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The brain faces the problem of inferring reliable hidden causes from
large populations of noisy neurons, for example, the direction of a mov-
ing object from spikes in area MT. It is known that a theoretically opti-
mal likelihood decoding could be carried out by simple linear readout
neurons if weights of synaptic connections were set to certain values
that depend on the tuning functions of sensory neurons. We show here
that such theoretically optimal readout weights emerge autonomously
through STDP in conjunction with lateral inhibition between readout
neurons. In particular, we identify a class of optimal STDP learning
rules with homeostatic plasticity, for which the autonomous emergence
of optimal readouts can be explained on the basis of a rigorous learning
theory. This theory shows that the network motif we consider approxi-
mates expectation-maximization for creating internal generative models
for hidden causes of high-dimensional spike inputs. Notably, we find
that this optimal functionality can be well approximated by a variety of
STDP rules beyond those predicted by theory. Furthermore, we show that
this learning process is very stable and automatically adjusts weights to
changes in the number of readout neurons, the tuning functions of sen-
sory neurons, and the statistics of external stimuli.

1 Introduction

Uncertainty accompanies us in almost all situations in life. Whether we try
to recognize a distant object, decide which path to take on a mountain hike,
or read a person’s face in an important negotiation, the environment often
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provides us with many cues, but each single cue is too unreliable to inform
a decision on its own. Thus, we are forced to combine different cues in
a meaningful manner in order to gain sufficient certainty. The theoretical
framework for solving such tasks in an optimal way is Bayesian inference.
Notably, behavioral and psychophysical studies strongly support the pic-
ture that the brain implements this strategy: in numerous experiments,
human subjects have been shown to take into account uncertainty in a
near-optimal way (Griffiths & Tenenbaum, 2006).

At the level of neural coding in early sensory areas, uncertainty is a par-
ticularly well-studied phenomenon: individual neurons that encode cer-
tain stimulus properties show significant trial-to-trial variability, making it
difficult to infer the original stimulus from single-neuron responses. This
observation has led to the notion of population coding: the value of a single
variable is encoded by a whole population of neurons, each noisy and typi-
cally broadly tuned to the external variable (Pouget, Dayan, & Zemel, 2000).
Experimental data suggest this coding strategy as a candidate for under-
standing how important variables are represented in different areas across
cortex, for example, sound location in auditory cortex (Miller & Recanzone,
2009) or stimulus location in somatosensory cortex (Petersen, Panzeri, &
Diamond, 2002). Just how the brain reliably decodes information from pop-
ulations of neurons in a near-optimal way remains one of the key open
questions in computational neuroscience.

In experimental neuroscience, the computation of robust readouts from
population codes has become indispensable in the analysis and interpre-
tation of neural data; population vector analysis and maximum likelihood
(ML) estimation (Pouget et al., 2000) are two frequently used methods.
More recently, attempts have been made to model neural networks that ex-
hibit near-optimal decoding capabilities (Deneve, Latham, & Pouget, 1999;
Jazayeri & Movshon, 2006; Chaisanguanthum & Lisberger, 2011). The hope
is that such models will advance our understanding of the neural substrates
of perceptual judgments: how the noisy and broadly tuned representations
found in sensory areas can be efficiently used and transformed by down-
stream populations to allow near-optimal performance in a variety of per-
ceptual tasks. The theoretical framework that has been guiding the search
for suitable models is Bayesian inference. Here, in contrast to previous,
static models, we will use this perspective for the analysis of an adaptive
cortical microcircuit, featuring spike-timing-dependent plasticity.

In the Bayesian framework, an observed response of a population of M
neurons, which we will write here as x = (x1, . . . , xM)T , is interpreted as the
result of an underlying cause θ that cannot be observed directly. In visual
processing, this external cause could correspond to the true stimulus ori-
entation or motion direction at some retinal location. The population code
(i.e., the relation between the external cause θ and the observed popula-
tion response x) can then be represented by the conditional distribution
p(x|θ ). This captures deterministic dependencies on θ , usually specified in



Emergence of Optimal Decoding of Population Codes 1373

terms of tuning functions, and neuronal noise. The optimal way of inferring
the external variable θ from noisy observations x is then given by Bayes’
theorem:

p(θ |x)︸ ︷︷ ︸
posterior

∝ p(θ )︸︷︷︸
prior

· p(x|θ )︸ ︷︷ ︸
likelihood

. (1.1)

In the context of population codes, the prior distribution is often as-
sumed to be uniform, such that inference reduces to computing the
likelihood function L(θ ) = p(x|θ ), which indicates how likely different θ

are to have caused a given observation x. This results in a quite straightfor-
ward decoding strategy: compute the likelihood for each possible cause θ

that could have given rise to the observed population response and choose
the one with maximal likelihood. Somewhat surprisingly, the computa-
tional requirements for implementing such a readout are minimal: under
a few simplifying assumptions, including Poisson firing statistics and zero
noise correlations in the population pool, it was shown recently that the
likelihood L(θ ) of a stimulus can be written as a weighted sum of sensory
responses x (Jazayeri & Movshon, 2006). Based on this observation, the au-
thors argued that a readout neuron that specializes in detecting a particular
stimulus value from a set of possible values can compute the corresponding
likelihood by integrating its synaptic inputs in a feedforward manner (see
the feedforward path in Figure 1). The synaptic weights required for this
operation depend on the tuning functions f j(θ ) of the sensory neurons xj
and the preferred orientation θk of the readout neuron:

wk j = log f j(θk) + const. (1.2)

This establishes an important link between the response properties of the
sensory population (the tuning functions) and the optimal weights to de-
code information from it and gives clear instructions on how to construct an
optimal readout network. However, equation 1.2 also highlights that each
population of neurons in the brain must be read out differently, depending
on the particular tuning functions of the neurons.

The preceding research leaves the question open of how readout neurons
could acquire the theoretically optimal synaptic weights (see equation 1.2).
The importance of this question is underlined by recent findings suggest-
ing that the brain constantly retunes its circuits in order to improve proba-
bilistic inference (Bejjanki, Beck, Lu, & Pouget, 2011). How experimentally
observed plasticity mechanisms at the synaptic level could account for such
an improvement remained an open question.

Here we present a learning theory for spike-timing-dependent plasticity
(STDP) rules in the context of spiking neurons and lateral inhibition that
addresses this question. Building on the analysis of previous work (Nessler,
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Pfeiffer, & Maass, 2010) we show that optimal likelihood decoding of noisy
population codes emerges automatically through STDP in a winner-take-all
(WTA) circuit, a ubiquitous network motif in cortical microcircuits (Douglas
& Martin, 2004). In particular, we theoretically analyze the weight dynamics
of a particular form of STDP with homeostatic plasticity and show that it can
be described as an attractor dynamics, where the centers of the attractors
are the weight values (see equation 1.2) that are optimal from the perspec-
tive of probabilistic inference and learning. In this way, we create a direct
link between simple local rules for synaptic plasticity and theoretically op-
timal inference and learning on the network level. Whereas the analysis of
Nessler et al. (2010) was restricted to the case of multinomial input variables
(each encoded by a population of neurons of which at any time t, exactly
one has fired within the time window [t − τ, t]) and rectangular excitatory
postsynaptic potentials (EPSPs) (modeled by a step function, rather than by
a function with smooth decay), we show here that the underlying learning
theory can be extended to cover the biologically more realistic case where
each input neuron fires according to some Poisson-like statistics and EPSPs
have a smooth decay. This new learning theory makes it possible to derive
learning curves for STDP and dependencies between current weight val-
ues and the amount of weight potentiations or depressions under STDP
that are optimal for a given input statistic and EPSP shape. These analyti-
cally derived predictions for details of STDP match currently available data
quite well in a number of aspects. Furthermore, we show that in practice,
variants of these optimal rules, and in particular plasticity rules based on
typical STDP curves, approximate this optimal behavior well.

We test predictions of the new learning theory in computer simulations
and show that previously derived optimal weights for likelihood decoding
(see equation 1.2) emerge autonomously through STDP in conjunction with
homeostatic plasticity. Based on this learning theory, we also show that
an adaptive architecture for reading population codes provides attractive
benefits compared to previously considered static models. In particular, we
demonstrate stable and predictable behavior under challenging but biolog-
ically realistic dynamic scenarios, like changes in sensory tuning functions
or neuron growth and loss. We furthermore demonstrate that selective
modulation of learning leads to effects reminiscent of perceptual learning
(Gilbert, Li, & Piech, 2009), where the accuracy of neural codes is selectively
enhanced for behaviorally relevant stimuli.

The article is structured as follows. First, we introduce the canonical mi-
crocircuit model we consider. In this circuit model, we demonstrate STDP-
based autonomous learning on exposure to population-coded stimuli and
show that in such a setup, the synaptic weights converge to a setting that
is optimal from the perspective of likelihood decoding. We then introduce
the theory that underlies this optimality and derive a rigorous link between
local synaptic learning and theoretical optimality in the Bayesian frame-
work. We complement these theoretical results by an extensive performance
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Figure 1: Network motif in which STDP generates optimal decoding of popu-
lation codes. A time-varying external variable θ (t) is encoded by a population
of sensory neurons. Each sensory neuron xj has a characteristic average re-
sponse for each value of θ : its tuning function. Based on these tuning functions,
they emit spikes according to a Poisson process. Readout neurons receive these
spikes via feedforward connections with synaptic weights wk j. A stochastic
WTA circuit induces competition among readout neurons k. As a consequence,
those readout neurons, which receive the greatest stimulation from the sensory
neurons, fire preferentially.

comparison of different optimal and near-optimal STDP-based learning
rules. We present results of simulations that test further predictions of the
theory and demonstrate the versatility and robustness of the considered
model. We conclude with a simulation in which effects reminiscent of per-
ceptual learning are reproduced.

