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Experimental methods in neuroscience, such as calcium-

imaging and recordings with multi-electrode arrays, are

advancing at a rapid pace. They produce insight into the

simultaneous activity of large numbers of neurons, and into

plasticity processes in the brains of awake and behaving

animals. These new data constrain models for neural

computation and network plasticity that underlie perception,

cognition, behavior, and learning. I will discuss in this short

article four such constraints: inherent recurrent network activity

and heterogeneous dynamic properties of neurons and

synapses, stereotypical spatio-temporal activity patterns in

networks of neurons, high trial-to-trial variability of network

responses, and functional stability in spite of permanently

ongoing changes in the network. I am proposing that these

constraints provide hints to underlying principles of brain

computation and learning.
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Constraint/principle 1: neural circuits are
highly recurrent networks consisting of
different types of neurons and synapses with
diverse dynamic properties
Most computations in our current generation of digital

computers have a feedforward organization, where specific

network modules carry out specific subcomputations and

transmit their results to the next module. One advantage

of this computational organization is that it is easy to

understand and control. Also deep learning networks favor

feedforward computation (and backwards propagation of

errors or predictions) because this organization best sup-

ports currently known algorithms for network learning.

But nature has apparently discovered a way of fully using

recurrent neural networks for reliable computation and
www.sciencedirect.com 
learning that is based on different principles. Already

evolutionary very old nervous systems, such as those of

hydra [1], C. elegans [2�], and zebrafish [3] are highly

recurrent and exhibit a complex global network dynamics,

similar as brain networks in more advanced species.

These activity patterns differ in several aspects from

those that we encounter in our digital computers. Hence

recent reviews [4�,5�] have emphasized the need to

understand the basic principles of brain computations

in recurrent networks of neurons.

Numerous theoretical and modeling studies have ana-

lyzed the dynamics of simple recurrent networks of ho-

mogeneous types of neurons and synapses, see for

example, [6–8]. But neural networks in the brain consist

of different types of neurons [9] that are connected by

different types of synapses with heterogeneous shortterm

and longterm dynamics [10–12]. These features of biolog-

ical networks of neurons make a theoretical analysis diffi-

cult, and they constrain computational models. In

particular, biological networks of neurons are not well-

suited for emulating generic computations of Boolean

circuits or artificial neural networks. For example, it would

be difficult to implement tensor product variable binding

[13] in a neural network model which takes into account

that there are excitatory and inhibitory neurons with

different dynamic properties, that neurons do not emit

analog values but spikes at low firing rates, and that

synapses are subject to noise and short-term dynamics

(i.e., mixtures of paired pulse facilitation and depression).

The short-term dynamics of synapses lets the amplitudes

of postsynaptic potentials decrease or increase for a se-

quence of spikes in dependence of the pattern of preced-

ing spikes. This history-dependence obstructs a stable

transmission of spikes and firing rates, which we would

need for emulating a Boolean circuit or artificial neural

network. The obvious question is of course whether the

experimentally found diversity of units, mechanisms, and

time-constants in brain networks is detrimental for all

types of computations, or whether it could enhance spe-

cific computational operations that nature has discovered.

One computational model for which a diversity of compu-

tational units and time constants is not detrimental, and in

fact benefitial, is the liquid computing paradigm

[14�,15�,16]. It is sometimes subsumed together with

the somewhat similar echo-state model of [17�] under

the name reservoir computing [see chapter 20 of [8]]. A

common feature of both types of reservoir computing

models is that they conceptually divide neural network

computations into two stages (see Figure 1a), a fixed
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generic nonlinear preprocessing stage and a subsequent

stage of linear readouts that are trained for specific

computational tasks. A structural difference between

the liquid computing model and the echo-state model

is that the latter assumes that there is no noise in the

network, and that analog outputs of computational units

can be transmitted with arbitrary precision to other units.

In contrast, the liquid computing model is geared toward

biological neural networks, where noise, diversity of

units, and temporal aspects related to spikes play a

prominent role.

