
Biol Cybern
DOI 10.1007/s00422-012-0516-4

ORIGINAL PAPER

The role of feedback in morphological computation
with compliant bodies

Helmut Hauser · Auke J. Ijspeert ·
Rudolf M. Füchslin · Rolf Pfeifer · Wolfgang Maass

Received: 6 February 2012 / Accepted: 10 August 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The generation of robust periodic movements of
complex nonlinear robotic systems is inherently difficult,
especially, if parts of the robots are compliant. It has pre-
viously been proposed that complex nonlinear features of
a robot, similarly as in biological organisms, might possi-
bly facilitate its control. This bold hypothesis, commonly
referred to as morphological computation, has recently
received some theoretical support by Hauser et al. (Biol Cy-
bern 105:355–370, doi:10.1007/s00422-012-0471-0, 2012).
We show in this article that this theoretical support can
be extended to cover not only the case of fading memory
responses to external signals, but also the essential case
of autonomous generation of adaptive periodic patterns, as,
e.g., needed for locomotion. The theory predicts that feed-
back into the morphological computing system is necessary
and sufficient for such tasks, for which a fading memory is
insufficient. We demonstrate the viability of this theoretical
analysis through computer simulations of complex nonlin-

Electronic supplementary material The online version of this
article (doi:10.1007/s00422-012-0516-4) contains supplementary
material, which is available to authorized users.

H. Hauser (B) · R. M. Füchslin · R. Pfeifer
Artificial Intelligence Laboratory, Department of Informatics,
University of Zurich, Andreasstrasse 15, 8050 Zurich, Switzerland
e-mail: hhauser@ifi.uzh.ch

R. M. Füchslin
ZHAW Zurich University of Applied Sciences, Center for Applied
Mathematics and Physics ZAMP, 8401 Winterthur, Switzerland

A. J. Ijspeert
École Polytechnique Fédérale de Lausanne, Biorobotics
Laboratory BIOROB, 1015 Lausanne, Switzerland

W. Maass
Graz University of Technology, Institute for Theoretical Computer
Science, 8010 Graz, Austria

ear mass–spring systems that are trained to generate a large
diversity of periodic movements by adapting the weights of a
simple linear feedback device. Hence, the results of this arti-
cle substantially enlarge the theoretically tractable applica-
tion domain of morphological computation in robotics, and
also provide new paradigms for understanding control prin-
ciples of biological organisms.

Keywords Morphological computation ·
Nonlinear system · Limit cycles · compliant robots

1 Introduction

In classic robot design rigid body parts and high torque ser-
vos are used in order to suppress unwanted dynamics. While
this approach provides the advantage of dealing with simpler
physical models, there are also numerous disadvantages, for
example, the high energy consumption compared to biolog-
ical systems, see Collins et al. (2005), and unnatural move-
ments. A recently emerging subfield of biologically inspired
robotics suggests a different approach. It proposes to employ
compliant, rather than rigid, body parts, and to include the
properties of these compliant bodies, i.e., complexity and
nonlinear dynamics, into the design process. As a conse-
quence, a compliant body is not seen as an imperfect reali-
zation of a rigid body anymore, but, as demonstrated, e.g., in
Hauser et al. (2012) and in this paper, as a potential compu-
tational resource.

For a number of successful implementations of this idea
in robots as well in biological systems we refer to Pfeifer and
Bongard (2007). These cases demonstrate that the dynamics
of the morphology of a robot (or biological organism) can
contribute, e.g., to the control of balance, to reduce energy
consumption, to offer safer interaction with the environment,

123

http://dx.doi.org/10.1007/s00422-012-0471-0
http://dx.doi.org/10.1007/s00422-012-0516-4

Biol Cybern

to increase robustness, and even to facilitate the adaptation to
new environmental conditions. Based on that and the obser-
vation that all these tasks include some form of computation,
the term morphological computation was coined to describe
this phenomenon. Note that morphological computation is
also closely related to the concept of embodiment, which is
the dynamic and reciprocal coupling among brain (control),
body and environment as defined in Pfeifer et al. (2007). Mor-
phological computation includes a broad range of different
levels of complexity regarding the type of computation (i.e.,
linear, nonlinear, including memory, dynamic, etc.), but also
embraces a huge variety of different morphologies (from the
molecular level to the large-scale properties of biological
organisms).

For example, the term morphological computation is used
in the context of self-assembly (see, e.g., Whitesides and
Grzybowski (2002) and the “Tribolons” by Miyashita et al.
(2011), and membrane computing in order to sort particles
(Shaw et al. 2007). Other examples for morphological com-
putation, which can be observed in nature, are the spatial
arrangement of receptor cells in the retina, which provides
information about the location of the sensory stimulation,
or the non-homogeneous arrangement of the ommatidia in
insect eyes (more dense towards the front than on the side) in
order to compensates for motion parallax, see Franceschini
et al. (1992).

While this concept is very broad and covers a wide variety
of different possibilities to employ morphology for compu-
tation, in this paper we consider only morphologies in the
form of generic models of muscle–skeleton systems (based
on mass–spring systems) of biological systems and the cor-
responding compliant structures in robots.

In this context, an example of a rigorous implementation of
the concept of morphological computation are passive walk-
ers. The first of a series was developed by McGeer (1990).
The passive physical structure maintains the balance of the
robot in a robust fashion and, therefore, one could argue that
the computation, which is needed in order to balance the
robot robustly, is “computed” by the physical body itself.
Collins et al. (2005), Wisse and Van Frankenhuyzen (2003),
and Wisse and Linde (2007) have shown that through proper
exploitation of passive dynamics, actuated stable walking can
be also achieved (even on level ground) in remarkably simple
ways, because the “computation” is largely performed by the
body, so to speak. A clever design does not only simplify the
control task, but also the task to learn to control. For example,
Tedrake et al. (2005) showed that the complexity of the task
to learn to walk was drastically reduced by building on top
of a functioning passive dynamic walker.

Next to bipedal robots, there exist also a number of bio-
logically inspired robots, which mimic a range of species
by simultaneously implementing the concept of morpholog-
ical computation. For example, the simple quadruped robot

Puppy by Iida and Pfeifer (2006) with a mixture of active and
passive joints, the artificial fish “Wanda” by Ziegler et al.
(2006), or, in the context of the physically more complex
field of flying, winged robots by Wood (2007) and Shim and
Husbands (2007).

Another more abstract implementation of this concept are
tensegrity robots, see Paul et al. (2006) and Rieffel et al.
(2008). They are built of a special combination of rigid struts
and compliant strings. Already simple controllers (found by
genetic algorithms) were able to induce locomotion by indi-
rectly exploiting the dynamics of the physical body.

As these examples suggest, locomotion seems to be an
especially fruitful field of application for morphological
computation. This is not utterly surprising, since compliant
parts tend to oscillate and locomotion is typically based on
some sort of repetitive patterns.

Despite these success stories of implementations, so far
there exists very little research on underlying theoretical prin-
ciples. As far as the authors know one of the first attempts
to formulate a theoretical foundation was made by Paul
(2006). Her line of argumentation, based on experimental and
thought experiments, resulted in the heuristic that a physical
body with a greater amount of “dynamic coupling” (complex-
ity) has a higher possibility of a reduced control requirement.
While her statement is correct, as we see later, it is rather
general. In Hauser et al. (2012) we introduced a new theoret-
ical model for morphological computation We showed how
generic models of compliant bodies (i.e., random networks
of nonlinear springs and masses) can be employed for com-
putational tasks. More specifically, we demonstrated that in
principle any nonlinear, time-invariant operator with fading
memory could be emulated by such models of compliant
bodies by simply adding a linear, static readout. While this
class of computation is very rich and includes a lot of relevant
computations, it still has its limitations, namely, the property
of fading memory. In particular, for repetitive patterns (as
needed for locomotion) a persistent memory is needed. The
same is true for computations that involve switching between
different persistent internal states, e.g., depending on some
sensory input (often referred to as “working memory” in neu-
roscience).

Therefore, we extend the previous approach by employ-
ing a new mathematical framework, which includes feed-
back loops. This allows us to employ a compliant physical
body, which naturally has the property of a fading memory,
to emulate computations, which can even include persistent
memories, like limit cycles or analog state switching.

A successful implementation to produce such patterns
for locomotion with echo state networks was presented
by Wyffels and Schrauwen (2009). However, the standard
approach is to use networks of coupled oscillators. Due to
their rather abstract implementation they can be employed
for all kinds of locomotion. For example, Righetti and

123

Biol Cybern

Ijspeert (2008) applied them to various quadrupeds, Ijspeert
et al. (2007) implemented such a network in order to pro-
duce different movements—swimming and walking—for a
salamander robot, and Taga (1998) applied the approach
to a humanoid robot with a musculo–skeletal system.
In general, these implementations have the advantages that
they exhibit robustness and that they are generic and can thus
be tailored for a specific task. However, a disadvantage is that
the parameters involved are either hand-tuned or found by
time intensive nonlinear optimization schemes, e.g., genetic
algorithms.

By contrast, in this paper, we will propose a setup where
the adaptable parameters are linear and static and can be
found with simple linear regression. Naturally, this is much
faster than any nonlinear optimization scheme and is guar-
anteed not to get stuck in a local minimum. In addition, we
demonstrate that our setup also exhibits the desired robust-
ness and generic applicability.

While locomotion is a particularly interesting application
for morphological computation, our proposed setup is more
general. The underlying theoretical model is based on rig-
orous mathematics and gives a clear insight on how physi-
cal bodies can be employed for computational tasks. More
specifically, we will demonstrate that nonlinear mass–spring
systems, which are typically used to describe the dynamics of
compliant biological and robotic body parts, can be enhanced
by a nonlinear, static feedback and a nonlinear, static read-
out to emulate in principle any conceivable computation on
some analogue input stream. Moreover, we will show, that
if the dynamics of the compliant body is sufficiently com-
plex, already a linear feedback and a linear readout is suffi-
cient, since the needed nonlinearities can be “outsourced” to
the physical body.1 A remarkable conclusion of our theory
is that high dimensionality and nonlinearity, both proper-
ties usually undesired due to the difficulties to control them,
are desired attributes for computationally powerful physical
bodies. We support our theoretical results by various simula-
tions of random, recurrent networks of nonlinear springs and
masses as generic physical bodies.

