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Noise as a Resource for
Computation and Learning in
Networks of Spiking Neurons
This paper discusses biologically inspired machine learning methods based on theories

about how the brain exploits noise to carry out computations, such as probabilistic

inference through sampling.

By Wolfgang Maass

ABSTRACT | We are used to viewing noise as a nuisance in

computing systems. This is a pity, since noise will be

abundantly available in energy-efficient future nanoscale

devices and circuits. I propose here to learn from the way the

brain deals with noise, and apparently even benefits from it.

Recent theoretical results have provided insight into how this

can be achieved: how noise enables networks of spiking

neurons to carry out probabilistic inference through sampling

and also enables creative problem solving. In addition, noise

supports the self-organization of networks of spiking neurons,

and learning from rewards. I will sketch here the main ideas

and some consequences of these results. I will also describe

why these results are paving the way for a qualitative jump in

the computational capability and learning performance of

neuromorphic networks of spiking neurons with noise, and for

other future computing systems that are able to treat noise as a

resource.
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I . INTRODUCTION

Quite a number of algorithms and architectures have been

proposed for computations with spiking neurons. Some of

them have also been implemented in dedicated ‘‘neuro-

morphic’’ hardware, i.e., in analog/digital very large-scale

integration (VLSI) systems that mimic neurobiological

architectures present in the nervous system (see, e.g., [1]–

[3]). But virtually all of them ([4] for an exception) treat

spiking neurons as deterministic computing elements, in

spite of the fact that biological neurons and synapses are

not deterministic. If noise is considered at all, it is typically
handled as a nuisance and eliminated through duplications

and averaging, which drastically reduces the computation-

al efficiency of networks of spiking neurons. A quite

intriguing idea is that noise and trial-to-trial variability are

present in biological networks of neurons not only as a

consequence of inherently stochastic processes on the

molecular level, but also because they are salient

components of the computational strategy of the brain.
One major source of stochasticity in networks of

neurons in the brain is the unreliability of synapses. A

spike of a presynaptic neuron causes a release of a vesicle

filled with neurotransmitters at a synaptic release site with

low probability (around 0.1 according to [5]). Two

synaptically connected pyramidal cells in the cortex are

typically connected via five to ten of such release sites, but

this still causes a highly unreliable synaptic transmission.
In addition, synaptic vesicles are also released without a

presynaptic spike, which contributes an additional source

of noise. Synaptic release is particularly intriguing as a

noise source in networks of neurons, since it is quite

plausible that nature could have produced highly reliable

synapses if needed. Furthermore, this noise source can

apparently be modified through synaptic plasticity [6].

Other sources of noise in biological neurons, such as
stochastic openings and closings of membrane channels,

are due to the inherent stochasticity of processes on the

molecular scale, and may be difficult to eliminate. Nice

Manuscript received November 18, 2013; revised January 24, 2014 and February 28,

2014; accepted March 6, 2014. Date of publication April 14, 2014; date of

current version April 28, 2014. This work was supported in part by the European

Union project # FP7-604102 (Human Brain Project).

The author is with the Institute for Theoretical Computer Science,

Graz University of Technology, Graz 8010, Austria (e-mail: maass@igi.tugraz.at;

http://www.igi.tugraz.at/maass/).

Digital Object Identifier: 10.1109/JPROC.2014.2310593

0018-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

860 Proceedings of the IEEE | Vol. 102, No. 5, May 2014



reviews of noise sources in biological neurons are given in
[7]–[11].

It has already been proposed a while ago that noise is

beneficial for the detection of weak signals by neurons

(‘‘stochastic resonance’’; see the review in [10]). In [10], also

the term ‘‘stochastic facilitation’’ was coined to describe

scenarios where specific computational goals are better

achieved in the presence of noise, and various neurobiolog-

ical experiments were proposed for testing such more
general advantageous role in neural systems. But until very

recently [12]–[16] concrete computational benefits of noise in

networks of spiking neurons have apparently not been

addressed in theoretical neuroscience research.

That noise can be a valuable computational resource is

well known in computer science (see, e.g., [17] and [18]).

Many practically important computations on digital compu-

ters employ so-called random number generators, i.e.,
algorithmic procedures that create pseudorandom sequences

of bits that share important features with true random bits

(that can, for example, be generated by coin tosses). Very

recently, it has also been shown that sufficiently complex

deterministic networks of spiking neurons can generate

randomly looking spiking activity [19]–[22].

The value of noise as a resource for neural computation

had already been addressed several decades ago in the
context of artificial neural networks: Boltzmann machines

[23]–[25] are networks of simple stochastic units with

binary outputs that are of interest both from the

perspective of theoretical neuroscience and from the

more general perspective of massively parallel stochastic

computation. They switch their output bit with a

probability that depends on the current weighted sum of

their input bits: when unit i is considered for switching, it
generates the output

xi ¼ 1 with probability �
1

T

X
j

wijxj þ bi

 ! !
(1)

else xi ¼ 0. Parameters wij denote here the synaptic

weights between units i and j (with the requirement of

symmetry: wij ¼ wji), bi denotes a bias for unit i, T
(‘‘temperature’’) determines the level of noise in the units,

and �ðxÞ ¼ 1=ð1þ e�xÞ denotes the common sigmoid

function. The value of xi stays fixed until unit i is

considered next time for switching. The state of a

Boltzmann machine at any time t is the binary vector
hx1; . . . ; xmi of the current output values of its m units,

according to some global schedule (which can be

stochastic). Note that the units of a Boltzmann machine

are not autonomously active (like spiking neurons), but

require a global schedule.

Boltzmann machines can, on the one hand, be viewed

as stochastic versions of the deterministic Hopfield

network [26] that emerges from the previously given
switching rule (1) if one lets temperature T go to 0. Any

nonzero temperature enables state hx1; . . . ; xmi of a

Boltzmann machines to escape from local minima of its

so-called energy function

E hx1; . . . ; xmið Þ ¼ �
X

iGj

wijxixj �
X

i

bixi (2)

whereas a deterministic Hopfield network gets stuck there.

Therefore, Boltzmann machines can be viewed from a

more abstract computational perspective as architectures

for solving large constraint satisfaction problems (for many

variables x1; . . . ; xm) through massively parallel stochastic

search. A weight wij can be viewed in this context as a
(soft) constraint: A positive value of wij encodes a pre-

ference for network states hx1; . . . ; xmi with xi ¼ xj ¼ 1

(and in combination with suitable values for bi and bj, one

can also encode a more general preference for xi ¼ xj),

since this minimizes their contribution �wijxixj to the

energy function (2). Such preference for correlated values

of xi and xj is, for example, meaningful if xi represents

binary pixel values of an image that consists of black and
white areas. In this case, the stochastic dynamics of the

Boltzmann machine eliminates local pixel noise by moving

the network to states with lower energy. Finally,

Boltzmann machines are of interest from the more general

perspective of stochastic dynamical systems and machine

learning. They are special cases of Markov chains, i.e., of

the arguably simplest models for stochastic systems with

discrete time and finite sets of states. Markov chains move
at each discrete time step from their current state a to

another state b (where b ¼ a is in general allowed)

according to some given time-invariant conditional prob-

ability pðbjaÞ. Boltzmann machines are special cases of

Markov chains: they are in addition reversible. This means

that transitions between any two network states a and b
occur with the same probability in either direction (note

that the probability of a transition from a to b is given by
product pðaÞ � pðbjaÞ of probability pðaÞ of being in state a
and choosing from a a transition to b).

The dynamics of Boltzmann machines can be viewed as

a special case of Markov chain Monte Carlo (MCMC)

sampling, which is an important approach to carry out

probabilistic inference for multivariable probability dis-

tributions by drawing and analyzing samples from them

[27]. More precisely, the dynamics of Boltzmann machines
is a special case of Gibbs sampling. Gibbs sampling [28] is a

very useful approximation method for generating samples

hx1; . . . ; xmi from a given joint distribution p over many

variables. It does this through repeated local stochastic

drawings of values of random variables (RVs) xi according

to the conditional probability of xi under p, given the

current values of the other RVs. A Boltzmann machine
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generates through its stochastic local switching according
to the previously specified conditional probability (1) after

some ‘‘burn-in time’’ (during which its dependence on the

initial state declines) samples hx1; . . . ; xmi from the

multivariable joint distribution

pB hx1; . . . ; xmið Þ ¼ 1

Z
e�E hx1;...;xmið Þ=T (3)

which is its unique stationary distribution of network states

to which it converges from any initial state. This stationary

distribution is a second-order distribution (a ‘‘Boltzmann

distribution’’) that can be characterized through the
synaptic weights wij and biases bi of its units (Z is a

normalization factor). It assigns the highest probabilities to

states with the lowest energy Eðhx1; . . . ; xmiÞ according to

(2). Hence, for computational applications, parameters wij

and bi are usually chosen (or learned) so that low-energy

states correspond to desirable global solutions of an

underlying constraint satisfaction problem.

