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VARIATIONS ON PROMPTLY SIMPLE SETS

Iù/OLFGANG MAASSl

$ ther all low sets with
the o make the role of

low f automorPhisms of
the us. It turns out that
two new properties of r.e. sets, which are dual to each other, are essential in this

context: the prompt and the low shrinking property.
In an earlier paper [4] we had shown (using Soare's automorphism construction

[10] and [12]) that all r.e. generic sets are automorphic_in the lattice á of r.e. sets

under inclusion. We called a set A promptly simple if ¡ is infinite and there is a

recursive enumeration of ,4 and the r.e. sets (1,7,)..¡y such that iî W"is infinite then

there is some element (or equivalently: infinitely many elements) x of W"such that x
gets into ,4 "promptly" after its appearance in W"(i.e. for some fixed total recursive

function / we have ¡ which x
simplicitf in combinat capture t
generic sets that were orPhism

paper with Shore and Stob [7] we studied an á-definable consequence of prompt

simplicity: the splitting property. One says that Ahas the splitting property if every

r.e. set B can be split into r'e' sets 'Bo, B, with Bo c A such that Bo 
' 
B, is a "Friedberg

splitting"of B(i.e. B : Bo v Br, Bon B, : þ,andff Wisr'e. and W - Bis notr'e'
then W - Bo and W- B, are also not r.e.). The class of r.e. sets that are not

hyperhypersimple but have the splitting property became the first example of an E-

definable class of r.e. sets whose degrees split the high degrees. More recently

Ambos-Spies, Jockusch, Shore and Soare [1] proved that in fact the degrees of

nonhyperhypersimple sets that have the splitting property coincide with the degrees

of promptly simple sets. In particular, sets of low degree are not hyperhypersimple.

Since sets of low degree have received particular attention over the last few years, it
was natural to ask whether at least lor sets of low degree prompt simplicity and the
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splitting property coincide. This question was first studied by Stob and Soare, who
noticed that standard arguments do not suffice for an answer.

We show in this paper that there are in fact low sets with the splitting property
that are not promptly simple (Corollary 3.6). We have decided to present this result
in a way that yields some pleasant side effects. We define in $2 the prompt shrinking
property and show in Lemma 2.4that this property is implied by prompt simplicity.
In Theorem 2.7 we construct a set of low degree which has the prompt shrinking
property but is not promptly simple. The proof of Theorem 2.7 uses an interesting
technique from the recent monstrous injury constructions (Lachlan [3], Harrington
l2l).^ system of many different strategies is played against the opponent, where the
failure of one strategy makes it easier for another strategy in this system to overcome
the opponent. In $3 we show that any two low sets with the prompt shrinking
property are automorphic in E. This generalizes the above-mentioned automor-
phism result for promptly simple low sets and shows for the first time that there are
sets in this orbit that are not promptly simple (Corollary 3.5). This appears to be of
some interest since in the meantime promptly simple sets have proven to be useful
independent of their automorphism properties (see e.g. [1]). We believe that the new
automorphism result (Corollary 3.3) stretches the available techniques to their limit.
If there are in addition sets without the prompt shrinking property in this orbit, a
proof of this fact is likely to provide novel insights.

Along the way we also analyze more closely the role of lowness properties in
automorphism constructions. By Soare [12] it is sufficient for the automorphism
result that the considered promptly simple sets are semi-low (A is semi-low iÎ
{elW" a Ã + Ø} Sr0'). Vy'e introduce in $2 the low shrinking property, which is
completely dual to the previously mentioned prompt shrinking property. This
appears to be noteworthy because so far lowness properties seemed to have no
relationship to prompt simplicity. \üe show in Lemma 2.5 that semi-low implies the
low shrinking property. According to Remark 2.6 the low shrinking property
implies semi-lowr., (.4 is semi-lowr., if {elW" a ,4 nnite} SrØ"1. The use of the
low shrinking property simplifies the previously existing automorphism con-
struction for promptly simple semi-low sets [4], and also gives rise to new ap-
plications. For the ne\ry automorphism construction we consider any two r.e. sets
A, B for which an isomorphism between their lattices of supersets exists that satisfies
a very weak covering property ((*) of Lemma 3.1 ; note that this condition only talks
about elements of ,4 and B). The "shrinking lemma" (Lemma 3.1) tells us that if A, B
have in addition the low and the prompt shrinking property, then we can shrink the
image sets of the given isomorphism of the lattices of supersets in such a way that it
satisfies in addition property 1**,) of Lemma 3.1, which is Soare's famous covering
property [10]. Once this is achieved we can apply Soare's extension theorem [10]
and extend the isomorphism between supersets of ,4 and B to an automorphism of E
that maps A on B. An obvious advantage of this new procedure is the fact that it is
substantially more easy to construct isomorphisms that have the very weak covering
property (*) instead of the weak covering property from [4]. Such isomorphisms are
e.g. constructed in [5] for any two sets A, B that are semi-lowr.,. Previously one had
to construct for sets A, B that are semi-low a more special isomorphism that satisfies
the somewhat stronger "weak covering property" from [4]; see Soare [12].
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Essentially one had to do some of the work of the shrinking lemma within the

