
Probing Real Sensory Worlds of Receivers with
Unsupervised Clustering
Michael Pfeiffer1,2*, Manfred Hartbauer3, Alexander B. Lang3, Wolfgang Maass1, Heinrich Römer3
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Abstract

The task of an organism to extract information about the external environment from sensory signals is based entirely on the
analysis of ongoing afferent spike activity provided by the sense organs. We investigate the processing of auditory stimuli
by an acoustic interneuron of insects. In contrast to most previous work we do this by using stimuli and neurophysiological
recordings directly in the nocturnal tropical rainforest, where the insect communicates. Different from typical recordings in
sound proof laboratories, strong environmental noise from multiple sound sources interferes with the perception of
acoustic signals in these realistic scenarios. We apply a recently developed unsupervised machine learning algorithm based
on probabilistic inference to find frequently occurring firing patterns in the response of the acoustic interneuron. We can
thus ask how much information the central nervous system of the receiver can extract from bursts without ever being told
which type and which variants of bursts are characteristic for particular stimuli. Our results show that the reliability of burst
coding in the time domain is so high that identical stimuli lead to extremely similar spike pattern responses, even for
different preparations on different dates, and even if one of the preparations is recorded outdoors and the other one in the
sound proof lab. Simultaneous recordings in two preparations exposed to the same acoustic environment reveal that
characteristics of burst patterns are largely preserved among individuals of the same species. Our study shows that burst
coding can provide a reliable mechanism for acoustic insects to classify and discriminate signals under very noisy real-world
conditions. This gives new insights into the neural mechanisms potentially used by bushcrickets to discriminate conspecific
songs from sounds of predators in similar carrier frequency bands.

Citation: Pfeiffer M, Hartbauer M, Lang AB, Maass W, Römer H (2012) Probing Real Sensory Worlds of Receivers with Unsupervised Clustering. PLoS ONE 7(6):
e37354. doi:10.1371/journal.pone.0037354

Editor: Daniel Durstewitz, Heidelberg University, Germany

Received October 20, 2011; Accepted April 19, 2012; Published June 6, 2012

Copyright: � 2012 Pfeiffer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by the Austrian Science Fund (FWF P20882-B09) to HR, the Austrian Academy for Sciences and the Karl-Franzens-University
of Graz to ABL. MP has been supported by a Forschungskredit grant of the University of Zurich. Written under partial support by the European Union project #
FP7-506778 (PASCAL2), project #FP7-243914 (BRAIN-I-NETS), and project #269921 (BrainScaleS) to WM. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pfeiffer@ini.phys.ethz.ch

Introduction

In order to fulfill its task of shaping the behavior of organisms,

the sensory system and the brain have to rely on information about

the ‘‘outside’’ physical world, provided by the sense organs, which

respond to different forms of energy. The information is trans-

mitted via afferent nerves and encoded in trains of action

potentials. The brain, by decoding this information, has to make

adaptive assumptions about what had happened in the physical

world. A central issue in sensory physiology deals with the coding

and decoding mechanism(s) in the sense organs and central

nervous system, respectively. Whereas early work concentrated on

information provided by the average spike count over an

appropriate time window (or firing rate in action potentials/

second), it soon became clear that codes using the precise timing of

action potentials would make more efficient use of the capacity of

afferent lines to the brain. Yet, the mechanisms by which stimuli

are represented in the timing of spikes are still not fully understood

[1–3].

Irrespective of the sensory system investigated, recordings of

single sensory neurons, or first-order sensory interneurons, always

reveal isolated spikes and spikes grouped as bursts, i.e. short

episodes of high-frequency action potential firing (e.g. [4–6]).

These bursts - in contrast to single spikes-have been suggested to

have particular importance for the function of the brain (review

[7]), and in sensory systems bursts convey the important stimulus

features [6,8]. Yet, the problem of extraction of characteristic

features within these bursts for identifying stimulus features and for

object classification is difficult because spike trains exhibit

variability. For insects and the acoustic modality, [9] reviewed

the sources for such variability, and how it affects the processing of

temporal patterns of acoustic signals. For example, one important

source for such variability in the auditory modality results from the

fact that in real world situations individuals are exposed to

multiple sound sources, originating from different locations, or that

signals are degraded and attenuated on the transmission channel

between sender and receiver [10–14]. Internal noise as a result of

stochastic processes within the nervous system is a further source

for spike train variability.

As a result of the unavoidable noisiness of spike trains in

neurons of sensory pathways one should expect the evolution of

mechanisms in the nervous system leading to a reduction of the

effects caused by false stimulus feature extraction and/or

classification due to noise. On the other hand, minute variations
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in spike trains may well reflect differences between objects or

object classes which are important for the receiver, such as small

differences in the size of a sender, or the loudness or frequency

composition in the sound signal of a mate. Such small differences,

in contrast to those caused by noise, should be preserved during

sensory processing, since they represent the neuronal basis for

discrimination between mates or other decisions of importance for

the receiver.

If bursts of action potentials contain the information about

relevant features of objects or object classes, it should be possible to

unambiguously distinguish 1) bursts of spikes elicited in response to

a given stimulus from those bursts which resulted from noise, and

2) from bursts elicited in response to stimuli with different features.

Various attempts have been made in the past to identify

algorithms for such a task.

In this paper we present a set of machine learning tools to

analyze and discriminate burst data while preserving most of the

information about precise firing times, which is crucial within the

auditory system. Our approach combines the Victor-Purpura

spike metric [15–17] and the recently developed affinity propa-

gation algorithm [18], a non-parametric clustering algorithm

based on principles from probabilistic inference. Affinity propa-

gation has lead to excellent results for a number of large datasets,

and our study presents its first application to the discovery of burst

patterns. This allows us to find meaningful spike patterns also in

the responses to environmental noise signals, which may carry

information about the identity or location of different sound

sources.

We present data from a model system using an identified

neuron approach in an acoustically communicating insect. This

system offers several advantages for studying sensory burst coding

over previous ones: 1) All recordings stem from the same identified

neuron (called omega-neuron; [19]) in different preparations. 2)

The first-order neuron in the auditory pathway integrates sensory

information from a very limited number of receptor cells in the ear

(20–40 receptors). 3) Recordings can be obtained for several hours,

and most importantly, 4) portable preparations have been

developed to make recordings directly in the insects’ natural

environment, such as the tropical rainforest [13,20,21]. This

permits to study sensory coding under the most natural conditions

possible. Broadcasting well defined acoustic stimuli from some

distance to the preparation, while recording the response of the

neuron to these stimuli and to the background noise allows us to

gain new insights about the characteristics and reliability of burst

coding.

Results

The Omega Neuron and Experimental Setup
A total of 27 adult male and female bushcrickets (Docidocercus

gigliotosi) were used for this study. We recorded the activity of an

identified auditory interneuron, the so-called omega neuron, in the

field, using a technique introduced in [20] and [22], and explained

in more detail in the Materials and Methods section. The

morphology of the cell, as revealed from intracellular dye

injection, is shown in Figure 1A (inset). It is a local neuron in

the prothoracic ganglion and receives excitatory input from almost

all of the 20–40 receptors in the hearing organ [23]. The tuning of

the cell reflects the broad-band hearing sensitivity of the insect,

matching both the frequencies of the conspecific calling song, and

ultrasonic frequencies up to 100 kHz, thus including bat

echolocation calls as well. As in other bushcricket species, the

sensitivity of auditory receptors in D. gigliotosi differs by only a few

dB from the sensitivity of the omega cell at most frequencies except

below 5 kHz [24]. Furthermore, in response to a stimulus above its

threshold, the neuron fires bursts of action potentials and copies

the temporal pattern of an acoustic stimulus in a tonic manner.

Altogether these attributes make outdoor recordings of the activity

of the omega cell very suitable for studying sensory coding under

realistic, i.e. outdoor conditions in the animals’ own natural

habitat.

The study was conducted between 2002 and 2004 on Barro

Colorado Island, located in central Panama within Gatún Lake,

part of the Panama Canal. D. gigliotosi is a tropical insect living

predominantly in the rainforest understorey, and all its activity,

including acoustic communication, is restricted to the night. Thus,

all recordings were made during times after sunset (about 6 p.m.

local time) except for control measurements (see Materials and

Methods).

During some of the recording sessions, five different stimuli at

an intensity 20 dB above the threshold of the preparation were

broadcast through a speaker. The stimuli differed in duration and

the number of pulses (see Figure 1B), and were broadcasted every

10 seconds, which is within the range of the naturally occurring

intervals in the calling song of this insect [21]. Males produce

single or double syllables, repeated typically once every 10

seconds. Thus, the stimulus classes 1,2, and 3 in Figure 1B can

be seen as representative for the variation of conspecific signals.

Classes 4 and 5 are artificial stimuli that were used for control, and

never occur in this species.

Burst Coding of Acoustic Signals in Natural Habitats
A typical result for the effect of background noise on sensory

coding is shown in Figure 1. The receiver was placed within the

rainforest at 17.00 hrs 2 m from a speaker broadcasting a single

sound pulse of 10 ms, at a sound pressure level of 20 dB above the

threshold of the cell (which corresponds to intermediate distances

of 5–10 m between sender and receiver). Since a female has no

a priori knowledge about the presence of a male signal, her only

information about a signal is encoded in afferent nervous activity

such as the one shown in the upper recording.