2 Results

In order to make accurate perceptual judgments, the brain must use the in-
formation provided by sensory areas as efficiently as possible. Since sensory
neurons tend to be noisy and broadly tuned, the computation of a sparse
representation of the most likely external stimulus (“hidden cause”) is a
nontrivial task for a network of neurons. However, Jazayeri and Movshon
(2006) showed that for the case of a one-dimensional hidden cause θ , which
could, for example, represent the current orientation, speed, or direction of
a visual stimulus, this task could in principle be solved by an array of linear
readout neurons k = 1, . . . , N with spiking outputs zk that receive synaptic
inputs xj from sensory neurons j = 1 . . . M (see Figure 1). It was shown that
the readout neurons k can compute in their membrane potential the log
likelihood that a particular hidden cause θk (which was assigned externally
to readout neuron k in Jazayeri & Movshon, 2006) had caused the current
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spike output x of the sensory neurons. This occurs if the weights wkj from
sensory neuron j to readout neuron k are set according to equation 1.2.
We show here that these weights emerge as fixed points (equilibria) of a
class of theoretically optimal STDP rules with homeostatic plasticity, pro-
vided that the readout neurons are subject to lateral inhibition. Through
the same learning process, each readout neuron k implicitly develops a
preferred stimulus ψk, which then allows the reconstruction of an external
input variable θ (t) at any moment in time.

2.1 Adaptive, Stochastic WTA Architecture. For the readout neurons k,
a stochastic neuron model is used similar to the model proposed by Jolivet,
Rauch, Lüscher, and Gerstner (2006), which has been shown to explain
neural data well. The neuron model is characterized by an exponential
dependence of the firing probability on the current membrane potential uk,

p(k fires in [t, t + �t]) = �t exp(uk(t)), (2.1)

for small �t. The membrane potential of a readout neuron k consists of an
excitatory and an inhibitory contribution:

uk(t) =
M∑
j=1

wk j(t)x j(t) − I(t). (2.2)

Excitation comes from the feedforward connections originating in the sen-
sory population x1, . . . , xM. In particular, the term wk j(t)x j(t) represents the
contribution of previous spikes from the jth sensory neuron to the mem-
brane potential uk of the readout neuron k at time t. The term x j(t) hence
models the unweighted output spike train of the jth sensory neuron after
filtering according to the low-pass filtering properties of the postsynaptic
membrane. x(t) represents the collection of all input signals available to
the readout neurons at time t. We will refer to this as the current (sensory)
population response.

I(t) denotes the contribution to the membrane potential due to lateral
inhibition. I(t) is common to all readout neurons in the circuit and can
thus be viewed as a global inhibitory signal that controls the total gain
of the circuit. In computer simulations, we modeled I(t) such that the to-
tal firing activity of the readout circuit remained approximately constant.
The resulting effect of inhibition is a normalization of circuit responses,
reminiscent of normalization models in cortex (Simoncelli & Heeger, 1998;
Zoccolan, Cox, & DiCarlo, 2005; Ohshiro, Angelaki, & DeAngelis, 2011;
Louie, Grattan, & Glimcher, 2011). Note that the lateral inhibition intro-
duces competition among the readout neurons, since a readout neuron
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with strong feedforward input will claim a large fraction of the total firing
rate, thereby suppressing other readout neurons. We refer to the resulting
network as a (stochastic) winner-take-all (WTA) circuit.

We focus in this article on the following theoretically motivated spike-
timing-dependent plasticity rule (but see Figure 3 for other forms of STDP
we consider),

�wk j = η · zk · (x j · αe−wk j − 1), (2.3)

where α is a positive constant that controls the balance between potentiation
and depression and η is a learning rate that is constant unless otherwise
stated. We define zk = 1 at spike times of the WTA neuron k and zk = 0
otherwise. The learning rate η is chosen small throughout this article such
that learning takes place on a (much) longer timescale than stimulus and
network dynamics.

The first term of equation 2.3 corresponds to a prototypical spike-timing-
dependent long-term potentiation (LTP) window (with the same shape
and time constant as PSPs) with weight dependence. The second term
depends on postsynaptic spikes only and can be interpreted as a form of
homeostatic plasticity providing negative feedback to the postsynaptic rate.
Both terms fit well into the relatively broad phenomenological framework
of STDP rules (Gerstner & Kistler, 2002; Gilson, Burkitt, & van Hemmen,
2010). But to distinguish it from more common STDP rules (which typically
feature spike-timing-dependent depression), we will refer to this rule as
theoretically optimal STDP.

The motivation for first considering this form of STDP comes from its
notable and provable theoretical properties, which will be developed in this
article: equation 2.3 leads to stable equilibrium weight settings that can be
analyzed and have a clear interpretation from the perspective of probability
theory. In particular, we will show that equation 2.3 is an instance of a family
of learning rules that can be directly derived from the principle of adapting
and optimizing an implicit generative model of the input statistics.

With regard to biological plausibility, equation 2.3 is in many aspects con-
sistent with experimental studies on STDP. First, the strength and direction
of learning depend on the timing difference between pre- and postsynaptic
spike. For pre-before-post pairings, xj is large at the time of the postsynaptic
spike and equation 2.3 will typically lead to potentiation. For post-before-
pre pairings, the negative part dominates and leads to depression (Bi &
Poo, 1998; Sjöström, Turrigiano, & Nelson, 2001). Also, the strength of po-
tentiation correlates inversely with the synaptic weight before pairing. This
feature is also consistent with a number of experimental studies (Bi & Poo,
1998; Sjöström et al., 2001; Liao, Jones, & Malinow, 1992; Montgomery,
Pavlidis, & Madison, 2001). Furthermore, the amount of depression is in-
dependent of the current weight. This is consistent with the experimental
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results of Jacob, Brasier, Erchova, Feldman, and Shulz (2007), which is to
the best of our knowledge the only study of this effect in vivo. Moreover,
when measured under a typical pairing STDP protocol, equation 2.3 will
automatically shift toward LTP for higher pairing frequencies, since for
each postsynaptic spike, the xj will accumulate more presynaptic spikes in
the causal STDP window while the negative term remains constant. This
effect is hence reminiscent of the tendency toward LTP (and abolishment
of LTD) for higher frequencies found experimentally (Sjöström et al., 2001).
Altogether, the agreement with these experimental STDP data is in a sense
remarkable, given that equation 2.3 can be derived from purely statistical
principles.

However, there are also a few deviations from STDP data. Most impor-
tant, the negative contribution of equation 2.3 is activated for every postsy-
naptic spike regardless of presynaptic input. Hence, long-term depression
(LTD) is not spike timing dependent and can be triggered by postsynap-
tic spikes alone. We address this potential issue later, when we consider a
variation of equation 2.3 with timing-dependent depression in Figure 3; it
turns out that the results are qualitatively very similar. Another deviation
is with regard to the frequency dependence mentioned above: despite the
general shift toward LTP, the exact form of frequency dependence in exper-
imental data (see Figure 7 in Sjöström et al., 2001) cannot be reproduced by
equation 2.3.

For the described network architecture, a computer simulation was car-
ried out in which a fluctuating external variable θ ∈ [0, 2π] with a periodic
boundary condition (like any angle) was presented (see Figure 2). Con-
cretely one could interpret this external variable as a motion direction. The
changes in θ were designed to be slightly slower than the network dynam-
ics, corresponding to the assumption that the sensory stimulus remains
stable for the duration of a few PSPs. A number of broadly tuned sensory
neurons with Poisson firing statistics represented the value of this external
variable over time. Initially synaptic readout weights were randomly ini-
tialized, leading to rather unspecific responses in the readout circuit when
stimulated with different θ . At t = 100 s of exposure to different popula-
tion responses, readout neurons started to specialize on different stimuli.
This was reflected by both selective firing of individual readout neurons
to certain θ and the gradual specialization of synaptic readout weights to
different patterns. This specialization can be understood as follows. During
exposure to population responses, the readout network continuously emits
spikes. After each readout spike, the current population response leaves
a small trace in the synaptic weights of the readout neuron k, which has
fired. In particular, as expected from STDP, synapses that are not active at
the time of the postsynaptic spike are depressed, and those with strong
activity are enhanced. The synaptic changes induced by plasticity increase
the probability that the same neuron fires again when a similar population
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response is registered, while making it less likely to fire when significantly
different patterns are active. Due to the inhibitory circuit that promotes
competition, different neurons start to pick up different patterns. As a con-
sequence, a specific pattern emerges in the synaptic weights of each readout
neuron. This pattern reflects the history of population responses that made
the readout neuron fire. At t = 2000 s the readout weights reached a setting
that was stable with minor fluctuations around some target values. One
can now compare this converged weight setting with the results by Jazayeri
and Movshon (2006) on optimal population decoding. As shown in Fig-
ure 2C, the weights, which have autonomously emerged during exposure
to unknown population responses, have recovered the previously identi-
fied theoretical optima for likelihood decoding, in particular those obtained
through equation 1.2.

What is the overall effect of this learning process? Most important, in-
dividual readout neurons have become specialists for individual hidden
causes (or stimuli). Hence, after, but not before, learning, each readout
spike can be considered an indication for a particular hidden cause. As a
consequence, one can achieve an increasingly faithful reconstruction of the
original stimulus θ from readout spikes, as shown in Figure 2E.

