversv')iÎ e: e',o)-o',1C r'and p: p'.

The goal of the construction is to get sets U¡, ft,, Û, V,s.t., for every I e N,

u¡:* w¡^(A - M) and v¡:* w¡ n(Ã - liÍ)

and s.t. for every state z : (e,o,r, p) infinitely many x e A - M have final
state v iff infinitely many Í e .Ã - i4 have final state z.

Of course, a stream 9(X) consists now of 4-tuples , : (r,o,1, P) and boxes

8,, a well as the function q(s, v), are now defined for these extended states ¡/.

The only change in the proof of [3] occurs in the verification of Claim 3 in the

proof of [13, Lemma 5.5]. One argues now as follows.

By contradiction fix vz: (e,o2,12, pz) such that the claim fails for tt2, c2is
minimal and r, is minimal for or. Assume first that oz: Ø. Since ,'2 occurs

infinitely oftenin{, there are infinitely manyi e A - ú s.t.

pr: {¡ < eli e R,,,0}.

By the preceding lemma this implies, for the recursive set R:: n{R¡ll e Pz},

that R 
^ 

(A - lz; is intinite. By the assumption of the theorem this implies that

R 
^ 

(A - M) is as well infinite. Thus, by Lemma 4.2,

S,: { x e A -Ml{l < elx e R,,,,} :or}

is infinite. All x e S are in some State v' : (e,o',r', pz) with r' : Ø when they

run for the first time over track 9. We have v'>- v for such a state z' and

therefore Claim 3 holds lor vr, a contradiction. One argues then for or* Ø asin

[13]. The analogous versions of Lemmas 5.6 and 5.7 from [13] show that the

construction meets our previously mentioned goal.

This finishes the proof of Theorem 4.1.

Conorl¡nv 4.3. Assume M and M are major subsets of A s.t. the maps

H¡.viS¿(A) -- S¿(A - M) and Hn.¡,:EI(Ð'së(A - M)

haue the same kernel. Then Hn., and H1.¡ are identical up to isomorphism, i.e.

there exists an isomorphism Þ: E*(A - M) ' E*(A - ÑÍ¡ s't'' for att recursiue R'

Hn.¡,((R n 11.) : a(Hn.r((n n zl-)).

29
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Pnoor'. This follows immediately from Theorem 4.1 and the definition of Ho.,
before Theorem 4.1.

R¡nnnr 4.4. The previous corollary shows that for a fixed I the homomor-
phisms Hn.rlor M c,,A are abeady determined by their kernel. This becomes
ilifferent if we let A vary. The following is an example of sets A,,4.,whereboth
S*(A) and E*(A) are the countable atomless Boolean algebra, and of sets

M C,,A and fu.n,d s.t. both Ho,, and H¡,¡ are 1-1 embeddings of the
countable atomless Boolean algebra into the countable atomless Boolean algebra
Së(,5 - M), resp. S¿G - út¡, but where the Boolean algebra Së(A - M)
together with the distinguished subalgebra Range(Hn.r) has a different structure
than S[(Ã - ÑÍ) rcgether with the subalgebra Range(11;,M). We rake borh I
and Å to be atomless hyperhypersimple. Vy'e choose,4 semilow, and Å s.t. it does
not have an r-maximal rnajor subset (see Lerman, Shore and Soare [6]). We let M
çitt¡ be any small major subset of A (,a.¡. Tlús implies immediately that both
Ho., and H¡,¡ arc 1-1 (thus they have the same kernel). Further, one can split
every nonzero element of S[(Ã - U) Ay an element in Range(Il;.¿) (i.e. by a
recursive set) whereas there is a nonzero element in E[(A - M) which cannot be
split by elements in Range(Ilr.r) (actually below every nonzero element in
Eë(,5 - M) there is one with this property).

The following corollary shows that lor M c. A the homomorphism Ho.rhas a
characteristic homogeneity property.