A diversity of units and time constants in a recurrent

neural network causes no problem if one analyzes its

computational contribution from the perspective of a

projection-neuron or readout neuron (such as pyramidal

cells on layers 2/3 and 5 [9]) that receives synaptic inputs

from thousands of neurons within the recurrent neural

network, and extracts information for other networks.

From this perspective it is not required that neurons in

the recurrent neural network complete specific subcom-

putations. It suffices if diverse neurons and subcircuits

within the recurrent network produce a large number of

potentially useful features and nonlinear combinations of

such features, out if which a projection neuron can select

and combine through a weighted sum — or a more com-

plex dendritic integration — useful information for its

target networks. In this way even a seemingly chaotic

dynamics of a recurrent local network can make a useful

computational contribution [14�,15�,16,18–20].

This perspective raises the question how a recurrent

neural network could optimally support through generic

computational preprocessing subsequent readout neurons.

Some theoretical foundation (see [15�,18,21�,22], and

Figure 1a for details) arises through a link to one of the

most successful learning approaches in machine learning:

Support Vector Machines (SVMs; [23]). A SVM also con-

sists of two stages: a generic nonlinear preprocessing stage

(called kernel) and linear readouts. The kernel projects

external input vectors x1, x2, . . . nonlinearly onto vectors

h1, h2, . . .. in a much higher dimensional space. One can

view a large nonlinear recurrent neural network as an
(Figure 1 Legend) Computational paradigms resulting from principle 1. (a) 

connected network of 135 spiking neurons with diverse short-term plasticity

readouts can be trained to produce simultaneously different online computa

represented by the spiking activity of the first 2 and the last 2 input neurons

blue curves, target outputs as dashed red curves. (c)–(e) Demonstration of 

trained readouts: nonfading memory and context-depending switching of co

rates r1(t), . . ., r4(t). (d) Two spiking readouts with feedback (their spike outp

input streams had last exhibited a burst (time points where r1(t) had the mo

output spikes with rates r3(t) + r4(t) or jr3(t) � r4(t)j (both shown as dashed cu

curve shows the resulting output of this readout neuron, that approximates 

jr3(t) + r4(t)j.
Source: Figure 1b is reprinted from ‘Theory of the Computational Function o

Neurons and Global Brain Function,’ edited by Sten Grillner and Ann M. Ga

permission from The MIT Press. Figure 1d,e is reprinted from Ref. [37] ‘Com

Computational Biology, 3(1):e165, 2007’, with kind permission from The PLO
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implementation of such a kernel, where the network

response hi to an input xi corresponds to the kernel output.

This network response hi can be defined for example as

the high-dimensional vector that records for each neuron

in the network its recent firing activity, say within the last

30 ms (as in Figure 3b). This network response hi provides

then the synaptic input to any readout neurons. It repre-

sents the ‘visible’ part of the network state, while other

‘hidden’ dimensions of the true network state, such as the

current internal state of dynamic synapses is not visible for

readout neurons [16]. If the map from xi to hi is nonlinear,

the network can increase the expressive capability of

subsequent linear readouts. For example, if the network

states h1, h2, . . . would contain all products of components

of the network inputs x1, x2, . . ., a linear readout from these

network states attains the same expressive capability as a

quadratic readout function in terms of the original network

inputs x1, x2, . . .. The quality of the kernel operation of a

neural network can be measured by the dimension of the

linear vector space that is spanned by the ensemble of

network states h1, h2, . . . which result for some finite

ensemble of different network inputs x1, x2, . . .. This

dimension is equal to the rank of the matrix with columns

h1, h2, . . .. This approach to measure the computational

power of a neural circuit through a dimensionality analysis

was introduced in [18,21�], and later applied to experi-

mental data in [22], see [24] for a review. It provides an

alternative to approaches based on the analysis of neural

codes and tuning curves of individual neurons for specific

simple stimuli. It provides instead a paradigm for analyz-

ing neural codes for complex natural stimuli xi on the

network level — from the perspective of neural readouts.

