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Rasch MJ, Schuch K, Logothetis NK, Maass W. Statistical com-
parison of spike responses to natural stimuli in monkey area V1 with
simulated responses of a detailed laminar network model for a patch
of V1. J Neurophysiol 105: 757–778, 2011. First published November
24, 2010; doi:10.1152/jn.00845.2009. A major goal of computational
neuroscience is the creation of computer models for cortical areas
whose response to sensory stimuli resembles that of cortical areas in
vivo in important aspects. It is seldom considered whether the simu-
lated spiking activity is realistic (in a statistical sense) in response to
natural stimuli. Because certain statistical properties of spike re-
sponses were suggested to facilitate computations in the cortex,
acquiring a realistic firing regimen in cortical network models might
be a prerequisite for analyzing their computational functions. We
present a characterization and comparison of the statistical response
properties of the primary visual cortex (V1) in vivo and in silico in
response to natural stimuli. We recorded from multiple electrodes in
area V1 of 4 macaque monkeys and developed a large state-of-the-art
network model for a 5 � 5-mm patch of V1 composed of 35,000
neurons and 3.9 million synapses that integrates previously published
anatomical and physiological details. By quantitative comparison of
the model response to the “statistical fingerprint” of responses in vivo,
we find that our model for a patch of V1 responds to the same movie
in a way which matches the statistical structure of the recorded data
surprisingly well. The deviation between the firing regimen of the
model and the in vivo data are on the same level as deviations among
monkeys and sessions. This suggests that, despite strong simplifica-
tions and abstractions of cortical network models, they are neverthe-
less capable of generating realistic spiking activity. To reach a
realistic firing state, it was not only necessary to include both N-meth-
yl-D-aspartate and GABAB synaptic conductances in our model, but
also to markedly increase the strength of excitatory synapses onto
inhibitory neurons (�2-fold) in comparison to literature values, hint-
ing at the importance to carefully adjust the effect of inhibition for
achieving realistic dynamics in current network models.

I N T R O D U C T I O N

Numerical simulations of detailed biophysical models of
cortical microcircuits or even whole brain regions provide
powerful tools to approach complex questions in neuroscience
and are commonly regarded as a promising tool to understand
the mechanistic link from anatomical structure and physiolog-
ical properties to computational functions of cortical circuits.
In general, approaches along this line incorporate selected

aspects of the known anatomy and physiology to replicate
experimental data on emergent functional properties, such as
the structure of preferred orientation maps of the primary
visual cortex (Adorjan et al. 1999; Bartsch and van Hemmen
2001; Blumenfeld et al. 2006), direction selectivity maps
(Ernst et al. 2001; Wenisch et al. 2005), and simple/complex
cells (Chance et al. 1999; Tao et al. 2004; Wielaard et al.
2001), or successfully exemplifying theoretical ideas about
information processing in the brain (Diesmann et al. 1999;
Maass et al. 2002; Vogels and Abott 2005). However, these
increasingly complex recurrent network models are often still
a strong abstraction from reality, and it is not clear whether the
responses of such network models exhibit at least a general
likeness to its counterpart in reality.

Constraining the firing regimen of in silico models with that
observed in vivo is important for at least two reasons: First, it
will benchmark current models to achieve a realistic firing
response and thus will further help to open new research
directions because it will hint at current shortcomings of
existing models. Second, it has been suggested theoretically
that there might be a firing regimen or state that is favorable for
ongoing computation within recurrent neural networks (Brunel
2000; Legenstein and Maass 2007; Vogels and Abbott 2005).
One might thus postulate that, during evolution, the brain has
shaped a particular useful firing regimen that is in some way
supporting the computational function of the neural tissue.
Therefore achieving a realistic firing activity in cortical circuit
models might be an important but rarely considered prerequi-
site to using these models for analyzing aspects of cortical
computational functions. If a realistic firing regimen cannot be
achieved easily, the validity of conclusions drawn from these
model circuits might be corrupted, or efforts have to be made
to tune these models toward a realistic regimen. To study this
issue, we ask in this study whether a state-of-the-art network
model of a cortical circuit is able to reproduce the characteristic
firing regimen of the cortex.

We focus on the primary visual system (V1) in the anesthe-
tized state, because the anatomical and neurophysiological
details of V1 are relatively well known and its position in
visual sensory processing is relatively well established. In
contrast to awake and behaving monkeys, the visual input
received by V1 during stimulation is easily constrained by the
experimenter. Moreover, V1 already serves as a reference
cortical area to study large-scale network models (Johansson
and Lansner 2007; Kremkow et al. 2007), although many
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aspects of its computational organization and the underlying
mechanisms remain poorly understood (Olshausen and Field
2005).

To compare the firing state of V1 in vivo with that of
simulated responses of a cortical network model in silico, we
first recorded spike responses with multielectrode arrays in V1
of four anesthetized monkeys while presenting seminatural
movies of several-minute duration. Given the complex natu-
ralistic stimuli, we thus expect that V1 will likely be in an
operating regimen, where its computations are usually per-
formed. We characterized this firing regimen by its “statistical
fingerprint” using a number of salient statistical features, mea-
suring the spike variability, the burst behavior, and the corre-
lation structure. We compared this “statistical fingerprint” to
that obtained from the response of a state-of-the-art cortical
circuit model of a 5 � 5-mm patch of V1, comprising about
35,000 neurons and 3.9 million synapses situated in several
hypercolumns. The developed spiking neuron network model
is based on the cortical microcircuit model described in Haeu-
sler and Maass (2007), which implements experimental data
from Thomson et al. (2002) on lamina-specific connection
probabilities and data from Markram et al. (1998) and Gupta et
al. (2000) regarding stereotypical dynamic properties (such as
paired pulse depression and paired pulse facilitation) of syn-
aptic connections. We extended this cortical microcircuit
model laterally and incorporated many anatomical properties
of V1 in macaques to ensure the comparability to our in vivo
recordings.

Our approach, using both electrophysiological recordings
and model circuit simulation, provided us with the unique
possibility to use the same movie stimuli for the model simu-
lations and during in vivo recordings. Given this comparability,
we were able to study whether the firing regimen of a model
achieves a realistic state, and if not, whether a set of global
parameters were sufficient to tune the models firing regimen to
become more realistic.

We found that the response of the detailed model circuit
adopts a firing regimen that is remarkably similar to the in vivo
response and is on average close to the deviations across
different sessions and different monkeys. This close match was
achieved by tuning only a few parameters: an overall synaptic
weight scaling factor compensating for the reduced number of
modeled neurons, the relative synaptic weight from excitatory
to inhibitory neurons, and the relative strength of patchy lateral
long-range excitatory weights. We found that the firing re-
sponse statistics was not simply induced by the statistics of the
complex input stimuli but instead depended significantly on the
internal dynamics. This good fit suggests that current network
models comprising realistic neuron dynamics, as well as real-
istic time courses of synaptic activation, which included short-
term depression and facilitation, are capable of generating a
similar diverse network response behavior as can be observed
in in vivo recordings.

Growing evidence suggests that computational functions of
neural circuits are closely linked to its firing regimen. We
therefore expect that this characterization of the firing regimen
provided here and the possibility to use a few parameters to
calibrate a complex model will greatly ease the analysis of the
computational properties of realistic, detailed circuit models in
future.

M E T H O D S

Experimental methods

ELECTROPHYSIOLOGICAL RECORDING. The electrophysiological re-
cordings were previously described in (Montemurro et al. 2008),
where the same data were analyzed from a different perspective.
However, for completeness we include a detailed description here.

Four adult rhesus monkeys (Macaca mulatta) participated in these
experiments. All procedures were approved by the local authorities
(Regierungspräsidium) and were in full compliance with the guide-
lines of the European Community (EUVD 86/609/EEC) for the care
and use of laboratory animals. Before the experiments, form-fitted
head posts and recording chambers were implanted during an aseptic
and sterile surgical procedure (Logothetis et al. 2002). To perform the
neurophysiological recordings, the animals were anesthetized
(remifentanil, 0.5–2 �g/kg/min), intubated, and ventilated. Muscle
relaxation was achieved with a fast acting paralytic, mivacurium
chloride (5 mg/kg/h). Body temperature was kept constant, and
lactated Ringer solution was given at a rate of 10 ml/kg/h. During the
entire experiment, the vital signs of the monkey and the depth of
anesthesia were continuously monitored (as described in Logothetis et
al. 1999). For the protocol used in these experiments, we previously
examined the concentration of all stress hormones (catecholamines)
(Logothetis et al. 1999) and found them to be within the normal limits.
Drops of 1% ophthalmic solution of anticholinergic cyclopentolate
hydrochloride were instilled into each eye to achieve cycloplegia and
mydriasis. Refractive errors were measured, and contact lenses (hard
PMMA lenses, Wöhlk) with the appropriate dioptric power were used
to bring the animal’s eye into focus on the stimulus plane. The
electrophysiological recordings were performed with electrodes that
were arranged in a 4 � 4 square matrix (interelectrode spacing varied
from 1 to 2.5 mm) and introduced each experimental session into the
cortex through the overlying dura mater by a microdrive array system
(Thomas Recording, Giessen, Germany). Electrode tips were typically
(but not always) positioned in the upper or middle cortical layers. The
impedance of the electrode varied from 300 to 800 kOhm. Both
spontaneous and stimulus-induced neural activity were collected and
recorded for periods �6 min. Signals were amplified using an Alpha
Omega amplifier system (Alpha Omega, Ubstadt-Weiher, Germany).
The amplifying system filtered out the frequencies below 1 Hz.
Recordings were performed in a darkened booth (Illtec, Illbruck
Acoustic). The receptive fields of the electrode sites were plotted
manually, and the position and size of each field were stored together
with the stimulus parameters and the acquisition data. The visual
stimulator was a dual processor Pentium II workstation running
Windows NT (Intergraph, Huntsville, AL) and equipped with
OpenGL graphics cards (3Dlabs Wildcat series). The resolution was
set to 640 by 480 pixels. The refresh rate was 60 Hz, and the movie
frame rate was 30 Hz. All image generation was in 24-bit true-color,
using hardware double buffering to provide smooth animation. The
640 � 480 VGA output drove the video interface of a fiber-optic
stimulus presentation system (Avotec, Silent Vision) and also drove
the experimenter’s monitor. The field of view (FOV) of the system
was 30 H � 23 V degrees of visual angle and the focus was fixed at
2 diopters. The system’s effective resolution, determined by the
fiber-optic projection system was 800 H � 225 V pixels (the fiber-
optic bundle is 530 � 400 fibers). Binocular presentations were
accomplished through two independently positioned plastic, fiber-
optic glasses. Positioning was aided by a modified fundus camera
(Zeiss RC250) that permitted simultaneous observation of the eye
fundus. The fundus camera has a holder for avotec projector so that
the center of camera lens and avotec projector is aligned in the same
axis. This process ensured the alignment of the stimulus center with
the fovea of each eye. To ensure accurate control of stimulus presen-
tation, a photo-diode was attached to the experimenter’s monitor
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permitting the recording of the exact presentation time of every single
frame.

The visual stimuli were binocularly presented 3.5- to 6-min-long
natural color movies (segments of the commercial movie “Star
Wars”). During each of 10 recording sessions, the movie was repeated
12–40 times.

SPIKE DETECTION. To extract spike times from the electrophysio-
logical recordings, the 20.83 kHz neural signal was filtered in the
high-frequency range of 500–3,500 Hz. The threshold for spike
detection was set to 3.5 SD. A spike was recognized as such only if
previous spikes have occurred �1 ms earlier. Spikes detected repre-
sent the spiking activity of a small population of cells rather than
well-separated spikes from a single neuron. To separate this multiunit
activity into single unit activity, we sorted the spikes according to the
wave forms.

