
Liquid Computing in a Simplified Model

of Cortical Layer IV: Learning to Balance a Ball

Dimitri Probst1,3, Wolfgang Maass2, Henry Markram1,
and Marc-Oliver Gewaltig1

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland
marc-oliver.gewaltig@epfl.ch

2 Institute for Theoretical Computer Science, Technische Universität Graz,
A-8010 Graz, Austria

3 Ruprecht-Karls Universität Heidelberg, D-69117 Heidelberg, Germany

Abstract. We present a biologically inspired recurrent network of spik-
ing neurons and a learning rule that enables the network to balance a
ball on a flat circular arena and to steer it towards a target field, by
controlling the inclination angles of the arena. The neural controller is
a recurrent network of adaptive exponential integrate and fire neurons
configured and connected to match properties of cortical layer IV. The
network is used as a liquid state machine with four action cells as readout
neurons. The solution of the task requires the controller to take its own
reaction time into account by anticipating the future state of the con-
trolled system. We demonstrate that the cortical network can robustly
learn this task using a supervised learning rule that penalizes the error
on the force applied to the arena.

Keywords: Spiking neural networks, NEST, dynamic control task, neu-
robotics, brain-inspired computing, AdEx, supervised learning, closed-
loop motor control.

1 Introduction

Controlling a physical dynamical system with a realistic spiking neuronal circuit
in a closed loop is difficult for several reasons. First, the intrinsic time constants
of the physical system and those of the neurons may differ greatly. Second, the
neural controller must implicitly learn the kinematics of the dynamical system.
And third, in closed perception-action loops, small errors of the controller may
amplify to the point where the system can no longer be controlled. Joshi and
Maass [1] used a liquid-state machine [4] based on a general microcircuit model
and linear readout units to control the movements of a robot arm. In an alterna-
tive approach, Bouganis and Shanahan [3] used spike-timing dependent plasticity
(STDP) to teach a spiking network how to control a robot arm with four degrees
of freedom. In this work, we trained a cortex-like network to solve a dynamic
control task.

A.E.P. Villa et al. (Eds.): ICANN 2012, Part I, LNCS 7552, pp. 209–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

210 D. Probst et al.

Dynamic control tasks, like pole-balancing or balancing a ball on a moving
surface, are particularly challenging because the system continues to evolve while
the controller determines its next action and by the time the controller applies
its force, it may no longer be appropriate. Thus, such tasks can only be solved if
the controller takes its own reaction time into account by anticipating the state
of the system when the control force is actually applied.

In this paper, we investigate if a recurrent network of spiking neurons, mim-
icking a piece of layer IV of a rat somatosensory cortex, can be trained to steer
a rolling ball towards a target by controlling the inclination angles of the surface
that the ball is rolling on. Following earlier work of Maass et al. [4], we use liquid
computing to solve this task. In this paradigm, the recurrent network is used
to map a spatio-temporal stimulus into a high-dimensional space. The desired
response or target function is then constructed by readout neurons or action cells
which compute a weighted sum of the high-dimensional activity in the recurrent
network. In our case, there are four action cells, controlling the forces which can
change the inclination angles of the arena.

2 Control Task and Network Architecture

The system to be controlled consists of a ball with mass mball and radius rball
that rolls on a flat circular arena with a reflecting border at radius rarena (Figure
1). The inclination of the arena is determined by two orthogonal angles α and
β. The ball can roll on the arena and is subject to two forces, gravity and
rolling resistance. If the arena is tilted against the horizontal plane, gravity will

Fig. 1. Illustration of the control task: A ball (white) of mass mball moves on a circular
arena (yellow) which can be rotated around two orthogonal axes. The goal of the
task is to bring the ball into the target field (blue) by tilting the arena. In order to
change the inclination angles, the forces Fact,0 to Fact,3 are applied which compose
Fact. Depending on the current position r and velocity v, an optimal force Fopt is
computed according to Equation 3. Here, the components Fopt,1 and Fopt,2 are zero.
The differences Δ0 to Δ3 are used for learning. Note, sizes are not to scale.