The kernel property of a neural network would be theo-

retically optimal if it would map any ensemble of different

external inputs x1, x2, . . . onto linearly independent net-

work states h1, h2, . . .. A linear readout can assign through a

proper choice of its weights any desired output values o1,

o2, . . . to linearly independent network states h1, h2, . . .. If

the vectors h1, h2, . . . are not linearly independent, then the

rank of the matrix with these columns tells us how much of

these theoretically ideal expressive capabilities of linear

readouts remain. A more subtle analysis is needed to

integrate noise-tolerance into this network level analysis
Generic computational model. (b) Demonstration that a randomly

 of synaptic connections supports multiplexing: Different linear

tions, in this example on two time-varying firing rates f1(t) and f2(t)

 shown at the top [83]. Outputs of the linear readouts are plotted as

additional computational properties that arise with feedback from

mputations. (c) 4 spike input streams with timevarying Poisson firing

uts are shown in black) were trained to remember which of the first two

st recent burst are marked in blue). (e) Another readout was trained to

rves) in dependence of the binary state represented in (d). The orange

r3(t) + r4(t) during one network state (indicated by blue) and otherwise

f Microcircuit Dynamics,’ in ‘Microcircuits: The Interface between

rybiel, published by ‘‘The MIT Press, pp. 371–390, 20060, with kind

putational aspects of feedback in neural circuits’, in ‘PLOS

S Journals.

Current Opinion in Behavioral Sciences 2016, 11:81–92



84 Computational modeling
of neural coding [18,21�,22], since a readout needs to be

able to assign target outputs in a trial-invariant manner.

Hence one needs to distinguish linear independence of

network states hi caused by saliently different inputs xi

from accidental linear independence caused by noise. But

if the network is sufficiently large and nonlinear, it tends to

endow a simple linear readout even in the presence of

noise with the computational and learning capability of a

more complex nonlinear readout. In addition, the resulting

two stage network has a very desirable learning dynamics

if only the weights of a linear readout are adjusted: there

are no local minima in its error function — hence gradient

descent arrives in the end at the global optimum.

One other benefit of such a two-stage computational

model is its multiplexing efficiency: the same first stage

(the kernel) can be shared by an unlimited number of

subsequent linear projection neurons (indicated on the

right in Figure 1a), that learn to extract different

computational results for their specific target networks

(see a simple demo in Figure 1b). This feature does not

depend on specific aspects of the model, but is shared

with any model wich proposes that generic cortical

microcircuits generate a menu of features that supports

a variety of downstream computations. Such multiplex-

ing of computations through parallel readouts from a

common recurrent network provides an alternative to

models based on a precise ice-cube-like spatial organi-

zation of sub-computations in a cortical column, see for

example, [25] for a discussion. Recent experimental

data [26] suggest that different projection neurons do

in fact extract from the same local microcircuit quite

different results.

So far I have only addressed static computations on batch

input vectors xi. A further computational benefit of having

diverse units in a neural network, especially units with a

wide spread of time constants, becomes apparent if one

takes into account that many brain computations have to

integrate information from several preceding time win-

dows. An important class of such computations are com-

putations on time series with a fading memory. These are

computations where the output at time t may also depend

on inputs that have arrived before time t in the recent

past. Surprisingly, even the arguably most complex non-

linear transformations that map input time series onto

output time series with a fading memory, Volterra series,

can be implemented through simple memory-less read-

outs from any ensemble of filters that have a sufficiently

wide spread of time constants. If one views synapses with

their inherent short-term dynamics as filters, then it

suffices if the network contains synapses with diverse

shortterm dynamics. More precisely the following sepa-

ration property of the ensemble of filters is relevant (see

Theorem 1 in [14�] and [27] for further details): Does at

least one of the filters produce at the current time t
different output values for two input time series that
Current Opinion in Behavioral Sciences 2016, 11:81–92 
differed at some point in the recent past? It has recently

been shown that both cultured neural circuits [28] and

ganglion cells in the retina [29] have a good separation

property of this kind. A good separation property entails

that output o3 of a linear readout at time step 3 may

depend nonlinearly not only on the current network input

x3, but also on preceding network inputs x1 and x2. The

liquid computing model (see Figure 1a) postulates that

the separation property is, in addition to the previously

discussed kernel property, a basic computational property

of generic neural circuits. This prediction of the model

was subsequently verified through recordings from visual

[30] and auditory [31] primary cortex. In principle, even a

working memory can be composed according to this

analyzis from local units or modules of a recurrent neural

network that have different time constants [32–34].