2.2 Learning Theory for STDP in a Network with Lateral Inhibition.
We have shown in Figure 2 that the STD rule 2.3 in a network with lateral
inhibition can regulate the synaptic readout weights such that near-optimal
decoding of population responses can take place. We demonstrated that a
main feature of this learning process was the emergence of a sparse spike
code, optimized to reveal the hidden causes of high-dimensional input
spike trains. Here we will show that this behavior can be understood in
terms of a rigorous learning theory. Our theoretical analysis relies on the
notion of an implicit generative model implemented in the network—a
powerful statistical tool for the extraction of hidden causes from high-
dimensional data. Using basic assumptions about the input distribution, we
arrive at a performance measure favoring sparse spiking in which different
readout neurons fire for distinct hidden causes (with clearly distinct sensory
representations). This theoretical tool allows us to track and analyze the
performance of the network, in particular, small changes in performance
due to a single application of the learning rule. The main result is that an
application of the local learning rule, equation 2.3, is always expected to
increase global performance. This increase can be understood in terms of
an attractor dynamics in the weight space induced by the plasticity rule,
in that the attractor centers are weight settings that are stable under the
dynamics of the network. These equilibria are characterized by

wk j = log 〈x j|k fires〉 + const., (2.4)
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where we write 〈·|k fires〉 for the empirical average over all spike times
of neuron k during the operation of the circuit (for a more precise defi-
nition, see section A.4 in the appendix). Importantly, we show that these
weight settings are not only the attractors of the network dynamics but
also correspond to locally optimal weights settings from the perspective of
the implicit generative model. Hence, we establish a direct link between
local synaptic learning rules and theoretically optimal performance of the
network.

A common problem in data analysis is to extract hidden causes from
high-dimensional input x without supervision, that is, without the help of
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a teacher signal, which provides the desired outcome z during training.
Generative models are arguably the most powerful paradigm of unsuper-
vised learning, with examples including (probabilistic) PCA, ICA, gaussian
mixture models, and hidden Markov models (Bishop, 2006). The rationale
behind generative models is “analysis by synthesis”: if you aim to under-
stand (decode) something, learn to build (generate) it yourself. The starting
point is a model p(x|W) describing the statistics of an input stream x as the

Figure 2: Spike-timing-dependent plasticity regulates synaptic weights to-
wards theoretical optima for likelihood decoding. (A) An external variable
θ (t) was presented to the network of Figure 1A, here shown over a period
of 6 s. (B) One hundred sensory neurons (x1, . . . xM) with broad tuning func-
tions and Poisson firing statistics provided a noisy population code of this
stimulus. Through plastic synaptic readout weights, these sensory spikes were
fed into a readout network (stochastic WTA) consisting of 20 spiking neurons
with lateral inhibition. The readout network produces a sparse output code. An
external observer can associate each readout neuron with a preferred stimulus
ψk(t), which develops over the course of learning. Based on the preferred stim-
uli, the original stimulus can be reconstructed from the sparse readout spikes.
(C) The development of the weight matrix through theoretically optimal STDP
is shown over 2000 s during exposure to a randomly changing stimulus θ (t).
Colors range from dark blue (0) to dark red (2.4). Initially the weight matrix was
randomly initialized. At t = 100 s, the effects of learning became visible: sensory
neurons that typically fired together had developed a preference for activating
the same readout neuron. At t = 2000 s, the weights had stabilized and settled
on a configuration that closely matches the theoretical Bayes-optimal solution,
equation 1.2. Note that the readout neurons in panel C (and D) are ordered
by their preferred stimuli ψk at t = 2000 s, to facilitate visual comparison with
the optimal solution. (D). The development of readout responses is shown over
the course of learning. Initially, responses were unspecific to different stimuli.
At t = 100 s, readout neurons had developed noticeable preferences for certain
stimuli. At t = 2000 s, each readout neuron had become responsible for repre-
senting a particular preferred stimulus. The firing activity of a readout neuron
reflects the posterior probability of the neuron’s preferred stimulus, given the
current population response. The characteristic sparse code that emerged is
predicted by theory (see Bayes optimal, bottom). (E) The readout spikes were
used to compute a reconstruction θrec(t) (shown in red) of the external stimulus
θ (t) (shown in blue), in order to compare the quality of the readout at different
stages of learning. The reconstruction signal at time t was obtained based on the
preferred stimuli ψ(t) of those readout neurons, which spiked in a 100 ms time
window before t (see the text). As shown, initially each readout spike conveyed
rather unspecific information about the stimulus. The following specialization
of readout neurons to different stimuli allowed for an increasingly accurate
reconstruction.
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result of a generative random process, typically involving hidden causes z,

p(x|W) =
∑

z

p(z|W) · p(x|z, W). (2.5)

This generative model can be understood as a two-step process. First, a
hidden configuration is drawn according to the hidden probabilities p(z|W).
Then the hidden states generate the actual data x according to p(x|z, W). The
sum in equation 2.5 reflects the fact that the same data x can be generated
by different hidden configurations z.

Then the goal of learning is to find parameters W that bring the distribu-
tion p(x|W) generated by the model as close as possible to the actual data
distribution, which we write here as p∗(x). This is done by adjusting the pa-
rameters W of the model, usually in small steps, until the Kullback-Leibler
divergence KL(p∗(x)||p(x|W)), a quantity that measures the distance be-
tween the real distribution and the model, becomes minimal. During this
process, an efficient representation for the hidden causes z emerges, which
is optimized to “explain” the data in p∗(x). This hidden representation can
be retrieved by evaluating the posterior distribution p(z|x, W).

Here, we adopt the perspective of a generative model to analyze learning
for the network shown in Figure 1. But what is a good choice for a generative
model? First, we restrict ourselves to a sparse representation of readout neu-
rons, meaning that only a few hidden causes should be sufficient to explain
any given input. A simple way to achieve this is a mixture model, in which
at any time, exactly one hidden cause (or expert) is active and each expert
is associated with a different set of input patterns. Second, since inputs to
the neural network consist of spike trains with Poisson characteristics, a
reasonable choice is to assign to each expert a characteristic pattern of input
firing rates to which it is specialized. Formally, the generative model then
takes the form

p(x|W) = 1
N

N∑
k=1

M∏
j=1

Poisson(x j;α−1ewk j ), (2.6)

where Poisson(x; λ) denotes the Poisson distribution over x with “rate”
λ and α is an arbitrary positive constant (note that our analysis extends
beyond Poisson distributions; see below). The model can be understood as
follows: the probability of cause k being active is 1

N . If the cause k is active,
the number of spikes for the sensory neuron xj within a rectangular PSP
window of length τ is Poisson distributed with a rate that is encoded in
the parameter wkj. Hence, each cause k is an expert for a particular pattern
of Poisson rates in the input, and this preferred pattern is encoded in the
parameters wk1, . . . , wkM. Note that prior parameters instead of a fixed prior
1
N could be easily incorporated into the model. These prior parameters could
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then be mapped onto neural excitabilities in the neural implementation
(Nessler et al., 2010).

Several steps are required to establish a direct correspondence between
the network implementation and the generative model: first, the network
elements need to be related to the variables of the generative model. We
already implicitly linked the synaptic weights to the model parameters
in a straightforward fashion by using the weights wkj in the definition of
the generative model. Similarly, we can link the readout neurons to the
hidden causes of the model: each hidden cause k is represented by one
readout neuron, k. Second the network should support Bayesian inference,
that is, it should respond to an input x by inferring likely hidden states z
according to the posterior probabilities p(z|x, W). Indeed we will show that
each output spike from the readout network is generated according to the
correct posterior distribution. Third, network plasticity should optimize the
parameters of the generative model over time; the synaptic weights should
come to reflect the input statistics p∗(x) through learning. This is the main
focus of this article. We will prove this by relating STD learning to a standard
algorithm for generative model learning, expectation-maximization (EM).
One operation of the generative model that will not be required from the
network is the actual generation of data x. Since, in contrast to other models
(see Dayan, Hinton, Neal, & Zemel, 1995; Rao & Ballard, 1999), such an
explicit generation of data is not needed here, we will refer to our model as
an implicit generative model.

In the spirit of Jazayeri and Movshon (2006) and Nessler et al. (2010),
Bayesian inference in the model defined by equation 2.6 can be related to
a feedforward neural implementation with synaptic weights wkj between
input and readout layer. This is because the log likelihood of an input x
under the cause k is given by,

log p(x|k, W) =
M∑
j=1

wk jx j −
M∑
j=1

α−1ewk j −
M∑
j=1

log(x j!). (2.7)

The second term can be ignored in practice if the input representation is
homogeneous (Jazayeri & Movshon, 2006). The third term is independent of
k and hence drops out later in the normalization of the posterior distribution
p(k|x, W). This leaves only the first term, which is simply the feedforward
sum of inputs, which a neuron k can compute in its soma. As a consequence,
we can show that each spike from a readout neuron in Figure 1 can be
interpreted as a sample from the correct posterior distribution p(k|x, W)

(see the appendix).
The key component of the learning theory is the connection between STD

learning and the implicit generative model, in particular the optimization
of its parameters W. In machine learning, the best-known algorithm for
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performing this optimization is EM (Bishop, 2006). What we will show here
is that the operation of STD learning in the cortical microcircuit of Figure 1
can be understood as a stochastic online version of EM. This allows us
to view learning as an attractor dynamics in the weight space, where the
attractors correspond to local optima in the generative model perspective.

