
ARTICLE Communicated by Laurenz Wiskott

Reward-Modulated Hebbian Learning of Decision Making

Michael Pfeiffer
pfeiffer@igi.tugraz.at
Bernhard Nessler
nessler@igi.tugraz.at
Institute for Theoretical Computer Science, Graz University of Technology,
A-8010 Graz, Austria

Rodney J. Douglas
rjd@ini.phys.ethz.ch
Institute of Neuroinformatics, University of Zürich and ETH Zürich,
CH-8057 Zürich, Switzerland

Wolfgang Maass
maass@igi.tugraz.at
Institute for Theoretical Computer Science, Graz University of Technology,
A-8010 Graz, Austria

We introduce a framework for decision making in which the learning of
decision making is reduced to its simplest and biologically most plausible
form: Hebbian learning on a linear neuron. We cast our Bayesian-Hebb
learning rule as reinforcement learning in which certain decisions are
rewarded and prove that each synaptic weight will on average converge
exponentially fast to the log-odd of receiving a reward when its pre- and
postsynaptic neurons are active. In our simple architecture, a particular
action is selected from the set of candidate actions by a winner-take-
all operation. The global reward assigned to this action then modulates
the update of each synapse. Apart from this global reward signal, our
reward-modulated Bayesian Hebb rule is a pure Hebb update that de-
pends only on the coactivation of the pre- and postsynaptic neurons, not
on the weighted sum of all presynaptic inputs to the postsynaptic neuron
as in the perceptron learning rule or the Rescorla-Wagner rule. This sim-
ple approach to action-selection learning requires that information about
sensory inputs be presented to the Bayesian decision stage in a suit-
ably preprocessed form resulting from other adaptive processes (acting
on a larger timescale) that detect salient dependencies among input fea-
tures. Hence our proposed framework for fast learning of decisions also
provides interesting new hypotheses regarding neural nodes and com-
putational goals of cortical areas that provide input to the final decision
stage.

Neural Computation 22, 1399–1444 (2010) C© 2010 Massachusetts Institute of Technology

1400 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

1 Introduction

A typical decision-making task of an organism requires the evaluation of
multiple alternative actions, with the goal of maximizing the probability
of obtaining positive reward. If input signals provide only uncertain cues
and reward is obtained stochastically in response to actions, then Bayesian
statistics provides a mathematical framework for the optimal integration
of all available information. Bayes’ theorem can be used to calculate the
probability that an action yields a reward, given the current sensory input
and the current internal state of an organism. The goal of this article is to
present the simplest possible neural network model that can make such
an evaluation, where simplicity is assessed in terms of both computational
operations and the complexity of the learning method.

A large number of experimental results suggest that animals do in-
deed make decisions based on Bayesian integration of information about
stimulus-action-reward contingencies. For example, Sugrue, Corrado, and
Newsome (2004) have shown that monkeys use the matching behavior
strategy, in which the frequency with which a particular action is chosen
matches the expected reward for that action. Yang and Shadlen (2007) have
shown that the previous experience of macaque monkeys in probabilistic
decision tasks is represented by the firing rates of neurons in area LIP in
the form of the log-likelihood ratio (or log-odd) of receiving a reward for
a particular action a in response to a stimulus x (in an experiment where
the monkey received in each trial either no reward, or a reward of unit size,
depending on the choice of the monkey among two possible actions).

We show that an optimal action selection policy can be reduced to a
winner-take-all (WTA) operation applied to linear gates, which receive
suitably preprocessed inputs (see Figure 1). Furthermore, we show that the
updating of the WTA circuit in the face of new evidence can be reduced to
the application of a local reward-modulated Hebbian learning rule to each
linear gate. We call this rule the Bayesian Hebb rule. Despite the simplicity
of this model, one can prove that it enables fast learning of near-optimal
decision making, which is remarkable because rigorous insight into con-
vergence properties of Hebbian learning rules is often lacking.