An interesting question is which details of biological

neural circuits are essential for maximizing their ker-

nel-property and separation property (see [15�,35] for

some first results). Recurrent connections, diversity of

neuron types, and diversity of synapse types all appear to

contribute to the kernel-property and separation proper-

ty. But not all of these features appear to be necessary for

that. An alternative view of the experimentally found

complexity of neural circuits is that tightly structured

connectivity, homogeneity of neurons, and homogeneity

of synapses are essential properties of human-designed

computational circuits, but are task-irrelevant dimensions

for biological neural circuits, because readout neurons

with adaptive capabilities can compensate for inhomoge-

neities and deficiencies of the circuits which provide

inputs to them. In other words many details of neural

circuits can be viewed as task-irrelevant dimensions. A

more specific functional role of diverse types of synaptic

dynamics for stabilizing network activity was proposed

in [36].

The importance of readouts becomes even larger if one

no longer assumes that their output only affects down-

stream networks. Mathematical results [37�] imply that

the capability of the liquid computing model is substan-

tially enhanced if linear readout neurons — that are

trained for specific tasks — are allowed to project their

output also back into the local network (see dashed loop

at the bottom of Figure 1a). In fact, most projection

neurons from a generic cortical microcircuit do have axon

collaterals, which carry out such back projections. The

essential structural difference to the model without feed-

back is that now the training also affects the dynamics of

the recurrent network itself. Under ideal conditions with-

out noise this model with feedback acquires the compu-

tational power of a universal Turing machine [37�]. But

computer simulations (see Figure 1c,d) show that the

feedback also adds in the presence of noise important

computational capabilities to the liquid computing mod-

el: It now can remember salient inputs in its internal state
www.sciencedirect.com
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for unlimited time (see Figure 1c,d). Furthermore it can

switch its computational function in dependence of its

internal state, and hence also in dependence of external

cues (Figure 1e). Experimental data [38] have subse-

quently shown that cortical networks of neurons do in

fact have these theoretically predicted enhanced compu-

tational capabilities.

Training of linear readouts with feedback requires well-

tuned learning methods because the resulting closed loop

tends to amplify the impact of changes of synaptic

weights to readout neurons. Two successful methods

for supervised learning [19,37�] employ and refine related

methods for echo state networks [39]. These learning

methods work well in simulations, but do not aspire to be

biologically realistic. Biologically more realistic learning

methods based on reinforcement learning were proposed

in [20,40].

Constraint/principle 2: neural network activity
is dominated by variations of assembly
activations
From the perspective of some theories of neural coding

and computations it would be desirable that different

neurons in a local network can encode independently of

each other specific features of a sensory stimulus. However

virtually all simultaneous recordings from many neurons

within a local patch of cortex suggest that the joint activity

patterns of nearby neurons are restricted to variations of a

rather small repertoire of spatio-temporal firing patterns.

One usually refers to these patterns as assemblies, assem-

bly sequences, or packets of activity [41]. It was shown in

[42�] that patches of auditory cortex typically respond with

variations of just one or two different joint activity patterns

to a repertoire of over 60 auditory stimuli, and to continu-

ously morphed stimuli. Also patches of V1 in rodents

appear to respond to natural movies with variations of just

a few joint activity patterns [43�]. Furthermore a small

repertoire of activity patterns tends to occur also sponta-

neously [44�]. The fact that a small repertoire of joint

activity patterns also occurs in slice [45] supports the

conjecture that these patterns are consequences of net-

work architecture and parameters that result from an

interplay of the genetic code and plasticity processes. In

particular, learned behaviors have been shown to become

encoded by similar stereotypical joint activity pattern in

the higher cortical areas PFC (prefrontal cortex) [46�] and

PPC (posterior parietal cortex) [47�].