In the next section, we provide the theoretical framework
for morphological computation with feedback, and demon-
strate how a physical body can be employed to carry out com-
plex, analog computations. In Sect. 3 we analyze practical
implications, and show in Sect. 4 how this theoretical model
can be implemented with a real physical body by applying
it to generic models of muscle–skeleton systems (based on
mass–spring systems) of biological systems and the corre-
sponding compliant structures in robots. In Sect. 5 we pro-

1 Note that our approach is closely related to the concept of reservoir
computing, see Maass et al. (2002), Lukoševičius and Jaeger (2009),
and Schrauwen et al. (2007). In our approach the compliant, physical
body is employed as a natural reservoir.

vide details on the physical simulations of these models. In
order to support our theory we present results of a number
of simulations in Sect. 6. In Sect. 7, we conclude with a dis-
cussion and a future outlook. In the appendix we provide the
mathematical proofs for our theory.

2 Theoretical foundations

We present a theoretical framework for morphological com-
putation, which is based on a result by Maass et al. (2007).
They proved that a certain class of nonlinear dynamical sys-
tems (which can have the property of fading memory) gain
computational power to emulate arbitrary nonlinear systems
(which can have persistent memory), by adding simply a
suitable static (memoryless) feedback and a suitable static
(memoryless) readout function. Maass et al. (2007) applied
their theoretical framework to recurrent networks of different
models of neurons and demonstrated that such generic net-
works gained computational power by adding appropriate
feedbacks and readouts. Remarkably, the original dynamic
system, i.e., the network of neurons, remained unchanged.
Only the static feedback drove the system in order to emu-
late, in conjunction with a static readout, a given nonlinear
target system.

Another remarkable fact, which will provide the basis for
our theory, is that the fixed dynamical system is not required
to have a particular form. The only requirement is that it
belongs to the class Sn of feedback linearizable systems. A
prerequisite for a feedback linearizable system is that it can
be described in the very general form

x′(t) = f (x(t)) + g(x(t)) · v(t), (1)

where x = [x1, . . . , xn]T is the state vector, (.)′ is the deriva-
tive in time, v(t) the input, and f : R

n → R
n and g : R

n →
R

n some sufficiently smooth, but otherwise arbitrary nonlin-
ear vector functions. Given a system in the standard form of
Eq. 1 one can analyze, with well established tools of non-
linear control theory, if the system is feedback linearizable
or not and, therefore, can be employed for computation. For
a basic description of this process we refer to Appendix B,
for a detailed discussion we refer to Isidori (2001). We will
reserve the letter C to denote feedback linearizable systems
of the form of Eq. 1, i.e., C ∈ Sn .

A useful property of such systems is, as the name already
suggests, that they can be transformed by a suitable feedback
into a linear system. Actually, this is a standard tool in non-
linear control in order to obtain a linear dynamic system from
a nonlinear system, which is then naturally much easier to
control. The resulting linear system L corresponding to the
feedback linearizable system C can be written as

L : x′ = Anx(t) + bnv(t), (2)

123

Biol Cybern

(a)

(b)

(c)

Fig. 1 Computational architectures considered. a Fixed dynamical
system C ∈ Sn, which is of the form of Eq. 8. b A given arbitrary
nth order dynamical system G (target system) with external input u(t),
which should be emulated by system (a) using an appropriate static feed-

back K (x(t), u(t)) and a static readout function h(x(t)). This results
in structure (c), which emulates the system G, i.e., it delivers the same
output as system G, i.e., h(x(t)) = z(t) for any input u(t)

with

An =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

bn =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎠

.

More generally, one can say that the nonlinear feedback
linearizable system C is feedback equivalent to the linear sys-
tem L. The notion of feedback equivalence is an equivalence
relation expressing that two systems of differential equations
can be transformed into each other through application of a
suitable feedback and a change of basis in the state space
(Maass et al. 2007; Sontag 1998). Such a change of basis can
be achieved by an appropriate readout function. The concept
of feedback equivalence will serve as a basis for our theoreti-
cal model. It will allow us to demonstrate how certain generic
physical structures (based on mass–spring systems) can be
transformed with an appropriate feedback and a readout in
order to emulate a given dynamic target system (i.e., emulate
a given computation).

Let us assume that our dynamic target system is G, has
the order n, is nonlinear, and is of the form

G : z(t)(n) = G(z(t), z(t)′, . . . , z(t)(n−1)) + u(t) , (3)

where G : R
n → R is a sufficiently smooth, but otherwise

arbitrary, nonlinear function. We can easily demonstrate that
the system G is also feedback equivalent to the linear system
L of Eq. 2. Indeed, if we chose the state space transformation
x1(t) = z(t), and xi+1(t) = z(i) for i = 1, . . . , n −1 and the
feedback v(t) = G(x(t)) + u(t) we can transform the linear
system L into the nonlinear system G, hence they are feed-
back equivalent. Since C is feedback equivalent to L, and L
is feedback equivalent to G, we can conclude that also any
system C is also feedback equivalent to any system G (for a

proof we refer to Maass et al. (2007).2) In other words, for a
given nonlinear, dynamic system G (Eq. 3, which represents
our computation, which we want to emulate) there exists a
feedback K (x(t), u(t)) and a readout h(x(t)) (both nonlin-
ear and static) to transform the nonlinear, dynamic system C
such that it emulates G. To be more specific, for any input
u(t) the transformed system (i.e., C plus feedback) provides
through its static, nonlinear readout function h(x(t)) the same
output as the original target system G, i.e., h(x(t)) = z(t)
(see Fig. 1).

This implies (see Fig. 1) that one can have a fixed system
C (red box), which operates as a universal module, and one
just has to add a suitable feedback and readout in order to
emulate any given nonlinear system G (green dashed-lined
box), as long it has the form of Eq. 3. Note that the description
of the system G in Eq. 3 is remarkable general. It includes
computations like, for example, to describe any time invari-
ant, memory fading operator (i.e., operators, which can be
described by a Volterra Series). This is exactly the class of
computation we considered in Hauser et al. (2012). However,
as already stated in the introduction, the proposed mathemat-
ical model here is more general. It also includes computa-
tions to generate nonlinear limit cycles in order to provide
trajectories for locomotion. Furthermore, it even allows to
describe input-dependent state switching. Actually, the pro-
posed setup is able to emulate any conceivable continuous
dynamic response to an input stream u(t), hence, one can
argue that a system C becomes a universal computing device
for analog computing on time-varying inputs by applying an
appropriate feedback and readout.3

2 For the sake of completeness we restate the theorem by Maass et al.
(2007) in Appendix C by using our notation.
3 Remarkably, even under noise the proposed computational setup still
has maximal possible computational power within the a priori limita-
tion, i.e., that it can emulate any given finite state machine (FSM)—for
a proof we refer to Maass et al. (2007). Note that any digital computer
is a FSM.

123

Biol Cybern

So far this theoretical result has only been applied to neu-
ral networks as concrete instantiations for such fixed dynam-
ical systems C, see Maass et al. (2007). Here we show, in the
context of morphological computation, both analytically and
through computer simulations that parts of the physical body
can also be employed as such fixed modules C. The idea is
to provide the physical body (or a part of it) with appropriate
feedback and to add a readout in order to emulate a given
dynamic target system G. The most basic dynamic systems,
which are used to describe the dynamics of the compliant
body of biological systems or robots, are nonlinear mass–
spring systems. Their general mathematical model is

x ′
1 = x2

x ′
2 = −p(x1) − q(x2) + 1

m
v , (4)

where x1 ∈ R is the displacement of the spring relative to
the resting length l0, x2 ∈ R the rate of change of x1 (i.e.,
velocity x ′

1), m ∈ R
+ the mass and v the sum of all exter-

nal forces acting on the spring. The functions p : R → R

and q : R → R are nonlinear functions, which describe the
properties of the spring.4 In order to have a physically realis-
tic and, therefore, a stable system these functions have to be
monotonically increasing and fulfill p(0) = 0 and q(0) = 0.

Now, in order to show that such a nonlinear mass–spring
system can serve as a fixed module C and, therefore, can be
used for morphological computation, we have to demonstrate
that it belongs to the class of feedback linearizable systems
Sn . This can be done by the applying the theorem described
in Appendix B. The actual proof can be found in Appendix D.

This implies that, assuming that a part of the compliant
body can be described by the general form of Eq. 4, this body
part can be used for a powerful morphological computation
device, without altering its physical structure. More specif-
ically, for a given target computation (encoded as nonlinear
dynamic system G in the form of Eq. 3), one simply has
to add the corresponding static feedback K (x(t), u(t)) and
the corresponding static readout h(x(t)), in order to emulate
G. This physical body part is not changed at all. It simply
reacts, obeying the laws of physics, on the given feedback
K (x(t), u(t)). In order to complete the morphological com-
putation device the static nonlinear readout h(x(t)) is applied.
Since, the feedback as well the readouts are static one could
argue that the “dynamic” part of the computation has been
“outsourced” to the physical body.

Note that in the case of a nonlinear mass–spring system
we a have dynamic system C of order n = 2. Consequently, a
morphological computation setup using one of such a system
can only emulate nonlinear systems G of order n = 2. How-
ever, this is not a real limitation, since, as Maass et al. (2007)

4 The scaling factor 1
m is already included in the functions p(x1) and

q(x2).

demonstrated, by combining a number of such basic systems
one can still emulate differential equations like G with an
order higher than the one of the spring-mass systems, i.e.,
n > 2. In the case of a real physical body this would be like
employing different parts of the compliant morphology for
the same computation.

Another example of a valid system C in the context of
morphological computation is a set of linear mass–spring
systems in parallel. They are all independent subsystems,
but they all receive the same input v(t). A corresponding
proof5 can be found in Appendix E. An interesting result of
this is that such a combined system has to have diversity in its
structure (i.e., the spring properties of the subsystems have to
be diverse) in order to be useful at all for the proposed mor-
phological computation devices. This suggests that diversity
in the physical properties of a compliant body is in fact ben-
eficiary, and it is interesting to note that a similar kind of
diversity is exhibited by biological systems as well.

In the following sections, we will discuss the practical
implications of the theoretical results presented here. We will
demonstrate how the idea of outsourcing parts of the com-
putation to the body can be taken even further and how we
practically implement the proposed morphological compu-
tation setup. In addition, we will present results of computer
simulation to support or view.