isomorphism construction (which is already complex enough on its own).

In addition, the new arrangement of the automorphism construction is more

flexible. In [6] we describe a variation of it that yields the first nontrivial
automorphism of -/./ (-// is the lattice of an interval of E that is bounded by a major
subset; see [8]). In -y'./ we have no counterpart to Soare's isomorphism construction
for semi-low sets, only from [8] a counterpart to the weaker construction for semi-

lowr., sets that achieves the very weak covering property. Therefore in -/./ we have to
use the way via the shrinking lemma and the low shrinking property.

Concerning notation we write A :* B if the sets A, B agree except for finitely
many elements. We write .4* for the equivalence class of ,4 with respect to the

equivalence relation :*. We consider

á(s): : {WaSlwr.e.},
which forms a lattice under set-theoretic union and intersection. Instead of á(N) we

write E. á*(S)and E* are the corresponding quotient lattices modulo the ideal of
finite sets.

We use the convention that a set is meant to be r.e. unless we say otherwise.

Further, deviating from the original definition in Soare [11], we say that an r.e. set

(instead of its complement) is semi-low, semi-lowr.r, etc.

As usual, U\lzis the set of elements which are enumerated in U while they are not
(yet)in Iz; U\ V:: (U\V) a V.

In a simultaneous enumeration of aî afiay of r.e. sets we assume that at every
stag€ at most one element is enumerated in at most one set.

$2. Shrinking properties and prompt simplicity.
DcplNlttoN2.l. We say that A has the prompt shrinking property if for any

simultaneous enumeration of r.e. sets (X¡)¿.¡y we can effectively assign to every X,an
r.e. set X! = X,with Xf a Ã :* X, o Ãsuch that for everyj e N and every finite
KcN

//\\//\\(¿t( U x,))^ Àinfinite=lx¡-( U xi))^,4 infinite.
\ \i.x // \ \i.x //

DnptNlrloN 2.2. We say that A has the low shrinking property if for any

simultaneous enumeration of r.e. sets (Xr)t." we can effectively assign to every X, an

r.e. set X! =X,with Xl a Ã:*X,a Ã such that for everyjeN and every finite
KCN

// \ \ //^ \ -
{ ( 0 xl)- x, I n,4infinite-( ( n x,)o Ainfinite.
\\í€K / / \\íeK /

R¡u¡,Rr 2.3.Onesees easily that both the prompt and the low shrinking property

are recursively invariant in the sense of H. Rogers, Jr. [9].
Lnuu¡ 2.4. Assume A is promptly simple. Then A has the prompt shrinking

property.
Pnoon. Since,4 is promptly simple there exists (see [4]) a recursive function g such

that for every i e N
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W(s(Ðo,Wrsrù¡,is a splitting of I,I4,

wrnrrro= A and

I4{ infinite + W@(i)to infinite.

Assume that a simultaneous enumeration of r.e. sets (X')r." is given. Fix a

recursive function 1 such that for everyj e N and every finite set K c N

wtt¡,xl: xj\ Uxu
eK

For every i e N we enumerate an r.e. set X! = Xras follows. We enumerate x e X,
into Xf iff xe W(ssu,x)))t for all (j,K) <x with ieK and xe(X, \(Uu."&)).
Note that after x appears in X, we can check immediately for which (j,K) < x
with ieK we have xe(X,\(Uu."&)). Since Wøu(j,x)\\oc A for every j,k, we
haveX,oÃ:X!oÃ.