Artificial acoustic signals, as well as some natural background

stimuli caused bursting activity in the nerve cell, i.e. it was firing at

a much increased rate compared to its baseline firing activity. We

extracted from the continuous recordings in natural habitats all

these short time segments in which the omega neuron was

bursting. Our criterion for detecting bursts in a continuous stream

of spikes required a silent interval of at least 60 ms before the start

of the burst, a constantly high firing rate of at least 33 Hz,

a minimum duration of 8 ms, and a minimum of 5 spikes within

the burst (see Figure 2D, as well as Burst Detection in Materials and

Methods for more details). In Figure 2 we illustrate the analysis of

one recording session. From the joint interspike-interval (ISI)

diagram in Figure 2A, which shows the duration of the next ISI as

a function of the preceding ISI, one can see the presence of bursts

in the recordings. By definition a burst is a period of rapid firing,

preceded and followed by a longer period of no or low activity.

The accumulation of points in the lower left corner indicates that

there are numerous periods of rapid firing, which are typical for

firing intervals within bursts. The clusters of points in the upper

left and lower right corner show that there are also many short

ISIs preceded or followed by longer intervals, which indicate the

onsets or offsets of bursts. The intervals between bursts display no

clear pattern, but the histogram of inter-burst intervals in Figure 2B

shows that most intervals are short, and the frequency of longer

inter-burst intervals decays. In Figure 2C we plotted the bursts

contained in one minute of recordings in the original order in

which they appeared. Looking only at the raw data it is not
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immediately clear which bursts belong to a common cluster, and

although the bursts are from relatively close time points, there is no

visible structure of bursts in response to environmental noise.

Characteristics of Acoustic Discrimination in Natural
Habitats
In the recording shown in Figure 1C, each burst of action

potential activity before sunset was caused by a stimulus. A

detection criterion based on bursts of action potentials or the

corresponding increase in spike rate would give ‘‘hits’’ in term of

signal detection [25]. Indeed, in all cases when there was an

acoustic signal during the experiment at 17.00 hrs, there was

bursting activity in the nerve cell and there was no, or only single

spike spontaneous activity when a signal was absent, therefore

there were no ‘‘misses’’ or ‘‘false alarms’’ respectively.

Figure 1. Experimental arrangement for long-term recordings of single cell activity in the tropical rainforest. A) Illustration of the
experimental arrangement. The inset shows the morphology of the cell within the prothoracic ganglion after intracellular dye injection (upper part),
and a prototype of the portable preparation. B) Illustration of the five stimulus classes played to bushcrickets during experiments. 1) Single pulse of
10 ms; 2) double pulse with 10 ms duration each, separated by an interval of 10 ms; 3) 30 ms pulse; 4) four repetitive pulses, 10 ms each, separated
by an interval of 10 ms; 5) 70 ms pulse. C, D) Examples of recordings made at about one hour before sunset (C), and 45 minutes after sunset (D),
when the background noise level had increased from 40 dB SPL to 65 dB SPL. Note that in the low noise situation only a stimulus (arrow) elicited
a short burst of spikes, whereas after sunset the neuron fires many bursts also in response to the acoustic background.
doi:10.1371/journal.pone.0037354.g001
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After sunset, however, this ideal situation for signal detection

changed due to the strong increase in background noise. The same

preparation at exactly the same position in the rainforest now

exhibited high action potential activity (Figure 1D), and only an

a priori knowledge of the time of signal presentation (arrow) would

allow correct detection of the stimulus. Using the same detection

criterion as in the situation before sunset would result in many

false alarms (i.e. identifying background noise as signals).

Figure 3 shows firing and bursting rates in one recording over

a longer time period after sunset, and it is obvious that while the

recordings are very stable over multiple hours, there are consider-

able fluctuations on shorter time scales, mainly due to background

noise. In this preparation, firing rates vary from 7 Hz to 17 Hz

over the time period of 200 minutes of recording, and burst rates

vary from about 0.2 to 0.8 Hz. The curves for firing and bursting

rates are visibly correlated (correlation coefficient r~0:37).
Artificial stimuli are only played every 10 seconds, and prepara-

tions typically respond with a single burst to these signals. From

the fact that the bursting rate is always greater than 0.1 Hz, one

can see that a large majority of the bursts result from background

noise (in this recording 80:5% of the bursts are noise bursts).

Apparently, analyzing neural signals recorded under natural

conditions poses different challenges in comparison to laboratory

experiments, but yields different and more realistic results. The

background noise mainly constitutes the communication activity of

different individuals and species of insects, frogs and vertebrates.

In our recordings we made sure to place the preparation at a place

in the rainforest where no conspecific males were singing. The

majority of noise therefore comes from heterospecifics with no

behavioral relevance. A second category of noise may be sound

originating from predators, such as bats.

Another additional difficulty arises because different noise

stimuli arrive at the insect from multiple directions in the azimuth

and elevation, due to the complex 3-dimensional structure of the

rainforest. Since there is a multitude of simultaneously active

senders, the animal receives a variety of sound events, and not all

Figure 2. Analysis of bursts extracted from the spike data. A) The joint interspike-interval plot for a single preparation indicates the presence
of bursts by a large cluster of points in the lower left corner, which represents periods of fast firing, and clusters of points in the upper left and lower
right corner, which indicate onsets and offset of bursts. B) Histogram of inter-burst intervals (bin size: 0.5 s). C) 13 bursts extracted from 1 minute of
the recording. The set of bursts contains 2 responses to stimulus 3 (bursts 10 and 13), 2 responses to stimulus 4 (bursts 4 and 8), and 9 responses to
different sources of environmental noise. D) Detection of bursts in spike trains. The 6 spikes in the shaded area constitute a burst, because they are
separated by time window of at least 60 ms from the first spike, the interspike-interval is never larger than 30 ms, the burst duration is longer than
8 ms and there are more than 5 spikes.
doi:10.1371/journal.pone.0037354.g002
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of them are coherent in the time and frequency domain. This is

very different from typical lab experiments, in which a single

stimulus and eventual background noise are broadcast from the

same or opposite sides of the animals.

Stereotyped Response of the Omega Neuron to Acoustic
Stimulation
The structure of bursts in response to the artificial stimulus

classes from Figure 1B becomes visible if one aligns the bursts to

the onset of the stimulus. For a single preparation, Figure 4 shows

the bursts that follow these stimuli as spike train plots and PSTHs,

respectively. Considering that the environmental noise before and

during the presentation of the stimulus is very strong and

inhomogeneous, the responses of the omega neuron to the same

stimulus are remarkably similar. The same holds for responses of

different preparations from different sessions to identical stimuli,

which is illustrated in Figure 5. In those recording sessions from

November 2003, only stimuli from class 1,2, and 4 were presented.

Also here one can observe that the stimulus aligned firing patterns

are qualitatively very similar, with slight variations in the latency of

the bursts, or the variability of firing.

Identification of Burst Patterns with Unsupervised
Clustering
After extracting all bursts from the recordings, we used a variant

of the spike-time metric by Victor and Purpura [15–17] to

compute similarities between different bursts (see 6A, B and

Materials and Methods). This similarity measure then served as the

basis for clustering spike trains into homogeneous groups, and

assigning a representative cluster exemplar to every group, using the

affinity propagation algorithm [18]. This procedure is completely

unsupervised, based only on the similarity of bursts, and not on

labels assigned to the bursts. It creates a variable number of groups

of bursts, with the goal of maximizing the similarity of bursts (with

respect to the spike-time metric) within each group, and

minimizing the similarity between different groups. The algo-

rithms are described in detail in the Materials and Methods

section.

For the first experiment we used recordings in which five

artificial stimuli were broadcast to the preparations in their natural

habitat after sunset. The five artificial stimuli used for playbacks

differed in duration and temporal structure (see Figure 1B). Bursts

that occurred at the time of the onset of the artificial stimulus were

labeled with the class of the associated stimulus. The labels of the

bursts were only used for evaluation purposes, but were not

provided to the clustering algorithm.

The result of the clustering is illustrated in Figure 6C and D.

Here the distance matrix is shown before and after the clustering

process (dark indicates large distance). Before the clustering, the

distance matrix for 1000 randomly picked bursts is displayed,

where the ordering of the burst indices corresponds to the order in

which they were recorded. The clustering process rearranged the

order of the bursts, by grouping them into homogeneous clusters,

which are displayed in the arbitrary order that is produced by the

affinity propagation algorithm (see Materials and Methods). One can

clearly recognize these groups from the distance matrix, by

observing blocks that have low inter-cluster distance, and larger

distance to other groups of bursts.

Burst Patterns in Response to Artificial Stimuli and Noise
Figure 7 shows the groups of bursts resulting from unsupervised

clustering, plotting bursts following stimuli in red, and bursts as

a result of background noise in black. On the right side we plot

a sketch of the stimulus that is assigned as label to this cluster (or N

if the cluster consists mostly of noise bursts). This label was

determined as the stimulus class with the highest percentage of

bursts in this cluster relative to its average frequency of occurrence

in the whole dataset (see Materials and Methods). This avoids a bias

towards assigning clusters to noise stimuli, which are four times as

frequent as bursts in response to the 5 artificial stimuli.