Boltzmann machines are among the computationally
most powerful types of artificial neural networks (see, e.g.,

[25]), and are known to achieve a performance in some

perceptual tasks that rivals that of the best machine

learning approaches; see, e.g., the results on deep learning

in hierarchical Boltzmann machines [29]. The reason is

that their inherent stochasticity creates direct links to

powerful methods in statistical learning theory; in

particular, it supports the implementation of generative
models for learning. In fact, every distribution with at most

second-order dependencies is a Boltzmann distribution.

Spiking neurons are in principle quite different from

the units of a Boltzmann machine, and they had been

introduced as more adequate models for biological

neurons. In contrast to the units of Boltzmann machines

or other artificial neural networks, the output of a

biological neuron is not a discrete or analog number, but
rather a brief increase in the membrane potential at its

soma, called action potential or spike. Each spike is

transmitted through branches of its axon via synaptic

connections to other (‘‘postsynaptic’’) neurons, where it

causes excitatory or inhibitory postsynaptic potentials

(EPSPs or IPSPs). As described above, this transmission

process is quite noisy. But for the sake of mathematical

simplicity (and lack of precise data), this noise is usually
projected into the spike generation process of the

presynaptic neuron. In this way, one arrives at the

following model for a stochastically firing neuron (brief:

stochastic neuron) from [30].

A stochastic neuron �i has at any time point t
continuously an instantaneous firing probability

�iðtÞ ¼
1

�
exp uiðtÞð Þ (4)

where uiðtÞ ¼
P

j wij~xjðtÞ þ bi models the membrane
potential at its soma at time t and wij~xjðtÞ models the

contribution of spikes from the presynaptic neuron �j to

this membrane potential. Thus, wij~xjðtÞ is a superposition

of postsynaptic potentials (positive if �j is an excitatory

neuron; negative if �j is an inhibitory neuron) of some

length � (20 ms is a typical value) that are caused by spikes

of neuron �j. This simple phenomenological model can be

fitted quite well to experimental data [30].
One can characterize the current state a of a network of

m stochastically firing neurons at any time t by a binary

vector hx1; . . . ; xmi, similarly as for a Boltzmann machine,

where xi ¼ 1 indicates now that neuron i has fired within

the time interval ½t� �; t�. But note that this binary vector

a is not a Markov state of the underlying Markov chain,

since that would require that the future firing activity of

the network be stochastically independent from its activity
before time t� � , given state a. A Markov state requires

records of precise spike times.

From the perspective of these binary states, spiking

neurons appear to be not so different from the stochastic

computational units of Boltzmann machines. But surpris-

ingly, little effort was made until very recently [12] to

examine the portability of algorithms and architectures

from Boltzmann machines to networks of spiking neurons
with noise. One reason for that was perhaps that none of

the two possible output values 1, 0 of a unit in a Boltzmann

machine plays any special role: they are completely

symmetric. In contrast, a spike is typically rather short

(1–2 ms), and is, on average, followed by a much larger

interspike interval of one or several hundred milliseconds.

This asymmetry is essential for energy-efficient computa-

tion, since spikes (and their propagation to other neurons)
consume substantially more energy than the output signal

‘‘no spike.’’

But also the elegant theory of Boltzmann machines

cannot directly be applied to networks of spiking neurons.

In particular, two important components of the theory of

Boltzmann machines get lost. One component that gets

lost is the link between the dynamics of the network and

Gibbs sampling. The reason is that the Markov chain that
describes the stochastic dynamics of a Boltzmann machine

is reversible (which is required for Gibbs sampling).

One can also model a network of stochastically firing

neurons as a Markov chain (for a suitable notion of a

Markov state, see Section II-A). But this Markov chain is

nonreversible. This nonreversibility arises from the fact

that a spike has, in general, an impact on the network state

(e.g., through postsynaptic potentials) that transcends the
duration of the spike itself, and is, in general, not

reversible. Another important feature of Boltzmann

machines that gets lost in a transition to spiking neurons

is the possibility to directly relate the stationary distribu-

tion pB of network states hx1; . . . ; xmi of a Boltzmann

machine B to its parameters according to a simple formula

such as (3).
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But fortunately one can overcome both of these
obstacles, as I will sketch in the following. This will allow

us to transfer essential parts of the astounding computing

and learning capability of Boltzmann machines to net-

works of spiking neurons with noise. In particular, it opens

the door to using the parallel computing capability of

networks of spiking neurons in continuous time in a

substantially more efficient manner. Whether biologically

more realistic neuron models such as spiking neurons
could also provide, in technological applications, advan-

tages over the simpler units of Boltzmann machines

(beyond their power efficiency) is still a largely open

question. Some first positive results that emerge in [31]

will be discussed in Section II-E. In addition, the dendritic

tree of biologically more truthful neuron models facilitates

a neural network emulation of Bayesian networks (see

Section II-D), as shown in [13].
The transition from Boltzmann machines to biologi-

cally more realistic networks of spiking neurons with noise

also allows us to see the structure of cortical microcircuits

in a new light. As an example, I will sketch how one

prominent motif of cortical microcircuits, winner-take-all

(WTA) circuits [see Fig. 3(b)], that consists of interacting

excitatory and inhibitory neurons, provides important

advantages for computing and learning in a stochastic
context. These benefits of clever biological circuit

architectures could not be addressed properly in Boltz-

mann machines, because their restriction to symmetric

weights makes them unsuitable for understanding specific

computational roles of excitatory and inhibitory neurons in

stereotypical microcircuit configurations.

II . NEW PARADIGMS

I want to review here two types of computational

applications of networks of spiking neurons with noise:

probabilistic inference from knowledge stored in complex

probability distributions, and in Section II-E and F, the

generation of heuristic solutions for hard computational

problems (even for problems that are NP-hard [32]). In

addition, I will address in Section II-G and H benefits of
noise for self-organization and learning.

A. Storing Knowledge in Probability Distributions of
Network States

A fascinating new perspective of the way in which

knowledge is encoded in the brain, and used for rapid

decision making and motor control in response to complex

multimodal sensory stimuli, was proposed in recent work
in cognitive science (see, e.g., [33] and [34]). It has been

hypothesized there that a large portion of long-term

knowledge is encoded in the brain not in the form of facts

and lists, like in a digital computer, but in the form of

probability distributions pðz1; . . . ; zmÞ over very large

numbers m of behaviorally salient RVs zi. These RVs can

describe not only currently perceived sensory stimuli and

proprioceptive feedback, but also internal goals, learned
knowledge, specific rules and strategies that are currently

followed, as well as predictions and reward expectations

for possible motor responses. This hypothesis is plausible

from the perspective of artificial intelligence research,

since it turned out to be very hard to encode real-world

knowledge in the form of definite facts, and to use such

deterministic knowledge for decision making through

logical inference. A look at the current state of the art in
artificial intelligence shows that these approaches have

been largely abandoned, and replaced by more flexible

probabilistic data structures and inference methods (see

[35] and [36] for an account of this ‘‘probabilistic turn’’).

With regard to neural network research, this development

has certainly increased the interest in possibilities for

encoding probabilistic knowledge in neural networks.

If one accepts the hypothesis that knowledge is
encoded in the brain in the form of probability distribu-

tions pðz1; . . . ; zmÞ, the next question is how such

distribution p could be encoded (and learned) by networks

of spiking neurons. The more frequently proposed

hypothesis is that such distributions are encoded there in

an arithmetical form, and that knowledge is extracted from

such probabilistic knowledge through arithmetical opera-

tions such as belief propagation [37], [38]. These operations
are unfortunately very computation intense. Furthermore,

any noise in neural networks would be detrimental for their

implementation, since it reduces the reliability of determin-

istic data structures and inference methods.

An alternative hypothesis is that probability distribu-

tions pðz1; . . . ; zmÞ are stored in the brain in an ‘‘embodied’’

form, through stochastic networks of spiking neurons that

are able to generate samples from this distribution p.
Probabilistic inference takes then the form of an analysis of

a few samples (or exemplars) that are generated by such

physical realization of p. Therefore, this approach does not

require explicit calculations of probabilities. This is a

frequently pursued approach for complex real-world

probabilistic inference tasks in machine learning and

artificial intelligence, where it is called MCMC sampling

[27]. The complexity bottleneck of probabilistic inference
is in this alternative approach shifted to the question what

type of distributions p can be embodied by networks of

spiking neurons with noise, and how fast they can generate

samples from p that are not biased by the initial state of the

network.