The EM framework provides a general tool for deriving and analyz-
ing the learning dynamics of autonomously learning systems that fit an
implicit or explicit generative model to an external distribution p∗(x). Of
particular interest is the family of online EM algorithms (Sato, 1999; Cappé
& Moulines, 2009), which operate at one input at a time, thereby gradu-
ally absorbing the input statistics into the parameters of the model. The
fundamental steps of online EM are inference (expectation) and learning
(maximization). During inference, the posterior probabilities p(z|x, W) of
hidden configurations are evaluated for the current input x. The subsequent
learning step uses both x and the inferred hidden configurations to perform
a small update �W, which increases the model’s likelihood for the current
input x. As indicated above, each firing of a neuron k in the WTA circuit
of the network provides a sample from the current posterior distribution:
hence, this is equivalent to a stochastic E-step. The corresponding postsy-
naptic spike then triggers the plasticity rule, equation 2.3, in the synapses
wk1, . . . , wkM. Through an analysis of this STDP-based update, one can show
that this provides a step in the direction of a correct M-step in online EM.
In particular, one can prove that the expected application of the rule with a
sufficiently small learning rate will always improve the performance of the
network until a local optimum is reached,

KL(p∗(x)||p(x|W + �W)) ≤ KL(p∗(x)||p(x|W)), (2.8)

where �W is the expected update for a randomly chosen input pattern from
p∗(x) (see the appendix).

This allows us to view learning in the considered cortical microcircuit
as an attractor dynamics: the trajectories in weight space induced by STD
learning are attracted to specially distinguished weight settings which have
the property that for all synapses �wk j = 0, that is, the system is in equi-
librium with respect to equation 2.3. These attractors in weight space are
optimal from the perspective of the implicit generative model in the sense
that they correspond to locally optimal solutions to the problem of fitting
the internal model p(x|W) to the input distribution p∗(x).

Before moving on to the generalization of this main result to non-Poisson
input statistics, a remark is in order concerning the connection between
the optimization of the implicit generative model p(x|W) and the optimal
readout weights for population coding, as they were derived in Jazayeri and
Movshon (2006). As already suggested by the simulation results shown in
Figure 2, these two optimality criteria are intimately connected. This is
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because the “true” statistics of the population code p(x|θ ) from which the
optimal readout weights in Jazayeri and Movshon (2006) are derived can
be mapped with arbitrary precision onto a mixture model representation
in the form of equation 2.6. The mapping is most faithful if the Kullback-
Leibler divergence between the real population code and the mixture model
is lowest: this is precisely what the plasticity rule optimizes. By increasing
the number of readout neurons, the theoretically achievable divergence can
be made arbitrarily small, and the two optimality criteria become effectively
equivalent.

The assumption of Poisson variability is a reasonable and popular ap-
proximation to the firing statistics of real cortical neurons. At the same time,
there exists ample experimental evidence for deviations from this rule, such
as bursty or regularly firing neurons (Shinomoto et al., 2009). This raises
the question of whether our learning theory can also be applied to other
firing statistics. It turns out that the theory can indeed be generalized to
the exponential family of distributions, which contains many well-known
parametric models like the Poisson, normal, gamma, and negative binomial
distributions. The main result of this generalization is that each firing statis-
tic is associated with a different, small variation of optimal STDP. Through
the generalization to exponential families, the presented theory for STDP
in the context of lateral inhibition becomes applicable to a wide range of
biologically relevant firing statistics (see the online supplement). The power
of exponential family distributions also allows incorporating more realistic
EPSP shapes: given the firing statistics of sensory neurons, together with the
EPSP shape, one can construct a tailor-made exponential family distribution
that accounts for the variability encountered in the inputs x (see the online
supplement). This makes the theory applicable to virtually arbitrary EPSP
shapes, in particular, those derived from electrophysiological experiments.

2.3 A Family of STDP Rules Leads to Near-Optimal Readouts. These
theoretical results are quite encouraging, since they establish a link between
a particular form of STDP, on the one hand, and the powerful statistical
framework of EM, on the other hand. But how relevant are these results
for the study of autonomous learning processes in the cortex? After all, the
theoretically postulated mechanism for depression in equation 2.3, which
leads to LTD even in the absence of presynaptic spikes, is quite speculative.
It would thus be highly interesting to know whether this term could also
be replaced by timing-dependent depression without loss of functionality.
Furthermore, plasticity mechanisms in the brain appear to be heterogeneous
and noisy (Sjöström et al., 2001; Caporale & Dan, 2008), in contrast to precise
theoretical rules. If one assumes a given PSP shape and Poisson variability,
is equation 2.3 really the only rule that can be guaranteed to lead to the
emergence of optimal weights?

In this section, we provide further results to address these questions.
First, the convergence results (and the link to EM) that hold for equation 2.3
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can in fact be easily generalized to a whole family of optimal STDP rules
with homeostatic plasticity,

�wk j = η · zk · ( f (wk j) · x j · αe−wk j − f (wk j)), (2.9)

where f (wk j) can be any strictly positive function. For f (wk j) = 1, the
original learning rule is recovered, which yields LTD proportional to the
postsynaptic rate 〈zk〉. This form of LTD is thus reminiscent of synaptic scal-
ing (Turrigiano, 2010), except that in synaptic scaling, updates scale with
the current weight (Abbott & Nelson, 2000). Indeed, a learning rule with
synaptic scaling can be obtained by letting f (wk j) = wk j. We verified the
correctness of this (optimal) variant of equation 2.3 in Figure 3B.

Furthermore, we tested two variations that are not provably optimal
from the perspective of the presented learning theory but approximate the
functionality of the optimal rules well. As shown in Figure 3C, in another
variation of equation 2.3, the time constant of the causal STDP window was
chosen twice as long as the PSP decay constant (while its magnitude was
halved). The resulting performance is virtually optimal. Finally, we tested
the performance of an STDP rule with common timing-dependent depres-
sion (see Figure 3D), with additional superimposed noise. The resulting
weights are slightly less pronounced and noisier, but the readout perfor-
mance is comparable to the other variants (compare RMSE values in the
bottom row). Notably, this behavior is also quite robust against variations
of parameters of this STDP rule (see Figure S1 in the online supplement).

Although these variants cover only a few cases of special interest, they
make clear that the main finding of this article, the emergence of optimal
readouts, is not an artifact of a specific definition of the learning rule, but
in practice a property of a whole family of STDP learning rules. The most
important features that appear to characterize this family of STDP rules are
(1) the pronounced weight dependence of STD potentiation (in accordance
with experimental data) and (2) some form of homeostatic regulation of
weights, implemented either explicitly (e.g. through synaptic scaling) or
implicitly through STD depression.

2.4 Maintenance of Optimality in Spite of Drastic Changes in Down-
stream and Upstream Neurons. To our knowledge, this article provides
the first adaptive neural approach to optimal decoding from sensory pop-
ulations in the literature. As a consequence, the canonical microcircuit con-
sidered here is substantially more flexible than previous static models for
optimal decoding. In the following computer simulations, we have se-
lected two biologically motivated dynamic scenarios that demonstrate
its functional advantages. The first scenario is based on the observation
that plasticity in sensory cortex appears to persist throughout adulthood,
as suggested by numerous studies in different species and cortical areas
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Figure 3: A variety of STDP rules leads to (near-) optimal readouts. Top row:
Illustration of the four STDP rules that were tested. To illustrate weight depen-
dence, the STDP curves are shown for different weights (blue: 0.5, green: 1, red:
1.5). (A, B) Theoretically optimal rules: equation 2.3 and a variant with synaptic
scaling, respectively. (C) A modification of equation 2.3 with the time constant
of the causal STDP branch doubled. (D) STDP with common timing-dependent
depression and superimposed noise. The black dots in the top row represent
noisy samples (weights for these samples are drawn randomly from a normal
distribution with mean 1 and standard deviation 0.4). Middle row: Synaptic
weights after 500 s of learning. As a performance measure, the reconstruction
RMSE is shown (the root mean squared error of reconstruction signal in a 2000 s
test run). Bottom row: weights after 3000 s. The RMSE of the optimal decoder
is 0.58. All variants yield near-optimal performance.

(Trachtenberg et al., 2002; Goel & Lee, 2007). Hence, the tuning functions of
sensory neurons, especially in superficial layers, are not fixed but subject to
constant change. This constitutes a challenge to downstream populations
that rely on the representation provided by sensory areas. We will show that
the canonical microcircuit considered here gracefully handles a scenario of
changing sensory tuning functions: any change in the input distribution is
automatically detected by the network, resulting in an appropriate adjust-
ment of the weight settings. As a consequence of this constant readaptation,
the readout representation of the external stimulus can remain remarkably
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invariant to changes in the sensory representation. The second scenario
deals with neurogenesis and neuron death, two phenomena that have been
reported repeatedly in adult cortex (Morrison & Hof, 2007). We studied the
effects of neuron growth and death in the readout population, showing that
through learning, the readout network can minimize the detrimental effects
of cell death and maximize the gain in representation accuracy brought by
neurogenesis.