WTA (see Yuille & Geiger, 2003, for a review) is a very simple computa-
tional operation that selects the largest among l values L1, . . . , Ll . This se-
lection is usually encoded through l binary outputs z1, . . . , zl , where za = 1
if La is selected as the largest input (ties can be broken arbitrarily), else
za = 0 (see Figure 1). In an action selection framework, this output then
triggers the selection of the a th among l possible actions. Each value La is
just a weighted sum

La =
n∑

i=0

wa ,i yi

Reward-Modulated Hebbian Learning of Decision Making 1401

Figure 1: Winner-take-all (WTA) architecture for learning of decision making.
First, the multinomial input variables x1, . . . , xm are preprocessed by a fixed
circuit (which implements some type of population coding) to yield binary
variables y1, . . . , yn. For every possible action a , there is an associated linear
neuron La that computes a weighted sum

∑n
i=0 wa ,i yi of the variables y1, . . . , yn.

The neuron La with the largest weighted sum “wins,” that is, za = 1, and action
a is selected.

of variables y1, . . . , yn (and a dummy variable y0 ≡ 1 that allows using wa ,0

as a bias). Despite its simplicity, the resulting WTA circuit is computationally
quite powerful (Maass, 2000).

The main contribution of this article is a novel learning algorithm for
the weights w∗

a ,i of the linear gates La . We show that for a suitable fixed
preprocessing (that transfers the original input variables xk into binary
variables yi), the optimal value w∗

a ,i for the weight wa ,i in Figure 1 is the log-
likelihood ratio (or log-odd) of receiving a reward for a particular action
a , provided that the binary feature yi is activated by the preprocessing
function:

w∗
a ,i = log

p(r = 1 | yi = 1, a)
p(r = 0 | yi = 1, a)

. (1.1)

In the asymptotic case, where all weights wa ,i have converged to their
respective target values w∗

ai
, the policy of the WTA circuit in Figure 1 is

optimal in the sense that for any input signal, the action with the highest
chance to deliver reward is chosen. We also show that after finitely many
training trial steps, the weights closely approximate the optimal weights
that can be inferred from the previously observed data.

Our algorithm for reward-modulated learning of optimal weights uses
only Hebbian learning, a form of learning for which there is strong ex-
perimental evidence (Abbott & Nelson, 2000; Frégnac, 2003; Caporale &

1402 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

Dan, 2008). Hebb (1949) proposed (see Frégnac, 2003, for a recent review)
that a synapse from neuron A to neuron B is strengthened if A and B of-
ten fire together. But several studies have shown that Hebbian synaptic
plasticity requires a third signal (often in the form of neuromodulators) in
order to consolidate weight changes (Bailey, Giustetto, Huang, Hawkins, &
Kandel, 2000; Reynolds, Hyland, & Wickens, 2001; Farries & Fairhall, 2007;
Legenstein, Pecevski, & Maass, 2008). It is often assumed that the third
signal provides information about reward or reward expectations. Hence
learning rules involving these signals are referred to as reward-modulated
learning rules.

Hebbian learning, such as in the proposed Bayesian Hebb rule, should be
contrasted with non-Hebbian learning rules such as the perceptron learning
rule (also referred to as delta rule) or the Rescorla-Wagner rule (Rescorla
& Wagner, 1972), which are harder to support on the basis of experimental
data for synaptic plasticity. In these latter learning rules, the change �wi of
a synaptic weight wi at a single synapse depends not only on the current
activation values of the pre- and postsynaptic neuron and the current value
of wi (and possibly a reward-related third signal), but also on the current
values of the other weights and the activation values of all other neurons that
provide synaptic input to the same postsynaptic neuron (more precisely:
on the value of the weighted sum of all presynaptic inputs).

We present a mechanism for reward-modulated local learning of the
weights wa ,i that permits them to converge (on average) to the ideal value,
equation 1.1. Learning from rewards is conceptually different from learning
with a supervisor who informs the learner about the correct choice. In
reward-based learning, the learner must explore different actions multiple
times even if he assumes that other actions would be better in the given
situation. This strategy is necessary to avoid premature convergence to
suboptimal policies.

We want to make clear that in this article, we do not study the learning of
sequences of actions as in general reinforcement learning (Sutton & Barto,
1998), but investigate scenarios like those in operant conditioning, where
decisions have to be made based on learned immediate reward probabil-
ities for single actions. We follow the terminology proposed, for example,
in Dayan and Abbott (2001) and subsume the latter also under the term
reinforcement learning.