The labels of some clusters are very homogeneous, in particular

those in the upper part of the dendrogram with clusters of long

and relatively unstructured bursts, which are almost exclusively

bursts in response to background noise. These bursts are grouped

together because they have a similar mean firing rate and a similar

number of spikes, although their firing patterns do not exactly

match. Two other groups of homogeneous clusters are comprised

Figure 3. Firing and bursting rates in the natural habitat. Firing (top) and bursting rates (bottom) of the spike activity of the omega-neuron
from 21.20 hrs to 0.40 hrs at night in the natural habitat. The fluctuation in both rates is high, but firing and burst rates are correlated with
a correlation coefficient of r~0:37. The mean firing rate over the entire night is 11.5 Hz, and the mean bursting rate is 0.33 Hz. (Bin size: 1 sec for
firing rate, 100 sec for bursting rate).
doi:10.1371/journal.pone.0037354.g003
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almost exclusively of bursts in response to two artificial stimuli

(classes 4 (a four-pulse-stimulus) and 5 (a pulse of 70 ms duration)

in Figure 1B); only rarely do we find in the same cluster bursts not

elicited by these stimuli. In some cases, however, the unsupervised

clustering algorithm produced inhomogeneous clusters, which

include both bursts in response to stimuli as well as bursts in

response to the background noise. This is true for the two bottom

clusters in Figure 7A, which contain most of the bursts in response

to the 10 ms pulse (stimulus 1), but also for two clusters with bursts

in response to the 30 ms pulse (stimulus 3) and the two-pulse

stimulus (stimulus 2), which cluster together with background noise

bursts. Figure 7B shows a clustering for another recording with

a different preparation and night, and again it can be seen that

bursts following one of the longer or more structured artificial

signals (classes 4 and 5) fall into more homogeneous clusters than

bursts after stimuli with shorter pulses. Bursts following stimulus 1

are again mostly clustered together with noise bursts.

A possible explanation for this is that stimuli 1–3 are similar to

signals that can be naturally found in the acoustic background

noise of the rainforest, e.g. calling songs produced by other

bushcrickets, whereas stimuli 4 and 5 are purely artificial and

never occur in the background. One can further observe in both

plots that there are some very homogeneous clusters of bursts with

precisely timed firing patterns in response to unidentified

Figure 4. Stimulus aligned responses for a single preparation. A) Sketch of the five artificial stimuli. B) The structure of the burst spike trains
in response to artificial stimuli becomes visible if they are aligned to the stimulus onset. C) Peri-stimulus time histograms (bin size: 2 ms) for the five
classes of artificial stimuli.
doi:10.1371/journal.pone.0037354.g004

Figure 5. Bursts in response to three artificial stimuli. Recordings are from three different insect preparations (marked by different colors), and
bursts are displayed aligned to the stimulus onset. Only classes 1,2, and 4, were played at those recording dates. One can see a clear similarity of the
responses, but also different latencies and variabilities of firing.
doi:10.1371/journal.pone.0037354.g005
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background noise events. Altogether this illustrates the difficulty of

the auditory discrimination problem for the bushcricket under real

world conditions. Short and/or unstructured stimuli may lead to

false alarms from background noise signals. On the other hand,

the discriminability of stimuli can be greatly improved by using

more complex temporal structure, such as the patterns in stimulus

classes 2 and 4. Our current method finds individual burst patterns

that could serve as basic blocks for encoding more complex

stimuli, or features of stimuli, in sequences of bursts, which will be

an important topic for future research.

Occasionally, bursts for the same classes of stimuli are

distributed into different clusters (e.g. class 1 in Fig. 7A and B,

class 3 in Fig. 7B, or class 5 in Fig. 7B). Since the clustering

algorithm does not know about the labels, it does not attempt to

avoid this effect, if it can be explained by the model. Therefore it is

possible that the same stimulus leads to a single cluster in one

experiment, and two or even more in another. The biological

interpretation of this effect might be that different variants of the

same stimulus can be encoded by different clusters, e.g. due to

different background noise during the presentation of the stimulus.

However, we did not record the acoustic background during the

experiments, since this is technically very difficult to achieve in

a real-world environment with complex 3-dimensional structure

like the rainforest, and a direct mapping between sound recordings

and the acoustic stimulus sensed by the animal is in general not

possible.

Discriminability of Artificial Stimulus Classes
Figure 7 demonstrates that bursts in response to particular

classes of artificial stimuli form very homogeneous clusters, e.g.

bursts in response to the four pulse pattern (class 4). On the other

hand, some stimulus evoked bursts are mostly mixed together with

bursts in response to background noise in the habitat, or bursts in

response to different stimuli. We evaluated this separability

property of stimulus evoked bursts over data from six recordings

sessions, of which three used all 5 stimulus classes, and three

contained only stimuli of classes 1,2, and 4.

As a measure of homogeneity we used the average conditional

entropy of class labels for every cluster (see Materials and Methods).

The conditional entropy in our case is low if knowing the cluster

Figure 6. Illustration of modified spike metrics, and spike train distance matrices. A, B) Illustration of the burst-shift operator. In A, the
two bursts appear to be very different under the standard spike-time metric from [15], because there is a single (purple) spike before the pattern of
two spike triplets, and so all subsequent spike times are shifted. The burst-shift operator in B deletes the first (purple dashed) spike and re-aligns the
new first spikes of the two bursts. The distance between the two spike train then results from a relatively cheap series of spike shifts (green dotted
lines), plus the cost for deleting the initial spike. C, D) Distance matrices for a single preparation in the natural habitat before (C) and after clustering
(D). Light pixels indicate high similarity of bursts, whereas dark pixels show larger distances. The clustering process leads to the clear formation of
groups of similar bursts.
doi:10.1371/journal.pone.0037354.g006
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label reduces the uncertainty about the classes of bursts that are

found within the cluster. So in the ideal case there should be only

one class of bursts in every cluster (which means zero entropy).

Figure 8A shows the average conditional entropy individually

for every class, where the average is over all recordings sessions in

which those stimuli were used (three sessions for all 5 stimuli, three

sessions only for stimulus classes 1,2, and 4). Although these

statistics are based on only six recording sessions, and the standard

deviations are large, one can observe the same trend that was

qualitatively visible from Figure 7. The average conditional

entropy is low for classes of bursts in response to long and/or

temporally structured stimuli (classes 2,4, and 5), and higher for

the single short pulses of classes 1 and 3. This indicates that classes

2,4, and 5 can be better discriminated from other artificial or

background signals than the single pulse stimuli. Due to the limited

amount of available data, these results are statistically not

significant, and more measurements would be required.

In Figure 8B we show the confusion matrix that results from

assigning class labels to each cluster (see Materials and Methods).

One can see that the major source of errors are noise bursts being

assigned to clusters that represent artificial stimulus classes. Classes

2 and 3 are also sometimes clustered together, whereas classes 4

and 5 are mostly found in homogeneous clusters.

Similarity of Burst Patterns in Different Preparations
The two clustering results in Figures 7A and 7B indicate that

similar clusters of bursts can be found in both recordings, even

though the recordings stem from different preparations and

different recording sessions. This is even more remarkable if one

considers that the background noise in the natural habitat is far

from constant over the recording periods, since different sound

sources may be present and located at different positions in

comparison to other recording sessions in different nights, and

even years. To further analyze this similarity of neural responses,

we searched for burst clusters from one recording session that

have corresponding clusters of bursts in different recording

sessions with similar firing patterns. Starting from the previously

computed clusterings of bursts from single recording sessions, the

spike-time metric described in Methods was used to calculate all

distances between the cluster exemplars from different sessions.

For every cluster in one recording the cluster with the closest

matching exemplar in the other recording was then selected.

Since we have observed that firing patterns are characteristic for

the acoustic stimulus that they encode, a high similarity of two

clusters in different sessions would suggest that the contained

bursts are responses to the same or a similar type of sound

source. For comparison, and for understanding whether the

matching is based on the firing pattern or purely on statistical

properties like average firing rate and duration, we also

computed the average spike-time metric between bursts from

the two clusters if every spike train was replaced by an

inhomogeneous Poisson spike train, whose time-dependent firing

rate profile was given by the average population rate of all bursts

in the cluster. In all experiments we observed that the distances

Figure 7. Clusters of bursts from two recordings in the natural habitat. A) and B) show clusters of bursts obtained from two different
preparations on different recording dates. Bursts associated with artificial stimuli are plotted red, bursts associated with noise are plotted in black. On
the right is an illustration of the stimulus that is assigned as label to this cluster, or N if the cluster mainly consists of bursts is response to noise
signals. The clusters are arranged hierarchically, grouping clusters with similar exemplars together. Longer and more structured bursts form more
homogeneous groups than bursts after short pulse signals (e.g. clusters at the bottom of diagram B). Clusters in A) contain between 140 and 501
bursts, and between 145 and 328 bursts in B).
doi:10.1371/journal.pone.0037354.g007

Figure 8. Analysis of separability of bursts in response to artificial stimuli from other stimulus classes. A) Conditional entropy of class
labels given the cluster indices, averaged over six recording sessions, three in which all 5 stimulus classes were used, and three in which only classes
1,2, and 4 were used (errorbars denote standard deviations). Classes of bursts with lower conditional entropy form more homogeneous clusters.
Artificial stimuli that consist of temporally more structured and/or longer stimuli (classes 2,4, and 5) are better separable from noise or other stimuli
than single pulse stimuli (classes 1 and 3). B) Confusion matrix for assigned cluster labels vs. actual labels of bursts. In every row we plot the average
relative frequencies of burst labels occurrences in clusters that were assigned to one of the classes N ( =Noise) or 1–5. One can see that most mistakes
are due to noise bursts assigned to one of the artificial stimulus classes. Also bursts in response to classes 2 and 3 are sometimes clustered together.
doi:10.1371/journal.pone.0037354.g008
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between the Poisson spike trains were always substantially higher

than the matching distances of the cluster exemplars. This

indicates that the firing patterns of bursts inside a cluster are

much more precise than the Poisson spike trains.