However it has remained open how neural networks

compute with these stereotypical joint activity patterns.

In order to test this in models, one first has to find ways of

inducing their emergence. Ref. [48] showed that stereo-

typical patterns emerge through STDP (spike-timing

dependent plasticity) in recurrent networks with very

little noise even in the absence of external inputs. More

recently such patterns have also been induced through
www.sciencedirect.com 
STDP in such a way that they encode the class to which

an input pattern belongs [49�]. Whereas this model used

simplified lateral inhibition, Figure 2a,b shows that simi-

lar pattern emerge through STDP in networks with

explicitly modeled inhibitory neurons [50]. Furthermore

it has been shown that input-dependent assemblies also

emerge in models that employ in addition synaptic plas-

ticity for inhibitory synapses [51]. One computational

benefit that is suggested by these models is that assembly

coding facilitates the learning task of readout neurons:

They are able to learn very fast — even without supervi-

sion (see Figure 2c,d) — to report which assembly is

currently active, and hence to which class an input pattern

belongs.

Assemblies and assembly sequences had already been

postulated by [52] to be tokens of network dynamics that

create links between the fast time scale of spikes and the

slower time scale of cognition and behavior. Ref. [53�]
proposed to view assemblies as word-like codes for

salient objects, concepts, among others that are com-

bined in the brain through a yet unknown type of ‘neural

syntax’.

Constraint/principle 3: networks of neurons in
the brain are spontaneously active and exhibit
high trial-to-trial variability
Virtually all neural recordings show that network

responses vary substantially from trial to trial. This is

not surprising, since channel kinetics in dendrites and

synaptic transmission are reported to be highly stochastic

[54,55]. These data force us to add a substantial amount of

variability or noise to the set of constraints for neural

network computations. Again, a key question is whether

this constraint can also be viewed as a principle that

provides a clue for understanding the organization of

brain computations. Usually noise is just seen as a nui-

sance in a computational system [56].

Hints for a possible benefitial role of large trial-to-trial

variability for brain computations is provided by experi-

mental data which suggest that ambiguous sensory sti-

muli are represented in brain networks through flickering

between different network states, that each represent one

possible interpretation of the ambiguous stimulus

[57,58�]. Also the values of possible choices appear to

be represented in monkey orbitofrontal cortex (OFC)

before decision making through flickering between cor-

responding network states [59�] on a small time scale like

in Figure 3b. These new data from simultaneous record-

ings from many neurons with high temporal precision

suggest that ‘subjective decision-making involves the

OFC network transitioning through multiple states, dy-

namically representing the value of both chosen and

unchosen options’ [59�]. A well-known approach for

probabilistic inference (Markov chain Monte Carlo or

MCMC sampling, see [23,59�]) suggests to interpret
Current Opinion in Behavioral Sciences 2016, 11:81–92
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Figure 2

(a)
100

481
Assembly 2

Assembly 1

Other excitatory neurons

Inhibitory

spoken digit “one”

time [ms]

86
 c

ha
nn

el
s

st
im

ul
us

ne
tw

or
k

W
TA

re
ad

ou
t

10
0 

ne
ur

on
s

20
 r

an
do

m
 n

eu
ro

ns

430 420

4
3
2
1
0 3

00 time [ms]

time [s]

spoken digit “two”
Emergence of cell assemblies in response to spoken digits

Time (s)

Time [ms]

A
ss

em
bl

y 
2

A
ss

em
bl

y 
2

A
ss

em
bl

y 
2

A
ss

em
bl

y 
2

0
1

1

60

100

1

100

200
Time [ms]

 0
1

200
0
2
4
6
8
10
12
14
16
18
20

0
2
4
6
8
10
12
14
16
18
20

0
2
4
6
8
10
12
14
16
18
20

0
2
4
6
8
10
12
14
16
18
20

Time [ms]

Activation during pattern 1

Activation during pattern 1

60
Activation during pattern 2

Activation during pattern 2

0 200
Time [ms]

 0 200

1
0 4

S
tim

ul
us

N
et

w
or

k

1

(b)

(c) (d)

