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VARIATIONS ON PROMPTLY SIMPLE SETS

WOLFGANG MAASS!

§1. Introduction. In this paper we answer the question of whether all low sets with
the splitting property are promptly simple. Further we try to make the role of
lowness properties and prompt simplicity in the construction of automorphisms of
the lattice of r.e. (recursively enumerable) sets more perspicuous. It turns out that
two new properties of r.e. sets, which are dual to each other, are essential in this
context: the prompt and the low shrinking property.

In an earlier paper [4] we had shown (using Soare’s automorphism construction
[10] and [12]) that all r.e. generic sets are automorphic in the lattice & of r.e. sets
under inclusion. We called a set A promptly simple if A is infinite and there is a
recursive enumeration of 4 and the r.e. sets (W,), .y such that if W, is infinite then
there is some element (or equivalently: infinitely many elements) x of W, such that x
gets into A “promptly” after its appearance in W, (i.e. for some fixed total recursive
function f we have x € A, where s is the stage at which x entered W,). Prompt
simplicity in combination with lowness turned out to capture those propertics of re.
generic sets that were used in the mentioned automorphism result. In a following
paper with Shore and Stob [7] we studied an &-definable consequence of prompt
simplicity: the splitting property. One says that 4 has the splitting property if every
r.e.set Bcan be splitinto r.e. sets By, B, with By < A such that By, B, isa “Friedberg
splitting” of B(i.e. B = By U B,, B, n B; = &, and if Wisre.and W — Bisnotre.
then W — B, and W— B, are also not r.e). The class of r.e. sets that are not
hyperhypersimple but have the splitting property became the first example of an &-
definable class of r.e. sets whose degrees split the high degrees. More recently
Ambos-Spies, Jockusch, Shore and Soare [1] proved that in fact the degrees of
nonhyperhypersimple sets that have the splitting property coincide with the degrees
of promptly simple sets. In particular, sets of low degree are not hyperhypersimple.
Since sets of low degree have received particular attention over the last few years, it
was natural to ask whether at least for sets of low degree prompt simplicity and the
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splitting property coincide. This question was first studied by Stob and Soare, who
noticed that standard arguments do not suffice for an answer.

We show in this paper that there are in fact low sets with the splitting property
that are not promptly simple (Corollary 3.6). We have decided to present this result
in a way that yields some pleasant side effects. We define in §2 the prompt shrinking
property and show in Lemma 2.4 that this property is implied by prompt simplicity.
In Theorem 2.7 we construct a set of low degree which has the prompt shrinking
property but is not promptly simple. The proof of Theorem 2.7 uses an interesting
technique from the recent monstrous injury constructions (Lachlan [3], Harrington
[2]). A system of many different strategies is played against the opponent, where the
failure of one strategy makes it easier for another strategy in this system to overcome
the opponent. In §3 we show that any two low sets with the prompt shrinking
property are automorphic in &. This generalizes the above-mentioned automor-
phism result for promptly simple low sets and shows for the first time that there are
sets in this orbit that are not promptly simple (Corollary 3.5). This appears to be of
some interest since in the meantime promptly simple sets have proven to be useful
independent of their automorphism properties (see e.g. [ 1]). We believe that the new
automorphism result (Corollary 3.3) stretches the available techniques to their limit.
If there are in addition sets without the prompt shrinking property in this orbit, a
proof of this fact is likely to provide novel insights.