Liquid Computing in a Simplified Model of Cortical Layer IV 211

accelerate the ball, thereby increasing its kinetic energy. If the arena is aligned
with the horizontal plane, rolling resistance will be maximal and the kinetic
energy will dissipate until the ball comes to rest. The strength of this dissipative
force is determined by the coefficient of rolling friction η and the coefficient of
restitution ρ.

The controller should solve the following task. Starting from an arbitrary
initial position and velocity (within appropriate ranges) and given the current
position of the ball, the controller must apply the appropriate forces to steer the
ball into the target field at the center of the arena.

The forces are applied at four force points Fact,0, Fact,1, Fact,2, and Fact,3

(cf. Figure 1). Each angle is controlled by two opposing forces, similar to antag-
onistic muscle pairs.

Fig. 2. Illustration of the closed-loop motor control: Neurons in the liquid (grey dots)
receive position-dependent Gaussian activation currents from within their place fields
(red). The neurons are randomly distributed in a hexagon which is topologically
mapped onto the arena. The resulting spiking activity reverberates in the liquid through
recurrent connections. Four action-cells integrate a weighted sum of the activity in the
liquid. Finally, the membrane potential of the action cells is transformed to a motor
force which changes the inclination of the arena. Drawing not to scale.

As neural controller we use a recurrent network of adaptive exponential in-
tegrate and fire neurons [5] and four non-spiking action cells, each representing
a population of motor neurons. The properties of the neurons and their con-
nections are chosen to mimic the properties of layer IV of a rat somatosensory
cortex. In the circuit, neurons are randomly positioned in three dimensions with
an exponential connection probability that depends on the distance between the

212 D. Probst et al.

neurons (see Table 2). To read the position of the ball, the excitatory neurons
have place fields on the surface of the arena. The locations and distribution of
the place fields are determined by logically stretching the two horizontal dimen-
sions of the circuit to the size of the arena (see Figure 2). If the ball is near the
place field of a neuron i, the neuron receives a current of the form:

Ii (r) = Imax · exp
(
− (ri − r)

2

2σ2

)
. (1)

Here, Imax denotes the maximum current, σ the size of a place field and ri the
position of the centre of the ith place field [8]. The response of the controller
is generated by four action cells which integrate the activity of the excitatory
neurons in the circuit. From the membrane potential Vm,j of each action cell j
we compute the force Fj according to:

Fj (Vm,j) =
Fmax

1 + exp (−2 · (Vm,j + 70mV))
. (2)

The details of the model are summarized in Table 2. The dynamics of ball and
arena were simulated in Python. The neural controller was simulated with the
Neural Simulation Tool NEST [6] .

3 Learning Paradigm and Experimental Results

To train the controller, we use a supervised learning algorithm that penalizes
the difference between the optimal force Fopt and the actually applied force. To
avoid oscillations, the control must take the reaction time into account. Thus,
given the position of the ball at time t, the network has to compute the required
force at a later time t+ tf .

The force is split into the four components Fopt,0 to Fopt,3 in the following
way: Only those two force components are non-zero which are adjacent to the
quadrant in which the ball will reside at time t+ tf :{

(Fopt,1 or Fopt,3) = Fabs · cosφ
(Fopt,0 or Fopt,2) = Fabs · sinφ (3)

with the absolute value of the force

Fabs = Fmax ·
(

1

1 + exp (−16 · (|rguess| − 0.16m))
− 1

15

)
. (4)

The vector rguess and the value φ are specified as

rguess (tf) = r + v · tf + 1

2
· a · t2f , (5)

and

φ = arctan

∣∣∣∣ yguessxguess

∣∣∣∣ . (6)

Liquid Computing in a Simplified Model of Cortical Layer IV 213

Here, a is the acceleration of the ball and Fmax the force maximum. xguess and
yguess are the components of the vector rguess. The force in Equation 4 will be
larger than the weight force of the ball, if the ball is outside its target field, and
it will match the weight force, if the ball is inside the target field.

We applied the learning algorithm 1, to adjust the weights between the recur-
rent network (the liquid) and the action cells.