We first analyze the similarity of clusters in response to the same

stimuli under two different acoustic conditions. For several

preparations we recorded the response to artificial stimuli in the

laboratory, and for others outdoors. Obviously these recording

conditions are very different, because the majority of bursts

(around 80%) in outdoor recordings stem from background noise,

while in the laboratory bursts occur almost exclusively in response

to artificial stimuli (only 2:7% of all bursts result from spontaneous

activity).

In Figure 9 the clusters of bursts found in a laboratory

experiment, in which only artificial stimuli of classes 1,3, and 4 (see

Figure 1B) were broadcast, were matched to clusters from outdoor

recordings (the burst labels are not used for the matching). As can

be seen from the comparison of clusters, there are very close

matches of laboratory-burst clusters to clusters from outdoor

recordings. On the other hand, the responses to the four-pulsed

stimulus in the laboratory condition reveal a more precise timing

of spikes within the bursts compared to the responses recorded

outdoors. This indicates that the specific acoustic conditions of the

noisy nocturnal rainforest caused some changes in this timing

within bursts. Still, even in the presence of this strong distracting

noise, the omega neuron responds with a very similar pattern, that

significantly simplifies the decoding tasks for higher processing

areas.

In a similar way we matched clusters of bursts from different

outdoor recording sessions, in which the activity of omega neuron

from different animals was recorded at different nights (sometimes

in different years). The examples of cluster matching results in

Figure 10 show that also under these conditions it is possible to

find close matches for some clusters of bursts. Comparing the

similarity indices D in Figures 9 and 10 would indicate that some

of the cluster matches between different animals in different

outdoor recording conditions are closer than the cluster matches

between outdoor and laboratory recording conditions. The reason

for this might be the lower number of spikes under lab conditions,

due to the complete absence of noise. The matching distance is

substantially lower than the distance of Poisson spike trains with

identical statistics, which indicates that the precision of firing in

both preparations is higher than can be explained by a stochastic,

purely firing-rate based model.

On the other hand, the cluster matching procedure also

revealed several clusters of bursts for which no good match in the

other recording session was found. This holds in particular for

clusters of long bursts without clear temporal structure, which

typically result from background noise. Such clusters have

a substantially higher distance D to the best matching cluster,

which is due to the fact that these bursts include more spikes,

and so more shifts or insertions may have to be made in order to

transform one spike train into another. Bursts within these

clusters do not show the precise temporal signature that could be

observed in the previous analysis, and could arise e.g. in response

to senders in the background with temporally extended calls and

low amplitude modulation. Such long stimuli also have a higher

probability of being interrupted by another stimulus of higher

behavioral relevance. It is therefore not unexpected to find

higher variability in these burst patterns, both within the same

preparation and between different preparations.

Similarity of Burst Patterns in Simultaneous Recordings of
Homologous Cells
In the previous section we compared the similarity of burst

activity in the omega-neuron between lab and outdoor record-

ings, or between different cells in different nights. The ‘‘biological

microphone approach’’ offers in addition one unique opportunity

Figure 9. Matching of laboratory burst clusters to outdoor recordings. Clusters of bursts from laboratory recordings (black), matched to
clusters of bursts from outdoor recordings (red). Four examples of matched clusters (in response to stimulus classes 4 (top left), 3 (top right), and 1
(bottom left and right) are shown. For these laboratory clusters, closely matching clusters are found in the outdoor recordings. D defines the distance
between the exemplars of the two matched clusters under the spike-time metric. As a comparison, the numbers in parentheses give the average
distances between Poisson spike trains with identical time-varying firing rate profiles.
doi:10.1371/journal.pone.0037354.g009
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to test the power of our method, by comparing the burst

responses of omega cells from two different preparations

recorded simultaneously, and placed next to each other, so that

they experience the same acoustic events. For the experiment

presented in Figures 11 and 12 the two preparations were placed

in the nocturnal rainforest, at a distance of about 10 cm from

each other, so that they were exposed to the same acoustic

environment. Prior to these recordings, the threshold of each

omega-cell in response to a pure tone, 20 kHz stimulus was

determined in the laboratory, and one preparation was 5 dB less

sensitive compared to the other preparation. In this experiment,

no artificial sound stimuli were broadcast to the preparations, so

all bursts had been elicited as a result of background noise alone.

Figure 11A shows a short sequence of the original spike

recording of both cells, and in Figure 11B the firing and burst

rates of both cells are illustrated for a sequence of continuous 20

minutes of recording. The gross firing and bursting pattern of

both cells is rather similar (Figure 11A), although the less

sensitive cell exhibits a reduced firing rate (Figure 11B). The

firing rates are actually correlated with a correlation coefficient of

r~0:34, the bursting rates are correlated with r~0:27.
Even though the firing behavior of the two omega-cells is

slightly different due to the threshold difference of 5 dB, one

should find similar spiking patterns in the bursts, as the two

preparations had been exposed to the same background noise.

For both preparations the bursts were extracted, which results in

936 bursts for preparation 1 and 726 for preparation 2. We used

the affinity propagation algorithm to find clusters in the

aggregated set of bursts from both preparations. Figure 12A

shows the resulting cluster dendrogram, where bursts from the

first preparation are drawn in red, and bursts from the second

preparation in black. Every cluster contains bursts from both

preparations, and the relative frequencies of bursts originating

from either preparation are balanced. On average, 55:8% of the

bursts in every cluster are from preparation 1, which is a result of

the higher number of bursts extracted from preparation 1. The

minimum percentage of bursts from preparation 1 in any cluster

is 28:5%, and the maximum percentage is 73:3%. We also show

in Figure 12B for every burst in the two preparations the spike-

time distance of the closest matching burst in the same, and in

the other preparation. One can see that those distances scatter

around the diagonal, which indicates that for every firing pattern

in one preparation we can find a similar one in the other, which

is not a worse match than other bursts in the same preparation.

If one looks at the exact spike times of the two preparations, one

can see in Figure 12C the relative frequency that within a time

window of Dt before and after a spike in a burst in one

preparation there is a spike in a burst in the other preparation.

In more than 20% of the cases there is a spike within 1 ms, and

in 80% of all cases there is a spike within 10 ms. This shows that

even though the two preparations do not fire at exactly the same

time, they will frequently fire within a short time window after

each other.

All these results suggest that there are no firing patterns that are

uniquely found only in one preparation, but not in the other. Even

though individual burst responses of the two preparations at any

time may show stronger variations, the global bursting patterns in

response to the same acoustic background are very similar for

different preparations. This result provides further evidence for the

remarkably well preserved burst-coding mechanism in response to

complex real-world auditory stimuli that is shared by individuals of

this species. In the following Discussion we will analyze the

significance of these results for communication under real-world

conditions.

Figure 10. Clusters of bursts from two different outdoor recordings and their best matching cluster. The examples show matches for
burst clusters in response to natural background noise. D defines the distance between the exemplars of the two matched clusters under the spike-
time metric. The numbers in parentheses give the average distances between Poisson spike trains with identical time-varying firing rate profiles.
doi:10.1371/journal.pone.0037354.g010
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Discussion

Coding Problems for Stimuli in the Natural Environment
For the two major tasks of sensory systems of object

classification and discrimination the central nervous system needs

to interpret the ongoing afferent spike activity. Consistent with

a number of previous studies on sensory coding in different

modalities we view short bursts of action potentials as the basic

units for the representation of information. The importance of

bursts, in contrast to single spikes, has been discussed in the

context of the efficiency of synaptic transmission and thereby

synaptic plasticity [7], in the selective distribution of information to

different target neurons [26], or the dynamics of encoding

behaviorally relevant stimulus features [4,27–30]. Bursts can be

viewed as robust symbols for the neural coding alphabet; they can

carry information in their duration, the number of spikes, or the

exact timing of the firing pattern, and specifically tuned synapses

may read out such a code easily [31].

However, classification and discrimination are severely im-

paired by variation in afferent spike trains, either as a result of

Figure 11. Firing and bursting during simultaneous recordings. A) Short sequence of the original spike recording of both cells recorded
simultaneously. B): Firing and burst rates of both cells for a duration of 20 minutes. The firing rates of preparation 1 and 2 are correlated with
a correlation coefficient of r~0:34. The burst rates are correlated with r~0:27. Mean firing rates over the entire 20 minute recordings are 9.98 Hz
(preparation 1) and 12.20 Hz (preparation 2), and mean bursting rates are 0.53 Hz and 0.41 Hz respectively. (Bin size: 1 sec for firing rate, 100 sec for
bursting rate).
doi:10.1371/journal.pone.0037354.g011
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intrinsic noise in nervous systems, or external noise resulting from

interactions of the stimulus with the transmission channel. A

further source of variability of high relevance for a receiver is

introduced as a result of small differences in the features of signals

from different sources, such as the signals of mates. Ronacher et al.

[9] reviewed the sources of spike train variability and the

associated problems and constraints for producing adaptive

behavior in grasshoppers. In the case of the auditory system,

a further problem results from the background noise of many

natural environments, so that relevant stimuli (and stimulus

variants) have to be discriminated from irrelevant background

noise. Research in the past decade demonstrated that the auditory

system of many animals evolved mechanisms to cope with such

noise [32].