3 Practical implications

So far, we have presented the theoretical basis for morpho-
logical computation. Now we are ready to take a look at the
practical implications. Assuming that we have a given target
system G (which presents some kind of computation that we
want to emulate), naturally, the question arises: What is the
corresponding nonlinear feedback K (x, u) and what is the
corresponding nonlinear readout h(x) for a nonlinear mass–
spring system to emulate G? We answer this question by
showing a specific example. We choose the nonlinear Van der
Pol equation as a dynamical target system G, i.e., the system
which should be emulated by the morphological computation
device. The Van der Pol equations describe a stable, nonlin-
ear limit cycle. Hence, they present an interesting example
of a dynamic system, which produces nonlinear, repetitive
pattern, which could be, for example, used for locomotion.
The differential equations considered are

x ′
1 = x2

x ′
2 = −x1 + (1 − x2

1)x2. (5)

The corresponding function G is found by rewriting the set
of two differential equations of order one into one differ-

5 This proof is analogous to the proof for a set of parallel neurons as
presented in Maass et al. (2007)

123

Biol Cybern

ential equation of order two. This results in x ′′
1 = −x1 +

(1 − x2
1)x ′

1. By transforming the variables by z = x1 we get
z′′ = −z + (1 − z2)z′, hence, the corresponding function is
G(z, z′) = −z+(1−z2)z′. By using the feedback K (x, u) =
p(x1)+ q(x2)− x1 + (1 − x2

1)x2 and, for example, the read-
outs h1(x) = x1 and h2(x) = x2 we can use the nonlinear
mass–spring system to emulate the van der Pol equations.
Note that if only the feedback K #(x, u) = p(x1) + q(x2)

were applied, the system would be linearized and the result-
ing linear system would be of the form of Eq. 2 with n = 2.

As mentioned earlier, an interesting fact is that the feed-
back K as well as the readout h are static. Hence, they provide
suitable targets for supervised learning techniques. These sta-
tic functions could be implemented, for example, by two feed
forward neural networks with one hidden layer, since such
networks can approximate any continuous function with arbi-
trary precision, see Hornik et al. (1989). However, this is
only possible if the desired feedback and readout functions
are known, and this is only the case if the exact properties
of mass–spring system used, i.e., the functions p(x1) and
q(x2), and the mathematical model of the target system, i.e.,
G, are known. In general this is not the case and, therefore,
no clear target functions are available.

Nevertheless, a different point of view can provide us with
a solution. Instead of having nonlinear feedbacks and read-
outs, one could consider to “outsource” the task to provide
nonlinearities to the physical body. This is possible, as we
are going to show, if the compliant body is sufficiently com-
plex, nonlinear and diverse. As a consequence only linear (but
still static) feedbacks and readouts will be sufficient to emu-
late complex, nonlinear dynamic systems. Moreover, we will
demonstrate, that it is even possible to randomly choose and
fix the linear feedback, which then results in a morphological
computation setup, in which only some linear output weights
have to be adapted. This points to a particularly interesting
feature of morphological computation, namely, it facilitates
the learning of emulating complex computations by reducing
the task of learning to emulate complex, nonlinear compu-
tations (encoded in nonlinear differential equations) to the
much simpler task of finding some static weights. As a con-
sequence learning is much faster and can not get stuck in local
minima of the mean-squared error function. In addition, the
setup with linear weights has arguably optimal generalization
capabilities, see Bartlett and Maass (2003).

In the next section, we explain in more detail why this
outsourcing to the body is possible at all.

4 Application of the theory to generic models
of complex, compliant physical bodies

A typical morphological structure of a biological organ-
ism, or a compliant robot, is complex, nonlinear and highly

dynamic. In the context of robot design these properties are
typically undesired, since tend to be hard to control. However,
it is exactly these properties that will allow us to “outsource”
the load of providing nonlinearity directly to the morpholog-
ical structure and, therefore, employ the physical body for
morphological computation.

The underlying idea is to view the morphological structure
as some fixed nonlinear kernel, which provides us with high-
dimensional projections and nonlinear combinations of our
input. Hence, the required nonlinearity (next to the dynamics)
is provided by the morphological structure itself and, there-
fore, linear feedbacks and readouts are sufficient in order to
emulate nonlinear differential equations.

The notion of a kernel that we use here is closely related
to the notion of a kernel for Support Vector Machines in
machine learning. For more details please see Appendix A
and Vapnik (1998). Whereas a kernel for a Support Vec-
tor Machine is just a virtual mathematical concept, we
are considering here concrete physical implementations of
a kernel. Ideally a kernel should map any set of differ-
ent input vectors x1, . . . , xm ∈ R

k onto m linearly inde-
pendent output vectors z1, . . . , zm ∈ R

l (because a lin-
ear function can assign any given values to linearly inde-
pendent vectors z1, . . . , zm). Whereas a radial basis func-
tion (RBF) kernel for a Support Vector Machine satisfies
this property for any finite m (which is only possible if
l = ∞), a physical implementation of a kernel (with some
finite number l of output channels) can satisfy this prop-
erty at best for some fixed finite range of m. But if one
chooses l sufficiently larger than m, any randomly con-
nected analog circuit (or some other physical device) con-
sisting of sufficiently many and diverse nonlinear com-
ponents tends to map a large class of pairwise different
inputs x1, . . . , xm ∈ R

k onto linear-independent outputs
z1, . . . , zm ∈ R

l . This suggests that the complex morpho-
logical structure of biological systems or robots are able to
provide such a kernel. From this point of view the complex-
ity of the morphology is highly important, since it deter-
mines the complexity (and even the type) of computation
that can be carried out by the morphological computation
device.

In addition, this results in a suprising consequence. While
in most classical approaches in robot control this complex-
ity is unwanted and measures such as using rigid body parts
and high torque servos are taken to reduce it, our proposed
setup requires such high complexity and nonlinearities in the
dynamics of the morphological structure.

Note that the theory presented in Sect. 2 is not able to
quantify nor to guarantee the kernel property of a given sys-
tem C. Therefore, we tested in computer simulations to what
extent the theoretical predictions hold for physically realistic
models of complex physical bodies. More details on these
generic models are presented in the next sections.

123

Biol Cybern

5 Implementation of mass–spring networks

In order to approximate real, compliant body parts of biolog-
ical organisms and robots we considered here the implemen-
tation of random, recurrently connected networks of nonlin-
ear springs and masses, to which we simply refer as mass–
spring nets. We will demonstrate with a number of experi-
ments that such generic networks can provide the necessary
complexity (i.e., kernel property) in order to emulate inter-
esting nonlinear differential systems related to adaptive peri-
odic movement generation. All presented simulations were
implemented in Matlab and were simulated at a time step
of 1 ms. In order to keep the simulations simple we imple-
mented the mass–spring networks in a 2D plane, hence, we
did not include gravity. However, the presented theory and
the resulting approach is not restricted by these constraints.

In the next sections, we describe how we constructed such
networks, how we simulated them and how we implemented
the learning process for the linear readout.

5.1 Constructing mass–spring networks

The construction of the mass–spring networks was based on
following principles: First, the final network should be realiz-
able as a real physical system. Second, it should approximate
the dynamics of compliant parts of real robots and organisms,
and third, it should be generic, i.e., not be constructed for any
specific task.

A fixed number of N nodes (mass points) were randomly
positioned (uniformly distributed) within a defined range of
a 2D plane. Subsequently, we connected these mass points
by nonlinear springs. In order to find reasonable, non-cross-
ing spring connections we calculated a Delaunay triangula-
tion on this set of points, resulting in L non-crossing spring
connections. A schematic example of such a mass–spring
network can be seen in Fig. 2. Every single nonlinear spring
of such a network can be described by Eq. 4. Note that the
nonlinearities of the springs are desired to enhance the ker-
nel property of the network. However, also the geometric
assembly of such networks contributes nonlinearities due to
the nonlinear relationship between the spring forces and the
actual forces acting on the masses (i.e., due to the influence
of the angles).

At the beginning of the simulation we assumed the mass–
spring network to be at rest (i.e., all springs were at their
point of equilibrium x = [0, 0]T and, therefore, all masses
were at rest). In order to accomplish this we set per definition
the resting lengths l0 of all nonlinear springs to the distances
(at the start of the simulation) between the mass nodes they
connected, hence l0 := l(t = 0). The functions p and q
were nonlinear and, in order to have a stable and physically

Fig. 2 Schematic example of a generic mass–spring network. The
nodes (masses) are connected by nonlinear springs. The red nodes are
fixed in order to hold the network in place. The green nodes are randomly
chosen inputs nodes, which receive the input u(t) in form of horizontal
forces scaled by randomly initiated weights. The purple nodes are feed-
back nodes. Similarly, they receive the output y(t) in form of a scaled,
horizontal force. Compare to Fig. 3a

reasonable system,6, had to be monotonically increasing and
fulfill p(0) = 0 and q(0) = 0. Typically, they are modeled
by third-order polynomials, see, e.g., Palm (1999). We imple-
mented the nonlinear functions as p(x1) = k3x3

1 + k1x1 and
q(x2) = d3x3

2 + d1x2, where k1, d1 ∈ R>0 and k3, d3 ∈ R
+

defined the properties of the spring. In order to get a rich
kernel, as argued in Sect. 4, the springs should be diverse.
Hence, the parameters describing the spring properties (i.e.,
k1, k3, d1 and d3) were randomly drawn from a defined range,
assigned to the connections and subsequently fixed.

The left most and the right most mass nodes were fixed
in order to keep the network in place (squared, red nodes in
Fig. 2). A certain percentage of points were randomly chosen
to be input nodes (green nodes in Fig. 2). During simulation
they received a linearly scaled version of the current input in
form of a horizontal force. Note that the application of the
input in form of a horizontal force is arbitrary. We tested a
number of different input forms and they all worked. In the
biological context the input force could be coming from, e.g.,
the impact during ground contact.

Before the simulation started the input scaling factors
(weights win = [win,1, win,2, . . .]T) had been randomly
drawn from a certain range and had been fixed subsequently.
In the same way, before the simulation started, the feed-
back nodes had been randomly chosen. They received dur-
ing simulation a linearly scaled version of the current output
in form of horizontal forces. The corresponding feedback
weights were denoted by wfb = [wfb,1, wfb,2, . . .]T . Simi-
lar to the input weights they were randomly initialized and
subsequently fixed.

The linear readout of the network was defined as the
weighted sum of all actual spring lengths y(t) := ∑L

i=1
wout,i li (t). The output weights (wout = [wout,1, wout,2, . . .

6 A proof for that is based on the Lyapunov function V (x) =∫ x1
0 p(ζ)dζ + 1

2 x2
2 , its derivative V̇ (x) = −x2q(x2) and the use of

a corollary of LaSalle’s Theorem [see Theorem 4.4 and Corollary 4.2
in Khalil (2002)].