“one” “two” “one” “one” “two”

Current Opinion in Behavioral Sciences 

Emergence and computational use of assembly codes. (a) Emergence of input-specific assemblies (or more precisely, assembly sequences)

through STDP in response to repeating external input patterns (there are blue and green spike patterns which are superimposed by noise spikes

shown in black). This occurs even if the input patterns (frozen Poisson patterns) have exactly the same rates and statistics as the noise input

between patterns. The assembly sequences shown in (a) and (b) emerge after about 100 occurrences of each input pattern in a generic recurrent

neural network [50]. (b) The mean firing time of each excitatory neurons is marked by a white dot, with a histogram of all firing times represented

through color coding in the same row (analogously as in [44�]). (c) Sample utterings of two spoken digits that were transformed into spike inputs

shown in the top row of d) in a network simulation from Ref. [49�]. The middle row of (d) shows the two emergent assemblies for the two spoken

words ‘one’ and ‘two’. The bottom row of (d) shows the firing response of 4 linear readout neurons in a WTA (winner take all) circuit. This WTA

readout learns without any supervision to report the occurrence of one of the two assembly sequences, and hence spoken digit classification,

through the firing of neurons 1 and 2.

Source: Panels c,d of Figure 2 are reprinted from Ref. [49�] ‘Emergence of dynamic memory traces in cortical microcircuit models through STDP’

published by ‘The Journal of Neuroscience, 33(28):11515–11529’, 2013, with kind permission from The Journal of Neuroscience.
these experimental data as probabilistic inference

through stochastic computation, more precisely through

sampling from some internally stored probability distri-

bution of network states.
Current Opinion in Behavioral Sciences 2016, 11:81–92 
Insight into the nature of such internally stored probability

distribution can in principle be gained by analyzing the

statistics of network states, defined for example by a

binary vector with a ‘1’ for every neuron that fires within
www.sciencedirect.com
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Figure 3
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Model for probabilistic inference through sampling in a generic cortical microcircuit model with stochastically spiking neurons [65�]. (a) Synaptic

weights and other parameters encode a unique stationary distribution p(z) of network states z. (b) The network state z at time t can be defined for

example as a binary vector [60�] that records which neuron fires in a small time window around t (shaded in green). The stochastic dynamics of

the network for some external input e can be interpreted as sampling from the conditional distribution p(zje). (c) Instead of traditional measures for

computation time, the time needed to converge from an initial state to the stationary distribution of network states (not to any particular state!)

becomes relevant. A standard heuristic estimate (Gelman–Rubin analysis) suggests that this convergence is quite fast — around 100 ms — and

independent of the network size (color coded for network sizes between 500 and 5000 neurons) for the data-based model from (a). Likely reasons

for independence from network size are small synaptic weights, weight normalization, and a large amount of stochasticity in the model. The

Gelman–Rubin analysis suggests that convergence to the stationary distribution has taken place by the time when the curves (solid lines: mean;

dashed lines: worst case) enter the gray zone below 1.1.

Source: Figure 3 is reprinted from ‘Stochastic computations in cortical microcircuit models’ published by ‘PLOS Computational Biology,

9(11):e1003311, 2013’, with kind permission from The PLOS Journals.
some small time bin [60�] (see Figure 3b). The term

‘neural sampling’ had been coined in Ref. [61�] for the

resulting theory of probabilistic inference through sam-

pling in stochastically firing recurrent networks of neurons.

Each neuron vi represents in this model a binary random

variable zi through spikes: a spike sets the value of this

random variable to 1 for some short period of time. It was

shown in Ref. [61�] that if synaptic weights are symmetric,

a network of simple models for spiking neurons can
www.sciencedirect.com 
represent the same probability distribution as a Boltzmann

machine with the same architecture, although it uses a

different sampling strategy. This is interesting because a

Boltzmann machine is one of the most studied neural

network models in machine learning for probabilistic

inference and learning, and it is known that it can learn

and represent any multi-variate distribution over binary

random variables with at most 2nd order dependencies. In

addition it was shown that a suitable architecture enables
Current Opinion in Behavioral Sciences 2016, 11:81–92
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networks of spiking neurons with asymmetric weights to

go beyond that: a spiking network can represent [62] and

learn [63] any distribution over discrete variables, even

with higher order dependencies as they occur, for exam-

ple, in the explaining-away effect of visual perception [64].