Algorithm 1. Learning algorithm

Require: t=1ms
while t ≤ tlearn do

if t is integral multiple of T then
for i ∈ action cells do

Compute V̄m,i ([t− T, t]), Fact,i

(
V̄m,i

)

Compute Fopt,i, Δi = Fopt,i − Fact,i

if |Δi| > Δth then
for j ∈ place cells do

if j spiked in [t− T, t] then
Δwj→i = γ ·Δi · |l (i) |

t = t+ 1ms

Here, T is the learning period and Δth is the maximum tolerable error.
V̄m,i ([t− T, t]) is the mean potential of action cell i over the latest period
T . wj→i denotes the conductance of the connection from neuron j to action cell i.
The coefficient γ is the learning rate, which we kept constant. The
factor l(i) corresponds to the y-coordinate of the position of the ball if i is
even, else to the x-coordinate. Near the target field, l(i) provides a small weight
adjustment. Otherwise, it reduces the time when the ball stays near the border
of the arena. Table 1 summarizes the values of the task variables and the learning
parameters.

Table 1. Task and learning parameters

Name Value Name Value Name Value Name Value

Fmax [N] 7.2 αmax/βmax [
◦] 5.0 tf [ms] 200.0 Imax [pA] 500.0

mball [g] 264.0 rarena [cm] 50.0 T [ms] 20.0 σ [cm] 2.5

rforce [cm] 25.0 η 0.08 γ [nS
Nm

] 1.0 tlearn [s] 10.0

rball [cm] 2.0 ρ 0.6 Δth [N] 0.1 ttest [s] 20.0

Each experiment is divided into training runs of duration tlearn and test runs
of duration ttest. At the beginning of a run (training and testing), the ball is
placed at a random position r0 with a random velocity v0 lower than v=0.3 m

s .
After that, the trajectory of the ball is determined by the dynamics of the arena
and the forces Fact,0 to Fact,3 applied by the network. There are five learning
runs for each test run.

214 D. Probst et al.

Figure 3 shows the results after 2500 seconds of learning, when no further
improvement of the performance could be observed. Panel A shows the root
mean square error for each component of the applied force. Each point denotes
the result of a test run after the respective time of training. From t=350 s on,
the the error signal reaches the value Δ̄i = (0.27 ± 0.11) N, which is sufficient
to steer the ball into the target field.

High errors between t = 1000 s and t = 2000 s in Figure 3A occur if the
test run starts at a position which has not been trained before. Figure 3B
shows the final position of the ball in a test run as a function of the learn-
ing time. Except for the failed runs, the ball stays close to the target field
(r̄end=(6.7 ± 2.8) cm).

Fig. 3. Results of a learning session. Each measurement denotes the result of a test
run after the indicated learning time. (A) The root mean squared error for each force
component Δi as a function of the learning time. (B) Final position of the ball in a
test trial as a function of the learning time. The blue dashed line shows the border of
the target field.

Liquid Computing in a Simplified Model of Cortical Layer IV 215

Table 2. Model description according to [7]. Errors are given as standard deviations.

A: Model Summary

Populations 2 populations: circuit, action cells;
circuit: 1496 excitatory neurons, 501 inhibitory neurons;
action cells: 4 excitatory neurons

Topology circuit: superposed Gaussian minicolumns; mean distance between
neurons: d̄=(285.0 ± 123.6) μm

Connectivity circuit: distance-dependent connection probability following p(r) =
1

8π·(73.0 μm)3
· exp

(
− r

73.0μm

)
which results from the geometrical ar-

rangement of the neuronal morphologies, see E for connectivity ma-
trix; action cells: no interconnections;
place cells to action cells: all-to-one-connections, connection
strengths follow a Gaussian distribution N (μ=0.0 nS, σ=2.0 nS)

Neuron model circuit: adaptive exponential integrate-and-fire neurons, see B
action cells: leaky integrate-and-fire neurons, see C

Synapse model all: static conductance-based synapses, see D for synaptic statistics

Plasticity supervised learning between excitatory neurons and action cells

Input circuit: independent Poisson noise, rates: νe=12000Hz, νi=200Hz

B: Circuit Neuron Model (AdEx) according to [5]