Along the way we also analyze more closely the role of lowness properties in
automorphism constructions. By Soare [12] it is sufficient for the automorphism
result that the considered promptly simple sets are semi-low (4 is semi-low if
{e| W, A # &} <10'). We introduce in §2 the low shrinking property, which is
completely dual to the previously mentioned prompt shrinking property. This
appears to be noteworthy because so far lowness properties seemed to have no
relationship to prompt simplicity. We show in Lemma 2.5 that semi-low implies the
low shrinking property. According to Remark 2.6 the low shrinking property
implies semi-low; 5 (4 is semi-low, s if {e| W, N 4 finite} <, &”). The use of the
low shrinking property simplifies the previously existing automorphism con-
struction for promptly simple semi-low sets [4], and also gives rise to new ap-
plications. For the new automorphism construction we consider any two r.e. sets
A, Bfor which an isomorphism between their lattices of supersets exists that satisfies
a very weak covering property ((*) of Lemma 3.1; note that this condition only talks
about elements of 4 and B). The “shrinking lemma” (Lemma 3.1) tells us that if A, B
have in addition the low and the prompt shrinking property, then we can shrink the
image sets of the given isomorphism of the lattices of supersets in such a way that it
satisfies in addition property (**) of Lemma 3.1, which is Soare’s famous covering
property [10]. Once this is achieved we can apply Soare’s extension theorem [10]
and extend the isomorphism between supersets of 4 and B to an automorphism of &
that maps 4 on B. An obvious advantage of this new procedure is the fact that it is
substantially more easy to construct isomorphisms that have the very weak covering
property (*) instead of the weak covering property from [4]. Such isomorphisms are
e.g. constructed in [ 5] for any two sets A, B that are semi-low, 5. Previously one had
to construct for sets A, B that are semi-low a more special isomorphism that satisfies
the somewhat stronger “weak covering property” from [4]; see Soare [12].
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Essentially one had to do some of the work of the shrinking lemma within the
isomorphism construction (which is already complex enough on its own).

In addition, the new arrangement of the automorphism construction is more
flexible. In [6] we describe a variation of it that yields the first nontrivial
automorphism of .# (4 is the lattice of an interval of & that is bounded by a major
subset; see [8]). In .# we have no counterpart to Soare’s isomorphism construction
for semi-low sets, only from [8] a counterpart to the weaker construction for semi-
low, s sets that achieves the very weak covering property. Therefore in .# we have to
use the way via the shrinking lemma and the low shrinking property.

Concerning notation we write 4 =* B if the sets A, B agree except for finitely
many elements. We write 4* for the equivalence class of 4 with respect to the
equivalence relation =*. We consider

&Sy ={WnS|Wrel},

which forms a lattice under set-theoretic union and intersection. Instead of &(N) we
write &. £*(S) and &* are the corresponding quotient lattices modulo the ideal of
finite sets.

We use the convention that a set is meant to be r.e. unless we say otherwise.
Further, deviating from the original definition in Soare [11], we say that an r.c. set
(instead of its complement) is semi-low, semi-low, s, etc.

Asusual, U\ V is the set of elements which are enumerated in U while they are not
(yet)in V; UNV:=(U\V)Nn V.

In a simultaneous enumeration of an array of r.e. sets we assume that at every
stage at most one element is enumerated in at most one set.

§2. Shrinking properties and prompt simplicity.

DEFINITION 2.1. We say that A has the prompt shrinking property if for any
simultaneous enumeration of r.c. sets (X;);. y we can effectively assign to every X; an
re. set XF < X; with X? n A =* X; n A such that for every j € N and every finite

Kc N
<XJ\<U Xi>> A A infinite = (XJ — <U Xf’>> N A infinite.
ieK ieK

DEFINITION 2.2. We say that A has the low shrinking property if for any
simultaneous enumeration of r.e. sets (X;);. y We can effectively assign to every X; an
re. set XX = X, with X* n A =* X; n A such that for every j € N and every finite

K< N
<<ﬂ X,’“) - XJ> N A infinite = << N X,-) N A infinite,
ieK ieK

REMARK 2.3. One sees casily that both the prompt and the low shrinking property
are recursively invariant in the sense of H. Rogers, Jr. [9].

LEMMA 2.4. Assume A is promptly simple. Then A has the prompt shrinking
property.

PROOF. Since A is promptly simple there exists (see [4]) a recursive function g such
that for everyie N
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W, Wi, is a splitting of W,
Wigano < 4 and

W, infinite = W, ;) infinite.

g(o*

Assume that a simultaneous enumeration of r.e. sets (X;);.y is given. Fix a
recursive function I such that for every j € N and every finite set K = N

Wi = (X,- \ (kyx xk>>.

Forevery i e N we enumerate anr.e. set X?  X; as follows. We enumerate x € X;
into X7 iff x € Wk, for all (j,K) < x with ie K and x € (X; \(Uiex Xo)-
Note that after x appears in X; we can check immediately for which {(j,K) < x
with i€ K we have x € (X; \(Ukex Xi))- Since Wik, S A for every j, k, we
have X, n A = X7 n A.