In the first scenario, we studied the consequences of changing tuning
functions in the sensory population on the readout network (see Figure 4).
For this, we divided the sensory population into three groups (G1–G3).
Initial sensory tuning functions were chosen such that the whole range of
the input stimulus was represented uniformly in each group. The simula-
tion was then split into three phases: a static phase (0 s–1000 s), a dynamic
phase (1000 s–2000 s), and a consolidation phase (2000 s–3000 s). During
the static phase, sensory tuning functions were kept constant, and the read-
out network learned an optimal readout representation based on the initial
sensory code. The resulting weight matrices are qualitatively identical to
those obtained in Figure 2C. In the dynamic phase, tuning functions in all
three groups of sensory neurons started to change. In the first group, tuning
functions broadened, in the second group they narrowed, and in the third
group tuning functions narrowed and simultaneously started to develop a
second mode (see Figure 4B). This change in the sensory population code
was automatically “detected” by the readout network, causing the synaptic
readout weights to take up pursuit of a quickly moving target: the attractor
centers of the learning dynamics that depend on and thus drift in parallel
with sensory tuning functions. A snapshot of the readout weight matrix at
time 1600 s in the middle of the dynamic phase is shown in Figure 4C. In
the consolidation phase, sensory tuning functions were fixed again. This al-
lowed the readout network to converge to the new optimal setting, thereby
reinterpreting all sensory neurons according to their new properties. This
is particularly visible in group 3 (G3), where each sensory neuron had
developed two modes in the tuning function. The corresponding optimal
decoding strategy is to connect each sensory neuron in G3 strongly with the
readout neurons that correspond to the two modes. As shown in Figure 4C,
this strategy was found autonomously through learning. Figure 4D illus-
trates the preferred stimuli of five exemplary readout neurons during the
dynamic phase. One should note that in spite of drastic changes in the
sensory representation (e.g., the development of bimodal tuning functions;
see Figure 4B), the preferred stimuli of readout neurons barely change
during the adaptation period. Hence, learning facilitates the decoupling
between sensory and readout representations with respect to the external
stimulus.

In a second scenario (see Figure 5) we studied the effect of neuron growth
and death in the readout population. In a computer simulation, a microcir-
cuit was set up with five readout neurons, and the weights were allowed
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Figure 4: Canonical microcircuit maintains optimality in spite of changing tun-
ing functions in the sensory population. (A) The sensory population was divided
into three groups, G1–G3, each responsive to the whole range of input stimuli.
(B) The simulation had a static phase (0 s–1000 s), a dynamic phase (1000 s–
2000 s) and a consolidation phase (2000 s–3000 s). In the static phase (first row),
constant sensory tuning functions were used analogous to Figure 2. In the dy-
namic phase (second row), tuning functions started to change. Each group of
sensory neurons developed different tuning functions. In G1, tuning functions
broadened, in G2 they narrowed, and in G3 they became bimodal. In the consol-
idation phase (third row), tuning functions were fixed again. (C) The change in
the sensory population code during the dynamic phase (second row) resulted
in a shift in the attractor centers of the learning dynamics. This became visible
in the synaptic readout weights, which slowly tracked the changes in the sen-
sory population (see the weight matrix at t = 1600 s). During the consolidation
phase, the synaptic weights then converged to a new optimal representation.
Colors range from dark blue (0) to dark red (1.9). (D) The preferred directions of
five representative z-neurons are shown over the course of learning. Although
the sensory representation drastically changes over the considered period (B),
the readout representation remains remarkably stable.
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Figure 5: STDP enables robust decoding despite neuron growth and death.
(A) The preferred stimuli ψk of readout neurons are shown over time. The cir-
cuit was initially set up with five readout neurons. Through learning, these
readout neurons became experts with uniformly distributed preferred stimuli
(t = 800 s). At t = 800 s, five readout neurons were added to the circuit with
randomly initialized weights. They quickly specialized on the most weakly
represented ranges of the stimulus space (t = 1600 s). A similar effect could
be observed after adding another five neurons, leading to a refined represen-
tation (see 1600 s–2400 s). At t = 2400 s, the cell death of 10 readout neurons
was simulated. This resulted in large representation gaps: poorly represented
regions of the input stimulus. Through learning, the preferred stimuli of WTA
neurons rearranged toward an optimized configuration again (2400 s–3200 s).
(B) Mean-squared reconstruction error over time. Performance plunged when-
ever randomly initialized readout neurons were inserted (at t = 800 s and
t = 1600 s), before recovering again through learning. Neuron loss at t = 2400 s
also degraded performance. Although learning minimized the ensuing detri-
mental effects, the final MSE with 5 neurons (t = 3200 s) is markedly higher
than with 15 neurons (t = 2400 s). Blue dots correspond to selected time points
in panel C. (C) Weight matrices at different stages of the simulation (time points
indicated by blue dots in panel B). Colors: dark blue (0)–dark red (2.1). An
optimized weight setting for five readout neurons is shown at t = 800 s. At
t = 900 s, the synaptic weights of five newly grown neurons, amid previously
existing neurons, are depicted shortly after random initialization. Optimized
weight settings for 10 and 15 neurons are shown at t = 1600 s and t = 2400 s,
respectively.

to converge to a stable setting on stimulation with input stimuli analogous
to Figure 2. At t = 800 s and t = 1600 s, the growth of five new readout
neurons with randomly initialized weights was simulated, yielding a jump
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in the mean squared error (MSE) of the reconstruction (see Figure 5B). In
theory, a larger number of readout neurons allows a more finely grained
representation, and hence a more accurate readout. However, this requires
that the weights of all neurons are adjusted appropriately. In particular, the
newly formed neurons should learn to respond to the most poorly repre-
sented regions of the external stimulus. Figure 5A shows that this optimal
strategy automatically emerges through learning: the preferred stimuli ψk of
the newly grown neurons quickly learned to fill in the “spaces” in between
the existing neurons. This is also reflected by a lower mean squared error of
the reconstruction signal (Figure 5B; compare at t = 800 s and t = 1600 s).
A similar effect is observed after simulating the new growth of another
five neurons with random weight initialization. At t = 2400 s, the sudden
death of 10 neurons was simulated. Theoretically, this substantially reduces
the achievable readout accuracy. However, the loss in accuracy is small-
est if the surviving neurons rearrange such that their preferred stimuli ψk
are uniformly distributed over the input range. As shown in Figure 5A,
this is the strategy automatically implemented by learning in the network
(2400 s–3200 s). Hence, the detrimental effects of neuron loss on the read-
out representation are minimized through learning (see the corresponding
reduction of reconstruction MSE in Figure 5B).

2.5 Improved Representation of Behaviorally Relevant Inputs. The
ability to dynamically allocate resources for representing important pe-
ripheral inputs in a use-dependent manner is a hallmark of cerebral cortex
(Buonomano & Merzenich, 1998). Indeed, cortical representations are highly
plastic, and the dynamic changes in cortical representation on manipulation
in input or during task learning are thought to underlie the phenomenon
of perceptual learning: the improvement of sensory abilities during train-
ing (Seitz & Watanabe, 2005). Although the exact neural mechanisms that
give rise to task-related improvements are largely unknown, experimen-
tal evidence suggests an important implication of synaptic plasticity of
intracortical connections (Buonomano & Merzenich, 1998) in conjunction
with top-down “relevance” or reward signals (Seitz & Watanabe, 2005).
The latter have been hypothesized to be communicated to local cortical
circuits via diffuse neuromodulatory signals, such as “acetylcholine, nore-
pinephrine or dopamine, which gate learning and thus restrict sensory
plasticity” (Seitz, Kim, & Watanabe, 2009). Here we will show that by incor-
porating such a modulatory signal into the considered cortical microcircuit
model, the internal representation of stimuli becomes automatically focused
on behaviorally relevant inputs—those inputs that are consistently paired
with high levels of the modulatory signal. The resulting allocation of cortical
resources in proportion to relevance is strongly reminiscent of experimen-
tally observed training-dependent cortical map plasticity (Buonomano &
Merzenich, 1998).
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Figure 6: Improved representation of behaviorally relevant inputs. (A) For
1000 s, weights were regulated by equation 2.3 with a constant learning rate
(no modulation, blue line). For the following 3000 s, the learning rate was mod-
ulated in dependence of the external variable (red curve), thereby simulating
the stimulus selective modulation of learning. The external variable θ (t) and the
tuning functions of sensory neurons were simulated as in Figure 2. (B) The sim-
ulated cortical microcircuit responded to the modulation by increasing the rep-
resentation density for those regions paired with strong modulation, at the cost
of reduced representation density for other regions. (C) The weight setting that
emerged when gating was present (t = 4000 s) differs from the unmodulated
case (t = 1000 s) by a stronger focus on population responses that coincided
with periods of high “relevance.” In particular, after modulated learning, more
readout neurons receive their strongest synaptic connections from sensory neu-
rons that respond to relevant stimuli (∼sensory neurons 40–60). These readout
neurons correspond to the dense region of preferred directions in panel B. As
a consequence of the reallocation of resources, a greater readout resolution is
achieved for regions of the high-dimensional input space that are behaviorally
relevant.

In a computer simulation, we incorporated a global modulatory signal
into the cortical microcircuit considered above, acting as a soft gate for learn-
ing. The gating was implemented as a multiplicative factor on the learning
rate. During an initial reference phase, modulation remained constant dur-
ing exposure to stimuli, leading, as expected, via learning to a uniform
internal representation (see Figures 6B and 6C at t = 1000 s). Modulation
was activated at t = 1000 s. The modulation was chosen in dependence
of the current external stimulus, such that certain ranges of θ were paired
with higher levels of the modulatory signal than others (see Figure 6A, red
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curve). As shown, population responses that coincided with higher levels
were more strongly imprinted in the synaptic network weights, and con-
sequently, the internal representation started to shift toward a denser con-
centration around more “relevant” θs (see Figures 6B and 6C at t = 4000 s).
In contrast, stimuli paired with lower levels of modulation became more
crudely represented by the network. Hence, the resulting density of repre-
sentation in the distribution of preferred stimuli ψk is directly connected to
the strength of modulation imposed for different θ .