It turns out that basically any network C of spiking

neurons that has a sufficient amount of noise (stochasti-

city), ‘‘embodies’’ a joint distribution p over a large number
of RVs. For this purpose, network C is viewed as a Markov

chain, i.e., as a stochastic system that moves according to

stochastic laws from its current internal state to some

other internal state. One can consider here several

different notions of internal state of network C. An

example for a simple notion of internal state is the green

state shown in Fig. 1(b) for the simple circuit C of Fig. 1(a).
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Fig. 1. Illustration of network states and convergence to the stationary distribution of network states in a small network of spiking neurons.

(a) A small recurrent network of spiking neurons with noise consisting of ten neurons 1; . . . ; 10 and two additional input neurons i1; i2. Neurons

are colored by type (blue: input, black: excitatory, red: inhibitory). Line thickness represents synaptic weights. This circuit is a toy-size

instantiation of the data-based cortical microcircuit model shown in Fig. 2(a), with neurons on three layers. (b) Notions of network state

considered in this paper. Markov states (blue) are defined by the exact timing of all recent spikes within some longer time window Q, shown

here for Q ¼ 50 ms. Simple states (green) only record which neurons fired recently (0 ¼ no spike, 1 ¼ at least one spike within a short window

� , with � ¼10 ms throughout this figure). (c) Illustration of trial-to-trial variability in the occurrence frequency of a specific (partial)

network state (1; 1; 1) for three selected neurons 2, 7, 8 of the circuit in (a). Two trials starting from identical initial network states yMð0Þ
are shown. Blue bars at the bottom of each trial mark periods where the subnetwork of neurons 2, 7, 8 was in simple state (1; 1; 1) at this

time t. Note that the ‘‘blue’’ initial Markov state is shown only partially: it is actually longer [as in (b), but with Q ¼ 1 s] and comprises all

neurons in the network. (d) Two trials starting from a different (‘‘red’’) initial network state. Red bars denote occurrences of state (1; 1; 1) for

‘‘red’’ trials. (e) Convergence to the stationary distribution pC in this small cortical microcircuit model is fast and independent of the

initial state. This is illustrated for the relative frequency of simple state (1; 1; 1) within the first 300 ms after input onset. The blue/red line

shows at each time t the relative frequency of simple state (1; 1; 1) for neurons 2, 7, 8, estimated from many (105) ‘‘blue’’/‘‘red’’ trials. The

relative frequency of simple state (1, 1, 1) rapidly converges to its stationary value regardless of the initial state (blue/red). This figure

is a variation of a figure that has previously been published in [16] under the Creative Commons Attribution License (CCAL).
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It has as many dimensions as there are neurons in C, and it
records at any moment t which of the neurons of C has

fired within the preceding time window of length � (it has

value 1 in each dimension that corresponds to a neuron

that has fired within this time window; otherwise 0). Such

simple binary vector states are often considered in the

analysis of experimental data in neuroscience; see, e.g.,

[39] for short lengths of time window � (in order to limit

the amount of information loss arising when a neuron fires
several times within such time window). One can rigorously

prove that network (alias Markov chain) C has a unique

stationary distribution pC of such network states, to which it

converges exponentially fast from any initial state. This result

holds for a wide variety of neuron and synapse models, even

data-based models with complex dendritic processing and

other nonlinearities [16]. In particular, it holds for the simple

model of a stochastic neuron defined through (4). It also
holds for various models for noise, including models where

noise is primarily generated through unreliable synaptic

release. From the perspective of hardware models for

networks of spiking neurons with noise, it is of interest

that this result is likely to hold also for most hardware

implementations of networks of spiking neurons with noise,

in spite of numerous individual mismatches and implemen-

tation-induced nonlinearities.
This mathematical result is somewhat analogous to

standard results on the existence of stationary distributions

for Markov chains with finite sets of states and discrete

time. But it requires a mathematically more complex

framework in order to deal with an infinite (even

continuous) set of states and with continuous time.

Several variations of the notion of a network state are of

interest in this context, such as the blue state shown in
Fig. 1(b). There length Q of the time window is

deliberately chosen to be larger than � , in order to ensure

that the future spiking activity of the network after time t
becomes (approximately) statistically independent of its

past before time t� Q, given the exact protocol of all spike

times during the time window from time t� Q to time t
Then, the blue state shown in Fig. 1(b) becomes a Markov

state of the underlying Markov chain with continuous
time. Q has to be chosen for that purpose larger than all

internal time constants of membranes and synapses. It would

have to be chosen to be infinitely large to make this

rigorously true, but practically a value in the range of one or a

few seconds suffices for most currently considered models

for biological neurons and synapses. The result on the

existence and uniqueness of a stationary distribution pC, as

well as exponentially fast convergence to it, is first derived for
this more complex notion of network state. But once this

result is proven, it implies the existence of a stationary

distribution (and exponentially fast convergence to it) for any

simpler notion of network state that arises by deleting

information from the more complex Markovian notion of

network state. In particular, it holds also for the simple

network states indicated by the green state in Fig. 1(b).

This result also holds for a notion of network state with
any even larger window length Q. The general result

implies then that network C has a stationary distribution of

really long sequences of firing activity, in particular for

sequences or trajectories of simpler (see green state)

network states. This additional result is of interest, because

recent experimental data suggest that networks of neurons

in the brain often go through certain stereotypical

trajectories (or sequences) of simple network states [40],
[41]; see also the discussion in [42].

A key question for extracting knowledge from any

stationary distribution of network states is the following:

Assume that the network starts in some more or less

arbitrary network state at time t0 (and possibly in addition

some stationary external input is activated at time t0). How

long does one have to wait until the network produces

samples from its stationary distribution of network states?
This waiting time (called ‘‘convergence time’’ or ‘‘burn-in

time’’ in MCMC sampling) is a key factor for determining

the computation time that is needed for carrying out

probabilistic inference through sampling (see Section II-B).

This problem is illustrated in Fig. 1(c)–(e). We consider

here for simplicity just the state defined by three neurons

of the network, whose spikes are marked in black in

Fig. 1(b). All time points � where all of these three
neurons have fired since time t� � are marked in blue

Fig. 1(c), and in red in Fig. 1(d). Two trial runs with the

same initial state (a ‘‘blue’’ Markov state) are shown in

Fig. 1(c). The blue curve in Fig. 1(e) indicates the relative

frequency with which each time point t had this property

for 10 000 repetitions of this experiment. One sees that it

converges after about 150 ms to a fixed value 0.07, which

is then the value of this (partial) network state under the
stationary distribution pC of simple network states of C.

This experiment is repeated in Fig. 1(d) with a different

initial state (the ‘‘red’’ state), and the corresponding

statistics is shown by the red curve in Fig. 1(e). Both

curves converge to the same value after about 150 ms,

independently of whether the network started in the blue

or red initial state. This fact is implied by the previously

described theoretical result.
This is a very cumbersome way of evaluating empir-

ically the speed of convergence of the distribution of

network states produced by the network (alias Markov

chain) C to its stationary distribution. In fact, it does not

even achieve that if one considers just two initial states.

But a number of more efficient heuristic methods have

been developed in machine learning and statistics for

estimating the speed of convergence to the stationary
distribution. One frequently used method is the Gelman–

Rubin test, which evaluates at any time t the quotient R̂ of

the variance of the estimated frequency of network states

between two trials with different initial states and the

variance within two time windows for a single trial. If this

quotient approaches values below 1.2, one usually says in

machine learning that a Markov chain has converged (one
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should note, however, that this is a heuristic measure; see
the more detailed discussion in [16]).

Fig. 2 shows results of applications of this Gelman–

Rubin test for evaluating the convergence speed for larger

networks of stochastic neurons that are generated from the

data-based template in Fig. 2(a). This panel shows the

empirically measured interconnection profile of excitatory

(black) and inhibitory (red) neurons on three laminae of

the neocortex (layers 2/3 combined, layer 4, layer 5), with
typical external input streams (‘‘bottom up’’ input stream 1

is carrying information about sensory inputs; input stream 2

comes from other cortical areas). This microcircuit template

is based on results of about 10 000 paired recordings from

neurons of these six populations in the Lab of Alex Thomson

in the Department of Pharmacology at the University of

London and the Lab of Henry Markram at the Brain Mind

Institute of EPFL (see [43] for more detailed credits, and for
computational properties of this model). These experiments

provided the connection probability between neurons [given

in percent in Fig. 2(a)], average strength of existing synaptic

connections (in terms of PSP amplitudes in millivolts; the

thickness of arrows is scaled according to the product of

these amplitudes with the connection probability), and the

short-term dynamics of synaptic connections. For the

simulations considered in Fig. 2, each neuron was simulated
as a stochastically firing neuron according to (4).