We provide in this article a rigorous theoretical analysis of the con-
vergence properties of the Bayesian Hebb rule. Because our learning rule
makes online updates after every training trial, rather than performing a
batch update after collecting a set of data, we are interested in the asymp-
totic behavior of the rule, as well as its online performance. Non-Hebbian
learning rules usually perform gradient descent optimization along an er-
ror surface. If local minima exist on the error surface, this approach always
carries the risk of becoming trapped in suboptimal solutions, from which it
cannot escape. In contrast, the optimal values of the weights to be learned

Reward-Modulated Hebbian Learning of Decision Making 1403

by the Bayesian Hebb rule act as global fixed-point attractors in weight-
space with regard to expected weight updates of the Bayesian Hebb rule.
Our analysis shows that the weights learned during training are very close
to the optimal values that can be inferred from finitely many training trials,
and they converge exponentially fast to the optimal values. We also demon-
strate that an extremely simple linear approximation to the Bayesian Hebb
rule performs almost equally well.

Bayesian decision making combines information from many variables
and therefore must consider statistical dependencies among them. An in-
fluential paper by Roth (1999) noted that decision making can be reduced
to the computation of weighted sums, provided that the input signals are
properly preprocessed (see also Domingos & Pazzani, 1997). This obser-
vation motivates our use of the neural network model shown in Figure 1.
Roth (1999) proved his results in the context of linear statistical queries for
probabilistic classification. We now extend this approach to the case of pol-
icy learning by incorporating a WTA gate for action selection. Roth (1999)
noted that the set of features produced by the preprocessing function must
be related to independence assumptions among input variables. We show
that these features correspond to the factors in a factor graph (Kschischang,
Frey, & Loeliger, 2001) of the input and reward distribution.

One particularly simple case is naive Bayes, which assumes that all in-
put variables are conditionally independent given one particular target
variable, for example, the occurrence of reward. In this case, it is sufficient
to know the reward-prediction probabilities for every input variable and
every action separately, since then the reward probability given the com-
plete input is the product of all individual predictors. We provide a simple
preprocessing function for this case, which does not use any information
about statistical dependencies of input variables but leads to satisfactory
policies.

The general case, in which there are statistical dependencies among in-
put variables, requires more complex algorithms for Bayesian inference.
Graphical models like Bayesian networks (Bishop, 2006) and factor graphs
(Kschischang et al., 2001) are used to model conditional dependencies
among variables, and inference algorithms operate by passing messages
along edges of the graphs. Factor graphs are particularly useful tools. They
consider groups of dependent variables as factor nodes, in which functions
of all connected variable nodes are computed. Inference in these models
is performed using the sum-product algorithm (Bishop, 2006; Kschischang
et al., 2001), which is conceptually simpler than the belief propagation al-
gorithms used for inference in general Bayesian networks. Recent work
(Steimer, Maass, & Douglas, 2009) has shown that these factor nodes can
be implemented in networks of spiking neurons. In this article, we define
an optimal generalized preprocessing function based on the factor graph
representation of the reward distribution. This provides a concrete process-
ing goal for multimodal integration in sensory areas and links the theory of

1404 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

factor graphs to experimentally observed neural population codes. These
codes, like all other components of our framework, are easily implemented
in neural networks and allow fast and robust learning with the Hebbian
learning algorithms presented in this article.

We assume here that the graph structure of the underlying Bayesian
network is known, but not the parameters of it (i.e., the probability distri-
bution). We do not address the problem of structure learning, which is a very
different task and thus requires different algorithms. Whereas the param-
eters that define decision strategies require very fast adaptation, statistical
dependencies between inputs reflect invariances in the environment, which
could be learned by separate learning processes on much longer timescales.