Consider some j, K with (X\({ icx Xi)) N A infinite. Assume that X; \
(Urex Xy is infinite (otherwise X; — (| Jy.x X,) is an infinite r.e. set and thus has
obviously an infinite intersection with the simple set A). Then W k), E A4 is
infinite as well. Take any x € Wy k), With x > {j, K. According to the definition
of X7 this x is not enumerated in any X{ with i € K. Thus (X; — (iex X5)) N 4
contains almost all elements of the infinite set Wiy, xy).-

LEMMA 2.5. Assume A is semi-low. Then A has the low shrinking property.

Proor. Assume that a simultaneous enumeration of sets (X;);.y is given. Fix a
recursive function I such that for every j € N and every finite set K = N

Wi = (ka Xk>\Xj-

Since A is semi-low, we can speed up the enumeration of A4 so that we have for the
induced simultancous enumeration of (W, JK))jeN.K finite:

Wiiio\A infinite <> Wy ; ¢, — A infinite.

For every i e N we enumerate an r.e. set X© < X; as follows. We enumerate
x€ X — X;y—y into X[ iff x e W x\4 for all (j,K)> <x with ie K and

% € ((\kek Xis) — X5 It is obvious from this definition that XF n 4 = X, n A.
Consider some j, K with ((( ;.x X¥) — X;) 0 A infinite. Fix some i € K such that

s=((028)- )40 [ g2

*i

is infinite. Every element x of Sisin X andif x > (j, K) we thus have x € W )\ 4.
Therefore W, x, N A is infinite by the choice of the enumeration of A4.

REMARKS 2.6. 1) If A has the prompt shrinking property and A is infinite, then A is
obviously d-simple (although perhaps not uniformly d-simple).

2) There is no apparent way to weaken the prompt shrinking property in such a
way that one can still prove Corollary 3.3. For example if we replace

<Xj\ U X,-> N A infinite = <XJ -U X,’.’> M A infinite

ieK ieK
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by the weaker demand

(XJ - U Xi> A /Tinﬁnite:><Xj -U Xf’) N A infinite
ieK iekK
then we arrive at a property that is implied by uniform d-simplicity and thus not
sufficient for Corollary 3.3 (this follows from the proof of Theorem 2.8. in [7]).
3)If A has the low shrinking property then A4 is semi-low, 5: Apply the low
shrinking property of A4 to the array (W,),_y; then

WL infinite <+ W, N A infinite.

THEOREM 2.7. There is an r.e. set A of low degree such that A is infinite, A has the
prompt shrinking property but A is not promptly simple.

PrOOF. There is a simultaneous enumeration of all simultaneously enumerable
arrays (X;); y which preserves the order of enumeration of each array (X,),_y. Thus
in order to give 4 the prompt shrinking property, we only have to consider one
simultaneous enumeration of a certain array (X;);. .

In order to make the degree of 4 low we consider the usual restraint function r:

r(e, s): = max{use({i}{*(1)|i < e and {i}2=(i){}

where A is the set of elements in A at the end of stage s. We make sure that for every
e € N there are only finitely many x and s such that x < r(e,s) and x € 4,,; — 4,.

In order to give A the prompt shrinking property we construct for every e € N an
re. set XJ < X, with XJ n A =*X, n 4 such that all the following positive
requirements P, , , (for i,n e N and K < N finite) are satisfied:

P, X,V X, inﬁnite:KXi _<U Xf)) A A

kekK keK

> n.

During the construction we try to satisfy P, g, as follows. As soon as we see an
element x of X; \ ( J,.x X, wetry tokeepit out of XF for all k € K and to push it into
A. We collect all elements of X, that we want to keep out of X7 and which we want to
push into A in a separate r.e. set X (the superscript A indicates that its elements are
targeted for A). Often we do not succeed in pushing an element of X{!into 4 because
we do not get it past some negative restraint. In this situation we are forced to
enumerate almost always the respective element of X in addition into X, since we
have to make Xj n A =* X, n A. Thus we give up trying to use this element to
satisfy P, ¢ .