Typical resulting network activity for an instantiation

of the template from Fig. 2(a) with 560 neurons is shown

in Fig. 2(b). Fig. 2(c) shows that the estimation of marginal

probabilities for the stationary distribution pC converges

for such network C within about 100 ms. Furthermore, this

panel shows the surprising result that this convergence

speed does not depend on the size of network C, provided
it is generated from the underlying data-based template

shown in Fig. 2(a) (i.e., connections probabilities and

distributions of synaptic parameters according to the

model from [43]). Furthermore, Fig. 2(d) shows a

corresponding result for a marginal distribution of 30

(instead of 1) neurons in the network. Altogether these

simulation results suggest that the convergence speed for

this data-based microcircuit model is relatively fast (in the
range of one or several hundred milliseconds), and hence

within the time span allotted to most computations carried

out in cortical networks of neurons. This empirical result

is, as one might have expected, not subsumed by the

mathematically proven exponentially fast convergence to

the stationary distribution for any such network C, because

there are large constant factors in these exponential

bounds. This empirical result is so far limited to these
networks C (and a few other networks considered in [16]).

Obviously, the structure and amount of noise, as well as

the network architecture influence the convergence speed.

According to theoretical results in [36], the convergence

speed is related to the ‘‘conductance’’ of a Markov chain, i.

e., the minimum probability with which it moves from one

part of some (rather) arbitrary partition of its state space to

the other. This probability can, for example, be made
arbitrarily small (and, hence, convergence speed arbitrary

slow) in a stochastic neural network with several

attractors, provided that the probability of escaping from

an attractor is made sufficiently small. In other words, the

more deterministic a neural network behaves, the slower is

its convergence speed. But the exact nature of these

dependencies for networks of spiking neurons remains to

be determined.

B. Extracting Knowledge From an Embodied
Probability Distribution Through
Probabilistic Inference

The previously sketched results on the existence of a

stationary distribution pC of network states in large classes

C of networks of spiking neurons with noise may help us to

understand biological phenomena such as the highly

structured spontaneous activity of brain networks [44],

[45]. In addition, the simulation results of Figs. 1 and 2

provide examples for the extraction of knowledge from pC

through probabilistic inference via sampling.

These experiments were carried out under the

assumption that network C receives during the sampling

process external inputs x. These may arise in the brain

from sensory stimulation [input stream 1 in Fig. 2(a)] or

top–down information [input stream 2 in Fig. 2(a)].

Results on stationary distributions of Markov chains are

usually only considered for the case when these external
inputs x are stationary, e.g., fixed firing rates e of neurons

that inject external inputs. In the language of probabi-

listic inference, such (momentary) stationary input is

usually referred to as evidence, and the computation of

pCðEjx ¼ eÞ for some event E that can be defined in

terms of network states y is a typical case of probabilistic

inference. For the simplest case when event E just

concerns the firing of a specific single neuron �, this
amounts to the estimation of a marginal probability

pCðneuron � firesjx ¼ eÞ.
Surprisingly, even this very simple form of probabilistic

inference (where one computes the marginal probability

for a single RV) is, in general, very demanding from the

computational perspective. In fact, estimating this prob-

ability within any error margin G 1/2 is already NP-hard

(see [36, Th. 9.4]). This implies that no deterministic
algorithm, such as for example any variation of belief

propagation (message passing), can provide such estimate

within a practically interesting number of computation

steps for distributions over a larger number of RVs. This

computational difficulty becomes easier to understand if

one takes into account that

pCðneuron � fires jx ¼ eÞ
¼

X
network states y:� fires in y

pðyjx ¼ eÞ (5)
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Fig. 2. Fast convergence of marginals of single neurons and more complex marginal distributions in cortical microcircuit models. (a) Data-based

cortical microcircuit template for the interconnectivity of excitatory and inhibitory neurons on three cortical layers from [43]. (b) Typical spike

response of an instantiation of the microcircuit model from (a) consisting of 560 stochastic point neurons. Spikes of inhibitory neurons are

indicated in red. (c) Gelman–Rubin convergence diagnostic (see Section II-A) was applied to the marginals of single neurons (simple states,

� ¼ 10 ms) in instantiations of the microcircuit template from (a) of different sizes (500–5000 neurons). Mean (solid lines) and worst marginal

convergences (dashed lines) of single neurons are hardly affected by network size. (d) Convergence properties of frequencies of joint states

of subsets of neurons in networks of different sizes. Dotted line: multivariate Gelman–Rubin analysis was applied to a subpopulation of

30 neurons [five neurons were chosen randomly from each of the six pools of neurons shown in (a)]. Solid line: convergence of a ‘‘random

readout’’ neuron which receives spike inputs from 500 randomly chosen neurons in the microcircuit model. A remarkable finding is that in all

these cases the network size does not affect convergence speed. Panels (b)–(d) are from a figure that has previously been published in [16] under

the CCAL. Panel (a) is reprinted from [43] with kind permission of the Oxford University Press.
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and that the number of network states y over which this
sum runs is exponential in the size of network C. On the

other hand, the estimation of this probability is surprisingly

simple in a sampling-based approach: one just observes

how often neuron � fires within some time window. In

other words, marginals can be estimated by simply ignoring

the activity of the other neurons in network C. Of course,

there is no free lunch in computational complexity, and

NP-hardness implies that there exists the risk that we make
(for any fixed length of the observation time window) a

large error in our estimate of the firing rate of neuron �. But

factors in favor of sampling are, on the one hand, that

sampling of network states uses in a very efficient way the

parallel computing capabilities of large networks of

neurons. Furthermore, this sampling process takes place

in continuous time, thereby avoiding a slowdown that is

necessarily entailed by any discretization of time through a
global clock. One sees the important role of continuous

time for efficient probabilistic inference through sampling

also clearly in software simulations, where event-driven
simulators (such as [46]) are needed in order to avoid a

slowdown. Hence, neuromorphic hardware that operates

in continuous time may have here a particular advantage.

However, even these practically favorable factors do

not provide guarantees, and occasional errors have to be
expected. In other words, the empirical analysis of

convergence speeds as carried out in Figs. 1 and 2 is an

indispensable tool for estimating the computational

efficiency of probabilistic inference through sampling.

Furthermore, the concrete structure of noise (e.g., its

amplitude and possible correlations between different

local noise sources) and of the network (e.g., its locality of

connections) have direct influences on this convergence
speed. This computational efficiency perspective provides

a completely new (and important) way of analyzing noise

in spike-based networks that had previously not been

explored.

C. Which Probability Distributions Can Be Embodied
by Networks of Spiking Neurons?

In order to understand the computational capability of
networks of spiking neurons with noise, we need to

understand which probability distributions p could poten-

tially be embodied as stationary distribution pC of a

network C of spiking neurons. For that purpose, we need to

adopt some convention for relating spiking activity to

values of RVs. One straightforward approach is to assume

that each spike of a neuron sets a corresponding binary RV

for some short time (e.g., for the typical temporal
extensions of an EPSP, say 20 ms) from value 0 to value

1; see Fig. 3(a). Note that this convention is closely related

to the role of a neuron in defining the simple state of a

network [see green state in Fig. 1(b)]. An easy way of

encoding the value of a multinomial RV through spiking

neurons is provided by WTA circuits where at (almost) any

moment in time just one of the excitatory neurons fires

[see Fig. 3(b)]. Thus, one can relate each of these

excitatory neurons to one possible value of an RV.
For the sake of simplicity, I will consider in the

following just binary RVs. The question that needs to be

examined then is which joint distributions pðz1; . . . ; zmÞ
over binary RVs zk can be embodied through the stochastic

dynamics of networks of spiking neurons. Positive results

are provided by the neural sampling theory of [12]. It is

shown there that a sufficient condition for reproducing a

given distribution p (over binary RVs) as the stationary
distribution pC of a network C of spiking neurons with

noise is given by the neural computability condition (NCC)

presented as follows.

For each RVzk, there is some neuron �k whose firing

probability density at time t, if it is not in a refractory

period, is

�kðtÞ ¼
1

�
�

p zk ¼ 1jznkðtÞ
� �

p zk ¼ 0jznkðtÞ
� � (6)

where znk denotes the other RVs besides zk.

The proof of this result is instructive, since it shows

how some results on stationary distributions for reversible
Markov chains (such as Boltzmann machines) can be

ported to certain nonreversible Markov chains (such as

recurrent networks of spiking neurons). One gets math-

ematically rigorous results only for an idealized type of

spiking neuron, but numerical simulations suggest that the

error is not large for biologically more realistic models (see

[12] for details).