123

Biol Cybern

(a) (b) (c)

Fig. 3 Details on the implementation of the simulation of the mass–
spring networks. a The input is applied to an input (green) node as a
horizontal force Fx proportional to the input signal u (scaled by a ran-
domly initialized weight win for this input node). The feedback was
implemented similarly with a force proportional to the output y scaled
by wfb (purple). b The output of the systems is the weighted sum of
all L spring lengths y(t) = ∑L

i=1 wout,i li (t). In general the input, the
feedback as well as the output can be multi-dimensional. c All the spring
forces act along their spring axis. The resulting force Fsum is the sum
of all forces acting on the node and is found by the summation of the
force vectors

. . . , wout,L]T), in contrast the rest of the network parameters,
were adapted in the learning process.

In general the networks had multiple inputs, outputs and
feedback loops. Accordingly, the corresponding matrices
were denoted by Win, Wfb and Wout.

5.2 Simulating mass–spring networks

We simulated every single mass points (of a total number of
N) at a time step of 1 ms by following equations

mp′′
x = Fx + winu + wfb y (6)

mp′′
y = Fy , (7)

where p′′
x and p′′

y were the accelerations of the mass point
relative to a global reference frame split up into its two spa-
tial dimensions, Fx and Fy were the forces acting on the
mass in the corresponding spatial dimensions, winu was the
weighted input, and wfb y the linear feedback. Note that the
input as well the feedback were defined as horizontal forces
(see Fig. 3a) and if the mass point was no input nodewin := 0,

accordingly for the feedback wfb := 0. For the sake of sim-
plicity 7 all masses were set to m = 1. The forces Fx and Fy

resulted from the nonlinear springs, which were connected
to this mass point.

The forces they applied to the mass point depended on the
states of the nonlinear springs, i.e., x1 and x2 in Eq. 4. The
value of x1 was calculated by the actual length l(t) (Euclid-
ean distance between the two masses, which the spring con-
nected) and the resting length l0. The velocity x2 was approx-
imated by x2 = (x1(t) − x1(t − �t)) /�t with a time step
of �t = 1 ms. The resulting forces were calculated by the

7 Note that the masses are only linear scaling factors and, since the
properties of the springs were randomly drawn, could be set to 1 for
all masses without loss of generality. Nevertheless, in a real biological
body (or robot) a diversity of masses is natural and it contributes further
diversity.

nonlinear functions p(x1) and q(x2). This procedure was
repeated for all springs connected to the mass. We assumed
that these forces acted along their corresponding spring axes.
Finally, all spring forces acting on the regarding mass node
were summed up (see Fig. 3c). Subsequently, the resulting
force Fsum was split up into its two spatial dimensions and
added as forces Fx and Fy to Eqs. 6 and 7. If the mass point
was an input node the current input u(t) was added in form
of a scaled horizontal force (see Eqs. 6, 3a). Accordingly, if
the mass point received feedback the corresponding force,
i.e., wfb y(t), was added too. The new position and velocity
of the mass were found by numerically integrating Eqs. 6
and 7 (fourth-order Runge–Kutta). The same procedure was
repeated for all masses. At the end of the simulation step the
current output was calculated by a linear combination of the
actual lengths of all springs, i.e., y(t) = ∑L

i=1 wout,i li (t)
(see Fig. 3b).

5.3 Learning the linear readout of a mass–spring network

The structure of the mass–spring network, the input and
feedback weights, as well as the parameters, which defined
the physical behavior, were randomly initialized and subse-
quently fixed. Only the linear readout was adapted during the
learning process, i.e., the weights wout = [wout,1, wout,2, . . . ,

wout,L]T were adjusted. The learning process was carried out
with open loop, i.e., instead of the real output the target sig-
nal y∗ was fed back (Fig. 4a for the general case of mul-
tiple inputs and outputs). Thus, the system was forced into
the desired operative state by a “teacher” signal. Hence, this
setup is referred to as teacher forcing. After the learning pro-
cess the loops were closed and the system ran freely (Fig. 4b).
Note that in this case already small perturbations (for exam-
ple numerical imprecisions in the simulations or noise in real
systems) would lead such a closed loop system away from
its learned trajectories. Therefore, we superimposed during
the learning process the outputs with white noise ν. Thus, the
found output weights did not simply reproduce the desired
target trajectories, but rather were able to do so even under
the influence of noise. Note that alternatively one could use
methods of regularization, see Bishop (1994). As a result
of the noise, the learned trajectories were robust. Note that
this is a remarkable fact. Noise is inherent to any real-world
application and a lot of time unwanted, where in our case it
is a desired property, since it contributes to the robustness.

For learning we considered a network of N nodes con-
nected by L springs. During the teacher forcing phase we
collected the current lengths of every single spring li (t) for
i = 1, . . . , L at every time step t = 1, . . . , M in a L × M
matrix L. We dismissed data from an initial period of time
(washout time) to get rid of initial transients. The target sig-
nal was also collected over time in a matrix T. Finally, the
optimal values for the output weights were calculated by

123

Biol Cybern

(a)

(b)

Fig. 4 The learning and exploitation setups. a The learning procedure
(teacher forcing) with superimposed white noise ν. b Final setup after
learning, when the loops are closed and the system runs freely

w∗
out = L†T , with L† being the (Moore–Penrose) pseudoin-

verse, since in general L was not a square matrix. Note that the
same procedure could be applied in the case of multiple inputs
and/or multiple outputs (feedback loops), with a matrix W∗

out
of optimal output weights. Multiple inputs are interesting
for emulating computations, which, for example, incorpo-
rate various input streams from different sensors. Multiple
outputs are useful, e.g., in the context of locomotion to pro-
duce motor commands for different degrees of freedom.

6 Results of computer simulations

In this section, we provide a number of results of com-
puter simulations in order to demonstrate the applicability
of our approach. We constructed generic mass–spring nets,
as described in the previous section, and employed them for
computational tasks relevant for robots.

6.1 Generating stable, nonlinear limit cycles with
morphological computation

The general description of dynamical systems (Eq. 3), which
can be emulated by the proposed morphological computa-
tion setup, also include nonlinear limit cycles (e.g., the Van

der Pol equations as we have shown in Sect. 3). Nonlinear
limit cycles are very appealing for the control of robots, since
they represent an elegant way to describe repetitive patterns,
which are typically used for locomotion. A standard approach
to implement such limit cycles is to use a nonlinear oscillator
(i.e., central pattern generators, CPGs) or a network of such
oscillators, e.g., as in Righetti and Ijspeert (2008). As already
discussed in the introduction, such CPG networks are generic
and exhibit the property of robustness. However, the parame-
ters of such networks are typically hand-tuned or are found by
computationally intensive nonlinear search algorithms, e.g.,
genetic algorithms. Our theory suggests that nonlinear mass–
spring systems and, therefore, the body of a robot itself, can
be used to generate autonomously and robustly such limit
cycles. Furthermore, by employing the nonlinear dynamics
of the morphology, the problem of finding valid parameters
can be reduced to a simple linear regression.

In order to demonstrate that our proposed morphological
computation setup is able to generate robust limit cycles we
chose three different limit cycles as tasks. They are sum-
marized in Fig. 5. The first column: (a, e) and (i) shows the
differential equations describing the limit cycles. The second
column: (b, f) and (j) shows the corresponding trajectories
of the state variables x1 and x2 over time, and the third col-
umn: (c, g) and (k); in the state space (i.e., x1 vs. x2). These
two state variables are the outputs, which should be produced
autonomously by the morphological computation device, i.e.,
the mass–springs systems and two linear readouts.

The first limit cycle (first row) has been previously intro-
duced in Sect. 3. It is the dynamic system of the Van der
Pol equations (Fig. 5a). The second one (second row) is an
example taken from Khalil (2002). Due to its quadratic terms
(x2

1 +x2
2) we refer to it as the “quadratic” limit cycle (Fig. 5e).

The third example (Fig. 5i) is an artificial trajectory, defined
by two sinusoidal functions with a frequency ratio of f1/ f2 =
3/2. Together (x1 vs. x2) they produce a complex Lissaj-
ous figure, which is a trajectory with multiple crossings (see
Fig. 5k). Note that any dynamical system, which should emu-
late the Lissajous trajectory, must have an order higher than
two. As already argued in the theory Sect. 2, although the
basic system (the single nonlinear mass–spring system) is
only 2D, by connecting various basic systems, it is possi-
ble to emulate systems of higher order too (which we will
demonstrate by this example).

As already discussed in the theory Sect. 2 the employed
morphological structure (i.e., the body) is fixed and only the
readout and the feedback determine, which nonlinear sys-
tem is emulated. This implies that we can use one generic
mass–spring network (denoted here as the general network)
for all three limit cycle tasks. It was found by the previ-
ously described random process and it is depicted in Fig. 5m.
The number of mass points was N = 25 and the number of
connecting springs was L = 61. The squared, red nodes

123

Biol Cybern

(a)

0 5 10 15
−4

−2

0

2

4

time [s]

x
1

x
2

(b)

−2 0 2

−2

0

2

x1

x 2

target
MC output

(c)

#masses = 10 #springs = 22

(d)

(e)

0 5 10 15
−1

−0.5

0

0.5

1

time [s]

x
1

x
2

(f)

−1 0 1
−1

0

1

target
MC output

(g)

#masses = 10 #springs = 22

(h)

(i)

0 10 20
−1

−0.5

0

0.5

1

time [s]

x
1

x
2

(j)

−1 0 1

−1

0

1

target
MC output

(k)

#masses = 20 #springs = 48

(l)

(m)

x1

x1

Fig. 5 Results for three different tasks, i.e., three different limit cycles,
which were chosen to be autonomously generated through morpholog-
ical computation by a generic mass–spring network with linear feed-
backs. The first column shows the differential equations describing the
three limit cycles. The second column shows the corresponding trajec-
tories of the state variables, i.e., x1 and x2 (target signals). The third

column shows the same state variables in the phase plane (i.e., x1 vs.
x2). The red line is the target signal and the black dottend line the output
of the morphological computation devices. The fourth column shows
the specialized networks, used to produce the limit cycles. They are
remarkably simple. It is also possible to produce the three limit cycles
with only one (general) network, e.g., the one of (m)

are fixed mass points. The connections are nonlinear springs
with randomly drawn values for the spring and damping func-
tions (i.e., k1, k3, d1 and d3 of the functions p and q). The
randomly chosen nodes, which received feedback from the
first output (x1), are marked by purple diamonds. The ran-
domly chosen nodes, which received feedback from the sec-
ond output (x2), are marked by aqua marine hexagrams. The
corresponding linear feedback weights Wfb were randomly
initialized and subsequently fixed. Note that there were no
input nodes, since, after learning the morphological com-
putational device should generate autonomously the desired
trajectories without any external stimulation. The output was

defined as previously described by a weighted sum of all 61
current spring lengths. The optimal outputs weights W∗

out
were found by the previously described learning process in
Fig. 4a (teacher forcing with superimposing noise with an
amplitude of 1×10−3 at the spring lengths). For training we
used between 15.000 and 30.000 data points (i.e., 15–30 sim-
ulated seconds), which correspond to 2–4 times the period of
the signal depending on the target. Note that for very short
training periods the results was either an unstable system or
a limit cycle different from the target. For more details on
the chosen ranges for the various parameter we refer to the
supplementary material.