Also data-based models for generic cortical microcircuits

(Figure 3a) with stochastically firing neurons can carry out

probabilistic inference through sampling. For example

they can estimate through sampling posterior marginals

such as pðz1jeÞ ¼
P

a2;...;am
pðz1; a2; . . .; amjeÞ, where e is

some external input [65�]. The current external input e
could represent for example sensory evidence and inter-

nal goals. The variables ai for i > 1 run in this formula

over all possible values of random variables zi that are

irrelevant for the current probabilistic inference task. The

sum indicates that these variables are marginalized out,

which is in general a computationally very demanding (in

fact: NP-hard) operation. The binary variable z1 could

represent, for example, the choice between two decisions,

so that an estimation of the posterior marginal pðz1jeÞ
supports Bayes-optimal decision making. The key point

is that this computationally very difficult posterior mar-

ginal can be estimated quite easily through sampling: It is

represented by the firing rate of the neuron v1 that

corresponds to the binary random variable z1 [65�]. Also

sampling-based representations of time-varying probabil-

ities — where each random variable is represented

through several spiking neurons — have been examined

[66,67]. At the current time point it is not yet clear to what

extent brains make use of the option to carry out proba-

bilistic inference through sampling. To answer this ques-

tion one needs further experimental insight into the

relation between flickering internal states of brain net-

works on one hand and perception and behavior on the

other hand. Refs. [57,59�] have demonstrated that this is

in principle feasible.

Stochasticity of spiking neurons conveys another compu-

tational benefit to a network: it enables the network to

solve problems — for example, constraint satisfaction

problems — in a heuristic manner [56,65�,68]. Here each

network state (defined like in Figure 3b) represents a

possible solution to a problem, and the frequency of

being in this network state encodes the quality (fitness)

of the solution. This computational model is consistent

with the data from [59�], where easier choices were

associated with fewer switches between the neural re-

presentation of the two options. The computation time

for solving a task depends in such a sampling-based

model on the time that the network needs until it

produces, starting at some given initial state, samples

from the stationary distribution of network states (see

Figure 3c), which is defined by the architecture and

parameters of the network [65�]. A substantial level of

noise in the network and not too large synaptic weights

support in general fast convergence [65�].
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The hypothesis that the human brain encodes substantial

amounts of knowledge in the form of probabilities and

probability distributions had previously been proposed in

cognitive science [69–71]. Probabilistic computations

have started to play a prominent role in many models

in neuroscience, for example in models for multisensory

integration [72] and confidence [73].

Constraint/principle 4: networks of neurons in
the brain provide stable computational
function in spite of ongoing rewiring and
network perturbations
Experimental data show that network connectivity

[74�,75,76], neurotransmitters [77] and neural codes

[78�] are subject to continuously ongoing changes, even

in the adult brain. This constraint suggests to consider the

hypothesis that the brain samples not only network states

on the fast time scale of spiking activity as discussed

under principle 3, but simultaneously also different net-

work configurations on the slower time scale of network

plasticity and spine dynamics (i.e., hours and days). This

slower sampling of network configurations has been

called synaptic sampling [79�]. The synaptic sampling

model suggests that brain networks do not converge to a

desirable network configuration and stay there, but rather

sample continuously — but at different speeds (‘tem-

peratures’) — from a posterior distribution of network

configurations (Figure 4).

Learning a posterior distribution of network configura-

tions, rather than a specific network configuration, has

been proposed to be a more attractive goal for network

plasticity — for example, because of better generalization

capability [80]. The question how a biological network of

neurons could represent and learn such a posterior distri-

bution was described in [72] as a key open problem. Ref.