Furthermore, it is shown in [12] that this sufficient
condition readily implies that any distribution p over

binary RVs with at most second-order dependencies [these

are the so-called Boltzmann distributions, which can

always be represented in the form of (3)] can be embodied

by networks of spiking neurons with noise. It is well known

that also distributions with higher order dependencies can

be encoded by Boltzmann distributions with the help of

Fig. 3. Standard conventions for relating spiking activity to discrete

values of RVs of a joint distribution p. (a) Binary RVs. Assume that each

binary RV zk of p is represented by a spiking neuron �k, and a spike of

�k (marked in black) corresponds to setting zk ¼ 1 for a short time

period (marked in gray). (b) Multinomial RVs. Assume that each neuron

in a WTA circuit votes for a specific value of the variable, and that this

value changes as soon as some other neuron in the WTA circuit fires.
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auxiliary RVs. However, it was shown in [13] that this way
of emulating higher order dependencies tends to slow

down probabilistic inference through sampling in a quite

drastic manner. The reason for that is that the auxiliary RVs

have to be defined by Boolean formulas in terms of the

original binary RVs, and neural sampling in the presence of

such logically strict (rather than probabilistic soft) depen-

dencies between RVs tends to slow down the speed of

probabilistic inference through sampling (it tends to
reduce the conductance of the underlying Markov chain

by creating partitions of the state space with low transition

probability from one set of states to the other, since several

RVs have to change simultaneously for certain state

changes).

D. Probabilistic Inference in Arbitrary Bayesian
Networks Through Networks of Spiking Neurons
With Noise

An alternative method for embodying distributions

over binary RVs with arbitrary dependencies is laid out in

[13]. One can assure the validness of the NCC by assigning

to each binary RV zk not only a spiking neuron �k that

represents its value, but also an auxiliary network Ak of

spiking neurons that directly ensures the NCC for zk. For
that purpose, the auxiliary network Ak tests which pattern

of values is currently encoded by the firing activity of the

neurons assigned to the other RVs zi with i different from

k, and then creates an input to neuron �k that produces a

firing probability for it that agrees with the value given by

the NCC. It is shown in [13] for various examples that this

method produces embodiments of distributions p with

higher order dependencies as unique stationary distribu-
tions of networks of spiking neurons with noise, for which

the distribution of network states converges from any

initial state relatively fast to this stationary distribution.

One common method for constructing and describing

probability distributions with higher order dependencies

are Bayesian networks [see Fig. 4(a) for an example].

These are directed acyclic graphs where each node is

labeled by an RV. The edges of the graph capture from an
intuitive perspective causal dependencies between RVs.

More precisely, the edges capture the dependency

structure (conditional independence) among the RVs:

each RV (node) is independent from the RVs on all

nondescendant nodes, given the values of the RVs at its

parent nodes. Another way of characterizing the

relationship between Bayesian networks and probability

distributions is the following: A Bayesian network (as a
directed graph) completely specifies a joint probability

distribution over the RVs that label its nodes once one

specifies for each node (RV) its conditional probability

table, given all possible assignments of values to the RVs

that label its parent nodes. The resulting joint probability

distribution is then the product over all these conditional

distributions.

But one has to be careful: Bayesian networks are, in
general, very different from neural networks since they do

not define a dynamics or network computation. They

‘‘just’’ represent certain factorization (or, equivalently,

conditional independence) properties of probability dis-

tributions. Only in rare special cases (such as the one

discussed in this section) one can directly associate a

(stochastic) neural network N with a Bayesian network B
so that N represents, through its stationary distribution of
network states, the same probability distribution as B
(once B is augmented by conditional probability tables for

all its nodes, as described above).

Whenever more than a single edge ends at a node of a

Bayesian network, a term of order larger than 2 arises in

the probability distributions that it represents. This

situation is often described in terms of the ‘‘explaining

away effect,’’ which occurs, for example, in context
dependence perception tasks (see [13]), and can, there-

fore, not be ignored for real-world applications. Many

Bayesian networks that arise in real-world applications

even contain undirected cycles. Standard belief-propaga-

tion algorithms have no guarantee to converge to the

correct solution for such Bayesian networks (see the

discussion in [13] and [36]). Hence, the noise-driven

approach of [13] based on sampling is of particular
relevance for carrying out probabilistic inference for

such tasks. Higher order dependencies among RVs, as

well as undirected cycles of Bayesian networks can be

handled in this approach via suitable preprocessing circuits

Ak in the spiking network (as described above).

An instance of a relatively large Bayesian network with

numerous nodes where several edges and several undi-

rected cycles converge is shown in Fig. 4(a). The green
nodes represent RVs for which evidence is entered for a

generic probabilistic inference task. The goal is to estimate

the resulting (posterior) marginal probabilities for the

other RVs. The fact that evidence is entered primarily at

nodes toward the bottom of the Bayesian network is typical

for real-world applications, where one wants to identify

likely causes for observations. The estimation of marginal

probabilities for the other RVs (at the yellow nodes)
requires then to explore various possible causes for the

observations. First simulation experiments in [13] suggest

that, even for this fairly large and complex Bayesian

network, probabilistic inference through sampling in a

corresponding network of spiking neurons tends to be

quite fast, in the range of a few seconds [see Fig. 4(b)].

Fig. 4(c) illustrates the typical behavior of the neurons �k

in the network that encode possible causes (i.e., the RVs at
yellow nodes): they move forth and back between various

characteristic network states (each indicated by a different

color) that correspond to joint assignments to these RVs

that have relatively high probability under the given joint

distribution p.

Curiously enough, such stochastic switching between

different network states is also observed in experimental
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Fig. 4. Emulation of probabilistic inference through sampling in spiking networks for a fairly large and complex Bayesian network with numerous

converging edges and undirected cycles. (a) The Bayesian network. Evidence e is entered for the RVs at the green nodes. (b) The sum of the

differences (measured by the Kullback–Leibler divergences) between the correct and estimated marginal posteriors probability for each of the

unobserved RVs, calculated from the generated samples (spikes) from the beginning of the simulation up to the current time indicated on

the x-axis. Separate curves with different colors are shown for each of the ten trials with different initial conditions (randomly chosen). The bold

black curve corresponds to the simulation for which the spiking activity is shown in (c). (c) The spiking activity of the 12 neurons that represent

the binary RVs on the yellow nodes in (a) during the simulation from t ¼ 0 s to t ¼ 8 s, for one of the ten simulations. The neural network

enters and remains in different network states (indicated by different colors), corresponding to different modes of the posterior joint probability

distribution. This figure was previously published in [13] under the CCAL.
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data from neuroscience, in particular, in fMRI recordings
(hence, on a larger spatial and temporal scale) of

spontaneous activity in the so-called default network of

the brain [44]. This default network has been implicated as

being essential both for memory retrieval and for

imagination [47], thereby creating a link to Section II-E.

Bayesian networks and other graphical models have

also been proposed as functional models for motor

control, where some RVs denote joint positions, and
others (for which typically evidence is entered for solving

motor control tasks through probabilistic inference)

denote movement goals, expected rewards, and contin-

gencies (e.g., obstacles). This topic will be addressed in

Section II-F.

E. Solving Constraint Satisfaction Problems With
Networks of Spiking Neurons

Many computationally difficult problems are con-

straint satisfaction problems (CSPs). CSPs are familiar to

all of us, since real-world tasks such as planning a route to

the office, planning a family vacation, or managing our

budget requires to satisfy as many constraints as possible

from a large number of more or less important constraints.

Some of these constraints are of an uncertain nature (will

there be a traffic jam on the shortest route?), but have to be
rationally dealt with nevertheless. Computational com-

plexity theory has taught us that many practically

important CSPs belong to the class of NP-hard problems

[32], which means that there is practically no hope of

solving these problems on a Turing machine (or any

classical digital computer) within a number of computa-

tion steps that does not increase exponentially with the

size of the problem. This means that even for moderately
sized problems (in terms of the bit length of encoding the

problem) of say 100, the number of computation steps that

a digital computer would need is astronomical. NP-

hardness has thwarted our attempts to endow digital

computers with general capabilities for logical inference or

related types of artificial intelligence. In particular, there is

no practically useful computer program available for

deciding whether some concrete Boolean formula is
implied by some other Boolean formulas. This lack of

algorithmic solutions follows from the NP-hardness of the

satisfiability problem, i.e., of deciding whether a given

Boolean formula can be satisfied.

I will argue in the following that networks of spiking

neurons with noise provide new opportunities for solving

fairly large instances of NP-hard and other CSPs, at least

heuristically (in principle, one could also implement
deterministic approximation algorithms for solving hard

CSPs in deterministic networks of spiking neurons, but I

am not aware of publications on that). First results in [16]

and [31] suggest that these networks can often produce,

within a reasonable time span, an approximate solution

that satisfies a large portion of the given constraints. This

approach will not provide miracle solutions to NP-hard

problems, but it will engage specific advantages of
networks of spiking neurons with noise, such as their

immense parallelity and their asynchronous operation in

continuous time, in a particularly efficient way. Thereby,

they may advance the frontier for practically relevant

computational problems that can be solved within a given

time and energy budget.