123

Biol Cybern

After the learning phase the networks were simulated with
closed loops, i.e., the outputs were fed back (as in Fig. 4b).
The third column of Fig. 5c, g, k shows the corresponding out-
puts in phase plane, i.e., x1 vs. x2. The red lines are the target
trajectories of the limit cycles and the black dotted lines are
the trajectories produced by the morphological computation
device (MC). Note that the readouts as well as the feedbacks
were static and linear. Hence, the necessary dynamics as well
as the nonlinearities were “computed” by the morphologi-
cal structure. Since the presented mass–spring networks are
simulations of real physical systems, one can conclude that
the corresponding real physical bodies can perform the same
morphological computations.

The used network of Fig. 5m performed well for all three
tasks. However, since the construction process was based on
a probability distribution (i.e., based on values, which were
randomly drawn from defined ranges) some randomly con-
structed networks performed better (or worse) for the dif-
ferent tasks than others. Therefore, is was possible to select
networks, which performed individually better for one of the
three tasks, but performed worse on the other two tasks. Since
the complexity of the task was reduced (i.e., one limit cycle
instead of three different ones), the networks were typically
smaller. The chosen networks are depicted in the last column
of Fig. 5. The network for the Van der Pol task had N = 10
masses and 22 springs (Fig. 5d). The network for the qua-
dratic limit cycle and N = 20 and L = 22 (Fig. 5h) and for
the Lissajous figure task N = 20 and L = 48 (Fig. 5l). Note
that, for example, the network, which is employed to emu-
late the Van der Pol equations, is suprisingly simple. This is
especially surprising if one takes into account that the mor-
phological computation device not only produced the limit
cycle, but rather generated, due to the use of the noise dur-
ing learning, a robust limit cycle with a region of attraction
(of unknown size). This can be concluded from the fact that
although numerical imprecision (as inherent to any simula-
tion) was present at any time the systems stayed robustly on
the nominal trajectories. We tested all presented networks
regarding their stability on the long run. We simulated each
network for 1 million time steps (i.e., 1, 000 simulated sec-
onds). The networks stayed on the desired trajectories.

Even more remarkably is the fact that the morphologi-
cal computation devices were not only robust against small
perturbation (e.g., introduced by numerical imprecision) but
were rather highly robust. In order to demonstrate this import
property we conducted a number of experiments, which are
described in the following sections.

6.1.1 Testing the stability of the learned limit cycles

The amplitudes of the noise during the teacher forcing (learn-
ing) process were much bigger than the amplitude of the noise

introduced by numerical imprecision. Therefore, it is sensible
to assume that the morphological computation device is not
only able to counteract underlying noise with a small ampli-
tude, but rather is robust towards all kind of disturbances. In
addition, for simple mass–spring networks like of Fig. 5h or
5d, the inherent stability of such physical systems (real phys-
ical mass–spring systems loose energy over time, e.g., due to
friction) can contribute further to stability. In order to demon-
strate this stability we conducted various experiments, where
we disturbed a mass–spring network with different types of
perturbations. For all stability experiments we used the net-
work of Fig. 5h (i.e., the specialized network for the qua-
dratic limit cycle). However, similar results can be obtained
for other networks and tasks too. Figure 6 summarizes the
results of the conducted experiments.

In a first test (Fig. 6a, b) the system started unperturbed.
Suddenly, at t = 10 s (start of the red region), instead of the
actual produced output x1 (blue dotted line), the last correct
value x1(t = 10) = 0.09 (solid blue line) was fed back for
the next 10 s (red region). For a real robot this situation corre-
spond to the case when, for example, one degree of freedom
were stuck or if there were a temporal sensor failure for this
particular variable.

After some time (at t = 20 s; end of the red region) the
actual output value of x1 was fed back again. Figure 6a shows
the trajectories of both outputs x1 and x2. The red region
depicts the time window, when x1 was locked. Figure 6b
shows the same trajectories but in the phase plane. Note that
the different colors encode the corresponding time windows
as labeled in Fig. 6a. The morphological computation device
was able to find back to the desired trajectory after the dis-
turbance had vanished.

In a second stability test (Fig. 6c, d) all nodes received
from 10 to 20 s (red region) a constant horizontal force.
The amplitudes were uniformly drawn from the range
[−10,+10]. After t = 20 s the disturbing input vanished
suddenly and the system ran freely again. Figure 6c, d shows
the trajectories of the outputs x1 and x2. Again, colors used
in the phase plane correspond to the colors of the labels of
the different time windows in Fig. 6c. Remarkably, although
the perturbation was fairly strong, the system was able to
recover from it and to find its way back to its nominal tra-
jectory. Note that the perturbation led the trajectories to a
region in state space “far away” from the area, which had
been covered by the noisy learning data. Hence, one would
conclude that the system was able to generalize to values
outside the range of the presented learning data. However,
this is not entirely true. Assuming that we start both sys-
tems, the original dynamic system and the device, which
emulates this system, at the same point in the state space
x = [x1, x2]T , in general, the trajectories of the two systems,
which lead them back to the nominal limit cycle, will differ.
Nevertheless, both will come back to the desired trajectory.

123

Biol Cybern

0 10 20 30 40 50
−1

−0.5

0

0.5

1

time [s]

x
1

x
2

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

time [s] x
1

time [s] x
1

x 2
x 2

x 2

(b)

0 10 20 30 40 50
−6

−4

−2

0

x
1

x
2

(c)

−4 −2 0
−5

−4

−3

−2

−1

0

1

(d)

0 10 20 30 40 50
−2

0

2

4

x
1

x
2

(e)

−2 0 2 4
−5

0

5

10

(f)

Fig. 6 Experiments to demonstrate the stability of the learned limit
cycle using morphological computation. The used network was the one
depicted in 5h (“quadratic” limit cycle). The red regions mark the time
windows, when the perturbations appeared. The color coding of the
plots of the second column correspond to the labels of the time win-
dows in the plots of the first column. Following three perturbations were
tested: a, b The output x1 was held at a constant level (blue solid line)
and fed back into the system instead of the actual output (blue dotted
line). c, d All nodes received a constant force, i.e., the whole network
was distorted. e, f The measured current lengths li (t) were superim-
posed by white noise (for a real robot this corresponds to a situation
with noisy sensory signals). Hence, the outputs and the feedbacks were
noisy too. In all three cases the system was able to recover and to find
its way back to the nominal limit cycle trajectory

Therefore, for practical reasons, one could say that the mor-
phological computation device is able to emulate the same
limit cycle with a stability similar to the one of the original
system.

A third experiment was conducted in order to show that
the setup was also able to recover from stochastic distur-
bances (Fig. 6e, f). In the time window from 10 to 20 s the
signals of the sensors, which read the current lengths of the
nonlinear springs, i.e., li (t) for i = 1, . . . , L , were superim-
posed by white noise. Consequently, there were noisy out-
puts and, therefore, noisy feedbacks. After 20 s, when the
noise had vanished, the system recovered fast to the correct
trajectories.

0 10 20 30 40 50
−1

−0.5

0

0.5

1

time [s]

x
1

x
2

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2

(b)

Fig. 7 Recovery of the morphological device from the state of total
rest, i.e., swing-up. a shows the trajectories over time and b shows the
same trajectories in phase plane. The color coding of (b) corresponds
to the color labels of the time windows in (a)

6.1.2 Recovering from the state of total rest: swing up task

In an additional experiment we demonstrate that the system
was even able to recover from the state of total rest. For this
reason we started the network (same network as previously
used—Fig. 5h) in a state, where all velocities and accelera-
tions of all masses were zero and the nonlinear springs had
the exact lengths of their resting lengths. Hence, if no external
force would have been applied (e.g., open loop) the network
would have stayed at rest. However, we closed the loop and
the system swung up to the desired trajectories. Since the
outputs were based on a weighted sum of the actual lengths,
which are non zero (even at t = 0), the outputs, and, there-
fore, the feedbacks, were nonzero and, hence, the system was
able to recover from its initial state. The results are summa-
rized in Fig. 7a, b.

6.2 Generation of different walking patterns using the same
mass–spring network

As we have seen in the first experiments one physical body
(i.e., mass–spring network) can be used to produce different
nonlinear patterns. This is especially interesting in the con-
text of locomotion. A lot of animals display different gaits in
order to be more energy efficient and to adapt to changes in
the environment. Note that the body of the animal does not
change, but it is still able to produce such diverse nonlinear
patterns (i.e., gaits). This is exactly what our approach offers.
The physical body serves as some basic dynamic module, and
only the readout and the feedback (both static) define what
system is emulated. Hence, different static feedbacks loops
(i.e., different output weights Wout and feedback weights
Wfb) can force the same physical body to produce differ-
ent patterns. Furthermore, since in our setup the feedbacks
were randomly initialized and subsequently fixed, we will
demonstrate that already different readout weights Wout are
sufficient to produce different dynamic patterns.

123

Biol Cybern

Fig. 8 Generic network used to produce four different gaits for a
generic quadruped with the same physical body. The network had four
outputs (and feedbacks) corresponding to the four legs. The number of
mass points was N = 50 and the number of nonlinear springs L = 137

The task was to produce four different walking patterns,
namely walk, trot, pace and bound, for a generic quadruped
using the same morphological structure.

Righetti and Ijspeert (2008) used a network of four cou-
pled oscillators with four different couplings in order to pro-
duce four different gaits.

We will demonstrate that it is possible to generate the
same rhythmic patterns with one fixed physical body (i.e.,
mass–spring networks) with some fixed feedback weights,
but four different, linear readouts.

The used mass–spring network can be seen in Fig. 8. It
consisted of 50 masses and 137 nonlinear springs. It was con-
structed as previously described in Sect. 5. For more details
on the construction parameters used we refer to the supple-
mentary material. Note that the network had four outputs
(denoted here by x1, x2, x3 and x4) and, therefore, it had
four corresponding feedback loops. The different, colored
squares mark the randomly chosen nodes, which received
feedback. Some of the nodes received feedback from various
outputs. The linear feedback weights were randomly initial-
ized and were subsequently fixed. Only the linear readout
weights were adapted in the learning process.