[79�] proposes that this posterior distribution is repre-

sented by a stationary distribution of network configura-

tions in the Markov chain that is defined by the stochastic

dynamics of rewiring, STDP, and noise in synaptic

weights. The Fokker–Planck equation provides a trans-

parent link between local stochastic rules for synaptic

plasticity and spine dynamics, and the resulting stationary

distribution p*(u) of network configurations u. Learning is

viewed from this perspective as convergence to a lower

dimensional manifold of network configurations that pro-

vides good compromises between computational function

and structural constraints. Structural constraints take the

form of a prior in this model (see Figure 4). One interest-

ing benefit of this conceptual alternative to maximum

likelihood learning is that the network immediately and

automatically compensates for internal or external changes

that modify the posterior distribution of network config-

urations (see Figure 5 of [79�]). But the underlying sto-

chastic theory suggests that network configurations are

likely to change continuously in functionally irrelevant

dimensions — even in the absence of major perturbations.
www.sciencedirect.com
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Figure 4
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Two different options for the organization of network learning. Assume that some recurrent neural network N is given (top right), together with a

generative model pN ðx juÞ (second plot from the top in the left column) for a given ensemble x of network inputs. Maximum likelihood learning

moves the parameter vector u of the network from a given initial state (black dot) to a local maximum of pN ðx juÞ (red triangles in top panel of left

column). In contrast, the Bayesian synaptic sampling approach takes in addition a prior pS(u) (middle panel in right column) into account — that

could encode for example sparsity constraints — and aims at sampling network parameters u from the posterior distribution

p�ðujxÞ / � pSðuÞpN ðx juÞ (left column, 3rd panel from the top). This can be achieved through a synaptic plasticity rule that takes the form of a

stochastic differential equation with a drift term @ulogp*(u|x) (red arrow in panel at the right bottom) that results from derivations of the log of the

prior (blue arrow) and likelihood (yellow arrow), together with a stochastic diffusion term dW (black arrow). The Fokker–Planck equation implies

that p*(u|x) is the unique stationary distribution of this stochastic parameter dynamics (‘synaptic sampling’). A sample trajectory of the parameter

vector u is plotted in green in the bottom left panel. Because of its stochastic component dW this learning approach can easily integrate

stochastic spine dynamics with STDP, see (Kappel et al., 2015) [79�] for details. The high-dimensional space of network parameters u is replaced

in this figure for illustration purposes by a 2D space.

Source: Figure 4 is reprinted from Ref. [79�] ‘Network plasticity as Bayesian inference’ published by ‘PLOS Computational Biology,

11(11):e1004485, 2015’, with kind permission from The PLOS Journals.
A rethinking of the way in which network organization

and plasticity is genetically encoded and implemented in

the brain has been suggested by [81�]. This challenge was

motivated by the observation that the same neural circuit

attains at different times and in different individuals the
www.sciencedirect.com 
same performance with quite different parameter set-

tings. The synaptic sampling perspective suggests an

explanation for this observation: Each measurement of

network parameters and synaptic connectivity provides a

snapshot from an ongoing stochastic process.
Current Opinion in Behavioral Sciences 2016, 11:81–92
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Conclusions
The four constraints/principles for models of brain com-

putation and learning that I have discussed are compati-

ble with each other. They have to be compatible, since

experimental data tell us that they are all present in brain

networks. But obviously there are tradeoffs between

these principles. For example, more stereotypical net-

work responses (principle 2) reduce the fading memory

and kernel function (principle 1), see Figure 12 in [49�].
Hence I propose that the expression of each principle is

regulated by the brain for each area and developmental

stage in a task dependent manner.

Altogether I have argued that the currently available

experimental data provide useful guidance for under-

standing how cognition and behavior is implemented

and regulated by networks of neurons in the brain. Marr

and Poggio had proposed in [82] had proposed to distin-

guish three levels of models for brain computations:

- the computational (behavioral) level,

- the algorithmic level,

- the biological implementation level.

Whereas substantial work had focused on the intercon-

nection of these three levels from the top down, more

detailed data on the biological implementation level

provide now also a basis for creating bottom-up connec-

tions. We have seen that each of the four constraints from

the biological implementation level has significant impli-

cations for models on the algorithmic and computational

level.
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