In order to make A not promptly simply we have to satisfy nonfinitary negative
requirements N,. Basically N, enumerates an r.e. set T, such that in case {k} is a total
recursive function the set T, is infinite and for almost all x, s € N such that x enters T,
at stage s we have x ¢ 4y, . Thus N, forces us either to restrain almost all elements
of T, temporarily from A (until stage {k}(s) + 1) or to restrain one element of T,
permanently from A (in case that {k}(s) 7).

Since we have to enumerate almost all elements of X! — X} into 4, we only allow
requirements N; with i < k to prevent this. Thus a requirement N; with j > k is in
general infinitely often injured because all the elements of T, may be pushed
prematurely into A for the sake of Xi. Therefore we create instcad of one
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requirement N; for every © < j a different version N, of N;. Every N, tries to
enumerate a suitable infinite set T} . But N, only places elements into T}, that are
already in ﬂis: X7?. As before we only let N;  keep an element x of T; , out of 4 which
ought to get into A for the sake of X7 (ie. x € Xi! — X}) if i < k. Therefore it may
happen as before that all elements of Tj, are pushed prematurely into A because of
some X with k < j. But now we know that k ¢ t, since only elements of ()., X[ are
enumerated into T} .. Further, (ﬂ,-et X7?) n X, is then infinite, and therefore it is easy
to make () :X; infinite for T:=7 U {k}. This allows requirement N;: to
find infinitely many elements in [);.; X{ for its set 7;; and these elements can
obviously not be bothered anymore by X . Thus requirement N; , may fail. But—in
the terminology of the Chicago School of Recursion Theory—on the pile of dead
bodies of witnesses for N, . we can build a safer working ground for requirement N, ;.

In the construction below we will not mention the sets 7; .. Instead we say that N; .
restrains certain elements at some stages. The set T, corresponds to the set of all
elements that are restrained by N;  at some stage.

We will show in Lemmas 2.12, 2.14, 2.15 and 2.16 that the constructed set A has
the desired properties.

CONSTRUCTION. Stage s + 1. To keep the construction effective we only consider
numbers <s + 1.

(1) Assume x € X, ;41 — X, ;. If x € A;we put xin X4 1If x ¢ A, we check whether
there is some (i, K, n) such that

eeK,xeX; V| X, xe X, — | X£,

kekK keK

and

<n

’(Xi,s - U Xf,s) M As

keK
If such (i, K,n) exists we put x in X4. We say that P, , puts x in X for the least
such (i, K, n). Otherwise we put x in X¥,
(2)If some P, has previously put y in X, y is not yet in A or X¥ and
y < r({i, K, n),s), then we place yin X j.’ (i.e. we give up the attempt to satisfy P, x , via
y if this would hurt a lowness requirement of higher priority).
(3) Assume there are x ¢ A, , me N and o <! such that |();., X}| < m,

F:={jeo|xeX?}coc{j<lI|xeX i}

and no P, g, with (i, K,n) < {l,0,m) has put x in some X;‘ withj € ¢ — 6. Then we
enumerate x in X f for allj € ¢ — & (this is done in order to provide requirement N, ,
with enough suitable elements which it can restrain from A4).

(4) Every requirement N, . which did not restrain an element at the end of stage s
starts to restrain (from A) the least y > k which it never restrained before such that
y ¢ A, and y is already in ﬂjEtXf (if such y exists).

(5) Assume N, , started to restrain an element y at stage ¢ < s and either y € A, or
the computation {k}(t) converges with a value <s. Then N, no longer restrain y.

(6) For every j € N we enumerate into A all elements that are at the moment in X 4
but not in X 5.’ and that are at the moment not restrained by some N, , with k < j.
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End of the construction.

LEMMA 2.8. X? n A =*X, N A for every e N.

Proor. We have X, — X% = X4 — X7, and by step (6) of the construction all
elements of X7 — X7 that are not permanently restrained by some N, , with k < j
get into A. According to (4) every N, . restrains at most one element permanently.

LEMMA 2.9. Assume requirement P, x , is satisfied, i.e.

> n.