Such use-dependent allocation of cortical resources is a ubiquitous fea-
ture of cortical plasticity and has been shown to correlate with signifi-
cant performance improvements on corresponding tasks (Buonomano &
Merzenich, 1998). Our results indicate that the modulation of learning in
a local cortical microcircuit model through a diffuse global signal is in-
deed sufficient to reproduce relevance-dependent allocation of representa-
tional resources. This provides a simple mechanism that could underlie the
characteristic improvements in sensory abilities associated with perceptual
learning.

3 Discussion

Ensembles of pyramidal cells with lateral inhibition on layers 2/3 and layer
5/6 (Fino & Yuste, 2011) constitute a universal network motif of cortical
microcircuits in many different cortical areas and different species. We pro-
pose that these network motifs acquire through STDP a rather universal
computational function that appears to be essential for many, if not all,
cortical areas: the compression of high-dimensional noisy spike inputs into
lower-dimensional sparse representations of the most likely hidden causes
of these high-dimensional spike inputs. This yields in particular an emer-
gent optimal decoding of population codes in the sense of Jazayeri and
Movshon (2006). This emergent computational function of stochastic WTA
circuits is very stable because a rigorous learning theory shows that the the-
oretically optimal values of synaptic weights are attractors in the dynamics
of synaptic weights under the considered class of STDP rules with home-
ostatic plasticity. A remarkable feature of the underlying learning theory
is that it creates a link between local synaptic learning rules such as STDP
and the most powerful known abstract method for autonomous (i.e., un-
supervised) learning: EM. This link holds provably for the class of optimal
STDP rules and, in practice, also approximately for STDP rules that are not
directly covered by theory (see Figure 3).

Furthermore the learning theory for STDP that we have introduced pro-
vides a new benchmark for analyzing and understanding from a functional
perspective the large variety of parameters and learning curves for STDP
that have been found at different synapses (Dan & Poo, 2006). This learn-
ing theory proposes that the theoretically optimal version of STDP (from
the perspective of autonomous generation of implicit generative models
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for high-dimensional noisy spike inputs through EM) depends on both the
firing statistics of pre-synaptic neurons and the average shape of EPSPs at
the soma in a systematic and predictable manner.

In particular, the learning theory for STDP that we have presented throws
new light on the question of downstream decoding of information conveyed
by populations of noisy spiking neurons. Jazayeri and Movshon (2006) had
already shown that simple linear neurons could in principle carry out a the-
oretically optimal maximum likelihood decoding, provided that suitable
values are chosen for their synaptic weights. The learning theory that we
have presented shows that these optimal weight values are in fact attractors
with regard to the dynamics of synaptic weights under STDP in stochastic
WTA circuits. This learning theory for STDP therefore also provides a possi-
ble explanation for the problem of how downstream neurons can maintain
optimal decoding of population codes of sensory neurons in spite of ubiqui-
tous changes in the tuning functions of sensory neurons (see Figure 4) and
changes in the number of neurons involved in this decoding (see Figure 5).
Furthermore if one assumes that synaptic plasticity is gated by neuromod-
ulators or network activity so that the learning rate of STDP is increased
for behaviorally relevant stimuli, the downstream decoding network auto-
matically adapts its resolution in order to achieve a finer representation of
behaviorally relevant ranges of external stimuli (see Figure 6).

An interesting aspect, which we did not study in this article, is whether
self-organizing maps, similar to the well-documented orientation maps in
cat visual cortex (Hubel & Wiesel, 1963), could emerge in the presented
model. Indeed, one could think of clever changes in the model to induce
such effects, for example, adding lateral excitatory connections between
neighboring neurons, which would likely facilitate the emergence of lo-
cally smooth maps. But it is not clear at all whether a downstream “user”
of the network output actually requires such a smooth map representation;
indeed, many rodents, including rats, mice, and squirrels, can live without
smooth maps (Van Hooser, Heimel, Chung, Nelson, & Toth, 2005). Fur-
thermore, from a purely functional standpoint, neurons in the presented
model with similar tuning (e.g., specialized on similar motion directions)
will generally have nonnegligible signal correlation (see Figure 2D). Hence,
downstream neurons that receive connections from the WTA neurons could
quite easily detect groups of neurons that code for similar input stimuli and
establish selective synaptic connections to “functionally neighboring” neu-
rons even if their spatial arrangement is scrambled.

The WTA mechanism in this article relies on an exponential input-output
nonlinearity of the form eu to fit the requirements of Bayesian inference.
Indeed, this is precisely the input-output relation found empirically by
Jolivet et al. (2006), who fit a stochastic spike response model to predict spike
timings in pyramidal cells from L5 rat somatosensory cortex. Other authors
have suggested a power relation of the form up between membrane potential
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and output rate (Priebe, Mechler, Carandini, & Ferster, 2004). Although we
expect that power relations would suffice to induce the desired competition,
it would be interesting to study the effect of different nonlinearities in future
work.

One of the model assumptions is conditional independence of inputs,
and hence learning is guaranteed to be optimal only if there are no noise
correlations in the input (although convergence is guaranteed regardless).
Many studies have found moderate noise correlations in cortex (Smith &
Kohn, 2008; Huang & Lisberger, 2009). On the other hand, a recent study
by Ecker et al. (2010) found that in primary visual cortex, even nearby neu-
rons with similar tuning show close to zero correlation (and the authors
argue that earlier findings may need to be reevaluated under more pre-
cise experimental paradigms). Nonetheless, we tested how nonzero noise
correlations affect network performance. Figure S2 in the online supple-
ment shows that for a moderately correlated input population code, the
performance remains quite high although not optimal. This has to be ex-
pected from a learner that relies on the independence assumption, and is in
accordance with the findings of Graf, Kohn, Jazayeri, and Movshon (2011)
who showed that linear readouts can be further improved if input correla-
tions are taken into account. Whether input correlations could be efficiently
exploited in the context of this article—whether and how the correlation
structure in the inputs could be learned autonomously in an unsupervised
manner (Graf et al., 2011, used supervised learning) by a spiking network
with local plasticity rules—remains an open question for future work.

Another model assumption we made is that the stimulus distribution
is uniform. Note that this does not invalidate the presented results for
nonuniformly distributed inputs: even in a nonuniform stimulus setting,
learning is still guaranteed to converge to an optimal solution with respect to
the fixed prior distribution (since the assumption is made on the level of the
implicit generative model, not on the input distribution p∗(x)). The solution
produced by the network for a nonuniform stimulus distribution resembles
Figure 6: a greater number of neurons specialize on the more likely region
of the stimulus (see Figure S3 in the online supplement). This is precisely
what is expected from a maximum likelihood learner with a fixed prior
model distribution. Another important question is whether the network
also adapts its implicit prior distribution over the stimulus in an optimal
manner. In other words, does the WTA network automatically become
biased toward activating those neurons whose preferred directions occur
more often in the input? Indeed, this turns out to be the case. Since high-
probability stimuli will automatically attract more WTA neurons during
the specialization process, the implicit prior distribution of the network
favors high-probability stimuli after learning. Indeed this phenomenon is
also quantitatively consistent with the prediction of a Bayesian framework
(see Figure S3).
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3.1 Related Work. As a model for decoding of high-dimensional pop-
ulation codes in the brain, the key novelty of this work is plasticity.
In particular, this article demonstrates to the best of our knowledge for
the first time that population codes not only can be read out efficiently
(this had already been shown by Deneve et al., 1999; Jazayeri & Movshon,
2006; and Chaisanguanthum & Lisberger, 2011), but that this readout can
also be learned optimally by a stereotypical cortical microcircuit motif in
a process that is entirely autonomous and self-organizing. An interesting
difference from previous models for population decoding lies in the out-
put code of the readout circuit, which can represent a whole distribution
(in contrast to Deneve et al., 1999), while being sparse for typical stimuli
(as opposed to the predictions of Jazayeri & Movshon, 2006). Hence, the
information extracted about the inputs is represented and conveyed by the
whole network population rather than by the identity of a single neuron.
Strong, unambiguous stimuli will elicit sharp responses, whereas weaker,
low-contrast, or ambiguous stimuli will lead to a distributed code. Further-
more, our model predicts that neural activity represents samples from a
probability distribution, a coding scheme that has recently attracted con-
siderable attention, as it appears to be particularly suitable for probabilistic
representations subject to learning and adaptation (Fiser, Berkes, Orban, &
Lengyel, 2010). As a consequence, our model is not only consistent with
the experimentally observed trial-to-trial variability of neuronal responses,
but in fact requires that neurons respond in a stochastic manner. Hence,
one can view this article also as a contribution to the growing literature on
computational properties of networks of stochastically firing neurons.