Whenever a neuron fires, it changes, for a moment, the

firing probability of other neurons to which it is
synaptically connected. Therefore, each synaptic connec-

tion and each network motif can be viewed as a constraint

on the network states y that appear with high probability

under the stochastic dynamics of a network of spiking

neurons with noise. In other words, the autonomously

generated stochastic dynamics of a network of spiking

neurons with noise solves an immensely complex

constraint satisfaction problem. It generates network
states y that are most of the time consistent with a large

portion of the interlocking and circular local constraints

that are imposed by the architecture of a recurrent

network of neurons and its parameters. Hence, if we

manage to program constraints into the architecture of a

network of spiking neurons that are meaningful for the

solution of a practically relevant constraint satisfaction

problem, and if we find ways of controlling the frequency
of network states y during the resulting stochastic

dynamics of the network in dependence of the number

and importance of satisfied constraints that the network

state y represents, we have found a new way of using

networks of spiking neurons for purposeful computations.

Research in this direction is still very young. It builds on

and expands earlier related work on Boltzmann machines

[25], which did not offer the promise of energy-efficient
computation that networks of spiking neurons hold, but

which had already pioneered the use of networks of

stochastic computing elements for solving CSPs.

I will first demonstrate the capability of networks of

spiking neurons to solve CSPs with the well-known

Sudoku puzzle. Sudoku serves well as an example because

it demands substantial problem solving capability. The

rules of the Sudoku game can be easily encoded into a
recurrent network of WTA circuits. Each WTA circuit

consists of an ensemble of excitatory neurons with lateral

inhibition [see Figs. 3(b) and 5(b)]. It induces higher order

dependencies between RVs, and hence cannot be readily

implemented by a Boltzmann machine.

Each excitatory neuron can, in fact, be a part of several

interlocking WTA motifs [see the right part of Fig. 5(b)].

This architecture makes it easy to impose the interlocking
constraints of Sudoku (and of many other constraint

satisfaction problems). Each excitatory neuron votes for

placing a particular digit into an empty field of the grid.

But this vote is subject to the constraints that only one digit

can be placed into this field, and that each digit 1; . . . ; 9

occurs only once in each column, in each row, and in each

3 � 3 subgrid marked in Fig. 5(a). Hence, each excitatory
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Fig. 5. Solving Sudoku, a constraint satisfaction problem, through structured interactions between stochastically firing excitatory and

inhibitory neurons. (a) A ‘‘hard’’ Sudoku puzzle with 26 given numbers (left). The solution (right) is defined uniquely by the set of givens and

the additional constraints that each digit must appear only once in each row, column, and 3 � 3 subgrid. (b) An implementation of the

constraints of the Sudoku game in a spiking neural network C consists of a recurrent network of WTA circuits, resembling somewhat a

previously proposed simple model for cortical circuits [48]. The same excitatory neuron �k (representing a binary RV zk) can be a part of

several such WTA circuits (right). Each digit in a Sudoku field is associated with an excitatory neuron which votes for this digit when it emits a

spike (actually, each RV zk was represented in this simulation by four excitatory neurons, but this is an implementation detail). Each

excitatory neuron participates in four WTA circuits, corresponding to the constraints that only one digit can be active in each Sudoku field, and

that a digit can appear only once in each row, column, and 3 � 3 subgrid. (c) A typical network run for the Sudoku puzzle from (a) is shown

during the last 1500 ms before the correct solution was found [the total solve time was approximately 3 s in this run; see (d) for statistics

of solve times]. The network performance (fraction of active neurons that vote for correct values) over time is shown at the top. The

spiking activity is shown for three (out of 81) WTA circuits associated with the three colored Sudoku fields in (a). In each of these WTA circuits,

there are 36 excitatory neurons (nine digits and four pyramidal cells for each digit). Spikes are colored green for those neurons which code

for the correct digit in ‘‘their’’ Sudoku field (6, 8, and 4 in the example). (d) Histogram of solve times (the first time the correct solution

was found) for the Sudoku from (a). Statistics were obtained from 1000 independent runs. The sample mean is 29 s. (e) Average network

performance for this Sudoku converges quickly during the first five seconds to a high value of 0.9, corresponding to 90% correctly found

digits (average taken over 1000 runs; shaded area: �2 standard deviations). Thereafter, among all 981 possible configurations, the network

spends most time in good approximate solutions. The correct solution occurs particularly often, on average approximately 2% of the time (not

shown). This figure is a variation of a figure that has previously been published in [16] under the CCAL.
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neuron is simultaneously a part of four WTA circuits. A
specific puzzle can be entered by providing strong input x
to those neurons which represent the given numbers in

Sudoku [see the left part of Fig. 5(a)]. This initiates a quite

intuitive dynamics: ‘‘Clamped’’ neurons start firing

strongly, and as a consequence, neurons which code for

conflicting digits in the same Sudoku field, the same row,

column, or 3�3 subgrid become strongly inhibited. In

those cases where inhibition leaves more than one possible
digit open, a tentative digit will be picked randomly by

those neurons which happen to fire first among their

competitors in the stochastic network dynamics. The

stochasticity of this process ensures that, instead of getting

stuck in local optima, the network automatically explores

several potential configurations whenever multiple possi-

bilities remain. Altogether, through this combination of

constraint enforcement and random exploration, those
network states which violate few constraints (i.e., good

approximate solutions) are visited with much higher

probability than states with many unsatisfied constraints.

A theoretical framework for this analysis and methods for

shaping this probability distribution are developed in [31].

In our simulations, we found that the solve time (the time

until the correct solution is found for the first time)

generally depends on the hardness of Sudoku, in
particular, on the number of givens. For the ‘‘hard’’

Sudoku with 26 givens from Fig. 5(a), solve times are

approximately exponentially distributed with an average of

29 s [Fig. 5(d)]. The run of the resulting network of spiking

neurons shown in Fig. 5(c) exhibits on the side another

nice property of this computational paradigm for networks

of spiking neurons: The network provides, at any time,

some heuristic solution of the problem, rather than
requiring the user to wait for a certain ‘‘computation

time’’ before it provides any useful output. If, however,

there is more time for an answer, the system keeps

producing better solutions. This capability, which is

obviously quite desirable for real-time systems, is some-

times referred to as anytime computing.

It would be interesting to compare the performance of

different neural network approachesVin particular,
deterministic versus stochastic networksVon a common

set of Sudoku puzzles. But this work has not yet been

carried out. An interesting deterministic approach for

solving Sudoku in nonspiking deterministic neural net-

works via linear programming had been introduced in

[49]. The approach in [16] is apparently the only one so far

with spiking neurons (deterministic or stochastic). Its

performance can be improved with the help of a new
method from [31]: internal temperature control (see

below, not published).

It has been shown that Sudoku is, in principle, NP-hard

(provided that one considers puzzles with increasing

numbers of fields). In a forthcoming work [31], it is

shown that networks of spiking neurons can also solve

other well-known NP-complete problems, such as the

satisfiability problem and the traveling salesman problem.
Furthermore, it turns out that there exists, for certain

architectures, a theoretical framework that allows us to

estimate the probability of network states y in terms of

the number of constraints which they satisfy, similarly as

for Boltzmann machines. But in contrast to Boltzmann

machines, we can work here also with asymmetric

synaptic weights (as needed already to interconnect an

excitatory neuron with an inhibitory neuron). It turns out
that one can exploit, in addition, another asymmetry of

spike-based networks that is not encountered in Boltzmann

machines: The asymmetry between the generation of a spike

and its postsynaptic effects in other neurons (which results

from a stochastic process) on the one hand, and the end of

this signal (which is largely deterministic, given when it

started) on the other hand. It is shown in [31] that this

asymmetry is useful for exploration in stochastic search. In
addition, new methods are exhibited in [31] for modulating

‘‘temperature’’ T of the distribution of network states

through mechanisms within the network, e.g., for increasing

the difference between the probabilities pCðyjxÞ of network

states y in dependence of the number of constraints which

they satisfy. A distribution with smaller differences en-

hances exploration. Furthermore, one can also design

networks in such a way that they lock (with very high
probability) into an optimal solution, once they have found

it. These results can be viewed as first steps toward a new

design methodology for solving hard computational tasks

through networks of spiking neurons with noise.

F. Applications of Networks of Spiking Neurons With
Noise to Movement Planning

Many motion control and planning problems in
robotics can be formulated as probabilistic inference tasks

[50]. In this setup, the previously acquired experience

(‘‘procedural knowledge’’) is formalized as a probability

distribution over RVs that may, for example, represent the

current state, the next state, possible actions, goals,

rewards, and contingencies. The given ‘‘evidence’’ can, in

this case of probabilistic inference, not only represent the

current state, but also currently active contingencies (e.g.,
obstacles), desired rewards, or the intended next state. The

most likely action for achieving this is then inferred

through probabilistic inference. This perspective is also

currently pursued as a possible way of understanding

biological motor control and planning [51].