Consider some j, K with (4\(Uu.*X,,Ð n Ã infinite. Assume that { \
(Uu..Xu) is infinite (otherwise X¡-(l)r,.xX*) is an infinite r.e. set and thus has
obviously an infinite intersection with the simple set ,4). Then W@ut¡,r¡¡o Ç -4 is
infinite as well. Take any x e W(su( j,x)),o with x 2 (j,K). According to the definition
of Xj" this x is not enumerated in any Xj'with i e K. Thus (X; - (Uu.* XP)) a A
contains almost all elements of the infinite set Wrng(j,x.t\to.

L¡un¡. 2.5. Assume A is semi-low. Then A has the low shrinking property.
Pnoor'. Assume that a simultaneous enumeration of sets (X¡)¡., is given. Fix a

recursive function I such that for everyj e N and every finite set K c N

wt(i,xt:l ¡ t)t",
\ttx /

Since ,4 is semi-low, \rye can speed up the enumeration of ,4 so that we have for the
induced simultaneous enumeratio n ol (Wr1 ¡,a)"iÊ N,K rinir€:

W,t¡,*t\A infinite o Wt(j,x\ - A infrnite.

For every i e N we enumerate an r.e. set Xf c X, as follows. We enumerate
xeX,,"-X,,"-, into X! itr xeW,r,,*r\A for all (j,K)<x with ie K and
x e ()¡.*Xu,") - Xj,". It is obvious from this definition that X! ¡ Ã : X, o Ã.

Consider somej,K with ((l-lu.*xf) - X,) n,4 infinite. Fix some i e K such that

, : ((_4",) - .,) ¡ A ¡((gr),r)
is infinite. Every element x of S is in X ! and if x > (j,K) we thus have x e W,r,.*r\A.
Therefore Wt( j,x) ^,4 

is infinite by the choice of the enumeration of ,4.

R¡unRxs 2.6. l) If ,4 has the prompt shrinking property and .4 is infinite, then .4 is

obviously d-simple (although perhaps not uniformly d-simple).
2) There is no apparent way to weaken the prompt shrinking property in such a

way that one can still prove Corollary 3.3. For example if we replace

(- ))

4\UX,
ieK

n .4 infinite + x'- U x! n ,4 infinite
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by the weaker demand

rVI/OLFGANG MAASS

X¡- U X, n ,4 infinite => x'- l) xi n ,4 infinite
íeK

then we arrive at a property that is implied by uniform d-simplicity and thus not
sufficient for Corollary 3.3 (this follows from the proof of Theorem 2.8. in l1j.

,If A has the low shrinking property then A is semi-lowr.r: Apply the low
shrinking property of Ato the array (W")".r;then

W! infrnite+W" 
^.4 infinite.

Tneon¡u 2.7. There is an r.e. set A of low degree such that Ã is ín¡nite, A has the
prompt shrinking property but A is not promptly simple.

Pnoor'. There is a simultaneous enumeration of all simultaneously enumerable
arrays (X,),.,u which preserves the order of enumeration of each array (X,),.". Thus
in order to give ,4 the prompt shrinking property, we only have to consider one
simultaneous enumeration of a certain array (X,)¿.r.

In order to make the degree of ,4 low we consider the usual restraint function r:

r(e,s):: max{use({l}1.(Ð)1, < e and {,}f.(,)J}
where ,4" is the set of elements in A at the end of stage s. We make sure that for every
e e N there are only finitely many x and s such that x < r(e,s) and x e A"*, - A",

In order to give ,4 the prompt shrinking property we construct for every e e N an
r.e. set xP" = x" with x! ¡ Ã:* x" a Ã such that all the following positive
requirements P,,^,, (for i,n e N and K c N finite) are satisfied:

P,,*,n: x¡ t 
-9. & innnite - l(n - (-p. "Ð) " ol, ,

During the construction we try to satisfy P,,*,n as follows. As soon as we see an
element x of X, \ L[.r Xr we try to keep it out of Xf for all k e Kand to push it into
,4. 

.We 
collect all elements of Xu that we want to keep out of Xf and which we want to

push into ,4 in a separate r.e. set Xf (the superscript,4 indicates that its elements are
targeted for,4). Often we do not succeed in pushing an element of Xf into,4 because
we do not get it past some negative restraint. In this situation we are forced to
enumerate almost always the respective element oî Xf inaddition into Xf , since we
have to make XPu a Ã :* Xo a Ã. Thus we give up trying to use this element to
satisfy fl,*,,.