The link to EM extends the model’s generality beyond population cod-
ing to input representations, which cannot be easily described in terms of
a fixed number of external variables. In this more general context, differ-
ent authors have proposed neural network models that are able to carry
out Bayesian inference (Doya, Ishii, Pouget, & Rao, 2007), and some also
considered the question how probabilistic representations could emerge
autonomously through learning, for example, Dayan et al. (1995), Rao and
Ballard (1999), and Keck, Savin, and Lücke (2012), who used a related ap-
proach to the one developed here but required more approximations and
did not model spiking neurons (and hence also not the relation between
EM and STDP). While these models focused on rather artificial neural net-
works based on abstract (either binary or continuous-valued rate-based)
neural units, recent studies have started to address whether more realistic
spiking neural networks are also capable of acquiring optimized proba-
bilistic representations through autonomous learning. A model by Deneve
(2008) focused on a single spiking neuron and showed that such a neuron
can in principle learn an efficient code for its inputs in a basic temporal
generative model. Whether parameter learning in the model can be scaled
up to multiple neurons, which would be required to cope with complex
but biologically realistic input distributions, remains an interesting open
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issue. Finally, the recent model by Nessler et al. (2010) showed that spiking
neurons can learn to represent a mixture of multinomial input variables,
assuming that exactly one input neuron in a group is active at a time. The
generalization and extension of this result to biologically realistic firing
statistics and EPSP shapes, required for the decoding of realistic population
codes, was described in this article.

Finally, Law and Gold (2009) showed in a related work that near-optimal
population readouts can also be learned autonomously through a simple
reinforcement learning (RL) rule. More precisely, they demonstrate that for
a given decision problem, for example, whether the motion direction en-
coded by the input is less than or more than 180 degrees, near-optimal
linear readouts from an input population can be found through RL. The
learning scheme relies on a feedback signal that conveys the correctness of
the decisions computed from the readout. In principle, for any particular
decision problem, a different set of readout weights is required. Our work
complements these findings insofar as we show that an (external) feedback
signal is not needed for the emergence of optimal readouts. Instead, opti-
mal readout weights in a downstream population of neurons can emerge
through a purely self-supervising process. Furthermore, in principle, any
decision problem can then be reduced to simply counting spikes emitted by
the network population, for example, checking whether those output neu-
rons with preferred directions below 180 degrees produced more spikes
than those with preferred directions of above 180 degrees. Given the attrac-
tive properties of both approaches and the prevalence of both STDP and
reward-modulated learning in the brain, it is not unreasonable to assume
that the cortex employs a combination of these learning mechanisms.

3.2 Experimentally Testable Predictions. Our results predict that abol-
ishment of STDP during a critical period prevents the emergence of sparse
codes for frequently occurring sensory stimuli. They also predict that with
intact STDP, the coding properties of pyramidal cells will change in a pre-
dictable manner in response to changes in the distribution of external stim-
uli or their behavioral relevance (see Figure 6), since this change will be
tracked by the implicit generative model of ensembles of pyramidal cells
(probably on layers 2/3 and layers 5/6). In addition, a lesion of some neu-
rons within this ensemble will cause a redistribution of neural codes among
the remaining neurons (see Figure 5). Our theoretical analysis of optimal
versions of STDP predicts a specific dependence of features of STDP on
the firing statistics of presynaptic neurons that can in principle be tested
experimentally.

Furthermore, our model predicts that in WTA neurons, that is, pyramidal
cells in layers 2/3 and layers 5/6, the tuning of firing rates should be sharper
than the tuning of membrane potentials. In fact, this is the well-known ex-
perimentally observed iceberg effect (Carandini & Ferster, 2000). But in our
model, the iceberg effect also has a novel functional interpretation from
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the perspective of Bayesian inference: the instantaneous firing rate must
depend on the current membrane potential via a sharpening exponential
activation function in order to ensure that neurons encode probabilities.
Hence, the iceberg effect is a prerequisite for correct learning of optimal de-
coding weights. Another direct prediction of our model is that the stimulus
selectivity in ensembles of pyramidal cells with lateral inhibition is sharper
when familiar stimuli are presented compared to novel stimuli. This effect
has been recently reported in monkey inferior temporal cortex (ITC) by
Freedman, Riesenhuber, Poggio, and Miller (2006).

4 Conclusion

In summary, we have shown that in conjunction with STDP, a common
network motif of cortical microcircuits acquires a generic computational
function: it creates a sparse representation of complex high-dimensional
spike inputs to a local microcircuit. Although we have discussed in this
article only the application to decoding of information from populations of
noisy sensory neurons, the generation of sparse representations for complex
high-dimensional inputs, which converge onto a microcircuit from many
different brain areas, is a candidate for a generic computational operation
that is meaningful for microcircuits in any cortical area.

Appendix: Methods

A.1 Spike-Timing-Dependent Plasticity Rules. All STDP rules used
in this article (see Figure 3 for a visual comparison) fit into the phenomeno-
logical framework of STDP rules by Gerstner and Kistler (2002) . Using their
notation, Sj(t) = ∑

f δ(t − t j( f )), and Sk(t) = ∑
f δ(t − tk( f )) denoting pre-

and postsynaptic spike trains, respectively, STDP can be expressed as

d
dt

w(t)= η Sj(t)
[∫ ∞

0
apre,post

2 (s, w) Si(t − s) ds
]

(A.1)

+ η Si(t)
[

apost
1 (w) +

∫ ∞

0
apost,pre

2 (s, w) Sj(t − s) ds
]

, (A.2)

where apre,post
2 (s, w) and apost, pre

2 (s) denote the pre-before-post and post-
before-pre kernels, respectively, and apost

1 (w) the post-only contributions.
The kernels are given by (double-)exponential decays throughout this
article:

apre,post
2 (s, w) = A+(w) · [exp(s/τ+) − exp(s/τ+rise)], (A.3)

apost,pre
2 (s, w) = A−(w) · [exp(s/τ−) − exp(s/τ−rise)]. (A.4)
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Table 1: Comparison of STDP Rules Used.

Rules τ+(τ+rise) A+(w) τ−(τ−rise) apost
1 (w) Noise

A. Optimal rule, equation 2.3 20 ms (2) αe−w 0 ms −1 No
B. Optimal with synaptic scaling 20 ms (2) αwe−w 0 ms −w No
C. Longer causal window 40 ms (4) αe−w/2 0 ms −1 No
D. Common STDP curve 20 ms (0) eβ−γw 60 ms (0) 0 Yes

Notes: Labels A–D are as in Figure 3. τ− = 0 ms in A–C corresponds to the absence of
STD depression. For these rules, weight stabilization is achieved through the homeostatic
plasticity term apost

1 (w), which is triggered for every postsynaptic spike.

Post-before-pre effects were weight independent for all tested rules, that
is, A−(w) ≡ −1. The remaining parameters and functions are specified in
Table 1 for each of the four rules used in this article.

We set α = 4.3, β = 1.58, and γ = 0.59 for the simulations in the main
text. Figure S1 shows the impact on performance of varying β and γ . For the
common STDP curve (see Figure 3D), additional zero-mean gaussian noise
was superimposed for each learning update triggered by a postsynaptic
spike. The standard deviation σSTDP of this noise was dependent on the
magnitude of the deterministic update: for each deterministic update of
magnitude M, gaussian noise with standard deviation σSTDP = κ M + ζ was
added. The noise parameters were set to κ = 0.3 and ζ = 10−4. The optimal
rule, equation 2.3, was used for simulations in Figures 2 to 6. Rules B to D
were used in Figure 3.

A.2 Implicit Generative Model. Neural activity and synaptic learning
in the considered cortical microcircuit model can be understood from the
perspective of an underlying implicit generative model. This generative
model takes the form of a mixture model with k ∈ {1, . . . , N} hidden causes,
uniform priors, and conditionally independent Poisson variables xj:

p(x|W)= 1
N

N∑
k=1

p(x|k, wk), (A.5)

p(x|k, wk) =
M∏
j=1

Poisson(x j; λk j = α−1ewk j ) (A.6)

= h(x) · exp(wT
k x − A(wk)), (A.7)

where A(wk) = α−1 ∑
j ewk j , and h(x) = ∏

j
1

x j !
. We associate each hidden

cause k with one readout neuron, k, and the parameters wkj with the synaptic
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weights of the network. This allows us to relate inference and learning in
the generative model to the operation of the microcircuit.

A.3 Stochastic Winner-Take-All Circuit and Inference. Building on
Nessler et al. (2010), we show here that the WTA circuit in the cortical
microcircuit implements inference in the implicit generative model defined
by equations A.5 to A.7. According to Bayes’ rule, inferring the hidden
cause k from input data x in the generative model can be written as

p(k|x, W) = exp(wT
k x − A(wk))∑

l exp(wT
l x − A(wl ))

. (A.8)

In case of a homogeneous input representation, for example, a population
code in which the sum of sensory activations is constant

∑
j xk = A0, this

reduces to (see the online supplement),

p(k|x, W) = exp(wT
k x)∑

l exp(wT
l x)

. (A.9)

Note that the restriction
∑

j xk = A0 is necessary to make the theory
tractable. However, as demonstrated in the simulations through this article
(see Figures 2–6) in which sensory input neurons fire randomly and only the
total input population rate was kept constant as in Jazayeri and Movshon
(2006), this is not required for the functionality of the model in practice.

Now consider a population of stochastically spiking readout neurons k
that fire at an instantaneous rate ρk = euk , depending on their current mem-
brane potential uk = wT

k x − I. We make two basic assumptions about the
inhibitory contribution: that I is common to all readout neurons and that
the inhibitory circuit that provides I ensures that an approximately constant
total target firing rate ρtotal = ∑

k ρk is maintained. This form of divisive inhi-
bition introduces competition among the readout neurons, since a strongly
activated readout neuron will claim a large fraction of the total target firing
rate, thereby suppressing other readout neurons.