X; N | X, infinite = ‘(Xi -y Xf) nA
keK keK
Then P, g, puts only finitely many elements in sets X .
PROOF. P, g , puts only elements of X; \ { ). X; in sets X #. Thus we only have to
consider the case where X; \ ), .x X, is infinite. Since P, g , is satisfied, this implies
that

> n.

<Xi— UX£>mA

keK

After the stage where the first n + 1 elements of (X; — | Jycx X¥) N A have arrived in
X; and 4, P, ¢, puts no more elements in any X 7.
LemMA 2.10. Assume P, g , is satisfied for every {i,K,n) < e. Then there are only
finitely many x and s such that x € A;, | — A, and x < use({e}2(e)). Thus
supr(e, sy < co.
seN
PROOF. Assume x € A, ; — A,and x < use({e}#:(e)). Then x < r(e, s). Since x gets
into A at stage s + 1, there is some j such that x e X4, ,, — X}, and x was put in
XJ’.1 by some P, ¢ ,. Since x was not placed in Xf during step (2) of stage s + 1, we
have (i, K,n) < e. Thus by our assumption on P, x , and the previous lemma there
are only finitely many such x, s.
The preceding argument implies that every computation {i}<(i) with i < e is
destroyed only finitely often during the construction. Therefore
supr{e, s) < oo.
seN
LemMaA 2.11. Every requirement P,  , is satisfied.
PRroOF. Assume for a contradiction that (i, K, n) is minimal such that P, y , is not
satisfied. Thus X; Vv { J;cx X, is infinite and

<X,-— Uxf>m1

keK

<n.

Since A v XF = (¥ for every k € N, this implies that for all se N

<Xi,s - U Xf,s) N As

<n.
kekK

We have sup,.yr({i,K,n>,s) < oo by the minimal choice of {(i,K,n) and
Lemma 2.10. Further, for every {l,6,m)> < {i,K,n) only finitely many elements
are placed in some X j.’ by step (3).
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According to steps (1), (2) and (3) of the construction the preceding implies that
almost all x € X; N | yex X, are put into X7 by P, , and remain in Xj — Xy for
every k € K with x € X,. Further, almost all of these x are placed in 4 according to
step (6). Thus (X; — [ Jrex X}) N A is infinite, a contradiction.

LEMMA 2.12. A is of low degree.

ProOF. This follows from Lemma 2.10 and Lemma 2.11.

LEMMA 2.13. If ke N and t S k is maximal with respect to < such that Niee X7
is infinite, then only finitely many elements are enumerated into A while they are
restrained by N, ;.

PROOF. Assume the claim does not hold for N, . Thus there exists some je k — t
such that for infinitely many x,s € N the element x is at the end of stage s + 1 in
(NViee XP) N (X — X7%) and x is enumerated into 4 during step (6) of stage s + 1.
Since every P, g, puts only finitely many elements in sets X 4 according to Lemma 2.9
and Lemma 2.11, we see that ( )ie.o 3 X! is infinite because of the action at step (3)
of these stages s + 1. This contradicts the maximality of 7.

LEMMA 2.14. A is infinite.

PrOOF. Fix some k, € N. We show that there is some yin N — A with y > k. Let
k > k, be some index such that domain {k} = ¢. Choose © < k maximal such that
(Viee X7 is infinite (¢ exists since [ );c4 X7 = N). By the preceding lemma, N, starts
to restrain some y > k such that y is not enumerated into A while it is restrained by
N, This implies y € N — A by the choice of k.

LeMMA 2.15. 4 is not promptly simple.

PROOF. Assume A is promptly simple. Then there is some total recursive function
{k} such that for every N;, which restrains infinitely many clements during the
construction there are infinitely many x, s € N so that N, , starts to restrain x at stage
sand x € gy Choose T S k maximal such that (), X7 is infinite. Thus, since {k}
is total, the requirement N, restrains infinitely many elements x during the
construction. By Lemma 2.13 only finitely many of these x are enumerated into A4
while they are restrained by N, .. Thus according to step (5) we have x ¢ Ay, for
almost all of these x, where s, is the stage at which N, started to restrain x.
Contradiction.