This article is organized as follows: We present the Bayesian Hebb rule
for reinforcement learning tasks in section 2 and analyze its convergence
behavior for learning reward log-odds. In section 3 we present a linear ap-
proximation to the Bayesian Hebb rule that is much simpler to implement
but exhibits similar convergence behavior. In section 4, we show that after
a suitable preprocessing of sensory variables x, one arrives at a population
code y for which optimal decisions can be represented by WTA applied
to weighted sums of the variables yi . The required weights can be learned
quite fast with the Bayesian Hebb rule, even if there exist conditional depen-
dencies among the input variables x. Section 5 gives experimental results on
the performance of the Bayesian Hebb rule in various action selection tasks.
Section 5.2 addresses the case of nonstationary reward distributions. In sec-
tion 6 the learning rule is generalized to handle tasks in environments with
continuous input signals x. We discuss in section 7 salient aspects of the pre-
sented results, an application of the Bayesian Hebb rule to model the exper-
imental data of Yang and Shadlen (2007), related work, and open problems.

2 The Bayesian Hebb Rule

In this section we introduce a simple local learning rule, the reward-
modulated Bayesian Hebb rule, which learns log-odds of reward proba-
bilities conditioned on binary input variables. Analyzing the convergence
behavior of the rule, one sees that the true reward log-odds are fixed-
point attractors for expected weight changes under the reward-modulated
Bayesian Hebb rule. The Bayesian Hebb rule also learns fast, since the
online learned weights are close to what an optimal Bayesian learning ap-
proach, using (biologically unrealistic) counters and auxiliary variables,
would achieve. It is further shown that an even simpler rule, which approx-
imates the Bayesian Hebb rule, learns weights that are close to the optimum,
and is sufficient for reliable decision making.

2.1 Action Selection Strategies and Goals for Learning. We consider
the standard operant conditioning scenario, where the learner receives at
each trial an input x = 〈x1, . . . , xm〉 (e.g., a sensory stimulus or internal state

Reward-Modulated Hebbian Learning of Decision Making 1405

signals of the organism) with multinomial variables xj , chooses an action
a out of a set of l possible actions A = {a1, . . . , al}, and receives a reward
r ∈ {0, 1} with probability p(r | x, a). The learner’s goal is to learn (as fast
as possible) a policy π (x, a) = p(a | x) (or π (x) in the case of a determinis-
tic policy) so that action selection according to this policy maximizes the
average reward. A structural difference to supervised prediction problems
is that it does not suffice that the learner passively observes the outcomes
of trials, since the reward received for action a in response to stimulus x
provides no information about the probability of rewards for alternative
actions a ′ in response to the same stimulus x. He therefore needs to try out
different actions for the same input through an exploration process in order
to learn the reward probabilities for all actions.

In this article, the goal of the learner is fast learning of a policy that ap-
proximates the optimal policy. The learner does not necessarily maximize
the online performance during learning and does not specifically try to re-
duce uncertainty about the outcome of unexplored action. The strategies
employed during learning are therefore not Bayes optimal in the sense of
decision theory and sequential analysis (Dayan & Daw, 2008). Optimal so-
lutions to the exploration problem for a restricted subclass of tasks can be
computed (Gittins, 1979; Lai & Robbins, 1985; Auer, Cesa-Bianchi, & Fischer,
2002), but neural network implementations of these mechanisms are beyond
the scope of this article. During learning we follow heuristic strategies that
are commonly used in reinforcement learning (Sutton & Barto, 1998). The
actions are chosen based on the currently learned weights, which approxi-
mate the Bayes optimal estimates for the reward log-odds. In order to main-
tain a rather high level of rewards during exploration, the agent might, for
example, choose actions stochastically with p(a | x) = p(r=1 | x, a). This
corresponds to the matching behavior phenomenon observed in biology,
where the fraction of choices for one action exactly matches the fraction of
total rewards from that action (Sugrue et al., 2004). This policy was used
during training in all our computer experiments.

If the goal of the agent is to accumulate as many rewards as possible
and rewards are binary, the agent will choose the action with the highest
probability p(r = 1 | x, a) to yield reward. Since the function that maps a
probability p onto log p

1−p is strictly monotonically increasing, the agent can
choose instead the action a that has the highest log-odd:

log
p(r = 1 | x, a)
p(r = 0 | x, a)

. (2.1)

Hence the optimal policy for maximizing the probability of reward can be
written in the form

π(x) = arg max
a∈A

log
p(r = 1 | x, a)
p(r = 0 | x, a)

. (2.2)