For spike sorting, we used the method described by Quian Quiroga
et al. (2004). The spike waveforms were extracted around the detec-
tion times as described above (in a region of 0.25 ms before to 0.5 ms
after the detected spike). These spike forms were interpolated, and 10
wavelet features (with 4 scales) were extracted (Quian Quiroga et al.
2004). From this feature pool, the 10 features (KS-test) were used as
input for the clustering algorithm. We sorted the spikes using the
paramagnetic algorithm of Quian Quiroga et al. (2004). For each
electrode, a few reasonable clusters were selected by visual inspection
of the spike waveforms ensuring a reasonable distinguishable average
waveform among clusters. After this initial selection, spikes that
initially were not classified in a particular cluster (or belonging to not
selected clusters) were forced to belong to the nearest selected cluster
(Mahalanobis distance; Quian Quiroga et al. 2004). A cluster that
maintained very similar waveforms after this step was deemed to be
a well-isolated cluster and was considered for further analysis. Oth-
erwise the cluster was not considered further for spike sorting.

Model

In this section, we describe a data-based model developed to
compare its spiking activity with the electrophysiological recordings
from macaque. It consists of an input model [representing the retina
and lateral geniculate nucleus (LGN) of the thalamus] and a model of
a patch of V1, receiving and processing the spikes of the input model.
In the following, we will first describe the V1 model and subsequently
the input model.

V1 MODEL. Our model for a 5 � 5-mm patch of area V1 consisted
of 34,596 neurons and 3.9 million synapses. Various anatomical and
physiological details were included in our model. The connectivity
structure of the V1 model was similar to that of the generic cortical
microcircuit model discussed in Haeusler and Maass (2007). The
neurons of that model were equally distributed on three layers,
corresponding to the cortical layers 2/3, 4, and 5. Each layer contained
a population of excitatory neurons and a population of inhibitory
neurons with a ratio of 4:1 (Beaulieu et al. 1992; Markram et al.
2004). The inter- and intralayer connectivity (probability and strength)
was chosen according to experimental data from rat and cat cortex
assembled in Thomson et al. (2002). Although there are differences,
the connectivity structure in macaque is similar to that of the cat, in
particular, if one identifies layer 2/3 and 4 in cat with 2-4B and 4C in
macaque, respectively (Callaway 1998). The major geniculate input
reaches in both species first layer 4C. Layer 4C projects to layer 2-4B,
which in turn projects further to layer 5 (and layer 6 via layer 5),
where feedback connections are made to layers 2-4B (see Callaway
1998 for a review). Furthermore, the sublaminar organization, e.g., the
structure built by cytochrome-oxidase blobs in layer 2/3 (Callaway
1998), was neglected for simplicity and for the lack of precise data.
However, as described below, the V1 model contained in addition to
the microcircuit model of Haeusler and Maass (2007) a realistic

thalamic input, a smooth orientation map, and patchy long-range
connections in the superficial layer.

In contrast to Haeusler and Maass (2007), we set the relative
amount of neurons per layer to 33%. This partitioning corresponds to
experimental data from macaques (Beaulieu et al. 1992; O’Kusky and
Colonnier 1982; Tyler et al. 1998), although we slightly adjusted the
relative amount of neurons compared with the experimental values
(where layer 4 has �33% more neurons), compensating for the fact
that our model neglects the magnocellular and koniocellular pathways
in favor of the parvocellular pathway (Callaway 1998). The three
layers of the model can be identified with layers 2-4B, 4C�, and 5–6
in macaque V1. To avoid confusion with the terminology of (Haeusler
and Maass 2007), we will, nevertheless, call them layer 2/3, 4, and 5
in the following.

In macaque, each of these three layers contains �50,000 neurons
under a surface area of 1 mm2 (Beaulieu et al. 1992). In our model, we
neglected that neuron density varies �1.5-fold between the layers
(Beaulieu et al. 1992) and assumed instead that the neurons are
uniformly distributed throughout the cortex. Thus for simplicity, we
positioned all neurons on a cuboid grid with constant grid spaces.
Using the experimentally measured neuron density, e.g., for layer 2/3,
the grid spacing would be 20 �m for all directions. Because the
simulation of such a dense network would take too much computation
time, we diluted the neuron density by increasing the lateral grid
spacing to 80 �m and the vertical spacing to about 200 �m.

We used a conductance-based single-compartment neuron model.
Because of a considerable gain in computational speed, we used a
neuron model suggested by Izhikevich (2003), which can be adjusted
to express different firing dynamics (Izhikevich 2006). We randomly
drew the parameters for each neuron in the network according to the
bounds provided by Izhikevich et al. (2004). On the basis of these
parameter distributions, the excitatory pools consisted of regular
spiking cells, intrinsically bursting cells, and chattering cells, with a
bias toward regular spiking cells. The inhibitory pools consisted of
fast spiking neurons and low-threshold spiking neurons.

In addition to the synaptic input from other neurons in the model,
each neuron received as additional input synaptic background input,
modeling the bombardment of each neuron with synaptic inputs from
a large number of neurons that are not represented in our model. This
synaptic background input causes a depolarization of the membrane
potential and a lower membrane resistance, commonly referred to as
the “high conductance state” (Destexhe et al. 2001). The conductances
of the background input was modeled according to Destexhe et al.
(2001) by Ornstein-Uhlenbeck processes with means gexc � 0.012 �S
and ginh � 0.047 �S, variances �exc � p1 0.003 �S and �inh � p1

0.0066 �S, and time constants �exc � 2.7 ms and �inh � 10.5 ms,
where the indices exc/inh refer to excitatory and inhibitory back-
ground conductances, respectively. During the parameter optimiza-
tion, we scaled the variances of both processes. The scaling factor p1

of both variances affects the amount of noise added to the conduc-
tance of a neuron.

Short-term synaptic dynamics was implemented according to
Markram et al. (1998), with synaptic parameters chosen as in Maass
et al. (2002) to fit data from microcircuits in rat somatosensory cortex
(based on Gupta et al. 2000 and Markram et al. 1998). For further
details, we refer to Haeusler and Maass (2007).

Lateral connectivity structure. The generic microcircuit model of
Haeusler and Maass (2007) was based on data for a column of about
100 �m diam with uniform connectivity per layer and neuron type.
Here we extended the model laterally to several millimeters. Thus
connection probabilities in our model depend on the lateral distance.
For inter- and intracortical connections, we generally used a bell-
shaped (Gaussian) probability distribution for determining the lateral
extent. The SD of the Gaussian was set to 200 �m for excitatory
neurons (Blasdel et al. 1985; Buzas et al. 2006; Lund et al. 2003) and
to 150 �m for inhibitory neurons to incorporate the observed occur-
rence of extremely narrow inhibitory dendritic and axonal spreads (70
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�m; Lund et al. 2003). The arborization of excitatory neurons in layer
5 seems to be wider, more diffuse, and has a spread of �500 �m
laterally from the soma (Blasdel et al. 1985). Thus for these connec-
tions, we set the SD to 300 �m. Note that the value for the SD is about
one half the expected maximal extent of 95% of the arborizations.

To ensure consistency with the connectivity data of Thomson et al.
(2002), we scaled the Gaussian profiles such that the peak probabil-
ities correspond to their experimentally measured connection proba-
bilities. Therefore their connectivity pattern was locally preserved.

According to Song et al. (2005), the number of bidirectional
connections between excitatory neurons in layer 5 is four times higher
than the expected number under the assumption that the conditional
probabilities, whether an unidirectional connection exists or not, are
the same. We incorporated this probability increase into our model.

Patchy lateral long-range connections. In cat and macaque, many
pyramidal cells in layer 2/3 of the striate cortex (and also elsewhere in
the cortex; Lund et al. 2003) have characteristic long-range projec-
tions targeting laterally 80% excitatory and 20% inhibitory cells
(McGuire et al. 1991), which are �6 mm and more away (Buzas et al.
2006l Gilbert et al. 1996; Lund et al. 2003). Moreover, the targeted
neurons tend to have similar feature preference as its origin, resulting
in patchy connections linking similar preferred orientations (Buzas et
al. 2006; Gilbert et al. 1996). Combining anatomical reconstructions
of neurons and optical imaging of orientation maps, Buzas et al.
(2006) proposed a formula to calculate the bouton density � of a
typical layer 2/3 pyramidal cell

�(r, ��) 	 Z [exp�
 r2

2�1
2��m exp�
 r2

2�2
2�exp(� cos(2�� 
 2�))] (1)

r is the lateral (Euclidean) distance between the pre- and the postsynaptic
neuron, and �� is the difference of preferred orientations of the two
neurons. Parameter � is an offset in the orientation preference and
parameter m is a scaling factor that accounts for the importance of the
long-range orientation-dependent term against the local orientation inde-
pendent term. SD �1 and �2 regulate the spatial width of the nonoriented
and oriented term, respectively. Parameter � signifies the “peakiness” of
the density on the orientation axis. Z is a normalization constant. Because
we defined preferred orientations in a hard-wired manner via “oriented”
input connections (see APPENDIX A), we applied Eq. 1 for the lateral
connections in layer 2/3, more specifically, for projections from excit-
atory cells targeting excitatory and inhibitory cells (McGuire et al. 1991).

Analogous to connections between other layers, we set �1 � 200
�m for the local nonoriented term. We set � � 0° and �2 � 1,000 �m
(estimated from the measurements of Buzas et al. 2006). We chose a
higher � � 20 than reported because of the following reasoning. As
described above, the neuron density of our circuit model is much
smaller than in reality. We compensated this neuron dilution by a
noise process fed into each modeled neuron, which implicitly models
activation of omitted neurons as described above (Destexhe et al.
2001). Because any (implicit) input from omitted neurons is indepen-
dent of orientation preference, neurons in the circuit should have a
strong bias toward orientation preference dependent connections. To
account for this bias, we therefore increased �.

Finally, the parameter m was set so that 58% of the excitatory
synapses onto an excitatory neuron in layer 2/3 were long-range
connections. As before, the connection probability was scaled, ac-
cording to Thomson et al. (2002), by setting Z to appropriate values.
Thus locally, i.e., for a neuron at the same lateral position (and
orientation preference) such as a neuron located in the same layer
beneath or above the presynaptic neuron, the connection probabilities
were preserved. However, the weight distribution of the long-range
connection was not constrained by Thomson et al. (2002). Hence, we
simply scaled the recurrent weight reported by Thomson et al. (2002)
and fitted the scaling factor to the in vivo data (see RESULTS). As
standard value, we used a value of 1.0 for this parameter that is the
same average weight as in Thomson et al. (2002).

Distance-dependent synaptic delay. Synaptic delays differ for in-
hibitory and excitatory neurons. They were set according to measure-
ments by Gupta et al. (2000) (for details see Haeusler and Maass
2007). These delays stem from molecular processes of synaptic
transmission. In addition, a second delay originating from finite spike
propagation velocity of the fibers was included. This delay depends on
the (Euclidean) distance between the pre- and the postsynaptic neuron.
Girard et al. (2001) found a median conduction velocity of 0.3 m/s for
the upper layers and 1 m/s for the lower layers of V1 in macaque
monkeys. Thus we sampled the velocity for each excitatory synapse in
layer 2/3 from a Gaussian distribution with mean 0.3 m/s and SD 0.5
m/s (with enforced lower and upper bounds of 0.05 and 5 m/s,
respectively). For the other layers, the conduction velocities were
drawn from a Gaussian distribution with mean 1 m/s and SD 0.9 m/s
(with same bounds as before). Because of myelination, conduction
velocities of inhibitory fibers are generally higher than for excitatory
cells (Thomson et al. 2002). Lacking exact measurements in the
literature for all inhibitory cells, we sampled the velocities from a
distribution with mean and SD twice as high as for excitatory neurons
in the deep layers (the enforced upper bound was set to 10 m/s).