LEMMA 2.16. A has the prompt shrinking property.

PrOOF. We first note that A is simple. This follows from the satisfaction of all the
requirements P, ; , and from the fact that we can assume that for everyie N with X;
infinite there is some i’ € N with X; \ X, infinite.

In order to verify the prompt shrinking property of A we assume that
X\ (Urex X)) 0 A is infinite. If X; \ (| J,cx Xj) is finite we are already finished,
since then X; — (| Jicx Xi) is an infinite r.e. set and thus has an infinite intersection
with the simple set A. Thus assume X; \ (( Jycx X,) is infinite. Since for every
neN the requirement P, is satisfied (Lemma 2.11), this implies that
(X; — (Ukex X7)) 0 A is infinite.

This finishes the proof of Theorem 2.7.

§3. The shrinking lemma and applications. If one constructs for some sets 4, Ban
isomorphism ¥: &(4) — &(B) one can hardly avoid (see e.g. [5], [8]) to satisfy in
addition property (*) which occurs in the assumption of the shrinking lemma. On
the other hand, property (**) in the conclusion of the shrinking lemma is the
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property which is needed to continue the isomorphism i to an automorphism @ of
& with ®(A) = B via Soare’s extension theorem [10].

We review now some standard notations for automorphism constructions (see
[12] or [5]). We assume that the two considered sets A and B are subsets of two
different copies of the natural numbers. On the side of 4 we look at the arrays ( Udien
and (V);.y (respectively (V),.y), and on the side of B at the arrays (U)o
(respectively (U});.y) and (V));cn. The superscripts “*” and “’” indicate that the set
serves as image of the set with the same letter on the other side.

A state v is a triple {e, g,7), where e is a natural number and o, 7 are subsets of
{0,.. e} One says that a number x has state v = {e,0,7) with respect to
(U),EN,(V)leN if o={i<e|lxeU}and r={i<e|xe V). For a fixed simulta-
neous enumeration of the involved arrays one says that x has state v = (e, 0, 7> with
respect to (Up)eys (V)icn at stage sif o = {i < e|xeU,}andt={i<e|xeV,}.
For numbers x on the other side we say that x has state v = {e,a,7) with respect to
(O)ien> Viien at stage sif o = {i < e|x eU,Jandt={i < e[x €V}

For states v = <e,0,7), v' =<{e,0',7") one says that v>+v (“v covers v”
=g20 ATCET.

LEMMA 3.1 (“SHRINKING LEMMA”). Assume that the sets A and B both have the
prompt and low shrinking properties. Further assume that there is a simultaneous
enumeration of A, B and r.e. set (Ui, Wicn (U),EN and (Vy); .y such that

(*) For all states v, if infinitely many elements of A have state v with respect to
(Uiens (V),GN at some point of the enumeration, then there is a state v, < v such that
infinitely many elements of B have state v, with respect to (U)); .y, (V)i y at Some point
of the enumeration; and the symmetrical counterpart.

Then there is a simultaneous enumeration of A, B, ( Udiens(Vidiew and arrays(Vi)icy,
(Ui)ien suchthat Vin A =*V, n Aand U} n B =* T, N B forallie N, and

(**) For all states v, if infinitely many elements enter A in state v with respect to
(Udiens(Vi)icn, thenthere is astate v, < v such that infinitely many elements enter B in
state vy withrespect to (U});en, (Vi)ien» and if infinitely many elements enter B in state
v with respect to (U});cn, (V))ien then there is a state v, > v such that infinitely many
elements enter A in state v, with respect to (U)icn, (Viien-

Proor. For finite sets H < N we set Yy:=(();egU)\A. For the induced
enumeration of (Yy)y cinites (17[),.61\, we apply the prompt shrinking property of A4 (i.c.
the union of both arrays (Y ) rinie and (V)); ey plays the role of (X;);.y in Definition
2.1; nevertheless we will make no use of the resulting sets Y§). This yields sets pr
< V

For Yy:= (U,E 1 U)\ A we then apply the low shrinking property of A4 to the
enumeration of (Yy)y sinies (V7);cx Which results from the given enumeration of 4,
(Wiens (V)IE n by letting an element in pr only after it appeared in V. This yields
the sets Vi:= VL = ¥, We enumerate these new sets in such a way that an element
appears in V; only after it appeared in VP

Analogously we apply the prompt shrinking property of B first to the induced
enumeration of (icx )\ B)x finite» (0);on to yield sets UF < 17,-, and then the low
shrinking property of B to the induced enumeration of

<U V,)\B> ’(U:))iEN
ieH H finite

to yield the sets Uj: = U < Uf.