1406 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

We assume for now that the input x = 〈x1, . . . , xm〉 consists of m input
variables that are arbitrary multinomial discrete random variables with un-
known joint distribution (in section 6, we consider the case of continuous
inputs x). We assume that these m variables are represented through binary
states (firing or nonfiring) y = 〈y1, . . . , yn〉 of n neurons in a population
coding manner. We define the encoding scheme later in section 4 and show
that different encodings allow different representations of statistical depen-
dencies. For every possible action a , there exists in our simple model (see
Figure 1) a linear neuron that receives as inputs the components y1, . . . , yn

of y. The activation La of this linear neuron is defined by the weighted sum

La = wa ,0 +
n∑

i=1

wa ,i yi . (2.3)

Our approach aims at learning weights wa ,i for every action a such that La

corresponds to the reward log-odd (see equation 2.1), which indicates how
desirable it is to execute action a in the current situation defined by x and
its neural encoding y. The action with the highest assumed probability of
yielding reward is then selected by a winner-take-all (WTA) operation that
is formally defined through the binary outputs z1, . . . , zl as follows:

za =
{

1, if La ≥ Lb for b
= a
0, else . (2.4)

This action selection strategy is commonly referred to as the greedy strategy.
If the goal is not only to exploit preceding experience in order to choose

an action that maximizes the probability of reward for the current stimulus
x, but to simultaneously keep on learning and exploring reward probabil-
ities for other actions, the matching behavior strategy (Sugrue et al., 2005)
offers an attractive compromise. It can be implemented with the help of the
learned parameters wa ,i in the following way: the linear gate La in Figure 1
is replaced by a sigmoidal gate (i.e., the weighted sum La according to
equation 2.3 is replaced by σ (La) = 1

1+exp(−La) , and the deterministic WTA
gate is replaced by a stochastic soft WTA gate (which selects a as winner
with probability σ (La)∑

b σ (Lb)).

2.2 A Local Rule for Learning Reward Log-Odds. We now present
a learning rule and an appropriate input encoding for learning weights,
which asymptotically approach target values such that the architecture in
Figure 1 selects actions optimally. Consider first the case where for a single
binary input yi and action a , the reward log-odd log p(r=1|yi =1,a)

p(r=0|yi =1,a) should be
learned in the weight wa ,i . A traditional frequentist’s approach would use

Reward-Modulated Hebbian Learning of Decision Making 1407

counter variables,

αa ,i = #[r = 1 ∧ yi = 1 ∧ action a selected],

βa ,i = #[r = 0 ∧ yi = 1 ∧ action a selected],

to estimate the reward log-odds w∗
a ,i after finitely many steps by

ŵa ,i = log
αa ,i

βa ,i
for i = 1, . . . , n.

In a rewarded trial (i.e., r = 1) where yi = 1 and action a is selected, this
leads to the update

ŵnew
a ,i = log

αa ,i + 1
βa ,i

= log
αa ,i

βa ,i

(
1 + 1

αa ,i

)

= ŵa ,i + log
(

1 + 1
Na ,i

(1 + e−ŵa ,i)
)

, (2.5)

where Na ,i := αa ,i + βa ,i is the total number of previous updates; thus, 1
αa ,i

=
1

Na ,i
(1 + βa ,i

αa ,i
).

Analogously, an update after a new unrewarded trial (r = 0) gives rise
to the update

ŵnew
a ,i = ŵa ,i − log

(
1 + 1

Na ,i
(1 + eŵa ,i)

)
. (2.6)

Using the approximation log(1 + x) ≈ x and a constant learning rate η in-
stead of the factor 1

Na ,i
, update rules 2.5 and 2.6 can be combined to yield

a new local learning rule, which does not use any counters.1 We call this
rule the reward-modulated Bayesian Hebb rule. The update for weight wa ,i ,
whenever action a is selected and yi = 1 is:

�wa ,i =
{

η · (1 + e−wa ,i), if r = 1
−η · (1 + ewa ,i), if r = 0 . (2.7)

This rule increases the weight whenever reward is encountered and de-
creases the strength of the synapse otherwise. Learning rule 2.7 is purely
local; it depends only on quantities that are available at the trained synapse,
not on the activity of other presynaptic neurons.

1Using the approximation log(1 + x) ≈ x did not visibly affect the performance of the
learning rule in the computer simulations in section 5.