Synaptic conductances. A spike, arriving at a synapse, causes a
change in the synaptic conductance in the postsynaptic neuron. The
dynamic of the conductance depends on the receptor kinetics. Each
excitatory synapse in our model contains 
-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors having relatively fast
kinetics (modeled as exponential decay with time constant �AMPA �
5 ms, reversal potential 0 mV). A fraction fNMDA of all excitatory
synapses contain additionally relatively slow, postsynaptic voltage
dependent N-methyl-D-aspartate (NMDA) receptors (�NMDA � 150
ms, reversal potential 0 mV; Dayan and Abbott 2001; Gerstner and
Kistler 2002), and therefore exhibit a superposition of conductance
kinetics. The ratio of NMDA to AMPA receptors in a synapse was
drawn from a Gaussian distribution with mean �NMDA/AMPA � 0.47
and SD �NMDA/AMPA � 0.2�NMDA/AMPA (Myme et al. 2003).

Analogously, the inhibitory synaptic synapses were modeled as a
mixture of GABAA and GABAB receptors. Whereas the GABAA

kinetic was again modeled as a relatively fast exponential decay
(�GABA-A � 5 ms, reversal potential �70 mV), the conductance
kinetic of the GABAB receptors was implemented according to a
model proposed by (Destexhe et al. 1994) with parameter values taken
from (Thomson and Destexhe 1999) (reversal potential �90 mV). The
GABAB-to-GABAA ratio of an individual inhibitory synapse was
drawn from an uniform distribution between zero and a maximum
ratio minh � 0.3.

INPUT MODEL. The electrophysiological recordings were done dur-
ing presentation of natural movies. Although our modeling effort was
concentrated on the V1 model, we needed a sufficiently realistic
transformation of movie stimulus to (V1 input) spike trains. Therefore
the retina and the lateral geniculate nucleus (LGN) were modeled,
according to Dong and Atick (1995), as a spatio-temporal filter bank
with nonlinearities, which seems to be a good compromise between
simplicity and realism (Gazeres et al. 1998). The filter bank converted
time varying input signals on the retina, such as movies, into firing
rates of LGN neurons. Note that this feedforward, rate-based model
neglects any feedback connections from V1 to LGN (Callaway 1998).
Moreover, we neglected that the ganglion cells typically react to color
opponency rather than to pure luminance differences (Perry et al.
1984). Thus the color movie was converted to a grayscale movie.

Retina model. The two-dimensional retinal inputs (movie frames)
were filtered by “Mexican hat” (difference of Gaussians) spatial filters
(Dong and Atick 1995; Enroth-Cugell and Robson 1966; Rodieck
1965). Filter sizes (describing the receptive fields of ganglion cells)
were adapted to the geometry of parvocellular cells of macaque,
where the SD of the Gaussian for center and surround were estimated
to be �center � 0.0177° � 0.0019� and �surround � 6.67 �center at
eccentricity �, respectively (in visual degrees; estimated from Fig. 4,
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A and B in Croner and Kaplan 1995). After the convolution of the
stimulus luminance portrait with these kernels (yielding Scenter and
Ssurround), the response of a retinal ON-cell at visual field position r can
be described by

RON(r) 	 C(r)[Scenter(r) 
 �Ssurround(r)]� (2)

Following Croner and Kaplan (1995), we set the ratio of center to
surround � � 0.642. The positive part of the center and surround
interaction (indicated by the brackets [ . . . ]�) was assigned to the
response of an ON-cell and, analogously, the absolute value of the
negative part to the response of an OFF-cell (Dong and Atick 1995).
For simplicity, we assumed that the origins of the center and surround
summation fields are identical, although a recent study suggests that
there might be an offset between them (Conway and Livingstone
2006).

Applying the Difference-of-Gaussians model to the luminance of a
stimulus results in a quantity called “contrast gain” (Croner and
Kaplan 1995; Enroth-Cugell and Robson 1966; Rodieck 1965). To
calculate the firing rate of ganglion cells, one has to multiply the
“contrast gain” with the local contrast C(r) (as done in Eq. 2) if one
neglects nonlinear saturation in the high contrast regimen that is
typically not reached for the natural stimuli we used here. Locality is
important because the concept of a global contrast, easily defined for
full-field grating stimuli commonly used in experiments, is not appli-
cable for real world images and movies (Tadmor and Tolhurst 2000).
Following Tadmor and Tolhurst (2000), we estimated the local con-
trast using the same kernels as

C�r� 	
�Scenter�r� 
 Ssurround�r��

Scenter�r� � Ssurround�r�
(3)

where we additionally set the contrast to be zero in the case of
darkness. Note that applying Eq. 3 results in a response RON(r) that is
sparser than for a constant global contrast, because the response is
now quadratic in the center and surround luminance difference (see
Eq. 2).

LGN model. The retinal output was filtered by the LGN model
using a temporal kernel. The temporal kernel combines a phasic
(taken from Dong and Atick 1995) and a tonic component (as in
Gazeres et al. 1998), i.e., kLGN � kphasic � ktonic. It is for nonnegative
times

kphasic�t� 	 t�1 
 ��ct�exp�
2��ct� (4)

and

ktonic�t� 	 A exp(
t ⁄ �) ⁄ � (5)

Parameter A � 0.3 is the fraction of tonic activation (with respect
to the peak firing rate) for a given stimulus, integrated over a time
window of � � 15 ms. Parameter �c � 5.5 s�1 defines the shape of
the phasic kernel (Dong and Atick 1995).

The positive parts and the absolute values of the negative parts of
the temporal convolutions were assigned to nonlagged and lagged
cells, respectively. Altogether, there are four different time-varying
rate outputs, i.e., that of any combination of nonlagged or lagged cells
in the LGN with either ON- or OFF-cells from the retina (Dong and
Atick 1995). Following Gazeres et al. (1998), a so-called “switching
Gamma renewal process” was used to convert these time-varying
rates to spike trains. This process, which was suggested to fit exper-
imental data from cat LGN X-cells (Gazeres et al. 1998), adopts a
higher spike time regularity for high-input rates (�30 Hz; regularity
parameter r � 5) and switches to a Poisson process for low rates (	30
Hz). The spontaneous background activity of each LGN neuron was
set to a low value of 0.15 Hz. The peak LGN spike rate fmax was
adjusted to achieve a mean firing rate of about 7 Hz under movie
stimulation, when the four input channels were combined. The 7-Hz
mean rate was estimated from our electrophysiological data from

macaque monkey. Applying a typical 50-s movie section, we found
that a mean rate of 7 Hz was achieved for fmax � 250 Hz. The peak
response would be evoked by a dot of highest contrast filling the
center region of a ganglion cell with optimal duration. This value is in
good agreement with Gazeres et al. (1998), who reported peak rates
range of 50–400 Hz.

Input connectivity to V1. The visual field is retinotopically arranged
on the cortical surface. However, although there exists only one
retinal ganglion cell per LGN cell corresponding to the same visual
field position at all eccentricities in macaque, there is a considerable
magnification in density of cortical neurons in V1 per degree of visual
field (Schein and de Monasterio 1987; Tootell et al. 1982). Comparing
several earlier studies, Schein and de Monasterio (1987) estimated the
cortical magnification factor (CMF) at eccentricity � to be (in mm
cortex per degree of visual field)

CMF 	
12.2 mm

� � 0.95°
(6)

This definition of the cortical magnification factor (Eq. 6) is very
convenient: for a fixed eccentricity and distance between adjacent
neurons (grid spacing), one can calculate the lateral extent of the
network needed to cover a given visual field size. Note, however, that
this estimate is only useful when the lateral extent of the network
model can be regarded as small compared with the variation in lateral
cell density.

LGN neurons, belonging to the parvocellular pathway, typically
project to layer 4C� of V1. There is still an ongoing debate to which
extent oriented input shapes the orientation selectivity of neurons in
the primary visual cortex or to what extent local cortical processing is
involved (see Teich and Qian 2006 for a review). It seems that in
macaques, orientation selectivity is thought to arise from the interac-
tion of cells with gradually shifted input characteristics across the
sublamina of the layer 4C (Callaway 1998; Lund et al. 2003), whereas
the inputs to a single cell might not be oriented in macaques as
suggested for the cat (Hubel and Wiesel 1977). However, because we
did not model sublamina, we simplified the circuitry by, nevertheless,
assuming that input connections to each neuron generate orientation
tuning. This allows the definition of orientation maps in a straight-
forward “hard-wired” manner in our model. We used Kohonen’s
Self-Organizing Map algorithm (Kohonen 1982) to create orientation
maps across the cortical surface, which is known to generate orien-
tation maps with good correspondence to V1 orientation maps (Brock-
mann et al. 1997; Erwin et al. 1995; Obermayer and Blasdel 1993;
Obermayer et al. 1990, 1992). See Fig. 1C for a typical orientation
map generated by this algorithm (see APPENDIX A for details on the
implementation of the algorithm).

Based on the generated orientation preferences for each cortical
position, the thalamic input connection probability to a cell in the
circuit could thus be modeled as an oriented Gabor function, i.e., a
two-dimensional Gaussian multiplied by a cosine function. The ab-
solute value of the Gabor function corresponds to the connection
probability of LGN neurons with a cortical cell positioned at the
cortical equivalent position of the origin of the Gabor patch in the
visual field. Positive and negative regions correspond to the connec-
tion probabilities of LGN ON- and OFF-response cells, respectively.
Lagged and nonlagged cells connected equally likely to cortical cells.
Following Troyer et al. (1998), we expressed the Gabor function in
parameters defining the number of subregions ns, the aspect ratio of
the width and the height of the Gaussian envelope a, the orientation �,
the offset of the cosine �, and the frequency of the cosine f. Given
these parameters, one calculates the SD of the Gaussian envelope as
(Troyer et al. 1998)
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�1⁄2	
1

9.792 f �ns 0

0 a � (7)

while using coordinates rotated by �. The advantage of using these
parameters is that the frequency defines implicitly the size of the
Gabor patch while the number of subregions is kept constant. There-
fore the receptive fields of macaque V1, which are much smaller than
those of the cat, can be easily included in this framework. We used
data from Bredfeldt and Ringach (2002) and chose the frequency f
from a Gaussian distribution with a mean of 3.7 deg�1 and a SD of 2.1
deg�1 (with an enforced minimum of 0.7 deg�1 and maximum of 8.0
deg�1). The number of subregions ns and phase shifts � were drawn
from uniform distributions with ranges of (1.85, 2.65) and (0,2�),
respectively (experimental values from cat as in Troyer et al. 1998).

To incorporate the smooth maps of preferred orientation � and
orientation preference q depending on cortical position u (see AP-
PENDIX A), we set � � �(u) and the aspect ratio to a(u) � (amax �
amin) q(u) � amin. We used values reported by Troyer et al. (1998) for
the bounds amin � 3.8 and amax � 4.54 for excitatory neurons and
for the generally less well-tuned inhibitory neurons, amin � 1.4 and
amax � 2.0.

Last, the overall connection probability defined by the Gabor
functions, was scaled to achieve an average number of 24 input
synapses for both excitatory and inhibitory neurons, which is the
estimated number of parvocellular afferent connection per cortical
neuron in layer 4C of macaques (Peters et al. 1994). There is evidence
that layer 6 receives occasional collaterals of the LGN input to layer
4 (Callaway 1998). Thus we set the connection probability to excit-
atory neurons in layer 5 (comprising layer 5 and layer 6 in our model)
to 20% of that of the input to layer 4. These values are in good
agreement with the data from Binzegger et al. (2004) estimated from

cat. In macaques, layer 2/3 receives only koniocellular input (Calla-
way 1998). Because we omitted the koniocellular pathway in our
model, layer 2/3 did not receive any thalamic input.

Because of finite conduction velocities of the fibers, signals from
the retina reach V1 with a characteristic delay of about 30 ms
(Maunsell et al. 1999). We sampled the delay of the LGN input
synapses from a Gaussian distribution with mean 31 ms and SD 5 ms
(and additionally enforced delays below 24 ms and above 50 ms to a
value uniformly in the latter range). These values were taken from
Fig. 3 of Maunsell et al. (1999).