In order to make ,4 not promptly simply we have to satisfy nonfinitary negative
requirements No. Basically Nu enumerates an r.e. set I such that in case {k} is a total
recursive function the set fi, is infinite and for almost all x, s e N such that x enters !,
at stage s we have x f A1¡¡1"¡. Thus N¡ forces us either to restrain almost all elements
of ?j, temporarily from ,4 (until stage {k}(s) * 1) or to restrain one element of !,
permanently from ,4 (in case that {/r}(s) f ).

Since we have to enumerate almost all elements of Xl - Xf into,4, we only allow
requirements N, with i < k to prevent this. Thus a requirement N, with j > k is in
general infinitely often injured because all the elements ol { may be pushed
prematurely into A for the sake of Xl . Therefore we create instead of one
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requirement N., for every r c j a different version Nr,, of Nr. Every {,, tries to
enumerate a suitable infinite set !,,. But Nr," only places elements into {,, that are

already in 0,., Xf . As before we only let Nr,. keep an element x of !,, out of ,4 which

ought to get into A for the sake of Xl (i.e. x e Xf - XÐ if i < k. Therefore it may
happen as before that all elements of T,,, are pushed prematurely into ,4 because of
some X/ with k < j. But now we know that k ( r, since only elements of f-)i., Xi are

enumerated into !,". Further, ((^],. ,X!) n X¿ is then infinite, and therefore it is easy

to make ),.rX! infinite for í:: r u {k}. This allows requirement N,.,; to

find infinitely many elements in f^1,.;Xi'for its set {,; and these elements can

obviously not be bothered anymore by Xî .Thus requirement Nr," may fail. But-in
the terminology of the Chicago School of Recursion Theory-on the pile of dead

bodies of witnesses for N;,. we can build a safer working ground for requirement N;,;.

In the construction below we will not mention the sets ?i,,. Instead'we say that N.¡,,

restrains certain elements at some stages. The set ?j,, corresponds to the set of all
elements that are restrained by N;,. at some stage.

We will show in Lemmas 2.12, 2.14, 2.15 and 2.16 that the constructed set ,4 has

the desired properties.
CousrnucrroN. Stage s * 1. To keep the construction effective we only consider

numbers <s I 1.

(1) Assume x e X","*, - X",".If x e,4" we put x in X ! .If x t',4" we check whether

there is some (i, K, n) such that

eeK,x€Xr \ U Xu,xeX,"- U Xf,"
keK keK

and

x'," - U xf,"
l(

a A" 1n.
ke K

If such (i, K,n) exists we put x in X!. We say that P,,*,, puts x in X! for the least

such (i, K, n). Otherwise we put x in XP"

(2) If some P,,",, has previously put y in Xl, y is not yet in A or Xl and
y < r(<i,K, n ), s), then we place y in Xf (i.e. we give up the attempt to satisfy P¡,*,nvia

y if this would hurt a lowness requirement of higher priority).
(3) Assume there are x É A", l,m e N and o clsuch that l)¡."Xll < m,

õ, : {i e olx exl,} ç o Ç {i < llx eX;,"*,}

and no Pr,K,, with (i, K,n) 1 (1, o,ru) has put x in some Xf withj e o - ã.Then we

enumerate x in Xl for all j e o - ã (this is done in order to provide requirement N,,"

with enough suitable elements which it can restrain from A).

(4) Every requirement Nu,. which did not restrain an element at the end of stage s

starts to restrain (from,4) the least y > k which it never restrained before such that
y ( A" and y is already in )t.,Xl (if such y exists).

(5) Assume Nu,, started to restrain an element y at stage ú < s and either y e A" ot
the computation {k}"(r) converges with a value <s. Then Nu., no longer restrain y.

(6) For every j e N we enumerate into A allelements that are at the momenlin X!
but not in Xl and that are at the moment not restrained by some Nu,, with k < j'
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End of the conStruction.
Lnuun 2.8. X: a Ã :* X" a Ã for euery e e N.
Pnoor'. We have X" - X: : X! - X!, and by step (6) of the construction all

elements of X! - X! that are not permanently restrained by some Nu,, with k < j
get into ,4. According to (4) every Nu,, restrains at most one element permanently.

L¡tvtv,ô\ 2.9. Assume requirement P,,*,n is satisfied, i.e.

x,\ U xuitrfnite-l(*,- Uxf) n,tlrn,
keK l\ keK / I

Then P¡,*,n puts only finitely many elements in sets X! .