In all comparable studies of neural coding with bursts in the

past, preparations were studied under controlled conditions in the

sound proof lab. The studies by [33] in grasshoppers and [34,35]

in songbirds, for example, played back previously recorded songs

of conspecifics, and investigated how the individual songs can be

discriminated from the neural response of auditory receptor cells

[33] or cortical neurons [34,35]. Another common approach to

study neural coding is to use time-varying (often random) artificial

stimuli, and measure how accurately the whole stimulus, or certain

features of the stimulus, can be reconstructed from the neural

response in-vitro or in-vivo [27–30,36,37]. The main advantage of

these methods is that the experimenter has full control over the

stimuli (e.g. to modify their duration or amplitude), and eliminates

distractor signals. On the other hand, the complete absence of

environmental noise creates an artificial scenario for the receiver,

which may hide the influence of potentially important selective

attention mechanisms [38,39].

In contrast to these previous studies we investigate here the most

realistic possible scenario for sensory coding, using stimuli and

neurophysiological recordings directly in the natural habitat of the

organism. We did not attempt to correlate the bursts in the omega

neuron with simultaneously recorded sound stimuli, since it is

Figure 12. Similarity of burst patterns in two simultaneously recorded preparations. A) Clusters for the aggregated bursts of two omega-
cell preparations recorded simultaneously in their natural habitat; no broadcast of artificial stimuli. Bursts from preparation 1 are drawn in red, and
bursts from preparation 2 in black. Every cluster contains about half of its bursts from one preparation. B) Spike-time distance of the most similar
burst in the same preparation in comparison to the most similar burst in the other preparation. The clustering of points around the diagonal shows
that for every burst in one preparation the distance of the closest match in the same and in the other preparation are almost identical. C) Similarity of
spiking times within bursts. For every spike at time t in a burst in one preparation we compute for different time windows Dt how often there is
a spike within a burst in the other preparation in the time window ½t{Dt,tzDt�. We find that 65% of all spikes have a corresponding spike in the
other preparation within a 5 ms time window, and 80% within a 10 ms time window.
doi:10.1371/journal.pone.0037354.g012
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almost impossible to characterize the acoustic environment and all

its relevant features with technical sensors like microphones, for

several reasons. First of all, high-frequency microphones would be

needed to record in the frequency range relevant for the

bushcricket, with absolute sensitivities about 20 dB less than the

insect ear. Then, an array of microphones would be required to

characterize the direction of a sound, but each single microphone

has a much stronger directionality, compared to the insect

preparation. Even if one provided all this technical effort, it would

not yield the desired results, simply because the insect hears

something different [13,14]. A burst in the omega neuron would

therefore often find no counterpart in the sound recording. We are

fully aware of the fact that the selected neuron is a first-order local

interneuron that does not provide information to higher brain

centers via an ascending axon. We do not argue, though, that the

omega-cell in katydids represents the neuronal element for signal

discrimination. Rather, we used this cell because it integrates most

of the activity of auditory receptors in the ear, as an indicator for

the information that can be extracted from the timing of spikes in

its discharges. It has been shown, however, that in the auditory

pathway of katydids such interneurons do exist, with broadband

tuning and tonic responses similar to the omega-cell [40].

In addition to the new methodological approach for recordings

in natural habitats, this paper explores the use of a new method for

unsupervised clustering of data, based on probabilistic inference.

We can thus ask how much information an organism can extract

from bursts without ever being told by a postulated ‘‘supervisor’’

which type and which variants of bursts are characteristic for

a particular stimulus.

It is now widely agreed that the encoding of stimuli by sensory

neurons is adapted to the statistics of stimuli in the environment in

which an organism lives [41]. Variants of Barlow’s efficient coding

hypothesis, for example, have been studied for over 50 years

[42,43]. The hypothesis suggests that stimuli that occur frequently

in the natural environment are encoded particularly efficiently by

sensory neurons. Under this hypothesis the benefit of particular

coding schemes for natural stimuli can be quantified with tools

from information theory. Early studies for the visual system [42]

have also suggested that early sensory neurons reduce redundan-

cies in the input, in order to use available computing resources

most efficiently. A similar argument was made in the ‘‘matched

filter hypothesis’’ in that rather peripheral ‘matched filters’ may

relax the nervous system from computational strain [44,45]. A

more recent review of the implications of the efficient coding

hypothesis for visual systems can be found in [46]. As is pointed

out in this review, efficient coding of natural stimuli should not be

studied in isolation, but must also take into account the robustness

of neural representations to noise in the environment and

stochastic processes at the neuronal level.

The efficient coding hypothesis has recently been challenged by

[47], using a comparative study of homologous neurons in two

grasshopper species. They demonstrated that stimuli of high

relevance for one species were processed in the afferent auditory

system of the other species in exactly the same, quantitatively

indistinguishable way, although being ‘‘meaningless’’ in terms of

any behavioral relevance (for a similar finding see [48]). This

suggests that neuronal elements of the sensory system have been

strongly conserved during the evolutionary convergence of the two

species. Similarly, in our study we used as a model system a single

interneuron, the so-called omega neuron, which has been

identified in all species of crickets and bushcrickets so far studied

[19]. We do not argue, therefore, that the burst coding we found

in our study demonstrates specific adaptive properties of the

species under study. Rather, we chose to use this insect

preparation because of the simple architecture of insect auditory

pathways, and their remarkable precision and discrimination

abilities in general [49–51]. A further reason was that the

interneuron is part of an early processing stage, directly post-

synaptic to almost all 20–40 auditory receptor cells in the ear [23],

so that it integrates signals from almost all receptor cells and a wide

range of carrier frequencies from less than 10 kHz far into the

ultrasonic range. Thus, monitoring the activity of the cell directly

in the animals’ own environment provides information about the

complete acoustic input of the animal under study, encoded in its

spike activity. Therefore, our study is among the first to investigate

sensory coding under the natural environmental conditions of an

organism, instead of idealized lab conditions.

Detecting Spike Patterns with Unsupervised Learning
We have used clustering as an unsupervised tool to detect burst

patterns in raw neural recordings. Bursts are characterized by their

similarity to all other bursts, measured by a spike metric [15–17].

In a good clustering, bursts that are grouped into the same cluster

are similar to each other, but dissimilar to bursts in other clusters.

The result of a clustering therefore provides a characterization of

different spike patterns that occur frequently in the recorded spike

train. Our clustering is based on exact firing patterns, but it is also

possible to compute clusterings based on numerical features

extracted from bursts (such as firing rate, duration, …), or by

binning spike trains into discrete time windows [37]. The

disadvantage of these methods is that substantial information

about the temporal structure of the bursts is already lost by

replacing the exact pattern with a lower-dimensional feature

vector. In our non-parametric approach we work with the exact

spike times, and only lose information by going from the original

dataset to the matrix of spike-train distances, which usually

preserves most of the structure in the data.

The results obtained with unsupervised clustering demonstrate

t’hat information in the omega neuron is not simply encoded by

the presence or absence of a burst. The reliability of burst coding

in the time domain was very high, so that bursts in response to one

of the presented stimuli clustered differently from bursts in

response to background noise. However, this was only true for

longer bursts, or bursts resulting from repetitive, temporally

structured stimuli (e.g. class 4; Figure 1B). It was difficult to

distinguish neural responses to short pulse signals from acoustic

background noise, since they often clustered together with bursts

induced by the background. This would indicate that reliable

coding of short signals with little amplitude modulation is severely

impaired under high background noise conditions of the nocturnal

rainforest. For the communication of the investigated species, and

a number of other katydid species (in particular the Phaneropter-

inae) this has important implications. In our analysis of male calls

of more than 20 species the majority uses sound pulses of less than

10–20 ms in duration, so that burst responses to these pulses

would likely cluster with bursts in response to heterospecific

signals, as shown for those of D. gigliotosi. Moreover, the coding

task is substantially more difficult in species with extreme low

signal duty cycles. In the case of D. gigliotosi, one short sound pulse

is produced once every 10 seconds, and in the most extreme case

of another phaneropterine katydid this is one for every 3 minutes.

Our data indicate that in the long periods between two signals

there are many sensory bursts elicited by the background of high

similarity with the bursts induced by the signals. In most species,

however, these pulses are either produced in a species-specific

repetitive way or differ in some finer details of amplitude

modulation.
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Evidence for the importance of bursts for insect auditory codes

comes from in vivo studies in grasshoppers. Studies in Locusta

migratoria receptor neurons under lab conditions revealed that

a neuronal code based on the burst onset time and type (defined by

the number of spikes in the burst) preserved most of the

information about acoustic stimuli [52,53]. These studies also

showed that the stimuli encoded by different burst types are

significantly different from what would be obtained by a combi-

nation of single-spike triggered averages for the spikes within

a burst. Creutzig et al. [54] showed that burst responses of the

AN12 acoustic interneuron of L. migratoria and Chorthippus biguttulus

are preferentially triggered by the onset of syllables of communi-

cation signals. Furthermore, the number of spikes inside a burst

can serve as a timescale-invariant encoding of behaviorally

relevant information, such as the duration of the pause preceding

the syllable.