Top-down connections. In addition to the thalamic input, V1 neu-
rons receive multiple feedback connections from extra-striate cortical
areas (Felleman and Essen 1991), especially from V2, where the
feedback connections are almost as numerous as the feed-forward
connections (see Sincich and Horton 2005 for a review). Feedback
projections predominantly project to targets in the upper layers but
also to layer 5 (Rockland and Virga 1989; Sincich and Horton 2005).

Because our model is restricted to V1 and we do not have any
recordings from V2 available, we decided to not include any top-down
input stream explicitly. However, implicitly, additional input to V1
neurons is included by modeling the “high conductance state” of each
neuron, which reflects the synaptic background input arriving from
distal neurons (Destexhe et al. 2001).

Comparing the V1 model to electrophysiological data

SETUP OF THE STIMULUS TO THE MODEL. The stimulus, presented to
the V1 model during simulation, resembled the one presented to the
monkeys. We used a 10-s fragment of one of the movie segments
(sw21) shown during the electrophysiological recordings as input
movie for the model. However, modeling the whole 10 � 7° visual

A

B

C

FIG. 1. Long-range connectivity of the V1 model. Long-range patchy connectivity of an example neuron implemented in a model circuit having 165 � 165 � 3
neurons in layer 2/3 positioned on a cuboid grid with a spacing of 25 �m. (Note, these dimensions are different from that used in the simulations of RESULTS;
they are used here for better visualization). A and B: conditional probability that the neuron (marked with a white square in the center of C) is connected to a
neuron having lateral distance r or orientation selectivity �, respectively. The connection probability to a postsynaptic neuron at 0 lateral distance and same
orientation preference was scaled to experimental data (�0.24%; Thomson et al. 2002). Blue and red curves show the connection probabilities for neurons that
have aligned or orthogonal preferred orientation to the presynaptic neuron, respectively. C: connections established according to the probability distributions for
a presynaptic neuron in the origin of the circuit (white square). Small white dots represent lateral positions of postsynaptic neurons. Colors code for orientation
tuning of a neuron (generated by a self-organizing map). The conditional connection probabilities are indicated by contour lines. One notes that the connection
probability rises for regions with similar orientation as the presynaptic neuron (�90°), thereby generating a patchy appearance. Only the orientated (long-range)
part of Eq. 1 (2nd term) is used for establishing connections in this example plot. However, because the weighting factor is high m � 10 (see Eq. 1), only very
few local connection will be added when considering both terms in the simulations. The orientation map additionally determines the orientation of thalamic input
connections.
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field was not feasible because of computational costs. Therefore we
trimmed the movie frames to a smaller size, covering 3 � 3° of the
visual field. The center of the extracted region was aligned to the
center of a receptive field of one of the electrodes (channel 7) of a
particular session (“d04nm1”). Because the diameter of the receptive
field of that electrode was experimentally determined to be 1.2°, the
reduced stimulus should at least contain all direct input information
available for neurons recorded by that electrode. On the retina, this
receptive field was centered at (0.69, �2.39°) eccentricity relative to
the fovea. In the model, we set the eccentricity, nevertheless, to 5°,
because otherwise, the lateral extent (and, therefore the amount of
neurons in the model) per visual degree would be prohibitively large
(cf. Eq. 6). At 5° eccentricity, a V1 model covering 2.4 � 2.4° has a
lateral extent of 5 � 5 mm cortical surface and neurons are positioned
on a virtual grid of size 62 � 62 � 9 if one assumes a lateral grid
spacing of 80 �m. Vertically, the grid spacing corresponds to 200 �m.
The visual field covered by the V1 model is somewhat smaller than
the stimulus to avoid boundary effects in the input connectivity. For
analogous reasons, the LGN neurons were set to cover an intermediate
area of 3 � 3° (77 � 77 grid).

ESTIMATING THE RELATIVE STRENGTH OF THE THALAMIC INPUT. In
the recorded spike trains, the mean firing rate of multiple trials (5-min
duration) across monkeys and V1 electrode channels was on average
5.1 (4.8) Hz (SD) during movie stimulation and 1.9 (3.3) Hz during
spontaneous activity (blank screen). Thus one could state that, be-
cause of the thalamic input, the mean firing rate of the circuit increases
by about 3 Hz. From simultaneous extracellular recordings in LGN,
we analogously find a mean firing rate of 7.1 (2.9) Hz during visual
stimulation and 4.4 (2.1) Hz during absence of visual stimulation.
Hence, in the LGN the movie stimulus increases the mean firing rate
by about 60% of the spontaneous activity.

We used these values to determine the synaptic input weight scale
(WIn,scale), i.e., the scaling factor of the peak conductances originating
from LGN neurons, in the following manner: In the absence of all
intercortical connections, the weight scaling factor of the input stream
was set to a value achieving closest match to a given target mean
firing rate in each neuron population (minimal Euclidean distance).
Assuming that the main input drive to V1 (during visual stimulation)
is from the thalamus, we set the target mean rate for the circuit to 2
Hz, which roughly corresponds to the activity increase seen during
visual stimulation in our experimental data.

EVALUATING THE DEVIATION BETWEEN MODEL RESPONSE AND IN
VIVO RECORDINGS. To compare the firing regimen of the model
with that of the in vivo recordings we evaluated the discrepancy
between a set of 10 statistical features calculated from the model
response and the recorded spike trains (see APPENDIX B). After esti-
mating a statistical feature on the experimental data and the model
response, their deviation was calculated using Kulback-Leibler diver-
gence or by calculated the mean squared error, depending whether the
features resulted in an estimated probability distribution or not,
respectively. This deviation was normalized by the average deviation
seen in this features if tested between any two experimental sessions
(different monkeys or different movie stimulus). We call this exper-
imental data weighted deviation the normalized deviation (ND) for
each statistical features. We report the normalized deviation averaged
across all statistical features as a measure for the goodness of fit, and
abbreviate it in the following with mean ND (MND).

Note that by construction a MND value of 1 indicates that the
deviation between the model response and the in vivo data (average
over all sessions) equals (on average over the 10 statistical features)
the average deviation between individual experimental sessions. We
used only one model random seed for the evaluation of the fitting error
for each parameter setting to reduce computational costs.

To compensate for a lack of synaptic drive because of a much
smaller neuron density in the model compared with reality, we
introduce two scaling parameters WIn,scale and Wscale. The WIn,scale

parameter, a multiplicative factor applied to all weights of the input
connections, was set by a heuristic approach to approximately match
the input strength observed in the experiments.

The second scaling parameter, the weight scale parameter Wscale,
accounts for the recurrent synaptic drive adjustments and is a multi-
plicative factor applied to all recurrent weights. As this parameter is
inherent to the model design, it cannot be constrained by literature
values. Therefore to estimate the weight scale parameter Wscale, we
used the value that minimizes the deviation of the model firing
response statistics to the “statistical fingerprint” of the firing regimen
of the in vivo recordings. To measure its deviation, we used the MND
as described above. We restricted the analysis on the response of
excitatory neurons only, because we expect that due to the generally
larger size of excitatory neurons, the experimental recordings were
strongly biased to record spikes originating from excitatory cells.

SIMULATION TECHNIQUES. All simulations were performed using
the PCSIM simulation environment (Pecevski et al. 2009). It takes
about 5 h on a quad core machine (2,664 MHz) to simulate the
described model for 10 s of biological time (depending on the mean
firing rate). All simulations were performed in a distributed fashion on
a cluster of 30 such quad core machines.

R E S U L T S

We first established the “statistical fingerprint” of the spik-
ing activity of the primary visual cortex (V1) under naturalistic
stimulus conditions in vivo. The extracted statistical features
provided the grounds for comparison with the simulated firing
response of a detailed circuit model. Because we hypothesized
that V1 works in a characteristic firing regimen favorable for
its ongoing computations, we were particular interested in
features possibly characterizing a computational advantageous
regime. For instance, such a regimen might consist of highly
irregular firing and low correlations between neurons (Brunel
2000; Legenstein and Maass 2007). We therefore extracted 10
salient statistical features, which are sensitive to various as-
pects of the spiking response, such as response strength,
response variability, spike correlations, bursting behavior, and
the possible usage of spiking codes with nonlinear dependen-
cies on consecutive spike intervals (see APPENDIX B for
exact definitions).

Statistical characterization of the spike response in vivo to
movies in monkey area V1

We first analyzed electrophysiological recordings from V1
of anesthetized macaque monkeys during stimulation with
natural movies. The data comprised spike responses measured
in 10 sessions (from 4 anesthetized macaque monkeys), each
with 12–40 repeated representations of a movie of 3.5–6 min
length. In Fig. 2, D and E, typical spiking responses of selected
neurons are depicted. We characterized the firing statistics of this
experimental data using a set of 10 statistical features (Fig. 3). The
same set of features were also used to characterize the model
response as described below (Fig. 9). We found that spike
responses of V1 under naturalistic stimuli conditions were
typically highly variable over time and moderately low corre-
lated between different neurons having a smooth fall-off for
long time lags. Firing rate and burst rate distributions followed
exponential distributions, burst size frequencies and ISI distri-
butions exhibited a power-law structure. This described gen-
eral picture is consistent with previous published values.
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In detail, the exponential distributed firing rates (Fig. 3A)
exhibited exponents varying between monkeys and experimen-
tal trials in the range of �2.35 to �0.23 s (mean �0.81 s, SD
0.62 s). The overall mean firing rate of the experimental data
averaged over the different sessions was 5.06 
 0.75 (SD) Hz.

The exponential distribution of firing rates is consistent with
results from the V1 of cats (Baddeley et al. 1997).

Spike train variability is generally high. We tested for the
variability in the spiking response using the distribution of
Fano factors of individual neurons for multiple time scales
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FIG. 2. Spiking response to movie stimulus in model simulation and in vivo. A: movie input to the model circuit in true colors (in the model, we used
a grayscale version of this movie). Pixels of the movie frames are lined up vertically. B: lateral geniculate nucleus (LGN) model response to the movie
in A. Seventy input channels were randomly selected for plotting (in total, there are 4,900 LGN inputs). C: spike trains elicited by neurons in the V1 model
in response to the LGN output from B are plotted in separate panels for each of the layers 2/3, 4C, and 5– 6. For better visualization, 70 neurons (of 11,532)
are randomly chosen from each layer. Inhibitory and excitatory neurons are colored red and black, respectively. One notes a high variability in the
statistical structure across neurons. D: spike trains of the spike sorted experimental data in response to the same movie segment are shown. Different colors
represent different sessions of the same monkey— green (blue): 2 trials of session d04nm1 (d04nm2). We show 2 trials to allow for an easier comparison
of the statistical structure of the spike trains in vivo with the model response (C). Note that the receptive field of some electrode channels lie outside of
the depicted movie region of A. E and F: Multiple trials of 2 selected neurons in experiment (E) and model (F). Note that trial-to-trial variability is
comparable in silico and in vivo.
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(Teich et al. 1997), and the Fano factor of the network
population spike response, to measure the response variability
of the population code. For individual neurons (Fig. 3B), the
Fano factor approached 1 on average for small window sizes in

the order of 10 ms, indicating a Poisson process with stationary
rates. On larger time scales, however, the Fano factor in-
creased. This increase in variability could reflect the internal
dynamics, but might be partly induced by the movie stimulus,
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FIG. 3. Spike statistics of the experimental data. Each panel corresponds to a particular statistical feature (see APPENDIX B for exact definitions). Data from
10 experimental sessions (from 4 monkeys) during movie stimulation are plotted separately in color code (1st monkey, brown; 2nd monkey, green; 3rd monkey,
shades of blue; 4th monkey, shades of red). In the legend, the 1st 3 letters of a session code indicate the animal, and the 2nd 3 letters indicate the recording session.
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in the last bin (where applicable), resulting in a disproportional large probability in the last bin. G: the conditional ISI distribution given that the 1st ISI is 	5
ms. The full distribution is shown in K and L.
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which mean brightness often varies on a time scale in the order
of seconds.