ConotLnny 4.5. A.çsume M C 
^ 

A. Then the homomorphism

Hn,r: E[(A) '+ s¿(A - M)
has the following homogeneity propertyi one can split euery nonzero elemefi T* e
Eë(,5 - M) into two pieces Tf , TT e E[(A - M) - Range(Hn.r) s.t., for euery
i € {1,2}, the homomorphism

H['.r: s[('t) -- së(7)
with Hl,M(b): Ho.rØ)1,71 for b eSIçA) has the same structure as the
homomorphism

Hl.r: sf(A) -- së(r)
with HÏ,MØ) : Hn.v(b) f\ T* for b e SI(A¡, i.e. there is an isomorphism

A,: EI(7,) - S¿(T)
s.t., for all b e E¿(A),

nT.rØ): a¡(Hl,.M@)).
Pnoon. Every nonzero element T* e E[(A - M)has the form (W - M)* for

some r.e. W with McWcA and MUW not r.e. According to the Owings
Splitting Theorem [17] we can split W into r.e. sets Wþ W2 such that, for all r.e. U
and i e {1,2},

(u - w,) u M r.e. - (U - W) r-t M r.e.

We define Ti i: Wi - M.
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We show that for every recursive R we have, for i e {7,2},
(.) R ñ(W - M) infinite e R 

^(til, - 
M) infinite.

Assume R is recursive and R À (W, - M) is finite. Then (R - W,)v M is r.e.

and thus (R - W) U M is as well r.e. The union of the r.e. sets (R - W) U M
and R UW is equal to N. We apply reduction to these sets and get a recursive Ro

with Ro À W : R a W and Ro î (W - M) -- Ø. Since M C,,W, this implies
that R . (W - M) is finite.

We get 4l É Range(Hn.r) directly from (*). Further with 1*¡ we get the
desired isomorphism Õ, from Theorem 4.1.

5. Major subsets are not semilowr. An r.e. set B is called semilowrif {elW" tt B
infinite) ( . 0". Many classes of r.e. sets (e.g. atomless hyperhypersimple sets)

that consist only of sets of high degree contain some particularly well-behaved
representatives that are semilowr. These often have interesting special properties
(e.g. all semilow, atomless hyperhypersimple sets are automorphic [9]). We show
below that the class of major subsets (and thus the class of r-maximal sets that are
not maximal) does not contain semilow, sets. On the contrary, all major subsets

are as far away from being semilow, as possible. It follows from [13] that the
Turing degree of the set

{rlw" ^(A - 
M) infinite}

does not depend on the choice of A, M with M c^A.We show here that this
degree is equal to 0"' .It is obvious that {elll" a (A - M) infinite} is recursive
in {elW" n Minfinite}.

THponEu 5.L. Assume M c ,, A. Then

deg{elw" 
^(A - 

M) ¡nÍinirc} : 0"'

Pnoor. Let S, e.0"' be a )! set. It is easy to construct an r.e. set W"oand a

recursive function p s.t.

Ve e N(e = S, o Wp(")- W"ofinite).

If M c 
^ 

A then M has the outer splitting property in ,4 [13]. Thus there is a
recursive function g s.t. the sets Wrli¡ are pairwise disjoint,

A: l) w,1i¡
¡€N

and

Vi e lr( Wr<,t ñQs - u) is finite and nonempty).

Vy'e use this to embed E* effecúvely into E*(A - M). There is a recursive
function k s.t., for all e, e' e N,

W"- W", finite <+ (Woru- Wo<",¡) 
^(A - 

M) finite

(set Wor"r;: U,= ,.Wr1,¡).
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We define ù :: ll*Go¡ U M. Then, for all e e N,

e € s3 o wp(") - w"ofinite o (worrru, - Iro<"¡) 
^(A - 

u) finite

o wo(o(Ð)1'(A - u) tinite'

Thus S, is recursive in {elW" ^ 
(A - U¡ finite¡ and since fu . ^l this set has

the same degree as

{4w" n(A - M) finite}.
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