Pnoor'. fl ,*,, puts only elements of X, \ U u. * Xuin sets X j. Thus we only have to
consider the case where X, \ Uo.* Xu is infinite. Since P,,*,, is satisfied, this implies
that

l/ \ I

l(",- p.*i )n Al> n.

After the stage where the first n + 1 elements of (X, - Uo.*Xl) ¡ Ahave arrived in
X, and A, P¡,x,, puts no more elements in any X j.

Lnuvn 2.10. Assume P,,*,,is satisfied for euery (i,K,n) < e. Then there are only

finitely many x and s such that x e A s + t - A 
" 

and x < use({e} j " (e)). T hus

::P'(',s) 
< oo'

Pnoor'. Assume x e A"*, - A"and x < use({e}f'(e)). Then x < r(e,s). Since x gets

into Aat stage s + 1, there is somej such that x e Xl,"* t - XÏ,*, and x was put in
Xi AV some P,,*,n. Since x was not placed in Xf during step (2) of stage s * 1, we
have (i, K,n) < e. Thus by our assumption on P,,*,, and the previous lemma there
are only finitely many such x, s.

The preceding argument implies that every computation {,}Í"(,) with i < ¿ is
destroyed only finitely often during the construction. Therefore

supr(e,s) < co.

L¡ultn 2.11. Euery requirement Pt,*,, is satisfied.
PRoor'. Assume for a contradiction that (i, K,n) is minimal such that Pr,^,, is not

satisfied. Thus X¡ \ Uo.*Xu is infinite and

x'- þ*xi aA <n.

Since ,4 \ Xf : @ lor every k e N, this implies that for all s e N

x'," - U xf,"
keK

We have sup".ivr((i,K,n),s) < co by the minimal choice of (r, K,n) and
Lemma 2.10. Further, for every (l,o,m) < <i,K,n) only finitely many elements
are placed in some XÏ AV step (3).

l(
rì A- <n.
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According to steps (1), (2) and (3) of the construction the preceding implies that
almost all x e x, \ [Jr.xxt are put into Xf by P,,*,n and remain in Xf - Xl lor
every k e K with x e Xu. Further, almost all of these x are placed in ,4 according to

step (6). Thus (X, - l)o.*Xl,) n ,4 is infinite, a contradiction.
Lnuu¡. 2.12. A is of low degree.

Pnoor'. This follows from Lemma 2.10 and Lemma 2.11.

L¡uu¡. 2.13. If k e N and 'c Ç k is maximal with respect to c such that )r.,X!
is infinite, then only finitely many elements are enumerated into A while they are

restrained by Nu,,.

Pnoor. Assume the claim does not hold for Nu,,. Thus there exists somei e k - t
such that for infinitely many x,s e N the element x is at the end of stage s * I in
(0'.,X1) ^ 

(Xl - X"¡ and x is en ng step (6) of stage s -r 1'

Since eue.y P,,*,, puts ónly ûnitely m ! accordingto Lemma 2.9

and Lemma 2.ll,we see that (-')i.,. se of the action at step (3)

of these stages s * 1. This contradicts the maximality of t.
L¡lvtr.t¡. 2.14. A is infinite.
PRoor. Fix some k6 e N. We show that there is some y in N - .4 with y > ko.Let

k> ko be some index such fhat domain {k} : Ó. Choose r c fr maximal such that

),.,X! is infinite (r exists since (-li.¿ Xi : ¡gi. By the preceding lemma, No,. starts

io restrain some y > k such that y is not enumerated into ,4 while it is restrained by

N0,,. This implies -y € N - Aby the choice of k.

Lrurr.tn 2.15. A is not promptly simple.

Pnoop. Assume ,4 is promptly simple. Then there is some total recursive function

{k} such that for every N,,o which restrains infinitely many elements during the

construction there are infinitely many x, s € N so that N,," starts to restrain x at stage

s and x e -41r,¡1"¡.Choose r c k maximal such that )i,,Xl is infinite. Thus, since {k}
is total, the requirement No,, restrains infinitely many elements x during the

construction. By Lemma 2.13 only finitely many of these x are enumerated into ,4

while they are restrained by Nu,.. Thus according to step (5) we have x f 11¡¡1"-¡ for

almost all of these x, where s, is the stage at which Nu,, started to restrain x'
Contradiction.

Lnulun 2.16. A has the prompt shrinking property.