The population Fano factor (Fig. 3C), measuring the
response variability of the neuron population, showed a
similar time window dependence as the Fano factor of
individual neurons. However, the absolute value of the
population Fano factor was markedly smaller, indicating
that the population response was less variable over time on
short time scales. On a longer time scale, however, the Fano
factor of the population response increased, indicating that
the neurons in the recorded population tend be active or
silent together. This might hint at population burst-like
activity, also evident when examining the concrete spike
trains in the recordings (see Rasch et al. 2008 for a discus-
sion of how these clusters of spikes relate to the local field
potential fluctuations in the same data).

The high variability of the in vivo data were also evident
from the coefficient of variation of the interspike intervals
[CV(ISI)], plotted in Fig. 3H. High probabilities were typically
found for CV(ISI) values above 1, indicating a high variability
in the spike response. Such a high peak value is consistent with
previously published data (Holt et al. 1996; Shadlen and
Newsome 1998; Softky and Koch 1993; Stevens and Zador
1998).

Spike bursts, i.e., abrupt events of high spiking activity, have
been suggested to be an important aspect of neuronal coding of
information. For instance, bursts might convey additional and
independent information about the sensory inputs (Cattaneo et
al. 1981; Lisman 1997). Thus we included two statistics to
measure the occurrence of bursts in neuron spike trains, a
feature rarely examined in the literature. Figure 3D shows the
burst rate distribution, measuring the frequency of spiking
events having at least two spikes within an (average) ISI of 5
ms. Figure 3E shows the average burst rate for different sizes
of bursts (see APPENDIX B for exact definitions). Qualita-
tively, the burst rate distributions of different sessions looked
similar, having exponential distributions. The exponent varied
in the range of �5.07 s to �3.18 s (mean �4.54 s, SD 0.56 s).
The average bursts rate of all experimental data were 0.51 

0.17 (SD) Hz. However, in some sessions, there was a devia-
tion from the exponential distribution and higher burst rates
occurred more often than expected. Figure 3E shows that the
burst rate as a function of the burst size can be described by a
power law (a straight line in a log-log plot). We found expo-
nents in the range of �3.52 to �2.29 (mean �2.88, SD 0.43).

It is conceivable that a certain ISI distribution might be
characteristic for the firing regimen of the cortex. ISI distribu-
tions (Fig. 3F) were very similar for different monkeys and
different sessions. There was a high probability for the occur-
rence of long ISIs. The distribution of ISIs similarly followed
a power law with an average exponent of �1.20 
 0.19 (range
from �1.47 to �0.98).

Additionally, to account for any local temporal correlations
in the spike timings, we also estimated the two-ISI distribution,
which is a two-dimensional distribution of the joint event of
one ISI and the immediately following ISI (Fig. 3K). The ISI
distribution for the following ISI when conditioned on a very
short current ISI had a similar power-law shape as the marginal
ISI distribution (Fig. 3G), although the occurrence of a short
ISI following a short ISI was more likely. Similar to the full ISI

distribution, we found a relatively low variability across ses-
sions and monkeys.

In general, we found that two neurons in V1 were on average
correlated for lags up to about 250 ms having moderately low
peak correlations. Other studies also reported low (signal)
correlations between pairs of neurons for naturalistic stimuli
(Reich et al. 2001; Yen et al. 2007) and even lower correlations
in awake animals (Vinje and Gallant 2000). To be able to better
compare our data to the literature, we calculated the shift-
corrected cross-correlogram (Bair et al. 2001; Kohn and Smith
2005; Smith and Kohn 2008) and the noise correlations (rsc;
Ecker et al. 2010) and found that the correlation structure in
our data agreed very well with that of Smith and Kohn (Fig. 8).
The strength of correlations however depended on the monkey
and movie stimuli (Fig. 8, A and C). The mean value across all
sessions was rsc � 0.26 
 0.03 (SE) for neuron clusters nearer
than 1 mm.

We further analyzed the cross-correlation for pairs of neu-
rons as a function of their distance (Figs. 3J and 8A). In
agreement with others (Smith and Kohn 2008), the cross-
correlation was higher for neurons (clusters) recorded by the
same electrode and decreased for longer electrode distances,
where the correlation remained on a low level.

In summary, we computed a set of statistical features char-
acterizing the “statistical fingerprint” of the spiking activity
under seminatural movie stimulus condition in vivo. Certain
features of the obtained fingerprint, namely the high variability
of ISIs, low cross-correlation, and the power-law distributions
of burst events, suggest that the V1 during movie stimulation
might indeed reach an operating state, which is favorable for
recurrent neural networks for performing computational tasks.
The results presented here agree in general with published
literature. However, because we characterized the firing regi-
men not only by a small set of mean values but instead by 10
different functions (or estimated probability distributions), we
were able to quantify the deviation of the firing regimen of a
simulated model from that exhibited in vivo in great detail.
Moreover, the dataset provided us with the unique possibility
to test the importance of physiological meaningful parameters
to optimize the model response behavior to closely reach a
realistic state.

Quantification of the discrepancy between the firing regimen
of a model for a patch of V1 and the firing state exhibited
in vivo

Having characterized the V1 in vivo recordings, we pro-
ceeded with characterizing the simulated responses of the
circuit model of V1 in silico. The V1 model was based on
anatomical and physiological details of macaque monkeys and
was built to model the neural activation in a 5 � 5-mm cortical
patch of V1 (see METHODS for a detailed description of the V1
model). We simulated the model and recorded the spiking
activity in response to 10 s of a typical movie segment (sw21)
that had also been used for in vivo recordings.

Differences in the firing regimen in silico and in vivo were
quantified by estimating the deviations in all statistical fea-
tures. We calculated the MND between the model and the in
vivo response (see METHODS for definitions). Note that MND �
1 indicates that the deviation of the model response to the mean
response over all sessions equals the mean deviation between
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all pairs of sessions. Our measure thus relates to the deviation
among individual experimental sessions. Moreover, the MND
weights the importance of each statistical feature in a manner
that features showing a high variability between experimental
sessions are deemed less important and those features con-
served across sessions are emphasized.

By setting parameters of the model to values derived from
the literature (Table 1) and minimizing the fitting error in
respect to the overall recurrent connections weight scale, which
is inherent to the model design (Wscale; see METHODS), we found
a mean normalized deviation of MND � 1.91 
 0.01 (mean 

SE over identical networks and input but different random seed
for the statistical evaluation), indicating that the deviation is on
average about twice as high as between experimental sessions
and monkeys.

Because we presented complex movie stimuli, it is not clear
whether the firing regimen of the model was indeed generated
by internal dynamics or was instead solely induced by the
statistics of the input. To test the possibility of induced dy-
namics, we calculated the MND on the input spike trains
generated by the LGN model (omitting the now meaningless
lateral cross-correlation feature), and found a value of MND �
2.49. This value is considerably higher than for the model
response. We repeated the statistical analysis for the model
network after abolishing all recurrent connections, leaving only
the input connections intact. By varying the strength of the
synaptic input connections, we found a minimal value of MND �
4.37. Thus the fit of the firing statistics was much worse than
with intact recurrent connections, implicating that the recurrent
dynamics of the network indeed shaped the firing response.

We concluded that by simply optimizing an overall scale
parameter (Wscale), the model dynamics shaped its statistical
response properties in direction of that of the in vivo response.
However, deviations from the realistic firing regimen in vivo
were still considerable.

Improvement of the firing regimen when optimizing
the model

Can the firing regimen of the model be adjusted by physio-
logical meaningful parameters to improve the fit to the in vivo
data? Finding such parameters would shed light on parameters
that exert control over certain statistics. Therefore we chose

eight physiological meaningful parameters (see Table 1 for an
overview), which we believed to influence the firing dynamics.
We optimized the model in respect to each parameter and
evaluated each parameter’s ability to improve the discrepancy
between model and in vivo recordings. Unfortunately, simul-
taneous optimization of multiple parameters was computa-
tional prohibitive. Therefore we varied each parameter indi-
vidually around the “standard” parameter values taken from the
literature (pst), which we used to establish the initial fingerprint
of the model’s response (see above). Because the optimal
Wscale might change during the variation of a parameter, we
additionally varied Wscale resulting in two-dimensional land-
scapes (Fig. 5; see Table 2 for a summary of the quantitative
results of the optimization). The effects of parameter optimi-
zations on the improvement of each statistical feature are
analyzed in Fig. 6.

We first chose a parameter varying the background noise
strength (parameter p1). The background noise strength implic-
itly regulates the strength of how neurons not modeled in the
circuit affect the modeled neurons (see METHODS). When vary-
ing this parameter, we did not find a strong dependence on the
quality of the fit (Fig. 5A), suggesting that this background
noise strength was of minor importance. Although varying the
noise strength improved some individual statistical features in
respect to the literature values (such as Fano factors, burst sizes
and ISI distributions; Fig. 6A), the effect was typically below
10% ND improvement. Indeed, even if we disabled the back-
ground noise, the fit to all statistical features simultaneously
was only compromised by a negligible decrease of the MND of
3% (Fig. 6B). This suggests that our network was already big
enough to explicitly provide realistic synaptic background
inputs to any neuron.

In our model, the lateral width of inhibitory neurons was
relatively small (SD 150 �m; see METHODS). We tested whether
the fit could be improved by varying the lateral spread of the
inhibitory connections (p4). However, this was not the case: a
good range for this parameter lied between 150 and 250 �m,
depending on the overall strength of the synapses (Wscale; Fig.
5D). Although the ND of burst sizes and Fano factors could be
markedly improved (Figs. 6A and Fig. 7), these features had
only a small influence on the MND because their variance
between experimental sessions was high and, moreover, they
were already well fitted by a model with parameters set to
standard values (cf. Fig. 7, right marginal plot). In conse-
quence, the MND could only be improved by �5% by opti-
mizing the lateral connection width of inhibitory neurons,
suggesting that our original value was adequate.

In general, we expected the synaptic receptor composition to
be critical for achieving a realistic regimen. Because NMDA
conductances are activated on a slow time scale and thus might
affect the variability of the model especially on a longer time
scale, we tested two parameters varying the amount of NMDA
receptors in different ways: the fraction of synapses having
NMDA receptors (p2) and the average NMDA-to-AMPA ratio
of a synapse (having NMDA receptors) (p3). Knowing that the
latter ratio shows a relatively high fluctuation in experimental
literature (Myme et al. 2003) and that NMDA receptor function
might be influenced by anesthesia (Guntz et al. 2005), these
parameters might need to be adjusted in the model. Remark-
ably, when NMDA conductances were not included in the
model at all, the fit degraded significantly (about 20%

TABLE 1. Parameters investigated in their optimization potentials
together with their standard value by pst

Parameter
Standard

Value Reference

p1 Noise level scale 1.0 (Destexhe et al. 2001)
p2 Fraction of synapses with NMDA 0.9
p3 NMDA-AMPA ratio 0.47 (Myme et al. 2003)
p4 Width of inh. connections, �m 150.0 (Lund et al. 2003)
p5 Max. fraction of GABAB

conductance
0.3

p6 Inh. to exc. connections weight
scale

1.0 (Thomson et al. 2002)

p7 Exc. to inh. connections weight
scale

1.0 (Thomson et al. 2002)

p8 Long-range weight scale 1.0

Standard values for 5 of the parameters could be extracted from the
literature. If no reference is given, the standard value was chosen heuristically.
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decrease in MND), compromising mostly the fit to the ISI
structure and the Fano Factors, but also the fit to the lateral
cross-correlation (Fig. 6B). This suggests that the NMDA
conductances were a necessary component of the network
model to achieve a realistic firing regimen especially for the

variability on a longer time scale. However, we also noticed
that varying these parameters led to only minor improve-
ments (within 10% change of MND in respect to the
standard parameters; Fig. 5, B and C). Thus we concluded
that the standard literature values for the NMDA-to-AMPA
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ratio and the fraction of synapses having NMDA receptors
were already adequately chosen.