PROMPTLY SIMPLE SETS 147

We consider now the induced simultaneous enumeration of
A; Ba ((]i)ieN’ (Vé)ieNa (U:')ieN and (Vi)ieN'

Assume that infinitely many elements enter A in state v = {e, g,7) with respect to
(Uiens(V)ien- This implies for H:= {0,...,e} — o that

<D v - <<”LEJH Uz> \ A>> N A is infinite.
<<Q W)\<<g, Ui)\A>> ~ A is infinite

by the choice of ¥P* = VP, Since every element is already in V; when it appears in
V'?, this implies that for some state v, < v infinitely many elements of A are at some
point in state v; with respect to the given enumeration of 4, (U);cn, (IA/i)ieN.

According to hypothesis (*) of the lemma there then exists some state
v, =<e,0,,7,) < vy such that infinitely many elements of B are at some point in
state v, with respect to (U)le ~s> (V)ien- Thus the set

<<<ﬂ V,-)\B)\( U z?,.>> A B is infinite.
iety ie{0,..., e}—aa

By the choice of UF = U, this implies that

(((ﬂ Vi>\B>— U Uf)mBis infinite.
iety ie{0,..., e}—a2

Since U, = UTt = UP every element of the preceding infinite set enters B in some
state v3 < v, with respect to (U});cn> (Wien-

The symmetrical counterpart of the covering property (* *) is proved analogously.

THEOREM 3.2. Assume that the sets A and B have the prompt and low shrinking
properties. Further assume that there is a simultaneous enumeration of A, B and r.e.
sets (Uicns (Micns (U),EN and (V))cy such that for allie N U; =* W, and V; =* W, for
every state v infinitely many elements of A have state v with respect to (Up;cw, (V);ezv
iff infinitely many elements of B have state v with respect to (U,),eN, (V));en and such
that property (*) of the shrinking lemma holds. Then there is an automorphism @ of &
such that ®(A) =

Proor. Combine the shrinking lemma with Soare’s extension theorem (Theo-
rem 2.2 in [10]).

COROLLARY 3.3. Assume that A, B are coinfinite, semi-low, s and have the prompt
and low shrinking properties. Then there is an automorphism ® of & such that
B(A) =

PROOF. Since A, B are semi-low, 5 and coinfinite, there exist according to [5]
arrays (Uie > (Wiews (Udiens (V)i that satisfy the assumption of Theorem 3.2. In
order to verify property (*) one uses Lemma 4.5 of [5] in combination with the fact
that if infinitely many elements are at some stage in state v = (e, 0,1 then for every
k > e there is a state v, = <k, 3,7 with 6 n {0,...,e} =cand Tn {0,...,e} =1
such that infinitelv manv of these elements are at some stage in state v..

Therefore
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COROLLARY 3.4 (SEE THEOREM 17 IN [4]). Assume, A, B are promptly simple and
semi-low. Then there is an automorphism ® of & such that $(A) = B.

Proor. This follows from Lemma 2.4, Lemma 2.5 and Corollary 3.3.

COROLLARY 3.5. There is a set A of low degree such that A is not promptly simple
but A is automorphic to a promptly simple set of low degree (thus in particular to anr.e.
generic set).

PrOOF. Combine Theorem 2.7 with Corollary 3.3.

COROLLARY 3.6. There is a coinfinite set of low degree that has the splitting
property but is not promptly simple.

ProoF. Take the set A from Theorem 2.7. According to Corollary 3.3 this set is
automorphic to every semi-low promptly simple set. But every promptly simple set
has the splitting property [7].

Note that one can prove this corollary as well without using automorphism
results. It is not difficult to show directly that every semi-low set with the prompt
shrinking property has the splitting property.
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