The methods that I have sketched in the preceding

sections allow us to implement this probabilistic inference

approach in networks of spiking neurons with noise. The
pros and cons of this approach are explored in current

research [52], [53]. A simple demonstration is provided in

Fig. 6. It shows that networks of spiking neurons are not

only able to ‘‘infer’’ the next action, but also to play

through whole movement plans. The underlying stochastic

sampling approach induces a significant trial-to-trial

variability of movement plans, which is qualitatively similar
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to experimental data from biological organisms. This

variability also provides an exploration mechanism that is

needed for reinforcement learning (see Section II-H).

G. Role of Noise for Self-Organization Processes in
Networks of Spiking Neurons

It is well known that self-organization processes

without noise are prone to get stuck in local minima.

Hence, one can expect that noise will be beneficial for a
variety of self-organization mechanisms of networks of

spiking neurons. I want to focus here on the discussion of

one example, where one can see that noise can endow

networks of spiking neurons with the capability to create

and maintain through synaptic plasticity subnetworks that

carry out specific computational tasks, in this case through

probabilistic inference. Also, here, there exist attractive

paradigms from Boltzmann machines, where it had been

demonstrated that suitable synaptic plasticity rules endow

them with the capability to create (without any supervision

or rewards) internal models for the probability distribution
p� of input patterns which they receive. In other words,

Boltzmann machines can learn to become generative

models that can not only learn to categorize input patterns

without any guidance by a supervisor, but also generate
typical input patterns with a distribution similar to p� (see,

e.g., [29]). This generative aspect is an essential compo-

nent of many powerful learning methods. Such inversion

of the direction of processing is easy for Boltzmann
machines since their synaptic connections are required to

be symmetric, hence they are ‘‘backwards drivable.’’

Unfortunately, such an inversion of the processing

direction that one needs for a generative learning approach

Fig. 6.Movement planning through probabilistic inference in a Bayesian network, implemented through a network of spiking neurons with noise.

(a) Part of the Bayesian network with RVs xt and xtþ1 representing the state (position) at steps t and t þ 1, and RVs ztþ1 (‘‘task variables’’)

representing constraints and goals for this step. Nodes that represent RVs whose values are given (such as ztþ1) or have already been

inferred (such as xt) are shaded in gray. All these RVs are represented by populations of spiking neurons shown in (b). (b) Part of the network of

spiking neurons that implements the Bayesian network from (a). (c) Firing activity of all neurons during a single trial. (d) Resulting planned

movement trajectory. Figure drawn by Elmar Rueckert, and printed with his permission.
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is rather foreign to networks of spiking neurons. However,

it has recently been shown that noise endows networks of

spiking neurons even without this inverse processing

capability (and without the requirement of symmetric

weights) with similarly powerful unsupervised learning

methods as some traditional generative models [14], [15].

The most commonly studied and experimentally supported

rule for (unsupervised) synaptic plasticity in networks of

spiking neurons is spike-timing-dependent plasticity

(STDP); see, e.g., [54]. According to this rule, a synaptic

Fig. 7. Emergent discrimination of handwritten digits through STDP in a WTA circuit with noise. (a) Examples of digits from the MNIST data set.

The third row contain test examples that had not been shown during learning via STDP. (b) Spike train encoding of the first five samples

in the third row of (a). Each pixel is encoded for 30 ms by a spike train with a high or low firing rate (corresponding to a black or white pixel).

Colors illustrate the different classes of digits. (c) and (d) Spike trains produced by the K ¼ 100 competing neurons of the WTA circuit before

and after learning with STDP for 500 s. Colored spikes indicate that the class of the input and the class for which the neuron is mostly

selective [based on human classification of its generative model shown in (f)] agree, otherwise spikes are black. (e) Speed of the self-organization

process of the 100 output neurons. (f) Internal models generated by STDP for the 100 neurons of the WTA circuit after 500 s. The network had

not received any information about the number of different digits that exist (the colors for different ways of writing the first five digits

were assigned by the human supervisor). On the basis of this assignment, the test samples in row 3 of (a) had been recognized correctly.

This figure was previously published in [15] under the CCAL.
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weight is increased whenever the presynaptic neuron fires
shortly before the postsynaptic neuron, and decreased

whenever the presynaptic neuron fires shortly after the

postsynaptic neuron (hence, STDP selects and strengthens

those synaptic connections that appear to be causally

involved in the firing of the postsynaptic neuron). It has

been shown in [14] and [15] that STDP can in the presence

of noise install in WTA circuits the arguably most powerful

method for unsupervised learning and self-organization
that is currently known: expectation maximization (EM).

More precisely, it is proven there that STDP implements,

in these network motifs, a stochastic online approximation

of EM for fitting a mixture of multinomial distributions (or

of exponential family distributions [14]) to the input

distribution p�. In particular, it enables them to learn to

carry out Bayesian inference: A prior is learned through

(unsupervised) adaptation of the excitabilities (or firing
thresholds) of the neurons, and the natural processing of

spike inputs (in the usual bottom–up direction) can be

viewed as sampling from the posterior of the resulting

internally learned mixture distribution. An application of

this stochastic learning method, which is called spike-

based EM (SEM), to a distribution p� of unlabeled

handwritten digits from the Mixed National Institute of

Standards and Technology (MNIST) database is demon-
strated in Fig. 7.

The autonomously learned approximation to p� in the

form of a mixture of multinomials is analyzed for this

example in Fig. 7(f), in terms of the implicit internal

models (weights) of the competing neurons of the WTA

circuit, projected back into the pixel input space. One sees

that the network of spiking neurons has learned without

any supervision not only ‘‘templates’’ for each handwritten
digit, but also characteristic differential ways of writing

each digit (since it does not know that a vertical stroke and

a slanted stroke represent the same digit ‘‘1’’). This self-

organization of a network of 100 spiking neurons with

lateral inhibition provides a nice demonstration of the self-

organization capabilities of networks of spiking neurons

with noise.

If one adds lateral excitatory connections between the
neurons of the WTA circuit, and applies to them the same

STDP rule as for bottom–up connections, the network

learns to approximate another important probabilistic

model: a hidden Markov model (HMM); see [55]. There,

the bottom–up spike inputs (that represent observations in

the terminology of HMMs) are combined by the auton-

omously learning neurons with spike inputs from their

neighbors that provide a temporal context for character-
izing the bottom–up spike input. Hence, the circuit

implements forward sampling (in MCMC terminology).

If one moves to more complex networks of spiking

neurons with noise that form a randomly connected

network of several WTA circuits (which happens to be a

pretty good rough approximation to the structure of a

generic cortical column; see [48]) one sees that, in these

networks, similar dynamic memory traces for repeatedly
encountered external inputs emerge as those that have

been found in experimental data from various parts of

sensory cortices and parietal cortex: characteristic assem-

blies and sequences of assemblies [42]. It is commonly

conjectured that these are the traces of long-term memory

in the cortex [41], [56].

In current work, these autonomously learning spiking

networks are brought one step closer to biological models
for cortical columns by taking into account that pyramidal

cells on superficial and deep layers of cortex form an

‘‘infinite’’ sheet of excitatory neurons with local lateral

inhibition, rather than an array of isolated WTA circuits

[57]. Furthermore, the lateral inhibition is examined more

closely in [58], where symbolic lateral inhibition is

replaced by interactions with concrete types of inhibitory

neurons. Moving to a more relaxed form of such lateral
inhibition creates sparse WTA (sWTA) circuits, where

more than a single neuron can fire simultaneously [59].

This relaxed lateral inhibition endows the competing

neurons with the capability to focus each on some partial
feature of a salient spike input pattern, rather than forcing

each neuron to become an ‘‘expert’’ for a whole input

pattern.

These results open the door to a rich world of
architectures where noise endows networks of spiking

neurons with powerful self-organization capabilities. In

contrast to many other demonstrations of self-organization

capabilities of neural networks, one can analyze these

models with analytic methods, at least approximately,

similarly as for Boltzmann machines. But the mathemat-

ical formalism which is required for that turns out to differ

in several aspects from the simpler one used for Boltzmann
machines.

In the recent work by Pecevski and Maass [60], such

network learning capability is considered in the context of

architectures for networks of spiking neurons that emulate

probabilistic inference in arbitrarily given Bayesian net-

works (see Section II-D). One sees there that each

auxiliary network Ak for a neuron �k that is supposed to

classify the current firing pattern of other neurons �i can
learn, in the presence of noise through STDP, to capture

the most frequently occurring ones of such patterns.

Therefore, it is no longer necessary to set the parameters of

the auxiliary networks Ak by hand, and their size is no

longer crucial. Hence, the goal to create network

architectures for spiking neurons that can autonomously

learn to build an internal Bayesian network model for

complex external input streams is one step closer.

H. Role of Noise for Reinforcement Learning in
Networks of Spiking Neurons

Reinforcement learning is learning by trial and error,

hence it requires active exploration. This holds also for

learning through reward-based synaptic plasticity (see,

e.g., [61] and [62]), and it is only possible if the neurons or
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synapses are noisy. In fact, the noise level is critical, since
if there is too much noise, the credit assignment (where

those synaptic connections that were active shortly before

a reward are strengthened) becomes less precise. If there is

too little noise, the network may not be able to find

through exploration any network response that is

rewarded.