GABAB conductances are activated nonlinearly only in
case of high presynaptic activity events (Thomson and
Destexhe 1999) and furthermore exhibit relatively slow
dynamics. We thus expected that the adjustment of the
maximal fraction of GABAB conductances (p5) would affect
the population spike structure. Indeed, we found that the
GABAB conductances were critical in our model: including
these conductances in the model dramatically improved the
fit (about 80% improvement; Fig. 6B). One possible reason
for this dependence on GABAB conductances could be the
crucial lack of long-lasting inhibition or the lack of nonlin-
ear activation of inhibitory neurons when GABAB conduc-
tances were absent.

The strong effect suggested that sufficient activation of
inhibitory neurons was necessary for achieving a realistic firing

state. However, similar to the NMDA conductances, varying
the maximal fraction of GABAB conductances did not consid-
erably improve the MND value in respect to standard param-
eters (Fig. 5E).

One might hypothesize that the balance of excitation and
inhibition was not established appropriately in the network
model. To vary the overall connection strength between
neuron pools, we chose relative synaptic weight scaling
factors from inhibitory to excitatory neurons (p6) and from
excitatory to inhibitory neurons (p7) as parameters. Whereas
varying the inhibitory to excitatory connection strengths did
not yield any overall improvement (Fig. 5F), varying the
reverse, the excitatory to inhibitory connection strengths had a
strong effect. We noticed that increasing p7 2.25-fold resulted
in an 18% improvement of the fit to in vivo data (Fig. 5G),
indicating the importance of correctly balancing inhibition and
excitation for acquiring a realistic firing regimen. Judging from
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the discontinuity of the error landscape (Fig. 5G), twofold
increase in p7 seemed to switch the firing regimen into a new
state, which was much more similar to the firing regimen in
nature.

This strong overall improvement in the MND was mainly
mediated by the ND improvement in the correlation structure
(lateral cross-correlation and synchronizations), which could
be improved by about 40% in comparison to the simulation
using standard literature values (Fig. 6A). Additionally, devi-
ations in firing rate distribution and both Fano factors were also
decreased by high percentages (Fig. 6A).

Finally, we chose the relative synaptic weights scaling factor
of the patchy lateral long-range connections (p8) because it is
not well constrained by the literature (see METHODS for details).
We found that the initial weight scale was somewhat too high:
decreasing the weight of the long-range connections improved
the variability of the network response. Indeed, the removal of
long-range connections decreased the MND only by 3% (Fig.
6B). The decrease of the MND by 14%, when optimizing for
the relative strength of the long-range connection (Fig. 5H),
was mainly mediated by improving the burst structure (�50%
improvement in the burst sizes and the burst rate distribution),
as well as the CV(ISI) distribution (�35%; Fig. 6A). When
inspecting the spike responses visually, we noticed a slow
rhythmic bursting for high p8 values (near 1). These periodic
population bursts were not seen after decreasing p8. The

relative weight of the lateral long-range connections therefore
had to be reduced to avoid the induction of population bursts
resulting in a much better fit to responses in vivo, in particular
reducing the deviation in the statistical features sensitive to the
burst structure.

In summary, for the majority of the selected parameters, its
literature value could not be markedly improved. The im-
proved MND deviated 	5% from the MND values in case of
standard parameters. An intermediate effect could be seen
when varying the NMDA-to-AMPA ratio (p3). Here the im-
provement with respect to the standard parameters reached 9%.
The most striking improvement, however, could be gained by
varying the relative weight scaling factors of the long-range
connections (p8) and of the excitatory to inhibitory to connec-
tions (p7). Here the MND improved by 14 and 18%, respec-
tively.

Next, we tested whether the fit could be further improved by
varying the combination of the two most promising parameters
together, i.e., the relative weight factors of excitatory to inhib-
itory connections and of patchy long-range connections, re-
spectively, p7 and p8. By setting p7 to its best value (2.25) and
again varying p8 (as in Fig. 5H), the goodness of fit improved
further to MND � 1.19 (for p8 � 0.3). We simulated this
optimized model for multiple trials (changing the random seed
of the simulation) and found a mean MND value of 1.30 


TABLE 2. Optimized parameter values

Parameter
Standard

Value
Best

Value
5% Range Around Best

Value
Corresp.

Wscale MND

p1 Noise level scale 1.00 0.76 0.42–1.10 160.4 1.92
p2 Fraction of synapses with NMDA 0.90 0.95 0.78–1.13 156.5 1.88
p3 NMDA-to-AMPA ratio 0.47 0.86 0.73–0.98 107.4 1.74
p4 Width of inh. connections, �m 150 208 182–233 223.8 1.79
p5 Max. fraction of GABAB conductance 0.30 0.40 0.25–0.56 150.8 1.89
p6 Inh. to exc. connections weight scale 1.00 1.11 0.96–1.27 151.5 1.90
p7 Exc. to inh. connections weight scale 1.00 2.25 2.14–2.36 146.1 1.57
p8 Long-range weight scale 1.00 0.11 0–0.46 139.3 1.65

The best value (and the corresponding Wscale) for each parameter were inferred by grid search (see Fig. 5). The “5% range” indicates the range where the MND
changed by at most 5% (in respect to its best value) and was estimated using a quadratic fit around the best value (with fixed Wscale). MND, mean normalized
deviation.
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FIG. 6. Effects of parameter optimization on

individual statistical features. A: the percentage
change in normalized deviation (ND) in respect to
standard parameter settings when optimizing pa-
rameters p1, . . . , p8 individually is plotted in color
code (see Table 1 for a description of the param-
eters). One notes that individual parameters have
different influences on statistical features. The bot-
tom margin shows the improvement in MND (av-
eraged over all statistical features). Same simula-
tion data as in Fig. 5. B: impact of the inclusion of
different components in the model. Selected com-
ponents of the model: background noise (p1),
NMDA conductances (p3), GABAB conductances
(p5), or patchy long-range connections (p8). The
improvements of the fit when including a compo-
nent are plotted in color code (relative to the stan-
dard parameter settings, having all components
included). One notes that including GABAB con-
ductances had the most pronounced effects, im-
proving the fit to multiple statistics profoundly.
When components were switched on and off,
Wscale was again optimized in respect to MND.
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0.01 (SE). This is a 32% improvement over the model using
standard parameters.

Finally, if a longer, nonintersecting section of the movie (25 s)
was tested with these optimized parameters, the MND value
decreased to a value of 1.10. Varying other parameters while
using the best value for p7 did not further improve the fit (data
not shown).

Are these improvements robust toward changes in the net-
work structure? Because we used only one network to optimize
the firing regimen to reduce computational costs, we have to
test the robustness of our findings in respect to a change in the
network instance, which is a network generated by changing
the seed of the random number generator for building the
connectivity structure but having the same parameters. Exem-
plarily, we tested whether 10 networks with different construc-
tion random seeds achieved similar fits for the case of adjusting
parameter p7 and p8. The goodness of fit generally depended
somewhat on the particular network instance. We found an
average MND value of 1.32 
 0.09 (for different trials and
different networks on the 25-s movie segment), when variables
were initiated by the optimized parameters described above
(and connection weights, time delays, etc. of individual neu-
rons and synapses were drawn randomly from distributions
specified by general parameters). In general, the MND values
therefore remained very stable when changing the network
instance. However, in one exceptional network instance, we
observed an outlier value of MND � 2.81 for the same movie

section. To test whether the optimal parameters are different in
case of this outlier network and whether it could be readjusted
to a realistic firing regimen, we recomputed the optimization
exemplarily for the parameter p7. We found that the overall
shape of the fitness landscape was almost identical to the
original network (Fig. 5G), except that we had to reduce the
overall weight scale (from 146 to 131) to reach a good MND
value of 1.41. Remarkably, the optimal value for parameter p7
remained the same (2.25).

We conclude that the particular instance of the random
network structure will commonly not have major influences as
long as not too extreme weight configurations are drawn by
accident. Therefore the amount of neurons in the network is
large enough to sample over random instances of connection
weights for individual neurons.

In conclusion, by comparing the model response statistics to
in vivo data, the contribution of physiological meaningful
parameters for achieving a realistic firing state could be shown,
and the effect on statistical features was quantified. Individual
statistical features and the overall fit could be robustly im-
proved by varying selected parameters. It was most effective to
adjust the synaptic weights of the lateral long-range connection
and to balance inhibition and excitation by strengthening the
connections from excitatory to inhibitory neurons. The optimal
parameter values were generally robust across network in-
stances. The optimized network achieved a mean normalized
deviation of MND � 1.10 (calculated on a long movie section),
which is remarkably close to the average deviation between
experimental sessions. In addition, for achieving a realistic
regimen, both NMDA and GABAB conductances were cru-
cially important components of the network model.

Deviations of the model response to the in vivo
firing regimen

After having optimized the firing regimen of the model, how
does the model response still deviate from the in vivo data? To
illustrate the spike responses of the model (after improving
parameters), we plotted its response to a section of the movie
together with the in vivo responses (Fig. 2). The general
appearances of in vivo and in silico responses were very
similar: high activity periods were followed by low activity
periods, bursts were induced by salient features in the movie,
and trial-to-trial variability was comparable.

Figure 4 plots the statistical features for the optimized model
(25-s movie presentation, MND � 1.10) together with the
average over in vivo data. As the MND value already indi-
cated, the overall correspondences were good, but deviations
were still noticeable. In particular, there was a tendency that
high-activity periods were overrepresented across neurons of
the network, as can be seen in the tails of the firing rate and
burst rate distributions (Fig. 4, A and D). A lack of long ISIs
(�500 ms) was evident in the ISI distribution (Fig. 4F). This
lack of long intervals was consistent across all performed
parameter variations. In Fig. 7, we examined the improvement
of the ND of individual statistical features when varying a
parameter (in contrast to the improvement in MND, see Figs.
5 and 6). In fact, the ISI distribution is most difficult to fit to in
vivo responses, as the best ND is only around 3, i.e., three
times worse than the deviation between sessions on average
(Fig. 7, right margin plot).
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FIG. 7. Optimization of statistical feature individually (compared with
optimize the mean over all). The improvement in ND relative to the standard
parameters is plotted in color code. The ND of individual statistical features
was always optimized in respect to Wscale. Parameters (listed in Table 1) have
different impact on statistical features. The bottom margin indicates the
cumulative ND improvements and the improvements in MND (where Wscale is
optimized on MND instead of ND). Left margin shows the actual ND values
for each parameter (color coded bars). Note that an ND of 1 means a deviation
equal to the average deviation between experimental sessions (and monkeys).
Black lines are plotted in case of standard parameters. One notes that some
statistical features were more difficult to fit, whereas others were less prob-
lematic (reaching a value well below 1).
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It seems that neurons in vivo can exhibit dynamics on
multiple time scales in contrast to the model, which tended to
be strongly active for certain times and just silent for others.
This stronger dependence of one ISI on the following ISI in the
model response can be observed in Fig. 4, K and L. If the
current ISI was very short, in vivo and model responses
matched very well, having a relatively high probability that the
following ISI was also very short and an exponential fall-off
for the probability of longer ISIs (Fig. 4G) that was described
well by a power-law behavior (i.e., straight line in log-log plot,
data not shown). However, for longer ISIs, in vivo and model
responses qualitatively differed. We found that in vivo, the
shape of the distribution for the following ISI did not change
qualitatively for longer ISI if conditioned on the current ISI
(despite a small increase of the probability for longer ISIs). In
particular, the conditional probability had still a power-law
shape implicating that the probability for an ISI below and �50
ms was relatively high regardless of the current ISI (Fig. 4K).
In contrast, in the model responses, the shape of the distribu-
tion changed if conditioned on longer ISIs: if the current ISI
was long (�100 ms), either the next ISI was very short (	10
ms), possibly belonging to the onset of a population burst, or
the length of the next ISI had nearly uniform probability up to
about 120 ms (Fig. 4L). Varying the parameters had little effect
on the deviation of the two-ISI distributions; the strongest
effect was exerted by the NMDA-to-AMPA ratio (p3), reach-
ing 13% improvement in respect to the standard parameters.
This lack of structured variability on multiple time scales in the
model response was corroborated by the systematic underrep-
resentation of periods of high CV(ISI) (Fig. 4H).