In an ideal stochastic WTA circuit, the inhibitory circuit keeps ρtotal con-
stant. The ideal inhibitory contribution is given by

I = log
∑

j

exp(wT
j x) − log ρtotal . (A.10)

Then the readout neuron k will respond to an input x with an instanta-
neous rate,

ρk = ρtotal · exp(wT
k x)∑

l exp(wT
l x)

. (A.11)
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By comparison with equation A.9, one can verify that this is proportional to
the posterior probability of the hidden cause k in the generative model. Note
that since the relative spiking probabilities match the posterior probabilities,
each spike produced by the readout circuit can be interpreted as a sample
from the posterior distribution, independent of the total firing rate ρtotal of
the circuit.

A.4 Equilibria of Theoretically Optimal STDP Rules and Maximum
Likelihood. Here we discuss two important results. First, we derive con-
ditions for the equilibrium points of STDP: stable weight settings for which
the expected STDP update is zero. The significance of these points derives
from the fact that they are attractors in the weight dynamics. Hence, STDP
will always drive the weights into the neighborhood of such an equilibrium
point. Second, we show that these equilibria also have a special interpre-
tation from the generative model perspective: they correspond to locally
optimal parameter settings for the generative model in the maximum like-
lihood sense.

An equilibrium point of STDP is, by definition, invariant to the average
STDP update. Our first goal here is to derive from this global definition
more concrete statements for single synapses. To this end, we first define
the empirical joint distribution over x and the activation of a readout neuron,
zk ∈ {0, 1}:

p̃(x, zk|W) = p∗(x) · p(zk|x, W), (A.12)

where p∗(x) is the input distribution and p(zk = 1|x, W) = p(k|x, W), us-
ing the fact that the WTA circuit implements inference according to the
generative model.

Then, at equilibrium, the following must hold for all k and j,

〈�wk j〉p̃(x,zk|W) = 0, (A.13)

where 〈·〉q(·) denotes the average (or expectation) taken over the distribution
q(·).

After substituting the STDP learning rule specified in equation 2.3 and
rearranging terms, one obtains

wk j = log α + log〈x j〉p̃(x|zk=1,W). (A.14)

Indeed, this result is obtained for any learning rule from the optimal family,
equation 2.9. Hence, at equilibrium, each synaptic weight wk j is set to the
logarithm of the average presynaptic activity xj, the average taken over
those input patterns that make the postsynaptic neuron k fire (plus some
constant).
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The relation of this result to the generative model becomes ap-
parent when considering the maximization of the marginal likelihood
〈log p(x|W)〉p∗(x), which is equivalent to the minimization of the KL-
divergence KL(p∗(x)||p(x|W)). For local maxima of the log-likelihood
〈log p(x|W)〉p∗(x) one has for all k and j,

∂wk j
〈log p(x|W)〉p∗(x) = (A.15)

〈
1

p(x|W)
∂wk j

∑
k

p(x, k|W)

〉
p∗(x)

= (A.16)

〈
1

p(x|W)

∑
k

p(x, k|W)∂wk j
log p(x, k|W)

〉
p∗(x)

= (A.17)

〈 ∑
k

p(k|x, W) ∂wk j
log p(x, k|W)

〉
p∗(x)

= (A.18)

〈∂wk j
log p(x|k, W)〉p̃(x,zk=1|W) = 0. (A.19)

By evaluating the derivative, one can verify that this is indeed equivalent to
equation A.14. Hence, all STDP equilibrium points are automatically local
optima with respect to the implicit generative model.

A.5 Link Between Optimal STDP and Expectation-Maximization. EM
is a powerful and widely used algorithm for optimizing generative mod-
els and extracting hidden causes from high-dimensional input data. In the
operating microcircuit model, an online version of this algorithm can be
identified. As we showed above, each time a readout neuron fires, a sample
from the posterior distribution is drawn. Together with the current input
pattern, this sample forms a pair (x, k). Theoretically optimal STDP, equa-
tion 2.3, or more generally any rule from the family 2.9, then increases the
log-likelihood p(x, k|W) of this pair in the model. The main difference from
standard EM is the fact that STDP can access only temporally local informa-
tion (at least the simple model considered here). Hence, just as in online EM
(Sato, 1999), STDP does not maximize the likelihood over the whole data
set in each step, but rather makes a small update in the right direction after
each postsynaptic spike. To show this, consider the expected STDP update
�wk j for a synapse if the input distribution is p∗(x):

�wk j = η f (wk j) 〈p(k|x, W)(x je
−wk j − α−1)〉p∗(x), (A.20)

where η is some small learning rate. At the same time, the log-likelihood
gradient with respect to that synaptic weight is

∂wk j
〈log p(x|W)〉p∗(x) = ewk j 〈p(k|x, W)(x je

−wk j − α−1)〉p∗(x). (A.21)
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Comparing equations A.20 and A.21, one can see that the expected up-
date of STDP drives the weights toward a skewed version of the true gra-
dient. Importantly, the dot product between update direction and gradient
is strictly nonnegative:

∑
k, j

�wk j · ∂wk j
〈log p(x|W)〉p∗(x) ≥ 0. (A.22)

This means that the average STDP update will never decrease the per-
formance of the generative model. In fact, one can easily verify that it will
always increase performance unless the weight setting already constitutes
a local optimum of the log likelihood (see also section A.4). Altogether this
implies that the average effect of STDP can be described as an attractor
dynamics in the weight space in which the attractors are the equilibrium
points of STDP and at the same time the local optima of the generative
model. Stochastic deviations from these dynamics are zero mean and can
thus be suppressed to arbitrary precision via the learning rate η (at the cost
of convergence speed).

A.6 Computer Simulations. To abbreviate explanations, computer ex-
periments will be referred to by numbers: E1 (Figure 2), E2 (Figure 2),
E3 (Figure 4), E4 (Figure 5), and E5 (Figure 6). The simulation time step
throughout the experiments was �t = 2.5 ms. The external stimulus θ (t)
was generated by a random noise process in which the value of θ changed
every 100 ms, according to

θ (t) = (θ (t − �t) + N (0, 1)) mod 2π, (A.23)

where we used the modulo operation on real numbers to enforce periodic
boundary conditions on θ .

Each sensory neuron j ∈ {1, . . . , M} was assigned a tuning function f j(θ ),
determining the firing rate of neuron j in response to stimulus θ . For exper-
iments E1, E2, E4, and E5, the tuning functions were given by

f j(θ ) = c · exp(k(cos(θ − � j) − 1)), (A.24)

where each sensory neuron was associated with a different preferred stimu-
lus � j, equally spaced over [0, 2π] across the population. The concentration
factor k regulates the sharpness of the tuning function and was chosen k = 1
for E1, E2, E4, and E5. In all experiments, the scaling constant was set to
c = 40, yielding a maximal firing rate of 40 Hertz for the preferred stimulus.

The final tuning functions for groups G1 and G2 in E3 were set up with
concentration parameters k = 0.5 and k = 3, respectively. G3 developed a
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bimodal tuning function,

f j(θ ) = c · exp(k(cos(θ − � j) − 1)) + c · exp(k(cos(θ − � j − 2) − 1)),

(A.25)

with k = 6. The transition between initial and final tuning functions in E3
was done by linear interpolation of the tuning functions.

Input spike trains were generated as inhomogeneous Poisson processes
with instantaneous rates f j(θ (t)). The resulting spike trains were then fil-
tered by the shape of a double-exponential EPSP,

ε(t) = D · (exp(−t/τ1) − exp(−t/τ2)), (A.26)

to yield the filtered unweighted spike trains x j(t). The constant D was
chosen such that x j(t) has equal mean and variance for a fixed firing rate of
the sensory neuron. The EPSP time constants were τ1 = 20 ms and τ2 = 2 ms.

Synaptic weights wkj were initialized by drawing independently from a
normal distribution with mean μw and standard deviation σw = 0.1, where
we used μw = 2 for E1, E2, E4, and E5, and μw = 1.81 for E3. The filtered
spike trains x j(t) were then used as inputs to the readout neurons. The
WTA circuit was implemented according to a discrete time approximation
of equation A.11; at each discrete time step, the firing probability for each
neuron k is given by �t · ρk(t). A spike occurs for neuron k if a draw from
a Bernoulli distribution with this probability is successful. In all simula-
tions, the total firing rate ρtotal of the WTA circuit was chosen beforehand to
achieve an average firing rate of 3 Hertz per readout neuron (in E4, ρtotal was
computed for N = 15 and kept constant throughout the simulation). When-
ever a readout neuron spiked, STDP was applied according to equation 2.3.
The learning rate was set to η = 0.001 in E1, E3, and E4, and to η = 0.0005 for
E2. For E5, the learning rate η(t) depended on θ (t), as indicated in Figure 6.

At regular intervals, the preferred stimuli ψk(t) of readout neurons were
computed. This was done in a separate offline simulation, in which we
swept over all input stimuli and selected for each readout neuron k the
stimulus θ that elicited the greatest average response from that neuron. As
a performance indicator, a reconstruction of the input signal was computed
from the output spikes (shown in Figure 2E). First, we computed a raw
reconstruction signal θ̂rec(t), which jumps to the preferred stimulus ψk of
a readout neuron k whenever zk emits a spike. From this, we obtained the
reconstruction θrec(t) as the population vector average of the raw recon-
struction values θ̂rec(t) within a [t − 20 ms, t] window. After training in E1,
E2, E3, and E5, readout neurons were sorted for visualization according
to their preferred stimuli at the end of the simulation. In E4, sorting was
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done individually for each visualization point, since different neurons were
involved at each time.
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