A critical feature of any reward-based learning scenario

is the number of trials that are required, and in this regard,
models tend to stay behind the performance of many

biological organisms. One aspect that may speed up

reward-based learning is a clever exploration strategy,

which means in this setting a suitable structure of

stochastic variability in a network of neurons [63], [64].

We have seen in previous sections that networks of spiking

neurons are, in principle, able to represent a large variety

of distributions of network states. It is an interesting open
question how this distribution should be structured so that

the stochastic dynamics of the network supports fast

exploration of possible solutions for concrete learning

tasks.

III . DISCUSSION

This paper has reviewed a new perspective for encoding
knowledge in networks of spiking neurons: Network C of

spiking neurons with noise is able to encode substantial

amounts of knowledge in its stationary distribution pC of

network states that it embodies through its stochastic

dynamics. In fact, depending on the precise definition of

network state, different salient distributions can be rep-

resented simultaneously by network C, including dis-

tributions of longer firing sequences of neurons (as
reviewed in [56] and [41]) that could encode, for example,

procedural knowledge. In addition, network C has the

capability to encode in the presence of a background

oscillation different distributions of simple states for different
phases of this oscillation [16]. Such phase coding is

apparently also used by the brain [65], [66]. It is conjectured

[67] that neural synchrony plays in the brain an important

role in information binding. Note that neural synchrony is, to
a large extent, just a different way of analyzing the role of

network states [especially of simple states as in Fig. 1(b)],

rather than firing rates of single neurons. Hence, the concept

and results sketched in Section II-A, B, and E provide a

perspective where neural synchrony and information bind-

ing are integrated into a more general framework for

stochastic network computations.

This method of encoding knowledge in networks of
spiking neurons bypasses disputes about neural coding of

single variables encoded by artificial stimuli (such as

oriented gratings) with spike timing or rates (see, e.g., [38]

and [68]–[71]) by moving to the more global perspective of

network states that typically encode several behaviorally

salient variables. This more global perspective coincides

with the perspective of any downstream network that

receives synaptic input from tens of thousands of neurons.
Furthermore, it allows to encode really powerful and

demanding data structures in networks of spiking neurons

with noise, such as graphical models for complex

probability distributions (e.g., Bayesian networks), as I

have sketched

These data structures have become, in current

machine learning, computer vision, and artificial intelli-

gence, a favored way of encoding real-world knowledge
about likely causes of sensory inputs, and also more

abstract relationships. In addition, graphical models are

becoming useful in robotics for encoding knowledge

about how to move in order to achieve specific goals in

different contexts and under varying constraints (e.g.,

obstacles). In fact, one may argue that this probabilistic

form of knowledge representation has replaced, in large

parts of computer science and its applications, determin-
istic forms of knowledge representation. Deterministic

knowledge representations, in combination with logical

inference methods, turned out to be of limited use for

generating intelligent responses and strategies for real-

world tasks. For that, one needs to generate at high speed

clever heuristic guesses and action choices on the basis of

large numbers of uncertain observations and experiences,

and very few reliable facts.
I have also reviewed results from the last few years,

where it has been shown that knowledge can be extracted

in a principled manner from data structures that are

represented through distributions of network states:

Through probabilistic inference (e.g., estimation of

posterior marginal probabilities) via sampling from such

distributions. A potential obstacle for this approach is the

sampling time that it requires. The first investigation of
this problem for generic models of cortical microcircuits

in [16] suggests that short sampling times in the range of

a few hundreds of milliseconds (of simulated biological

time) are sufficient. Applied to hardware implementa-

tions that are substantially faster (e.g., with a speedup

factor of 10 000 in the approach that is pursued in the

Lab of Karlheinz Meier at the University of Heidelberg

[72]) this would provide response times in the range of
tens of microseconds. But this topic certainly requires

further research. In particular, we need to understand

which network architectures and what types of noise

enhance the sampling speed of networks of spiking

neurons.

Several recent reviews present arguments which

support the hypothesis that the brain does, in fact, carry

out probabilistic inference [34], [38], [51], [71], [73], [74].
Interesting counter-arguments have been collected in [75].

In particular, Bowers and Davis [75] cite results of

experimental studies in neuroscience, such as [76] and

[77] where it is shown that orientation-selective neurons in

area V1 respond highly reliably for an oriented bar in their

preferred direction. This is per se not an argument against

the encoding of probabilities of external variables through
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firing probabilities, since if the probability of an external
variable is close to 1, the corresponding neuron should

fire highly reliably under such a probabilistic coding

scheme.

If probabilistic inference is carried out in the brain, it is

not yet clear to what extent this is implemented through

deterministic or stochastic neural circuit computations.

Several interesting theoretical studies (see, e.g., [37], [78],

and [79]) have shown that some elements of probabilistic
inference that can be implemented through deterministic

message passing (belief propagation) can, in principle, also

be implemented by deterministic networks of spiking

neurons (in fact, any deterministic computation, i.e., any

Turing machine, can be simulated by a deterministic

network of spiking neurons [80]).

One important advantage of approaches that employ

noise as a resource becomes apparent if one analyzes the
efficiency (in terms of the number of neurons that are

used, and the required overhead for the organization of

computations) of the resulting architectures and algo-

rithms. In fact, some of the previously cited studies of

possible neural implementations of probabilistic inference

through belief propagation only consider relatively easy

instances of probabilistic inference, such as applications of

the Bayes rule, or inference in Bayesian networks without
undirected cycles, or even without converging edges (i.e.,

without ‘‘explaining away’’ mechanisms).

Another strong argument for sampling-based ap-

proaches arises from the more learning-friendly aspect

of this implementation strategy: Examples from an

external multivariable distribution that needs to be

learned by a network are of the same type as the samples

that a stochastic network produces after learning [60].
This setup is consistent with an implementation of

network learning through local learning rules such as

Hebbian learning and STDP (possibly within a generative

framework, and gated by global variables that signal

saliency or reward expectations). This is hard to achieve if

conditional probabilities have to be encoded explicitly (as

analog numbers) through neural codes, which is typically

required by implementations of probabilistic inference
through message passing (belief propagation). The review

in [38] mentions an interesting argument against the

encoding of probabilities through firing rates in V1: the

width of orientation tuning curves is independent of contrast

in anesthetized cats [81]. It is proposed in [81] that this effect

results from stochastic resonance. Hence, it may very well be

the case that noise has a different functional role in neural

circuits that specialize in feature extraction in primary
sensory cortices [10].

Furthermore, the neural sampling perspective provides

a model for higher level brain processes such as resting

activity [44], [45], [73], stochastic switching between brain

states for ambiguous stimuli (see the discussion in [82] and

[12]), imagination and movement planning [83] that are

difficult to explain or model with a deterministic model for

brain computation. One should also note that the multi-
plexing and context dependence of neural codes that has

recently been exhibited for higher brain areas [84], [85]

is predicted by models for implementing probabilistic

inference in networks of spiking neurons, such as those

that were sketched in Section II-A–II-C. The underlying

experimental protocols induce dependencies among

random variables that represent stimulus features,

selected behavior, and context information. Hence such
dependencies have to be expected from neurons that

encode these random variables through their firing

probability under a stationary distribution pC of network

states.

The predictions of nondeterministic models for com-

putation and learning in the brain can soon be tested more

rigorously with new experimental methods (such as high-

density silicon probes, calcium imaging) that capture
responses of large populations of neurons in several

cortical areas during realistic active behavior, also over

weeks and months (and not only for artificially

impoverished stimuli, or after overtraining). In fact, an

analysis of the statistics of resulting high-dimensional

network states (and trajectories of network states) appears

to become one of the most promising methods for

analyzing and understanding the resulting experimental
data (see [39] for a first step in this direction, and [86] and

[87] for difficulties in the data analysis).

Independently from the exact nature of brain compu-

tations, it is clear that the new concepts and methods that

have been reviewed in this paper will provide a boost in

computational power and learning capability to artificial

networks of spiking neurons that manage to treat noise as

a resource. Furthermore, current work on solving NP-
complete constraint satisfaction problems through net-

works of spiking neurons with noise [59] suggests in

addition that an internal control of the noise profile will

be beneficial. Thus, noise engineering for networks of

spiking neurons seems to become an exciting new

research area.

The brain has more processors (i.e., neurons) than a

typical supercomputer, but consumes less than 30 W of
energy. A major goal of computer technology is to port

some of this astounding energy efficiency into nanoscale

circuits for future generations of computer hardware.

Since noise is inevitable at this scale, a key breakthrough

would be achieved by exploiting noise as a resource for

computation and learning in future computing hardware.

First steps in this direction are described in [4]. h
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