Finally, the synchronization between two neurons and the
lateral cross-correlation were generally too low in comparison
with our experimental data (Fig. 4, J and K). In particular,

synchronization between neurons on lags longer than 50 ms
was much weaker (Fig. 4J, see also Fig. 8D), suggesting that
dynamics on slow times scales were still lacking in the model.

The correlation structure was most effectively influenced by
four parameters (Fig. 7): the strength of the background noise
(p1), the NMDA-to-AMPA ratio (p3), the GABAB fraction
(p5), and the relative weight of the excitatory to inhibitory
connections (p7). As expected, introducing synaptic dynamics
on a longer time scale (p3 and p5) improved the synchroniza-
tion structure. Background noise likely helps to smooth the
sharp peak in the synchronizations. It is not immediately clear
why the strongest improvement in the synchronization (76%)
and the lateral cross-correlation (83%) was mediated by the
increase of the strength of excitatory to inhibitory connections.
We think that this strengthening of excitatory synapses onto
inhibitory neurons might have recruited local negative feed-
back loops and thus initiated dynamics on intermediate and
longer time scales.

In summary, analyzing the deviations of the statistical fea-
tures in detail suggested that the response of the model was
limited in reproducing the broad temporal range of the dynam-
ics in vivo. Especially, abruptly switching from activity to
silence, low probability of bursting, and the temporal correla-
tion of neurons on a longer time scale were difficult to achieve.

D I S C U S S I O N

In this study, we investigated network spiking activity from
the primary visual cortex under naturalistic stimulus presenta-
tion in vivo and in silico. We asked the question of whether a
state-of-the-art connectionists’ model is capable of reproducing
the firing statistics observed in vivo, without any arbitrary
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(unconstrained) adjustments of millions of variables, such as
synaptic weights or temporal parameters of synapse dynamics.

We concentrated on characterizing the firing regimen of the
primary visual cortex (V1), because it is an anatomically and
physiologically well-studied cortical area. We characterized its
firing regimen by extracting 10 statistical features from in vivo
spike recordings from V1 of macaques under naturalistic stim-
ulus conditions. We built and simulated a state-of-the-art
circuit model reproducing a 5 � 5-mm patch of V1 cortical
circuitry and studied the discrepancy between the firing regi-
mens of the simulated model and in vivo recordings.

The comparison showed that the firing regimen of the
detailed laminar circuit model was comparable to in vivo
recordings if parameters were set to values constrained by the
literature. Responses were rich, showing high coefficient of
variation of ISIs of individual neurons. We obtained a devia-
tion averaged over all extracted statistics of about 2, meaning
that the deviation was about twice as large as the average
deviation between any two recording sessions.

We found that the deviation can be decreased dramatically
(by 32%) if the relative synaptic weight of excitatory neurons
to inhibitory neurons was increased more than twofold (com-
pared with the literature values) and relative synaptic weights
of the patchy long-range connections were adjusted to avoid
slow rhythmic population activity. This indicates the impor-
tance of the balance of excitation and inhibition to achieve a
realistic firing state in a network model.

We further found that selected physiological meaningful
parameters affected statistical features of the response in a
selective manner and that some ingredients of our network,
such as the NMDA and GABAB conductances, were crucially
important for achieving a realistic firing state.

Evidence for a characteristic firing state in V1

This study does not answer whether there is indeed a
computational advantageous firing regimen in neural tissue but
instead tries to generally characterize a statistical fingerprint of
spiking activity in vivo to compare the spiking activity to
simulated responses in silico.

Our characterization of the firing statistics of in vivo re-
sponses generally agrees very well with findings of previous
studies, which also used natural stimuli. We found some
evidence that V1 might be in a characteristic state in anesthe-
tized macaques. Our finding that the ISI distribution follows a
power law is consistent with the ISI distribution of V1 cells of
anesthetized cats and of IT cells of awake monkeys (Baddeley
et al. 1997; Yen et al. 2008), as well as of neurons in motor
cortex of awake rats (Tsubo et al. 2009). A power law distri-
bution has partially been reported for in vivo spike data
(Bedard et al. 2006) and the (spatial) size of neural avalanches
(Beggs and Plenz 2003, 2004). Power law distributions have
been conjectured on theoretical grounds as characteristic fea-
tures of self-organized critical states in large complex systems
(Jensen 1998). On the other hand, Bedard et al., (2006) re-
ported that the ISI distributions derived from cat parietal
association cortex during wakefulness and slow wave sleep
show no evidence for power law behavior. This might indicate
that the primary visual cortex and the parietal association
cortex are working in different firing regimens.

There is still an ongoing debate on how strongly neighboring
neurons are correlated, especially under natural conditions.
Adding to this debate, Ecker et al. (2010) recently reported
that, in awake and behaving monkeys, the spike count corre-
lations rsc are surprisingly low even between nearby neurons
(in the range from 0.001 to 0.01). In our dataset, we found rsc
values of around 0.2 for different monkeys. Although one
monkey showed very high correlations, which might be caused
by some limited spiking cross-talk between nearby electrodes
or spike-sorted clusters, in general, correlations are in agree-
ment with the earlier studies and therefore stand similarly in
contrast to the very low spike count correlations reported by
Ecker et al. (2010). However, we have to emphasize that our
acquisition technique used conventional arrays of single elec-
trodes and the experiments were not specifically designed
having this question of measuring spike correlations between
isolated single neurons in mind. We therefore cannot add
definite experimental arguments in this debate. However, we
can say that in the optimized model the average spike count
correlation was rsc � 0.06 
 0.01 (SE) for nearby neurons
(distances below 1 mm), which seems to support the very low
values reported by Ecker et al. (2010).

Slow but largely irregular events of correlated activity cause
the broad peak in the cross-correlation seen in our data (Fig.
8C) and were also reported by (Kelly et al. 2010). In the model
it is possible to generate slow synchronous oscillatory activity
with periods from hundreds of milliseconds to around a second
by increasing the long-range lateral connection strength (p8).
This naturally raises the overall pairwise correlation between
neurons. However, it turned out that the overall fit to the
correlation function is worse in this oscillatory regimen be-
cause of the strong oscillatory component. Events of synchro-
nous high activity of the in vivo data are much less regular than
the population-burst like activity of the network model under
these conditions. It is possible that these slow events in the
experimental data reflect more global brain state dynamics
observed under anesthesia (Kelly et al. 2010) and thus are
impossible to achieve for our V1 model of relative restricted
size.

However, the intralayer spike count correlation in the model
response (plotted in Fig. 8, B and D) was very similar to
recently reported layerwise recorded V1 data (Smith and Kohn
2009) in that it showed a very low correlation for layer 4, an
intermediate correlation in deep layers, and the highest corre-
lation within neurons from superficial layers. This hierarchy in
correlation structure corresponds to the width of the lateral
connections in the model and thus is likely induced by the
lateral interactions between neurons.

Is the model in a realistic state?

We used recordings done in anesthetized macaques during
the presentation of a commercial movie stimulus. In previous
complementary studies, with participation of some of the
present authors, these data have already been proven insightful
in the analyses of information coding of the movie stimulus in
the neural responses (Belitski et al. 2008; Montemurro et al.
2008) and in studying the relation of spikes to local field
potentials (Rasch et al. 2008, 2009). We thus expect this
dataset to be useful for describing a firing regimen under
naturalistic stimulus conditions.
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The firing regimen will likely depend on the current behav-
ioral state of the animal. Because we used recordings from
anesthetized animals, we characterized the firing regimen dur-
ing anesthesia. Because most of the parameters constraining
the model were not measured in behaving animals, the anes-
thetized state might actually be “more natural” for our network
model. We expect that the firing regimen of awake and behav-
ing animals will put stronger constraints on a current connec-
tionist’s model to achieve.

Our model showed a good correspondence to our in vivo
recordings. However, this does not necessarily implicate that
the model would be able to perform any computational func-
tion of V1. In future studies, the next logical step toward a
more realistic V1 model would therefore be to additionally
include benchmarks on computational functions in the optimi-
zation process such as scatter of orientation tuning curves per
layer or the emergence of complex cells in the superficial
layers.

The good correspondence of our model to in vivo recordings
also does not necessarily mean that the fit of the model to any
kind of in vivo data could not in principle be improved further.
We expect if more neurons could be simultaneously recorded,
the deviations between model and experiment will increase
because more constraints were set on the model design. Be-
cause of the small number of recorded neurons, our data were
limited in the sense that we could only test whether our model
does reproduce the general likeness of randomly selected
neurons from V1. However, we argue here that benchmarking
of network models of cortical areas to reproduce the general
likeness is an important prerequisite to analyze realistic com-
putational functions in network models and we outline in this
article how this feat could be approached.

Given the diversity of cortical functions even within V1
(Ohlshausen and Field 2005), we assume that a computational
advantageous firing regimen has to be quite general. We
followed earlier setups of neural networks used for analyzing
computational functions (Haeusler and Maass 2007; Maass et
al. 2002) in that we draw synaptic weights and neuron to
neuron connectivity from random distributions, without any
specific learning of weights. Although the specific weight
structure will influence the network response, we suppose that
the general firing statistics will nevertheless be similar in a
statistical sense if the network is not too specialized. Support-
ing this view, we found that different random seed in the
network generation in general only slightly changed the good-
ness of fit. It is therefore a promising research direction to
investigate self-organization of synaptic weights for instance
by using an intrinsic plasticity rule to achieve a computation-
ally advantageous firing regimen of recurrent networks
(Schrauwen et al. 2008; Triesch 2007).

Because we extracted a number of different statistical fea-
tures, measuring variability, correlation structure, and spike
time dependency, it is likely that a hypothetical computational
advantageous firing state of the cortex leaves its traces in the
pool of extracted statistical features. Using a plethora of
features has the advantage to minimize the bias of the inves-
tigator toward a particular aspect of the response. We also
tested different error measures (such as a normalized mean
squared error on the logarithm of the distributions instead of
the Kullback-Leibler divergence), which slightly differed in
the obtained optimal parameter values, because different as-

pects are deemed more important by other error measures (such
as a good correspondence of the tail of the firing rate distribu-
tion). If there would be prior knowledge about the importance
of statistical features, one could include this knowledge by
changing the weighting for important features in the error
measure (such as the deviation of the firing rate distribution
from an exponential shape).

Which general parameters should be optimized in a cortical
network model?

We developed a cortical network model for a 5 � 5-mm
patch of area V1. This model, consisting of about 35,000
neurons and 3.9 million synapses, was based on data from
Thomson et al. (2002) regarding layer-specific connection
probabilities and included short-term depression and facilita-
tion of synaptic connections. Additional, our model comprised
data-based patchy long-range connections, two types of excit-
atory receptors (AMPA and NMDA), and two types of inhib-
itory receptors (GABAA and GABAB). The last years have
seen several attempts to model large areas of the brain with
similar components, such as inter- and intralaminar connectiv-
ity, laterally structured connectivity, synaptic depression and
facilitation, and neurons having one or a few compartments
(Izhikevich and Edelman 2008; Johansson and Lansner 2007;
Kremkow et al. 2007; Tao et al. 2004). These models, as well
as ours, incorporate many anatomical and physiological details,
but they are, of course, still a strong abstraction of reality.
Given the complexity of these models, it would be desirable to
pinpoint a few general parameters that are sufficient to tune for
achieving a realistic firing regimen. Then models could easily
be adjusted, and studies of its computational functions could
start from a realistic basis. Our analyses of optimizing a
state-of-the-art cortical network model resulted in the follow-
ing observations.