Depending on the individual preparation, the particular re-

cording session, and the parameter settings, the clustering revealed

a variable number of different clusters of bursts over the period of

some hours (see e.g. Figure 7). If we assume that these different

bursts are representations of different signalers, the data give some

hints for the requirements of the discrimination task(s) of insect

receivers. The number of variants to be discriminated (and thus

the difficulty of the task) will affect the speed and accuracy with

which it is solved, and can result in speed-accuracy trade-offs in

animal decision making [55]. First, they need to distinguish

conspecific mates and rivals from heterospecific (irrelevant)

signalers. This task is probably the easiest, because the

amplitude-modulation of most insect calling songs differ from

species to species considerably [56], as should be the case with

their representation at early stages of the afferent sensory system.

Nevertheless, the transmission channel for sound can impose

strong fluctuations on these amplitude modulations [13,57,58], an

effect which increases with distance, so that even this classification

task is not without any problems. Furthermore, the probability of

signal interference increases with the number of signalers

obscuring important features necessary for species recognition.

We have seen in our comparison of bursts always recorded at the

same position in the rainforest, but at different nights (or years),

that some bursts cluster very close together (see quantitative values

of D). This would indicate that the specific amplitude-modulated

signal of the same individual (or species) elicited rather similar

bursting activity in the different receivers, so that these species-

specific signals appear to be well represented in the sensory system.

The second task, namely the discrimination between different

variants of signals produced by different signalers of conspecifics, is

certainly more demanding. In their study on the representation of

such variants in grasshopper receptors Machens et al. [33] have

shown that the precise timing of spikes would indeed allow such

discrimination under ideal laboratory conditions. However, in the

real world situations the precise timing of spikes will be modified

by background noise or transmission effects, so that such signals

(and their variants) need not only be classified as relevant and

different from the acoustic background, but there is also the need

to discriminate strongly against any burst activity as a result of

predator action/vocalisation. Acoustic insects face a variety of

such predators, and one of the best studied are the defense and

avoidance behaviors in response to insectivorous bats [59,60].

Behavioral studies on crickets indicate that the discrimination of

‘‘good’’ and ‘‘bad’’ (conspecific from predatory bats) is based on

categorical perception [61], and is rather reliable, since it is based

on input within a low-frequency and an ultrasonic frequency

channel. In bushcrickets, such a discrimination based on frequency

is impossible, since conspecifics and bats use similar carrier

frequencies. Thus, the important information about predators

must be based in the amplitude modulation as well, and should be

present in afferent bursting activity recorded at night. For

example, in the predator detection system of noctuid moths,

Waters [62] demonstrated that even intrinsic noise in the form of

spontaneous action potentials may reduce the ability of moths to

discriminate bat from non-bat signals. He proposed that a moth

would only be able to recognize an approaching bat from the

repetitious nature of the search calls of a bat. This stimulus feature

of echolocation signals was found to be preserved in the spiking

response of auditory neurons recorded in katydids that were

exposed to natural rainforest noise, a fact that allowed the

development of a ‘‘neuronal bat detector algorithm’’ [63].

This points to a need for further refinement of our approach,

since the algorithm so far developed does not allow for clustering

repetitive bursting activity, which should be elicited by the 7–

20 Hz repetition rate of echolocation calls in the search phase of

bats. Similarly, many acoustic insects use characteristic repetition

of the same basic call elements, which could also not be detected

by the presented algorithm. The classes of bursts identified by

our method could, however, be used as a starting point for

identifying longer burst sequences in hierarchical approaches. We

expect that the identified firing patterns of bursts will serve as

robust symbols in the neural coding alphabet, and their temporal

alignment provides relevant information about the identity,

location, and other important characteristics of an acoustic

sender.

Most remarkably, preparations from different nights show a very

high degree of similarity (as quantified by the similarity index D),

both for outdoor conditions and recordings in a sound proof room.

This indicated a high sensitivity of the algorithm for the details of

the temporal firing pattern within bursts, since the same

homologous cell in different preparations placed at the same

position in different nights may experience the same/similar

broadcast signals of other animals, and these elicit a rather similar

firing pattern. Precise firing times may thus rather encode

important features of the stimulus, especially for stimulus features

with high behavioral importance, instead of being artifacts of noise

in spike generation mechanisms. In the fly, experiments in visual

neurons under lab conditions have shown that the amount of

information about the current stimulus carried by temporal

patterns is 50% higher than the amount of information carried

by firing rate alone [37].

We also found a higher degree of similarity between burst

responses to the same stimulus in two different outdoor recordings,

compared to responses in the sound proof lab. Whether this can be

attributed to the gain-control mechanism of the omega neuron

[38,39], which may be activated by high levels of background

noise, and thus alter the finer details of temporal firing within

a burst, or whether it simply is an effect of sparse coding in the

absence of noise requires further investigation.

Comparison of Unsupervised Learning Techniques for
Spike Data
Spike-metrics, which we use in our approach for computing

similarities of spike trains, have been used in a number of other

studies for auditory discrimination. [35] and [34] analyzed the

time scales at which different conspecific songs could be

discriminated by auditory cortical neurons of songbirds under

idealized lab conditions. Using the Victor-Purpura [16] and van

Rossum [64] spike metrics with different temporal resolutions,

they could show that the best performance was reached for spike

timing metrics with short time-scales, which emphasize precise

firing times in contrast to firing rates. In contrast to our
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unsupervised approach, their learning framework was based on

supervised classification, i.e. template patterns for every sender

were known. In a similar approach, Machens et al. [33] used the

van Rossum metric [64] for supervised spike train discrimination,

and showed that individual calling songs of grasshoppers can be

discriminated reliably at the single receptor level, if a metric with

high temporal resolution (5 ms) is used.

Finding firing patterns in spike train recordings requires

a clustering algorithm which is suitable for this kind of data.

Spike trains are not objects in Euclidean space, which is required

for basic clustering methods like k-means. We have presented one

of the first applications of the affinity propagation algorithm [18]

to neural recordings. Previous application of affinity propagation

have used it for spike sorting [65], for identifying voxels in fMRI

data with similar spectro-temporal response properties [66], and

for identifying groups of neurons that are either anatomically

strongly connected [67], or fire synchronously [68]. However, to

the best of our knowledge this is the first time that affinity

propagation has been used to detect bursting patterns in spike

recordings. Affinity propagation is fast, reliable, and does not

require a lot of parameter tuning for finding suitable firing

patterns.

Unsupervised methods for finding firing patterns were first used

in [69] and [70], using spike metrics and a fuzzy k-means

algorithm on the Euclidean space of distance vectors between all

spike trains. With this method they could identify various spike

patterns in response to artificial stimuli for recordings from rats,

monkeys, and cats. Their approach of encoding one spike train by

the distance vector to all other spike trains is only practical for

relatively small datasets, because the feature vectors become larger

with every new training example, and clustering becomes in-

creasingly difficult in higher dimensional feature spaces. The last

point is not a problem for affinity propagation, because it does not

embed the data in a feature space, and instead uses only distances

between data points. Memory limitations are still an issue, but in

this study we could apply affinity propagation to very large

datasets with more than 10,000 bursts, and in [18] there are

suggestions for efficient approximations to handle even larger

problems by using sparse distance matrices (these approximations

were not used in our study).

An alternative information-theoretic method is used in [36,37],

where spike times are binned into 2 ms time windows, and

a distribution over binary ‘‘codewords’’ for spike trains preceding

common stimuli is computed. The similarity measure is then the

Jensen-Shannon divergence between codeword distributions.

This method is suitable for experiments under lab conditions,

where the stimuli can be precisely timed, and a distribution of

responses can be calculated through multiple presentations of

identical stimuli. In [36] it was used for studying the neural code

of H1 neurons in the fly visual system. Their approach is quite

different from our approach towards identifying spiking patterns,

because clusters are formed in stimulus space, rather than in

response space. It reveals groups of stimuli that cause similar

neural responses, rather than firing patterns that occur frequently

in the response spike train.

Conclusion
This study illustrates the importance of studying neural coding

under the most natural possible conditions. Many species have

evolved mechanisms to perform reliable discrimination and

classification of behaviorally relevant stimuli in extremely noisy

environments. An understanding of these mechanisms is not

possible from recordings in isolated laboratory conditions, and by

using completely artificial stimuli and no or artificial background

noise. The methods presented in this paper provide a powerful

toolbox for analyzing temporally precise neural codes, and

understanding robust mechanisms for recognition of sensory

inputs under noisy real-world conditions.

We have shown here that different bushcricket individuals in

their natural habitat exhibit remarkably similar and precisely

timed coding properties in their omega neurons in response to

both artificial and natural stimuli in the background. This points to

a common intrinsic mechanism in the omega neuron that may

facilitate the processing task of higher areas in the insect brain.

Using patterns of bursts as primitive elements in higher-level

auditory recognition might be a candidate mechanism for solving

difficult classification tasks, such as inferring whether a sound in

the same frequency band was caused by a conspecific, hetero-

specific, or a predator, while maintaining the temporal precision to

identify differences between variants of conspecific senders.

Materials and Methods

Animals and Physiological Preparation
Recordings were obtained from the omega neuron of 27 adult

male and female bushcrickets (Docidocercus gigliotosi). The methods

of the preparation and for obtaining extracellular action-potential

recordings of the neuron have been described in detail in [71]. In

short, the prothoracic ganglion was surgically exposed in

a preparation ventral side up and the tip of an electrolytically

sharpened tungsten electrode (0:7{1:3MV resistance) was

inserted into the anterior part of the ganglion, slightly lateral to

where the neurite of the omega-neuron crosses the ganglionic

midline (see Figure 1A). Then the opening in the cuticle was sealed

with petroleum jelly to prevent dessication.