The learning data (targets) was produced by simulating
the original equations used in Righetti and Ijspeert (2008) at
a time step of 1 ms. The learning procedure was the same
as previously described. Every walking pattern (walk, trot,
pace, and bound) was simulated independently from each
other. Finally, we had four output matrices of the size 137×4,

one for each gait, i.e., Wwalk, Wtrot, Wpace, and Wbound.

After the learning process we tested the found output
weights. Figure 9 summarizes these results. Figure 9a shows
the four trajectories, which were produced, when the walk-
ing gait matrix Wwalk was used to close the loop. The red
dotted lines are the target patterns, and the solid lines are the
produced outputs. The next plot (Fig. 9b) shows the output of
the morphological computation device, when the loops were
suddenly closed at t = 0 with the matrix to produce the trot
pattern (Wtrot) instead of Wwalk, i.e., the readout switched
from walk to trot.

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 walk
x

1
x

2
x

3
x

4

(a)

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 trot
x

1
=x

4

x
2
=x

3

(b)

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 pace
x

1
x

2
x

3
x

4

(c)

0 5 10 15 20 25

−1

−0.5

0

0.5

1

time [s]

 bound
x

1
=x

2

x
3
=x

4

(d)

Fig. 9 Generation of different walking patterns for a generic quadru-
ped robot by the use of one morphological structure. a walking pattern
produce by the morphological computation device.b–d Responses of
the device, when at t = 0, the weights of the outputs suddenly changed
from Wwalk to Wtrot, Wpace and Wbound, respectively. The red dotted
lines are the target patterns. In all cases, after some transition time, the
setup was able to produce the desired patterns

After some transition time the system settled to the desired
trot pattern. Figure 9c, d shows the corresponding responses,
when it switched suddenly from walking to pace and walking
to bound. Again, after some transition time, the morphologi-
cal computation device produced the desired walking pattern.
Note that the different walking pattern had different frequen-
cies, forms and amplitudes. Nevertheless, only different sta-
tic, linear readouts (or sudden switches between them) were
sufficient to force the mass–spring to produce robustly the
desired nonlinear patterns.

123

Biol Cybern

6.3 Generation of different limit cycles depending on an
input signal

In the previously presented examples mass–spring networks
were employed to generate autonomously different rhythmic
output patterns. Our theory suggests that the proposed setup
can emulate even more complex dynamical systems, e.g.
systems, which are input driven. This input could be some
sensory input stream or an internal control signal. In the con-
text of locomotion this could be, for example, a system, which
generates different gaits depending on the desired velocity
(i.e., the input).

For the following task we adapted the previously used
equations of the “quadratic” limit cycle of Fig. 5e. We added
a parameter ε (i.e., the input to the system). Changing this
input allows us to change smoothly the shape of the limit
cycle. Figure 10 summarizes the properties of the used limit
cycle. Figure 10a shows the dynamic target system with the
input ε (colored in red). The influence of the input ε on the
trajectories of x1 and x2 can be seen in Fig. 10b. It shows
the limit cycles for three different input values ε = 5, ε = 1
and ε = 0.2 in phase plane. The corresponding trajectories
in time can be seen in Fig. 10c–e. Note that the amplitude,
the shape as well as the frequency change in dependence of
the input ε. Figure 10f, g depicts this fact by plotting the
amplitude and the frequency versus the input ε for the state
variable x1.

For the simulation a mass–spring network of N = 100
nodes and L = 283 connecting springs was used. The net-
work was constructed as previously described in Sect. 5. The
target signals were produced by varying the input ε from 0.1
to 5 over the time of 200 s. For more details on the learning
data as well on construction parameters used we refer to the
supplementary material.

After learning, the morphological computation device was
tested. Figure 11 summarizes the results. At the end of the
learning process the input was ε = 5 and, therefore, the
mass–spring network was in the state to reproduce the cor-
responding limit cycle of Fig. 10c. The two plots of Fig. 11a
show the response of the system, when the input was kept at
this constant value of 5. The left plot shows the trajectories
of the outputs x1 and x2 over time, and the right plot shows
the corresponding trajectory in the phase plane.

In the second row (Fig. 11b) the response of the system can
be seen, when the input suddenly (at t = 0 s) changed from
ε = 5 to a constant value of 1. Hence, the system should gen-
erate the corresponding limit cycle of Fig. 10d. After some
transition phase, the system settled down to the desired limit
cycle. After that it stayed robustly on the desired trajectories.

The last row (Fig. 11c) shows the response of the device
when the input suddenly changed from 5 to 0.2. Again, after
some transition time, the morphological computation device
delivered robustly the desired limit cycle.

(a)
−1 0 1

−1

0

1

x
1

x 2

ε = 0.2
ε = 1
ε = 5

(b)

0 5 10 15

−1

0

1

time [s]

x
1

x
2

(c)

0 5 10 15

−1

0

1

time [s]

x
1

x
2

(d)

0 5 10 15

−1

0

1

time [s]

x
1

x
2

(e)

0.2 1 5
0.3

0.4

0.5

ε []

f [
H

z]

(f)

0.2 1 5

0.5

1

1.5

ε []

am
pl

itu
de

 [
]

(g)

Fig. 10 The target system and the corresponding target limit cycles
used for the input dependent limit cycle generator task. a Equation of
the dynamical target system with the input ε. b Different limit cycles
for the inputs ε = 5, ε = 1, and ε = 0.2 in phase plane. c–e The corre-
sponding trajectories in time. f and g change of amplitude and frequency
in dependence of the input ε

Let us make some remarks here: First, the found read-
out weights (and the whole feedback loop) were linear and
static. Hence, the nonlinear dynamics, which were appar-
ently involved in this task, were all provided by the generic
physical body. Second, in contrast to the previous task of
producing walking patterns (Sect. 6.2), here the same static
feedback loop (i.e., readout plus feedback) was used to pro-
duce different types of limit cycles. This also implies that
only the input “decided” what output should be produced.
Third, the input was applied as some randomly weighted,
but constant forces acting on some randomly chosen input
nodes.

Therefore, such a constant input force can be seen as
squeezing the network a certain points (the ones, which have
been randomly chosen to be input nodes). Figuratively speak-
ing, the network produced different limit cycles, depending
how strong it was compressed.

7 Discussion

We have introduced a mathematical framework for the anal-
ysis of morphological computation with feedback in com-
pliant bodies. In contrast to the case without feedback, as in
Hauser et al. (2012), morphological computation with feed-
back is not limited to the emulation of filters with fading

123

Biol Cybern

0 20 40 60
−2

−1

0

1

2

time [s]

x
1

x
2

−2 0 2
−2

−1

0

1

2

x
1

x 2

from 0 to 20 s
from 20 to 40 s
from 40 to 60 s
from 60 to 80 s
from 80 to 100 s

(a)

0 20 40 60
−2

−1

0

1

2

time [s]

x
1

x
2

−2 0 2
−2

−1

0

1

2

x
1

x 2

from 0 to 20 s
from 20 to 40 s
from 40 to 60 s
from 60 to 80 s
from 80 to 100 s

(b)

0 20 40 60
−2

−1

0

1

2

time [s]

x
1

x
2

−2 0 2
−2

−1

0

1

2

x
1

x 2

from 0 to 20 s
from 20 to 40 s
from 40 to 60 s
from 60 to 80 s
from 80 to 100 s

(c)

Fig. 11 Testing the morphological computation device to emulate dif-
ferent limit cycle depending on the input. The left column shows the
two output variables variables x1 and x2 evolving over time. The right
column shows the corresponding trajectories in the phase plane for three
different cases. In any of the cases the network started in the state to
produce the limit cycle with ε = 5. Case a: The input was kept at 5.

b: The network suddenly received at t = 0 instead ε = 5 a constant
input of ε = 1. The system changed its output to the corresponding
limit cycle. Case c: The input changed suddenly at t = 0 from 5 to 0.2
and produced, after some transition time, the corresponding limit cycle

memory. In fact, the presented theory shows that there is no
longer any a priori limitation on the computational power
of morphological computation, if arbitrary (static) continu-
ous function can be used for feedback and readout. We have
also discussed that this, however, introduces practical prob-
lems, since in a real robot the exact dynamical models of the
bodies (especially if their are complex) nor the needed com-
putation for a given task are known. However, heuristic the-
oretical arguments [as used in Hauser et al. (2012)] suggest
that continuous readouts and feedbacks can be approximated
by linear functions if the morphological computing device
(e.g., a compliant robot) implements a sufficiently complex,
nonlinear projection of incoming signals into a high dimen-
sional space. Naturally, a restriction to linear feedbacks and
readouts is desirable, because their parameters can be learnt

more easily. However, at present the available theory does not
offer a prediction about system performance if theoretically
ideal feedbacks and readouts are only approximately real-
ized. Therefore, we have tested in computer simulations the
performance of concrete morphological computing systems
(i.e., random networks of springs and masses) with linear
feedbacks and readouts, whose parameters were determined
through a simple supervised learning process. We found, that
also with linear feedbacks and readouts these morphologi-
cal computing systems were able to carry out a large range
of complex computations, and were not limited by a fading
memory. The same type of spring mass systems was able
to generate a large repertoire of periodic signals, and it was
also able to modify this periodic signal in dependence of
some scalar control signal. Furthermore, this pattern gen-
eration turned out to become (through training) remarkably
noise robust, and resilient even to major disturbances of the
system. Hence, morphological computation with linear feed-
backs and readouts provides an interesting new paradigm for
the generation and switching of a repertoire of periodic sig-
nals, as they are needed for locomotion of robots and biolog-
ical organisms. Recent results, on somewhat similar experi-
ments with artificial neural networks (instead of systems of
springs and masses), suggest that morphological computing
systems may even be able to learn all this without the help of a
supervisor (that provides the desired target output signal), but
through autonomous exploration guided only by information
when the resulting system performance became better, see
Legenstein et al. (2010), Hoerzer et al. (2011, 2012). Further
research will have to investigate to what extent such much
simpler learning process, which requires no a priori knowl-
edge of the target signal that is to be generated, can also be
used to guide morphological computation with feedback.

We demonstrated with various simulations of abstract,
randomly connected networks of nonlinear springs and
masses that our proposed setup is applicable for a number of
tasks relevant for robotics.8 We propose that compliant bod-
ies can be approximated by such generic networks. Hence, it
is tempting to directly implement our proposed scheme for
morphological computation with feedback in real (compli-
ant) robots. As our presented experiments imply, a particular
interesting application would be to exploit the nonlinear char-
acteristics of the physical bodies of compliant robots in order
to produce different types of attractor states (limit cycles),
e.g., for different gaits. Especially, the results from the exper-
iment described in Sect. 6.3 (input-dependent generation of
limit cycles) represent an interesting case. External inputs
(forces) could in principle be used to switch between differ-
ent attractor states (e.g., gaits). For example, if the robot has to
carry a heavy load, naturally, the compliant body is deformed

8 Any computation that can be encoded in the form of G : z(t)(n) =
G(z(t), z(t)′, . . . , z(t)(n−1))+ u(t) (Eq. 3) is a potential target system.