Most importantly, at the outset, the overall synaptic connec-
tion weight scale has to be adapted to account for the specific
synaptic drive of each neuron, which is commonly lower in
models because of the much smaller number of synapses.
Furthermore, we had to adjust the relative weight of the patchy
long-range connections to dampen the excitability of the net-
work to avoid the tendency to produce periodic population
bursts. This parameter was not well defined in the literature
because synaptic contacts and weights of the long-range con-
nections are unknown. We suspect that lateral interaction is
tightly linked to computation in V1, and it is therefore likely
that synaptic targets and weights are carefully selected by
experience dependent learning mechanisms. Although we in-
corporated a higher probability for long-range connections
toward similar orientated hypercolumns, our approach of draw-
ing random weights is likely too unspecific in the target neuron
selection. Thus long-range connections in our network might
form a too generic source of excitation, which has to be
damped to avoid rhythmic population bursts. On the other
hand, the easiness of inducing periodic patterns on a very slow
time scale (below 10 Hz and down to 	1 Hz) by varying the
overall strength of the lateral long-range connections in our
network model indicates a possible mechanism for the gener-
ation of slow-wave activity commonly seen in the visual cortex
and suggested to be important for information coding (Monte-
murro et al. 2008).
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In this study, the most effective parameter for tuning the
model behavior was the relative synaptic weight scaling factor
for the connections from excitatory to inhibitory neurons. To
achieve a realistic regimen, we had to dramatically increase
this parameter (�2-fold compared with literature values). Ad-
ditionally, the fact that the GABAB inhibition was crucially
important further supports that inhibition has to be powerful
enough over a long periods to cope with the excitatory drives.
The necessity to increase the strength of inhibitory action in
relation to literature values suggests that our implementation of
the interaction between excitatory and inhibitory neurons un-
derestimates the drive of inhibitory neurons in nature. Because
our point neuron model ignores any spatial extent, dendritic
and axonal tree architectures were not part of our model.
However, it is known that dendrites are capable of nonlinearly
integrate their synaptic inputs (Borg-Graham et al. 1998; Koch
et al. 1983). For instance, some types of inhibitory neurons
tend to target more soma proximal regions, whereas excitatory
synapses are usually located in more distal parts of the den-
dritic tree (Markram et al. 2004). This arrangement gives rise
to shunting inhibition (with appropriate reversal potentials,
Koch et al. 1983), where inhibitory inputs nonlinearly overrule
excitatory input. This mechanism effectively increases the
strength of inhibitory action (compared with our point neuron
model). It is likely that by increasing the weight of excitatory
synapses on inhibitory targets in our model, the lack of non-
linear inhibition was partly compensated because inhibitory
neurons where made more sensitive, which resulted in a more
realistic state. We conclude that incorporating dendritic mor-
phology (or other means to render the effect of inhibitory
neurons more realistically) is a promising research direction
and will likely improve firing states of network models.

Additionally, to keep the modeling effort tractable, many
details of the primary visual system were neglected. For
instance, the color processing pathways (Sincich and Horton
2005), motion processing pathways (dorsal stream), and a more
accurate model of the LGN including feedback from V1 to the
thalamus were not modeled. Whereas color and motion pro-
cessing will only influence the movie features that are pro-
cessed in V1, we expect the LGN to have more profound
influences on the V1 firing state. For instance, it has been
shown that irregular but correlated inputs to a neuron increase
its CV(ISI) (Salinas and Sejnowski 2000; Softky and Koch
1993; Stevens and Zador 1998) and amplification of synchro-
nous inputs caused by nonlinear interactions within dendrites
further enhances the variability. Because the LGN is likely to
deliver highly synchronous inputs to V1 (Wang et al. 2010)
and furthermore might code information in bursts of activity
(Reinagel et al. 1999), as well as because cortical feedback are
known to induce thalamocortical spindle oscillations (Steriade
et al. 1993), a more accurate LGN model may further improve
the fit to in vivo data. Although we used a switching gamma
process as a model for the LGN input and thus adopted special
means to more realistically model episodes of high firing rates,
the input still has independent Poissonian character for low
firing rates. Our LGN model might not be realistic enough, in
that generated spikes are less synchronous than in vivo (Wang
et al. 2010).

In general, we noticed that variability of the dynamics on
multiple time scale was still under-represented in our model.
This was observable in the lack of high variability regions

[CV(ISI) distribution], the under-representation of long ISIs,
and the too weak correlations between neurons spiking for lags
�10 ms. It is therefore possible that our network is still not
complex enough to generate a nonstereotyped long-lasting
dynamics seen in vivo. Because we used point neurons models,
neither compartimentization of dendrites nor dynamics of sec-
ond messengers (such as calcium ions), nor any other cellular
process were integrated in our model. The only processes
reaching a time scale of a few hundreds of milliseconds in our
model were slow synaptic conductances and synaptic short-
term facilitation and depression. We suspect that dynamics of
second messengers, which generally happen on a slower times
scale than spike interactions, might be necessary ingredients
for achieving a more realistic firing regimen (in particular on
longer time scales).

Conclusion

The characterization of the in vivo response of neurons in
monkey area V1 that we presented provides useful information
for the investigation of large scale models for cortical areas. It
is remarkable that a model for a patch of V1 that is solely based
on previously published anatomical and physiological data
produces (after adjusting a few general parameters) a spike
response that matches the statistical properties of our in vivo
data quite well. However, although similar in general statistical
measures, we are still a long way of understanding the detailed
neural coding properties of the cortex, which are manifested in
the fine-structure of the interaction between neurons. The
advent of techniques with the possibility to record from hun-
dreds of neurons simultaneously will put forward new chal-
lenges for cortical network models. We expect that benchmark-
ing models with in vivo data, as exemplified in this study, will
foster the development of new and more realistic models for
cortical areas, which will be important tools to ultimately
understand neural functions.

A P P E N D I X A : O R I E N T A T I O N M A P G E N E R A T I O N

It is well established that orientation preference and other features
(such as visual field position, ocular dominance, or direction prefer-
ence) form intertwined maps, where neighboring neurons tend to
respond to similar features (Hubel and Wiesel 1977; Obermayer and
Blasdel 1993). We used Kohonen’s Self-Organizing Map algorithm
(Kohonen 1982) to create orientation maps across the cortical surface.
An orientation attribute was necessary for each neuron for defining
thalamic inputs, as well as for preferred orientation dependent patchy
lateral long-range connections. The algorithm has been used to gen-
erate feature maps, which resembled cortical measured feature maps
in their overall appearance, as well as the occurrence of pinwheels
(Brockmann et al. 1997; Erwin et al. 1995; Obermayer and Blasdel
1993; Obermayer et al. 1990, 1992).

Basically, the Kohonen’s Self-Organizing Map algorithm tries to
map a low-dimensional manifold (a horizontal sheet of neurons) to a
high-dimensional feature space while ensuring that neighboring points
on the manifold exhibit similar feature preference. Let z � [x, y, q
cos(2�), q sin(2�)]T define a feature vector, where 0 � x, y 	 k are
the positions in visual space, 0 � q 	1 is the orientation preference
(or tuning strength), and 0 � � 	 � is the preferred orientation. We
did not model ocular dominance because our V1 model received input
only from one retina. If one uses the low-dimensional variant of the
learning rule (Erwin et al., 1995; Obermayer and Blasdel 1993), one
attributes to each point on the manifold, i.e., each neuron having
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cortical two-dimensional surface coordinates u � (u1, u2)T, its current
“optimal” feature vector w(u). Relations between neurons u and v are
enforced by the neighborhood function h(u,v) � exp[�|u � v|2/
(2�2)]. The update of the feature vector of a neuron v can be written
as

�w(v) 	 
h(u*, v)[z 
 w(u*)] (8)

Note that in each learning step, the neuron u*, showing maximal
response to the current input z, is updated in the direction of the input,
weighted by a learning rate 
. Depending on the cortical distance to
the maximally activated neuron, the preferred features of the remain-
ing neurons will be updated to a lesser extent in the same direction
(mediated by the neighborhood function). In this rule, we took the
maximally activated neuron to be the nearest in feature space to the
current input, u* � argmin|w(u*) – z|. We sampled the input features
from uniform distribution (within the above bounds). k regulates the
hierarchy between different features (Obermayer et al., 1992) and was
set to k � 5. If one starts from a retinotopic initial condition, a high
value for k ensures that cortical position corresponds to visual space
in an approximate one-to-one map. The characteristic length scale �
was set to match the experimental observed correlation length in
cortical orientation maps (corresponding to the distance of neighboring
pinwheel center) of dpin � 660 �m (Obermayer and Blasdel 1993). We
used the approximate formula � � �kdpin /D/8, where D denotes the
lateral extent of our V1 model.

A P P E N D I X B : S T A T I S T I C A L F E A T U R E S

We defined 10 statistical features to characterize the spike train
statistics. Each statistical measure was calculated on all available
spike trains of the experimental session and the simulation, respec-
tively. If not mentioned otherwise, we calculated the spike statistics
using time windows with a length of 2 s. The time windows were
overlapping with a step size of 0.2 s. The 10 chosen statistical features
are the following:

Firing rate distribution

The distribution of mean firing rates in windows of 2-s duration.

Fano factor over different time scales

To characterize spike count variability over a range of time scales,
we estimated Fano factors of the spike count distribution. These Fano
factors are defined as the ratio of the variance to the mean of the
spike-count distribution estimated over time windows of fixed length.
We compared the average Fano factors for a range of time window
durations (from 10�2.5 to 100.4 s).

Population Fano factors

For different time windows (from 10�2.5 to 100.4 s), we calculated
the temporal mean spike count of the whole population of neurons and
its variance. From these values, we calculated the Fano factors. These
Fano factors describe the variability of the population firing rate.

Burst rate distribution

Burst events can be defined as having at least two spikes with an
average ISI of �5 ms (Lisman 1997). The burst rate is the frequency
of burst occurrence estimated within a period of time. The burst rate
distribution describes the probability of different burst frequencies
and was again estimated on time windows of 2 s duration.

Burst rates for different burst sizes

To analyze the occurrence of larger bursts, we calculated the burst
rate distribution for burst events having at least n spikes with an
average ISI of at most 5 ms. We took the average burst rates for a set
of n minimal spikes (n � 2 . . . 25) as another statistical measure.

ISI distribution

This is the distribution of the intervals between two consecutive
occurring spikes of one neuron. The distribution was estimated on the
full length of the spike response to include longer intervals in the
analysis. As before, we took all available trials and neurons to
calculate a population statistic.

Two-ISI distributions

For neurons, placed in a recurrent network, the generation of a
spike might depend in a systematic way on the relative timing of the
previous spikes. To compare such dependencies, we estimated the
two-ISI distributions. We define the two-dimensional two-ISI distri-
bution p(�1, �2) probability of occurrence of two sequential spike
intervals of lengths �1 and �2. These distributions were estimated on
the full-length of the spike response.

ISI CV distribution

Another estimation of the variability of spike trains is the CV(ISI).
The coefficient is defined as the ratio of the SD to the mean of the ISI
distribution. The CV(ISI) was estimated on the available ISIs of each
window of 2 s duration, and the resulting population statistics were
taken for comparison. If there were less than three spikes in a given
time window, we set the value of the CV(ISI) to zero.

Neuron synchronization

We defined synchronization as the mean cross-correlogram of spike
activity between two neurons, which is the cross-covariance of the
binned spike trains divided by the square root of the product of the
variances (with a temporal bin size of 25 ms). We averaged over all
spike clusters available in the sorted electrophysiological recorded
spike trains and over 20,000 randomly drawn neuron pairs of the
model circuit.

Spike time correlation as a function of distance

Lateral decorrelation of neural activity might be another important
prerequisite for computational function of a neural circuit. Thus we
calculated the cross-correlogram as a function of the Euclidean dis-
tance between two model neurons or recording sites. The temporal bin
size was 50 ms and the spatial bin size was 500 �m. The correlation
was averaged over time lags from �0.5 to 0.5 s.
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