Field recordings were performed on Barro Colorado Island

(BCI), located in central Panama within Gatún Lake, part of the

Panama Canal, at times after sunset (typically 6 p.m. local time).

Data collection took place in February/March, June/July, and

November 2002,2003 and 2004. First, the preparation was tested

for intrinsic spontaneous activity and for its response to the stimuli

without background noise in an anechoic chamber in the

laboratory. Background noise level in this chamber was below

30 dB SPL and thus below the threshold of the omega-cell

preparation. Five different stimuli were broadcast through

a speaker (TW8 spezial) at an intensity of either 10 or 20 dB

above the threshold of the preparation. The carrier frequency of

the stimuli was constant at 20 kHz, but the number and duration

of pulses was different for every stimulus class (see Figure 1B). The

rise- and fall-time of all sound pulses was 1 ms. Stimulus intervals

were 10 seconds, which is within the range of the naturally

occurring intervals in the calling song of this insect [21]. Action

potential responses of the omega cell were digitally recorded at

a rate of 20 kHz together with the trigger for a stimulus, on

separate channels of a data acquisition system (PowerLab,

ADInstruments Inc.).

After completion of the control experiments indoors, the

preparation with the single cell recording was mechanically stable

enough to be transferred to a position within the rainforest about

200 meters from the lab, and fixed at a distance of 2 m from

a speaker at a height of 1 m from the ground. The same

stimulation regime as in the laboratory was used for outdoor

recordings. Since some recordings lasted for several hours (max of

9.5 hrs), at the end of a stimulation regime we controlled for

a change in sensitivity of the preparation. If the sensitivity was

decreased by 5 dB or more (which happened in four cases), the

recording was discarded.
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Burst Detection
The goal of the burst detection mechanism is to extract from

several hours of spike recordings those short segments in which the

omega neuron is bursting. A burst in a spike train can be

qualitatively defined as a short sequence of spikes with high firing

rate, separated by time windows of low or no firing. There is no

exact mathematical definition of what constitutes a burst, and

many different approaches for burst detection in a sequence of

spikes have been proposed (e.g. [52,72–75]). Furthermore, every

approach needs to be slightly tuned to the parameters of the

neurons under investigation, because different neurons may have

slightly different background firing rates or refractory periods.

For our study we defined a heuristic set of rules to extract bursts

from the recordings, which is similar to the method used in [72].

Before a burst starts, there must be a time window of at least 60 ms

in which no spike occurs. The first spike of a burst must be

followed by another spike no later than 15 ms afterward. The end

of the burst is detected when the first time interval of 30 ms or

longer occurs, or if two consecutive intervals combined are longer

than 45 ms. A burst is only accepted as such if it contains at least 5

spikes and is longer than 8 ms. Figure 2D illustrates the criteria

that define a burst.

This set of rules could reliably extract all bursts from the

recordings, which are often obvious from visible inspection. A

variant of this algorithm has been used for previous studies [21].

Other burst extraction methods did not lead to a (subjectively)

better performance.

When artificial stimuli were broadcast to the animals, most

stimuli were followed by a burst in the omega neuron with a short

latency of about 10 ms. We associated stimulus and burst if the

onset of the burst occurred not more than 50 ms before or after

the onset of the stimulus (the burst may start before the stimulus if

the burst detection algorithm includes spikes elicited by back-

ground noise immediately before the stimulus associated burst

begins). Every burst was assigned one of 6 class labels: it is either

associated with one of the five different stimuli (see Figure 1B), or it

is a noise burst, in response to a random signal in the acoustic

background.

Spike Metrics
Spike train data typically comes in the form of sequences of

firing times of variable length, which is not compatible with the

requirements of traditional machine learning methods to receive

inputs in the form of fixed-size, real-valued vectors. One can

circumvent this problem by discretizing the spike trains into time

bins, or extracting sets of numerical features, but both methods

inevitably lead to a loss of information and temporal precision.

Preserving temporal precision in spike timing is a necessary

prerequisite for the analysis of auditory neural codes, where fast

temporal fluctuations provide important information about the

nature of the incoming stimulus. One way to analyze neural data

without further preprocessing, is to use non-parametric machine

learning methods (see e.g. [34,35]), which only require a similarity

measure between data points.

In order to find re-occurring burst patterns in neural signals,

one therefore needs an objective measure of how similar two bursts

are. Many different similarity measures [17,64,76,77] and kernel

functions [78,79] for sequences of spikes have been proposed in

the literature.

We chose to use the spike-time metric by Victor and Purpura

[15], which computes the minimal costs of transforming one spike

train, represented by the times of spikes, into the other. The

algorithm applies three operators with variable costs for the

transformations: Insertion or deletion of a spike at an arbitrary

time point constitutes a cost of 1. The third operator is a shift of

a single spike time, which has a cost of q:D, where D is the duration

of the shift, and q is a parameter (with unit 1/ second) that needs to

be defined in advance. High q will tend to prefer insertion and

deletion of spikes to shifting, so small spike-time differences have

a large influence on the distance. Low q, on the other hand, is

more tolerant with respect to small spike-time differences, so the

dominating factor is the difference in the number of spikes in the

two bursts. Shifting is preferred to insertion and deletion as long as

two spikes occur within an interval of 2=q seconds [17].

Since the calculation of the distance matrix for a particular

value of q and subsequent clustering for a dataset with up to

20,000 bursts is very time consuming (up to 24 hours per

recording), we had to determine the choice of the metric and

a suitable value for q a-priori. For this experiment, we used one of

the smaller datasets, which contains 3936 bursts. The decision to

use the spike-time metric from [15] was based on results from

a supervised classification experiment, in which we compared the

performance of a k-Nearest Neighbor classifier (for k between 1

and 7) for different metrics and q values. The other metrics we

tested were the van Rossum metric [64], and the Victor-Purpura

interspike-interval distance [17], for various choices of the metric

cost parameters.

For the final choice of the q-parameter of the spike-time metric

we computed the differences between the average spike train

distances of bursts of different classes, compared to the distances

within the same class. A high difference indicates that the different

classes can be well discriminated. Our analysis for q-values

between 0 and 1000=s showed that bursts of different classes can

be best discriminated using values of q between 50 and 200=s (see
Figure 13A). After visual inspection of the clustering results for

several values of q between 50 and 200=s, we identified q~125=s
as the parameter which in general led to the best results, based on

homogeneity of the clusters, the resulting number of clusters, as

well as silhouette values [80], which are indicators of cluster

qualities. We also found, that the same value of q~125=s
produces very good results for all recordings, but we did not

attempt to optimize q for every single session.

The significance of using the parameter value q~125=s is that
in the metric the cost for deleting or inserting a spike is the same as

shifting a spike for 16 ms. This does not mean, however, that

spike-time differences of less than 16 ms are neglected in the

metric, but rather should be seen as a relative indicator of

precision. In the February 22 dataset used for detailed analysis, we

find an average spike timing distance of 12.2 between all bursts, in

comparison to an average difference in the number of spikes of

7.8. Obviously, the spike-count difference is a lower bound for the

Victor Purpura metric, and for bursts with an identical number of

spikes, only the setting of q determines the range of values observed

for the metric. For q~125=s, bursts that have the same number of

spikes have an average distance of 4.98, which is mostly due to

shifts. Bursts of identical length from the same class are even

closer: two bursts from the same stimulus class have an average

distance of 1.68, and the average distance between noise bursts is

4.43. In Figures 13B we show how the average distance of bursts

with identical spike count and from the same class changes with q.

The two curves show the average within-class distance for stimulus

bursts (computed separately for all 5 classes, and then averaged),

and for noise bursts. The more irregular class of noise bursts has

a higher average within-class distance for q values below 550=s.
For higher q-values the noise bursts appear to be more similar on

average than stimulus bursts, but at the same time, the variance of

the distance values grows much stronger than for the stimulus

bursts (not shown here). For decoding, one would like to have
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lower distances between the more stereotypical bursts in response

to artificial stimuli and high distances between the irregular noise

bursts, which is fulfilled by our choice of q~125=s. Figure 13C

shows for q~125=so the distribution of distance values for bursts

from the same class and with identical spike count. One can see

that the within-class distances for stimulus bursts are lower and

more concentrated than for noise bursts.

Although we made use of the supervised label information to

determine a good value for q, it is important to note that this

information is never used in the clustering, and that this does not

violate our claim that bursts can be categorized based only on the

similarity of their firing patterns. Although we do by no means

claim that bushcrickets use the same metric, it is easily imaginable

that a parameter like q could be tuned by evolution, since it only

indicates how much deviation from an expected pattern can be

tolerated in order to recognize a well-known stimulus. We view

our results as a first step towards demonstrating the potential of

unsupervised machine learning methods for the analysis of spike

patterns in real-world spike train recordings, and do not claim that

our results are ‘‘optimal’’, especially since there is no unique

criterion for judging the optimality of a clustering result.

One problem with the automatic detection of bursts is that

spikes that are results of background noise, rather than responses

to the stimulus that caused the burst, may occur shortly before the

beginning of a burst. These spikes cannot be separated from the

rest of the burst if they fulfill all criteria for a burst spike. For the

metric proposed in [15], a burst that is temporally shifted because

of noise spikes before the actual burst can look very different from

another burst with the same temporal pattern, but without initial

noise spikes (see Figure 6). We therefore modified the metric of

[15] and introduced another operation, the burst-shift operator.