Name Value (exc.) Value (inh.) Description

a [nS] -5.17 -0.99 subthreshold adaptation

b [pA] 111.77 8.86 spike-triggered adaptation

VT [mV] -52.00 -57.00 spike threshold

ΔT [mV] 2.00 2.00 slope factor

Ie [pA] 0.00 0.00 synaptic current

C [pF] 73.05 73.05 membrane capacitance

gL [nS] 8.59 7.35 leak conductance

Vr [mV] -74.35 -70.92 reset voltage

τw [ms] 55.27 1000.00 adaptation time constant

tref [ms] 5.00 5.00 absolute refractory time

Vpeak [mV] -30.00 -30.00 peak voltage

EL [mV] -74.35 -70.92 leak reversal potential

Ee [mV] 0.00 0.00 excitatory reversal potential

Ei [mV] -70.00 -70.00 inhibitory reversal potential

C: Action Cell Model (LIF)

Name Value Description

VT [mV] ∞ spike threshold

Ie [pA] 0.0 synaptic current

C [pF] 250.0 membrane capacitance

Vr [mV] -70.0 reset voltage

EL [mV] -70.0 leak reversal potential

τm [ms] 20.0 membrane time constant

D: Synaptic Statistics (circuit)

Name Value Description

we ± δwe (0.60 ± 0.22) nS excitatory synaptic strength

wi ± δwi (1.92 ± 0.90) nS inhibitory synaptic strength

de ± δde (1.09 ± 0.66) ms excitatory synaptic transmission delays

di ± δdi (1.08 ± 0.45) ms inhibitory synaptic transmission delays

E: Connection Probabilities (circuit)

to
Excitatory Inhibitory

from
Excitatory 0.195 0.129
Inhibitory 0.272 0.071

216 D. Probst et al.

4 Discussion

In this paper, we presented a neural controller based on spiking neurons and
liquid computing that solves a dynamic control task. Using a supervised learning
rule that penalizes the error between the applied force and the required force,
we adapt the weights to the four action cells. The input to the controller encodes
the position of the ball at time t. The output is the force vector that controls
the table. After learning, the system manages to keep the ball within or very
close to the target field. Since the force output is produced with some delay tf ,
the performance is limited by the ability of the network to predict the position
and velocity of the ball at the time when the force is applied.

Another important aspect of the system is that the time scale of the control
task and the time scales of the controller must be compatible. The time scale of
the controller is determined by the time constants of neurons and the connection
delays, which are determined by biological processes and are beyond our control.
The time scale of the control task mainly depends on the maximal inclination
angle of the arena and the friction between the arena and the ball.

Acknowledgements. Partial funding was provided from the European Union
project FP7-269921 (BrainScaleS).

References

1. Joshi, P., Maass, W.: Movement Generation with Circuits of Spiking Neurons. Neu-
ral Computation 17, 1715–1738 (2005)

2. Burgsteiner, H.: Training Networks of Biological Realistic Spiking Neurons for Real-
Time Robot Control (2005)

3. Bouganis, A., Shanahan, M.: Training a Spiking Neural Network to Control a 4-
DoF Robotic Arm based on Spike Timing-Dependent Plasticity. In: IEEE World
Congress on Computational Intelligence, Barcelona, pp. 4104–4111 (2010)

4. Maass, W., Natschlaeger, T., Markram, H.: Real-Time Computing Without Stable
States: A New Framework for Neural Computation Based on Perturbations. Neural
Computation 14(11), 2531–2560 (2002)

5. Brette, R., Gerstner, W.: Adaptive Exponential Integrate-and-Fire Model as an
Effective Description of Neuronal Activity. J. Neurophysiol. 94, 3637–3642 (2005)

6. Gewaltig, M.-O., Diesmann, M.: NEST (Neural Simulation Tool). Scholarpedia 2(4),
1430 (2007)

7. Nordlie, E., Gewaltig, M.-O., Plesser, H.E.: Towards Reproducible Descriptions of
Neuronal Network Models. PLoS Comput. Biol. 5(8), e1000456 (2009)

8. Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W., Gerstner, W.: Spike-Based Re-
inforcement Learning in Continuous State and Action Space: When Policy Gradient
Methods Fail. PLoS Compuatational Biology 5(12), e1000586 (2009)

	Liquid Computing in a Simplified Model
of Cortical Layer IV: Learning to Balance a Ball
	Introduction
	Control Task and Network Architecture
	Learning Paradigm and Experimental Results
	Discussion
	References