Pnoo¡. We first note that.4 is simple. This follows from the satisfaction of all the

requirements P,,*,, and from the fact that we can assume that for every I e N with X,

infinite there is some i' e N with Xí \ Xi, infinite.
In order to verify the prompt shrinking property of A we assume that

(À.,\(Uu..xoD n Ã is infinite. If xr \ (Uu."&)is finite we are already finished,

since then X, - (Uu.*Xo) is an infinite r.e. set and thus has an infinite intersection

with the simple Àet.4. Thus assume & \ (Uu."Xu) is infinite. Since for every

n e N the requirement P¡,*,n is satisfied (Lemma 2.ll), this implies that
(X, - (U0." XÐ) n.4 is infinite.

This finishes the proof of Theorem 2.7.

$3. The shrinking lemma and applications. If one constructs for some sets.4, B an

isomorphism $:S(Ã)'-+ 8(B) one can hardly avoid (see e.g.[5], [8]) to satisfy in
addition property (x) which occurs in the assumption of the shrinking lemma. On

the other hand, property (**; in the conclusion of the shrinking lemma is the
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property which is needed to continue the isomorphism ry' to an automorphism @ of
E with AØ) : B via Soare's extension theorem [10].

We review now some standard notations for automorphism constructions (see

[ 1 2] or [5] ). We assume that the two considered sets A and B are subsets of two
different copies of the natural numbers. On the side of ,4. we look at the arrays (Ur),."
and (V,),.r (respectively (V',),.*), and on the side of B at the arrays (û),."
(respectively (Ui)¡.")and (O,.". The superscripts "^" indicate that the set
serves as image of the set with the same letter on the other side.

A, state v is a triple (e, o 3), where e is a natural number aîd o, r are subsets of
{0,...,e}. One says that a number x has state ,: (t,o,r) with respect to
(U,),.",(?),.*if o: {i."lxeU,} and r: {i."1*.ù}. For a fixed simulta-
neous enumeration of the involved arrays one says that x has state v : (e,o,r) with
respectto(4)¡.", (?),.*atstagesif o: {i."lx€ Ur,"} andr: {i <rlxeîr."}.
For numbers x on the other side we say that x has state y : (€,6,r) with respect to
(4),.", (V,),,*atstagesif ø: {i< elxe Û¡,"} andr: {i<rlxeVr,"}.

For states v: (e,o,.c), v' : (e,o',t') one says that v > y' ("v covers v"')
:+o ) o A r L x .

Lnuu¡. 3.1 ("SHnmrNc Lnlru¡."). Assume that the sets A and B both haue the
prompt and low shrinking properties. Further assume that there is a simultaneous
enumeration of A, B and r.e. set ((J,)¡.¡¡,(î,),.r,(4),." and (V,),.* such thqt

(*) For^all states v, if ínfinitely many elements of A haue state v with respect to
(4),.", (Vr)r.r at some point of the enumeration, then there is a state vr ( y such that
infinitely many elements of B haue state v, with respect n (Û),.*,(V,),.* at some point
of the enumerat¡on; and the symmetrical counterpart.

Thenthereisasimultaneousenumerationof A,B,(Ur),.r,(V,)¡.*andarrays(V'r)r.¡t,
(Ul),.n, such that V', a Ã :* î¡ o Ã and U'¡n B :* Û, a B for all i e N, and

(tr*) For all states v, if infinitely many elements enter A in state v with respect to
(4),.¡v, (V',)r.*,then there is a state v, < v such that infinitely many elements enter B ín
state v I withrespect to (U',),.*,(Vr)r.*, and íf ínfinitely many elements enter B in state
v withrespect to (U'r)r.*,(V,),.* then there is q state vr ) v such that infinitely many
elements enter A in state v, with respect to (Ur),.*, (V',),.u.

Pnoor'. For finite sets H c N we set yo:: (f,1,."4)\A. For the induced
enumeration of (Yo)rr.n,,", (î),.* we apply the prompî shrinking property of ,4 (i.e.
the union ol both arrays (Y")rr,^,,. and (V,),.* plays the role of (X,),.,u in Definition
2.1;nevertheless we will make no use of the resulting sets yå). This yields sets ûj"
- Vi,

For Î":: (U,.^oU,)\,4 wr then apply the low shrinking property of ,4 to the
enumeration of 1Îrr¡rr'n,," , (î!),, r which results from the givãn enumeration of ,4,
(4),.", (1),.r by letting an element in î! only after it appeared in fr. This yields
the sets V'í:: îlL - îl .Weenumerate these new sets in such a way that an element
appears in V', only after it appeared in î! .