The burst-shift operator can delete up to Nshift initial spikes from

every burst for a cost of 1 per spike. It then re-aligns the two spike

trains by shifting all spike times such that the new first spike occurs

at time 0. The distance between the remaining spike trains is

computed with the standard metric from [15], and added to the

cost of deleting the initial spikes. This operation is different from

deletion of single spikes, because it shifts all subsequent spike times

within the burst by a constant value. This is sensible for our task,

because we are not interested in absolute firing times, but only in

firing patterns relative to the burst onset. For our purposes we set

Nshift~5. This compensates occasional unavoidable errors in the

burst detection process.

For two spike trains A and B the distance Dn
q(A,B) between the

two spike trains is defined, using the cost factor q and Nshift~n (for
concise notation, q and n will be omitted wherever obvious). For

two sets of spike trains S~fA1, . . . ,An1g and H~fB1, . . . ,Bn2g,
we define a n1|n2 distance matrix D(S,H)~(dij), where

dij~Dn
q(Ai,Bj). For a single set of bursts S the matrix

D(S)~D(S,S) yields all distances between bursts within the

same data set.

Clustering with Affinity Propagation
Clustering is an unsupervised machine learning technique that

finds groups of related data objects, based on a measure of

similarity or distance. Many of the standard clustering methods,

like e.g. k-means [81], are not suitable for clustering spike train

data, because they work only in Euclidean space, and require

direct manipulations of the data points, e.g. for computing means

of groups of data points. For neural recordings it is not defined

what the ‘‘average’’ spike train of a group of multiple spike trains

is. Clustering a set of spike trains S therefore requires a clustering

algorithm that works only on the matrix of spike-train distances

D(S), or equivalently the similarity matrix S(S)~{D(S). There
are several clustering algorithms that meet this requirement, such

as e.g. k-medoids, hierarchical clustering methods [81] or spectral

clustering [82]. For this study the affinity propagation algorithm

by Frey and Dueck [18] was chosen, which is very fast and

reliable, and which has exhibited superior performance over

comparable methods on a variety of datasets.

The affinity propagation algorithm uses only the information

contained in the similarity matrix S(S), which we obtained from

the spike-train distances. Affinity propagation defines every cluster

through one central data point, the cluster exemplar. The algorithm

assigns all data points to clusters in order to minimize an energy

function based on the similarity between data points and their

assigned exemplars. In contrast to previous clustering methods like

k-medoids, all points are simultaneously considered as potential

exemplars, instead of initially picking random data points as

exemplars. A random choice of exemplars might lead to

Figure 13. Analysis of the influence of the q-parameter for the Victor Purpura metric. The analysis was performed on a single dataset,
consisting of 3936 bursts. A) Separability of different classes for different values of the parameter q for the Victor Purpura metric [15]. The plot shows
the difference between the average between-class and within-class distances, separately plotted for the whole dataset (blue), for stimulus-classes
only (red), and for noise only (black). The best separability is obtained for q values between 50 and 200=s. B) Average within-class distances for
difference choices of q for bursts with identical spike count in response to artificial stimuli (red), or in response to noise (black). Our choice of
q~125=s lies in a region of high similarity for the more stereotypical stimulus bursts, and low similarity of the irregular noise bursts, which is
desirable. C) Histograms of spike time distances within the same class, for cost q~125=s, and for bursts that have the same number of spikes, either
in response to artificial stimuli (red), or in response to noise (black).
doi:10.1371/journal.pone.0037354.g013
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completely different results for every run with new initial random

assignments. Instead, affinity propagation needs to be run only

once, and will always come up with the same or very similar

results. A further advantage is that the number of desired clusters

does not have to be specified in advance. In contrast, the number

of clusters as well as the cluster exemplars and the assignments of

data points to exemplars emerge from an iterative message passing

algorithm on a factor graph representation [83] of the data set.

Two different types of messages are used in this algorithm: The

first one is a responsibility message r(i,j), which is sent from a data

point i to a potential exemplar j. This message represents the

preference of data point i to choose j as its exemplar, relative to the

preferences for all other potential exemplars. So r(i,j) will be high,
if j has clearly emerged as the exemplar for i, but low if there are

many competing candidate exemplars. The other type of message

is the availability message a(i,j), which is sent in the opposite

direction from the potential exemplar j to the data point i. It

indicates the evidence for point j becoming an exemplar, based on

the responsibility of j for all other data points. This message will be

high if many points have chosen j as exemplar. The responsibility

and availability messages depend on each other, and so an

iterative update of the messages is required to compute the

clustering.

Initially, all a(i,j) messages are set to zero. In every iteration the

responsibilities r(i,j) are computed based on the similarities s(i,j)
from S(S) and the previous a(i,j). Then the availabilities a(i,j),
and self-availabilities a(i,i) are updated from the new responsibility

values. The update equations, described by Frey and Dueck in

[18] are:

r’(i,j)/s(i,j){max
k=j

a(i,k)zs(i,k)ð Þ ð1Þ

a’(i,j)/min 0,r(j,j)z
X
k=[fi,jg

max (0,r(k,j))

0
@

1
A ð2Þ

a’(i,i)/
X
k=i

max (0,r(k,i) ð3Þ

In our case this iterative procedure is run for a predefined

number of steps (200 in all our experiments). Exemplars are then

defined for every data point i by finding the data point

j�~ argmaxj a(i,j)zr(i,j), i.e. the exemplar needs to have high

availability and a strong responsibility for i. If j�~i, then i is its

own exemplar.

We implemented the algorithm in Matlab, using the Distributed

Computing Toolbox for processing large similarity matrices.

Following the advice in [18], the updates for r and a were

smoothed by a factor l~0:5, so that e.g.

r(i,j)new~lr(i,j)oldz(1{l):r’(i,j). The rationale for this is to

prevent numerical oscillations. We also added very small Gaussian

noise (s~10{6 in all experiments) to the similarity matrix to

avoid potentially ambiguous cluster assignments.

The number of clusters can be implicitly controlled by scaling

the diagonal entries s(i,i) of the similarity matrix, which define the

preference of a data point to choose itself as its exemplar. Larger

self-preference values lead to a larger number of clusters. While

normally the distance of a spike-train to itself is 0, a successful

strategy in practice is to set the self-preference s(i,i) to the median

of similarities �MMi~median(s(i,j),j~1, . . . ,n), which leads to

a moderate number of clusters. We employed this strategy, and

in addition multiplied the self-preferences with constants a: �MMi

between 1 and 20. In our case the s(i,i) are negative distances, and
so multiplication with aw1 decreases the self-similarities and leads

to a smaller number of clusters.

In contrast to other methods that require the exact number of

desired clusters as input, this method is much easier to tune to obtain

satisfactory results. The method is also insensitive to random

assignments of cluster exemplars, so it is not necessary to run the

clustering algorithm multiple times and choose the best clustering.

Creating Cluster Dendrograms
To visualize the results of the clustering algorithm, the clusters

are arranged in a dendrogram, applying the group average

hierarchical clustering method [81] to the distances of the cluster

exemplars. The algorithm starts by assigning every cluster to

a single unconnected branch, and then at every step joins the two

closest branches into a new higher level branch. Closeness between

branches is defined as the average spike-time distance between all

cluster exemplars contained in the two branches. As a result,

clusters with similar exemplars are grouped together in the same

branch. This procedure is applied recursively until all branches

have been joined to form a single tree.

Labeling of Clusters
Cluster labels are assigned based on the relative frequencies of

burst classes within the cluster and in the whole dataset. For

a cluster X~fb1, . . . ,bDX Dg consisting of bursts bi, we define �ppX (c)
as the relative frequency of bursts of class c in X. We also define

p(c) as the relative frequency of class c in the whole dataset. The

cluster label L(X ) is the class c with the highest ratio �ppX (c)=p(c).

Measuring Cluster Homogeneity
As a measure of cluster homogeneity we used the average

conditional entropy of class labels for every cluster. The

conditional entropy H(X DY ) is an information-theoretic measure,

which quantifies for two random variables X and Y (here assumed

discrete), the uncertainty about X given that Y is known. Formally,

the conditional entropy is defined as the difference between the

joint entropy H(X ,Y ) and H(Y ), the entropy of Y alone. It is

calculated as

H(X DY )~
X
x[X

X
y[Y

p(x,y) log
p(y)

p(x,y)

� �
: ð4Þ

The conditional entropy is low if knowing variable Y reduces the

uncertainty about X, and reaches its highest possible value H(X )
when X and Y are independent. In our case this would mean that

knowing the cluster label should reduce the uncertainty about the

classes of bursts that are found within the cluster, so in the ideal

case there should be only one class of bursts in every cluster (which

means zero entropy). For every stimulus class c we measure the

conditional entropy of variable Cc, which indicates whether a burst

b belongs to class c (in that case Cc(b)~1), or to another class

(Cc(b)~0), relative to variable L, which indicates the identity of

the cluster (L[f1, . . . ,Kg, where K is the number of clusters). Only

clusters that contain at least one burst of class c are considered for

computing H(CcDL). For each of the six recording sessions we

compute the clustering, and measure the conditional entropy

H(CcDL) separately for every stimulus class c[f1, . . . ,5g.
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