123

Biol Cybern

by the forces introduced by gravity, which could then lead
the whole morphological computation device to switch to a
new attractor state. Note that this would not require a change
in the parameters of (linear) feedbacks or readouts. Actually,
there is no higher control involved at all. The physical body
itself, obeying the laws of physics, simply reacts to the input
and the “program” encoded in the static, linear readouts and
feedback loops.

This means, we don’t have to control all the details (e.g.,
the joint angle trajectories) of a walking or running robot,
but rather only some global parameters in order to “guide”
the dynamics. This represents an extremely efficient way of
behavior control by exploiting mechanisms of self-organiza-
tion and exploitation of passive dynamics.

Note that the proposed approach is very generic and there
are many possible ways to apply the input to the body. For
example, it could be encoded as forces, which occur due to
ground contact, or collision with obstacles (e.g., bending a
leg), or it could stem from internal model-based signals (i.e.,
desired velocity), etc.

Another remarkable conclusion can be drawn for future
robot design. Typically, nonlinearity and compliance, which
are inherent properties of biological systems, are seen, at least
from an engineering perspective, as undesirable features for
robots. This is mostly based on the fact that such complex
systems are very difficult to control. As a result, classical
robot designs are based on rigid body parts and high torque
servos in order to suppress unwanted dynamics and to reduce
the complexity of the system. However, our results suggest
that complex, nonlinear dynamics and a high dimensional
state space can be beneficial. As we have demonstrate such
mechanical structures can be exploited instead of counter-
acted by a high-level controller. This enormously reduces
the control effort and, therefore, increases the efficiency. In
addition, because the “computations” performed by the body
deliver information about the dynamics of the organism to
the organism itself, they can be used to learn what can be
called a “body schema”, see Hoffmann et al. (2010).

Another remarkable property of our proposed approach is
that we do not need to understand the details of the physical
dynamics of the system. Actually, we don’t even have to know
the physical meanings of the readouts. Naturally, this facili-
tates a learning-based implementation of the approach in real-
world applications. Another fact, which promotes real-world
implementations, is that noise can be tolerated (and is in fact
needed for robust learning), as we have demonstrated. An
essential ingredient of our proposed scheme for morpholog-
ical computation is the availability of a fairly larger number
of diverse signals about the current state of the body. These
signals are not required to measure well defined physical
quantities with high precision. Rather, it suffices if different
current states of a complex compliant body cause different
high dimensional signals. Hence, for example, a large number

of randomly distributed cheap pressure sensors in compliant
body parts are likely to suffice. Possibly various time-delayed
and mixed versions of such signals could provide even better
performance. Thus, our theory for morphological computa-
tion provides a novel challenge for the design of sensors in
compliant robot systems (since they become an integral part
of the morphological computing system). It should be noted
on this side that biological organisms receive in general very
high dimensional readouts of their body state through a large
number sensors [e.g., humans have about 107 sensory neu-
rons, see Martini et al. (2011)].

We have considered in this article for the sake of simplicity
just generic models of compliant robot parts: random systems
of masses and springs. These generic systems, which had
not been designed for any particular range of morphological
computing tasks, exhibited already remarkable performance
(after training of linear feedbacks and readouts). Hence, it
is tempting to explore in further research more specialized
designs of compliant robot parts that facilitate fast learning of
a particular class of morphological computations, e.g., gen-
eration of periodic patterns that are needed for locomotion of
a particular robot. Such research promises not only to throw
new light on our understanding of the design of concrete
body parts of biological organisms, but also to provide new
ideas for the design of compliant robots. We hope that the
theoretical framework of this article will provide principles
and concepts that support such further research.

Acknowledgments Written under partial support by the European
Union projects project # FP7-231267 (ORGANIC), # 216886 (PAS-
CAL2), # 248311 (AMARSi), and by the Austrian Science Fund FWF,
project # P17229-N04. We also want to thank the anonymous review-
ers for their very helpful suggestions and comments, Stefan Häusler
for fruitful discussions, and Rodney Douglas for his advice regarding
biological data.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Appendix

A: Kernel in the context of machine learning

A kernel (in the sense of machine learning, see Vapnik
(1998)) is a nonlinear projection Q of k input variables
u1, . . . , uk into some high-dimensional space. For example,
all products ui · u j could be added as further components
to the k-dimensional input vector 〈u1, . . . , uk〉. Such non-
linear projection Q boosts the power of anylinear readout
applied to Q(u). For example, in the case where Q(u) con-
tains all products ui · u j , a subsequent linear readout has the
same expressive capability as quadratic readouts f applied

123

Biol Cybern

to the original input variables u1, . . . , uk . More abstractly, Q
should map all inputs u that need to be separated by a readout
onto a set of linearly independent vectors Q(u).

B: Definition of feedback linearizable systems

A dynamic system can be shown to be feedback linerizable
by applying the following theorem taken from Sontag (1998):

Theorem 1 A system of the form

x′(t) = f (x(t)) + g(x(t)) · v(t), (8)

with x = [x1, . . . , xn]T , f : R
n → R

n and g : R
n → R

n

is feedback linearizable about some point x0 if and only if

(LI) The set of vector fields {g(x), adf g(x), . . .

. . . , adn−1
f g(x)} is linearly independent

(INV) The distribution generated by
{g(x), adf g(x), . . . , adn−2

f g(x)} is involutive

in some neighborhood of x0 (for proof we refer to Sontag
(1998)).

The expression adi
f g(x) is the i-times recursively applied Lie

bracket of f and g, see, for example, Isidori (2001). Accord-
ingly, a dynamic system of the form of Eq. 8 is globally
feedback linearizable, if and only if the conditions (LI) and
(INV) hold for the whole state space.

C: Restating the orginal theorem by Maass et al. (2007)

For the sake of completeness, we state here again the original
basic theorem of Maass et al. (2007) in reference to our nota-
tion as discussed in Sect. 2. Note that they used this theorem
to proof that generic models of neural networks belong to the
class of feedback linearizeable systems and can be, therefore,
employed as a fixed computational module C, if they received
the appropriate feedback and have the corresponding readout
(compare to Fig. 1).

Theorem 2 A large class Sn of systems of differential equa-
tions of the form of Eq. 8 are in the following sense universal
for analog computing:

This system 8 can respond to an external input u(t)with the
dynamics of any differential equation of order n of the form of
Eq. 3, i.e., G (for arbitrary smooth functions G : R

n → R)

if the input term v(t) in Eq. 8 is replaced by a suitable me-
moryless feedback function K (x1(t), . . . , xn(t), u(t)), and if
a suitable memoryless readout function h(x(t)) is applied to
its internal state x(t) = 〈x1(t), . . . , xn(t)〉: one can achieve
then that h(x(t)) = z(t) for any solution z(t) of Eq. 3.

Also the dynamic responses of all systems consisting of
several higher order differential equations of the form Eq. 3
can be simulated by fixed systems of the form of Eq. 8 with a
corresponding number of feedbacks.

D: Proof that a nonlinear mass–spring system belongs
the class Sn of feedback linearizeable systems

In this section, we demonstrate that a physically realistic,
nonlinear mass–spring systems belongs to the class Sn of
feedback linearizeable systems. Thus, they can be used as
basic systems C to emulate arbitrary, nonlinear, dynamical
systems G of the form of Eq. 3. Moreover, since the equa-
tions describe real physical systems, for example, compliant
body parts of the robot, we can conclude that such real phys-
ical system can be employed for morphological computation
too.

For the proof we have to demonstrate that the dynamic
system of Eq. 4, which describes such nonlinear mass–
spring systems, belongs to the class Sn of feedback lin-
earizable systems. Accordingly to Theorem 1 the con-
ditions LI and INV have to be fulfilled, i.e., the set
of vector fields {g(x), adf g(x), . . . , adn−1

f g(x)} has to be
linearly independent, and the distribution generated by
{g(x), adf g(x), . . . , adn−2

f g(x)} has to be involutive.
For the case of the nonlinear mass–spring system (Eq. 4)

the order is n = 2 and the regarding vector fields are

f(x) =
(

x2

−p(x1) − q(x2)

)
and g(x) =

(
0
1
m

)
.

The resulting Lie bracket of f(x) and g(x) is (now dropping
for the sake of readability the reference to the state vector x)

adf g = ∇g · f︸ ︷︷ ︸
=0

−∇f · g = −
(

0 1
−p′ −q ′

)
·
(

0
1
m

)
,

=
(1

m
− 1

m q ′
)

where (.)′ denotes the first derivative in time of the regarding
state variable. First, we have to show that following set of
vector fields

[g, adf g] =
(

0 1
m

1
m − 1

m q ′
)

is linearly independent (condition LI), which is true for any
value of q ′, assuming that the mass m
= 0.

Second, we have to show, that g = [0, 1
m]T is involutive,

which is also true, since it is a constant vector. Hence, the
nonlinear mass–spring system of Eq. 4 belongs to the class
Sn of feedback linearizable systems and, therefore, can be
employed as a basic computation module C for morphologi-
cal computation (e.g., the red box in Fig. 1).

123

Biol Cybern

Note that theoretically a linear mass–spring systems can
also be employed. The proof is trivial. The condition LI cor-
responds in the linear case (with A being the state matrix
and b the input vector of the state space representation of
the system) to the condition that the controllabilty matrix
R = (

b Ab . . . An−1b
)

is invertible, i.e., the system is con-
trollable. This is true for any physically realistic linear mass–
spring system (i.e., the mass is not zero and the damping fac-
tor is positive). The second condition is true for any linear
system (see Theorem 6.2 in Slotine and Li (1991)). Although
theoretically one could use linear systems, in the case of hav-
ing linear feedbacks and linear readouts it is beneficial that
the physical body consists of nonlinear systems in order to
be able to exhibit the kernel property, as discussed in Sect. 4.

E: Proof that an array of linear mass–spring systems
belongs the class Sn of feedback linearizeable systems

Now we consider a set of linear mass–spring systems (along
with the proof for neural networks equations like (11) in
Maass et al. (2007), where they used linear systems in paral-
lel too). Assuming our basic module has the following form

x ′
1 = x2

x ′
2 = −kx1 − dx2 + v, (9)

where k ∈ R
+ is the linear spring constant and d ∈ R

+ the
linear damping constant. The same system can be written in
matrix form
(

x ′
1

x ′
2

)
=

(
0 1
−k −d

)

︸ ︷︷ ︸
A1

(
x1

x2

)
+

(
0
1

)

︸ ︷︷ ︸
b1

v

y = (
1 0

)
︸ ︷︷ ︸

cT
1

(
x1

x2

)
.