Analogously we apply the prompt shrinking property of B first to the induced
enumeration of ((0¡.o 4) \ B)rri^i,", (4),." to yield sets Ûf c Û¡, andthen the low
shrinking property of B to the induced enumera

((,.r" ,)t,),,,,.,,",
tion of

to yield the sets U',:: ÛlL c fi!

(Ûj"),.'
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We consider now the induced simultaneous enumeration of

A, B, (U,),.*, (V',,),.r, (Uí),." and (V,),,r.

Assume that infinitely many elements enter ,4 in state v : (e, ø, r ) with respect to
(U,),.*,(V',),.". This implies for 11:: {0,. . ., e} - o that

(nr," - ((,y" u)t r)) n ,4 is innnite

Therefore

((n ot)t ((,g" ø)r , )) " 
, is innnite

by the choice of î!" - 2j". Sin.. every element is already in fr when it appears in
?f , this implies that for some state vr ( V infinitely many elements of l are at some
point in state y1 with respect to the given enumeration of A,((J,),.*,(î),.*.

According to hypothesis (x) of the lemma there then exists some state
vt: (e,oz,rz) < v, such that infinitely many elements of B are at some point in
state v, with respect to (4),.r, (Vr),.n. Thus the set

(((,e r)r')r (,.,,, !n-", 
o,)) n B is innnite

By the choice of Ûj" - Û, this implies that

((( n, *)t') - ,.,o, 9o-", 
ot) " B is innnite

Since Ui : Û!" ç Û! ,every element of the preceding infinite set enters B in some
state v. < v, with respect to (U!),.", (V,),.*.

The symmetrical counterpart of the covering property ({,*) is proved analogously.
TnnoR¡l,t 3.2. Assume that the sets A and B haue the prompt and low shrinking

properties. Further assume that there is a simultaneous enumeration of A, B and r.e.

sets (U¡)¡.¡, (4),.n, (4)r." and (V,)¡., such_thqt for all i € N Ui :* W, and V. :* W), for
et)ery state v infinitely many elements of Ã haue state v with respect to (Ur)r.r, (Vt),.*
iff infinitely many elements of B haue state v with respect tu (Û)í.N, (V,),.r and such
that property (x) of the shrinking lemma holds. Then there is an qutomorphism iÞ of E
such that ø(A) : B.

Pnoon. Combine the shrinking lemma with Soare's extension theorem (Theo-
rem2.2 in [10]).

Conorr.q.nv 3.3. Assume that A,B are coinfiníte, semi-lowr.t and haue the prompt
and low shrinking properties. Then there is an automorphism A of E such that
A(A): 3.

PRoon. Since,4,B are semilowr., and coinfinite, there exist according to [5]
arrays (U,),.r, (î,),.*,(û),.", (V,),.*that satisfy the assumption of Theorem 3.2. In
order to verify property (*) one uses Lemma 4.5 of [5] in combination with the fact
that if infinitely many elements are at some stage in state v : (e,o,t) then for every
k > e there is a state v¡ : (k,ã, ã) with ã n {0, ..., e} : o and i ô {0,, . ., e} : r
such that infinitelv manv of these elements are at some stase in state v,..
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conon¡.nv 3.4 (snr Tnronnu 17 rN [4]). Assume, A,B are promptly simple and
semi-low. Then there is an automorphism A of E such that ø(A) : B.

Pnoor. This follows from Lemma 2.4,Lemma2.5 and Corollary 3.3.
coRonnnv 3.5. There is a set A of tow degree such that A is not promptly simple

but A is automorphic to a promptly simple set of low degree (thus in particular to an r.e.
generic set).

Pnoon. Combine Theorem 2.7 with Corollary 3.3.
conorr.rRv 3.6. There is a coinfinite set of low degree that has the splitting

ptoperty but is not promptly simple.
Pnoon. Take the set,4 from Theorem 2.7. Ãccording to corollary 3.3 this set is

automorphic to every semi-low promptly simple set. But every promptly simple set
has the splitting property [7].

Note that one can prove this corollary as well without using automorphism
results. It is not difficult to show directly that every semi-low set with the piompt
shrinking property has the splitting property.
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