We now consider a system, which is made of m different par-
allel linear mass–spring systems of the form of Eq. 9, with
xi, j being the j th state variable of the i th system (j = 1, 2
and i = 1, 2, . . . , m).
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x ′
1,1

x ′
1,2

x ′
2,1

x ′
2,2

...

x ′
m,1

x ′
m,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1

x1,2

x2,1

x2,2
...

xm,1

xm,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
...

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b

v (10)

This system of m sub-systems in parallel has the order of n =
2m. Now we have show that it fulfills the two conditions LI

and INV (see Theorem 1). Note that a linear system trivially
fulfills the second condition INV (see Theorem 6.2 in Slo-
tine and Li (1991)) and the first condition LI takes a special
form. The corresponding vector fields are f = A and g = b,

and the set of vector fields {g(x), adf g(x), . . . , adn−1
f g(x)}

becomes therefore
(

b Ab . . . An−1b
)
. In control theory this

matrix is well known as the so-called controllability matrix
R, see, e.g., Slotine and Li (1991). In order to demon-
strate that condition LI is fulfilled we have to show, that
R = (

b Ab . . . An−1b
)

is invertible. Our proof is based on
following observations: The sub-systems are non interacting
(parallel systems), i.e., no state variable from the kth system
has influence on any state variable of the lth system with
k
= l ∀k, l = 1, 2, . . . , n at any time. Therefore, R evolves
in such a way that the two corresponding rows of the i th sys-
tem only depend on its own system variables ki and di . For
example row 1 and 2 of R only depend on k1 and d1, row
3 and 4 only on the 2nd subsystem, and so on. Any pair of
such rows of R have the following form for a given order n
(

0 1 di p(d2
i,) · · · p(d(n−2)

i)

1 di p(d2
i,) p(d3

i,) · · · p(d(n−1)
i)

)
, (11)

where p(dw
i) denotes a polynomial of di of order w. Note

that any p(dw
i) also depends on ki in some polynomial form

with an order lower than w, but for the sake of readability
it has been suppressed here. The proof holds independently
from that for any real positives values of ki . Assuming we
have different sub-systems (i.e., ki
= k j and di
= d j for
i
= j∀i, j = 1, 2, . . . , m) it is easy to see from the structure
above, that all columns and all rows a linearly independent,
hence, the matrix is invertible.

Therefore, we have shown that any system of the form of
Eq. 10, with different sub-systems (as defined above), has a
controllability matrix R, which is invertible. Hence, the over-
all system fulfills both conditions LI and INV and, therefore,
belongs to the class of feedback linearizable system Sn .

References

Bartlett PL, Maass W (2003) Vapnik–Chervonenkis dimension of neu-
ral nets. In: Arbib MA (ed) The handbook of brain theory and
neural networks, 2nd edn. MIT Press, Cambridge, pp 1188–1192

Bishop CM (1994) Training with noise is equivalent to tikhonov regu-
larization. Neural Comput 7:108–116

Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots
based on passive-dynamic walkers. Science 307:1082–1085

Franceschini N, Pichon JM, Blanes C, Brady JM (1992) From insect
vision to robot vision. Phil Trans R Soc Lond B 337(1281):283–
294

Hauser H, Ijspeert A, Füchslin RM, Pfeifer R, Maass W (2012) Towards
a theoretical foundation for morphological computation with com-
pliant bodies. Biol Cybern 105(5):355–370. ISSN 0340-1200

Hoerzer G, Legenstein R, Maass W (2011) Eliminating the teacher
in reservoir computing. In: Pfeifer R, Sumioka H, Füchslin RM,

123

Biol Cybern

Hauser H, Nakajima K, Miyashita S (eds) Proceedings of the 2nd
international conference on morphological computation, Venice

Hoerzer GM, Legenstein R, Maass W (2012) Emergence of complex
computational structures from chaotic neural networks through
reward-modulated hebbian learning (in preparation)

Hoffmann M, Marques H, Hernandez Arieta A, Sumioka H, Lungarel-
la M, Pfeifer R (2010) Body schema in robotics: a review. IEEE
Trans Auton Mental Develop 2(4):304–324

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward
networks are universal approximators. Neural Networks 2:359–
366

Iida F, Pfeifer R (2006) Sensing through body dynamics. Robot Auton
Syst 54(8):631–640

Ijspeert A, Crespi A, Ryczko D, Cabelguen J-M (2007) From swim-
ming to walking with a salamander robot driven by a spinal cord
model. Science 315(5817):1416–1420

Isidori A (2001) Nonlinear control systems, 3rd edn. Springer, London
Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Engle-

wood Cliffs
Legenstein R, Chase SM, Schwartz AB, Maass W (2010) A reward-

modulated Hebbian learning rule can explain experimentally
observed network reorganization in a brain control task. J Neu-
rosci 30(25):8400–8410

Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to
recurrent neural network training. Comput Sci Rev 3(3):127–149

Maass W, Natschlaeger T, Markram H (2002) Real-time computing
without stable states: A new framework for neural computation
based on perturbations. Neural Comput 14(11):2531–2560

Maass W, Joshi P, Sontag ED (2007) Computational aspects of feed-
back in neural circuits. PLoS Comput Biol 3(1):e165

Martini HF, Nath JL, Bartholomew EF (2011) Fundamentals of anatomy
& physiology, 9th edn. Benjamin-Cummings Publishing Com-
pany, Menlo Park

McGeer T (1990) Passive dynamic walking. Int J Rob Res 9(2):62–82
Miyashita S, Göldi M, Pfeifer R (2011) How reverse reactions influ-

ence the yield rate of stochastic self-assembly. Int J Robot Res
30:627–641

Palm WJ III (1999) Modeling, analysis, and control of dynamic systems,
2nd edn. Wiley, New York

Paul C (2006) Morphological computation: A basis for the analy-
sis of morphology and control requirements. Robot Auton Syst
54(8):619–630

Paul C, Valero-Cuevas FJ, Lipson H (2006) Design and control of
tensegrity robots for locomotion. IEEE Trans Robot 22(5):944–
957

Pfeifer R, Bongard JC (2007) How the body shapes the way we think.
The MIT Press, Cambridge

Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment,
and biologically inspired robotics. Science 318:1088–1093

Rieffel J, Trimmer B,Lipson H (2008) Mechanism as mind: what tenseg-
rities and caterpillars can teach us about soft robotics. In: Bullock
S, Noble J, Watson R, Bedau MA (eds) Artificial life XI: proceed-
ings of the eleventh international conference on the simulation and
synthesis of living systems, pp 506–512. MIT Press, Cambridge

Righetti L, Ijspeert AJ (2008) Pattern generators with sensory feedback
for the control of quadruped locomotion. In: IEEE international
conference on robotics and automation, pp 819–824. ICRA 2008,
Pasadena, 19–23 May 2008

Schrauwen B, Verstraeten D, Van Campenhout J (2007) An overview of
reservoir computing: theory, applications and implementations. In:
Proceedings of the 15th European symposium on artificial neural
networks pp 471–482. ESANN , Bruges

Shaw RS, Packard N, Schröter M, Swinney HL (2007) Geometry-
induced asymmetric diffusion. PNAS 104(23):9580–9584

Shim Y, Husbands P (2007) Feathered flyer: integrating morphological
computation and sensory reflexes into a physically simulated flap-
ping-wing robot for robust flight manoeuvre. In: Almeida e Costa
F et al. (eds) ECAL, pp 756–765. Springer, Berlin

Slotine J-JE, Li W (1991) Applied nonlinear control, 1st edn. Prentice
Hall, New York

Sontag ED (1998) Mathematical control theory: deterministic finite
dimensional systems, 2nd edn. Springer, New York

Taga G (1998) A model of the neuro-musculo-skeletal system for antic-
ipatory adjustment of human locomotion during obstacle avoid-
ance. Biol Cybern 78(1):9–17

Tedrake R, Zhang TW, Seung HS (2005) Learning to walk in 20 min-
utes. In: Proceedings of the fourteenth yale workshop on adaptive
and learning systems, Yale University, New Haven

Vapnik VN (1998) Statistical learning theory. Wiley, New York
Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Sci-

ence 295(5564):2418–2441
Wisse M, van der Linde RQ (2007) Delft pneumatic bipeds, vol 34.

Springer Tracts in Advanced Robotics. Springer, Berlin
Wisse M, Van Frankenhuyzen J (2003) Design and construction of

MIKE: a 2D autonomous biped based on passive dynamic walking.
In: Proceedings of international symposium of adaptive motion and
animals and machines (AMAM03), Kyoto

Wood RJ (2007) Design, fabrication, and analysis of a 3DOF, 3 cm
flapping-wing MAV, pp 1576–1581. IROS, San Diego

Wyffels F, Schrauwen B (2009) Design of a central pattern generator
using reservoir computing for learning human motion. In: AT-
EQUAL 2009: 2009 ECSIS symposium on advanced technolo-
gies for enhanced quality of life (LABRS and ARTIPED 2009):
proceedings, pp 118–122. IEEE Computer Society, Los Alamitos

Ziegler M, Iida F, Pfeifer R (2006) “Cheap” underwater locomotion:
roles of morphological properties and behavioural diversity. In:
International Conference on Climbing and Walking Robots, CLA-
WAR, Karlsruhe

123

	The role of feedback in morphological computation with compliant bodies
	Abstract
	1 Introduction
	2 Theoretical foundations
	3 Practical implications
	4 Application of the theory to generic models of complex, compliant physical bodies
	5 Implementation of mass--spring networks
	5.1 Constructing mass--spring networks
	5.2 Simulating mass--spring networks
	5.3 Learning the linear readout of a mass--spring network

	6 Results of computer simulations
	6.1 Generating stable, nonlinear limit cycles with morphological computation
	6.1.1 Testing the stability of the learned limit cycles
	6.1.2 Recovering from the state of total rest: swing up task

	6.2 Generation of different walking patterns using the same mass--spring network
	6.3 Generation of different limit cycles depending on an input signal

	7 Discussion
	Acknowledgments
	Appendix
	A: Kernel in the context of machine learning
	B: Definition of feedback linearizable systems
	C: Restating the orginal theorem by
	D: Proof that a nonlinear mass--spring system belongs the class Sn of feedback linearizeable systems
	E: Proof that an array of linear mass--spring systems belongs the class Sn of feedback linearizeable systems
	References