1408 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

A B

Trials

p
(r

=
1
 |
 y

,
a
)

Bayes Optimal Learning of Reward Probabilities

50 100 150 200

1

0.8

0.6

0.4

0.2

0

p
o
s
te

ri
o
r

d
e
n
s
it
y

0

2

4

6

8

10

12

−4 −2 0 2
−2

−1

0

1

2

3
Expected update for two weights

w
1

w
2

Figure 2: Convergence behavior of the Bayesian Hebb rule. (A) The weights
learned by the Bayesian Hebb rule approximate Bayes-optimal learning. The
posterior for the reward probability qa ,i = p(r = 1 | yi = 1, a) at every training
trial was modeled by a beta(αa ,i + 1, βa ,i + 1) distribution, with counters αa ,i and
βa ,i for rewarded and unrewarded trials. The color shows the estimated poste-
rior density function for qa ,i at every training trial. The white curve shows the ap-
proximation learned by the Bayesian Hebb rule, 2.7 (with constant learning rate
η = 0.02). The weight wa ,i was transformed into an estimated reward probabil-
ity by q̂a ,i = 1

1+exp(−wa ,i) . One can see that the approximation follows the optimal
estimate closely. (B) Attractor property of the Bayesian Hebb rule, equation 2.7,
plotted for two weights w1 and w2. The expected update (indicated by a blue
arrow) is always in the direction of the optimal weights (marked by a red star).
Gray curves connect points with the same amount of expected weight change.

The approximation of the reward-modulated Bayesian Hebb rule to the
exact counting model, which computes for every parameter the Bayes-
optimal estimate that can be inferred from a fixed finite set of data, is il-
lustrated in Figure 2A. In order to estimate a single parameter qa ,i = p(r =
1 | yi = 1, a), a uniform prior on [0, 1] was initially imposed on qa ,i . The
counters αa ,i and βa ,i , as defined above, were incremented as training sam-
ples became available, and the posterior distribution for qa ,i was given by
the beta(αa ,i + 1, βa ,i + 1) distribution (Neapolitan, 2004). The same sam-
ples were simultaneously used to update the weight wa ,i by rule 2.7. The
weights wa ,i , which represent log-odds log p(r=1|yi =1,a)

p(r=0|yi =1,a) , were transformed
into probabilities by the transformation

q̂a ,i = 1
1 + exp(−wa ,i)

.

Figure 2A shows the optimal posterior for a single qa ,i after every update
and the approximation obtained by equation 2.7. The probability estimated
by the Bayesian Hebb rule is always close to the Bayes-optimal estimate.

Reward-Modulated Hebbian Learning of Decision Making 1409

2.3 Convergence Properties of the Bayesian Hebb Rule in Reinforce-
ment Learning. The Bayesian Hebb rule is an online learning rule that has
no prior knowledge of its target values. However, one can prove that the
weights learned with equation 2.7 converge (in expectation) to their optimal
values w∗

a ,i = log p(r=1|yi =1,a)
p(r=0|yi =1,a) , on the basis of just the statistics of pre- and

postsynaptic values they encounter. This is in fact very easy to prove, since
the equilibrium of the rule is reached when the expected update E[�wa ,i]
under rule 2.7 vanishes, and this can be written as

E[�wa ,i] = 0 ⇔ p(r = 1 | yi = 1, a) · η · (1 + e−wa ,i) −
−p(r = 0 | yi = 1, a) · η · (1 + ewa ,i) = 0.

As we show in appendix A, the latter explicitly holds iff wa ,i is at the tar-
get value w∗

a ,i = log p(r=1|yi =1,a)
p(r=0|yi =1,a) . If a vector of n + 1 weights 〈wa ,0, . . . , wa ,n〉

for an action a is learned simultaneously, the point 〈w∗
a ,0, . . . , w

∗
a ,n〉 is a

global fixed-point attractor in the weight space R
n+1 with regard to ex-

pected weight changes under the Bayesian Hebb rule (see Figure 2B).
Another unusual feature of the Bayesian Hebb rule is that one can prove

(see appendix A) that it converges exponentially fast to w∗
a ,i (with regard

to E[�wa ,i]). In particular, weight updates move the weight in larger steps
toward the attractor w∗

a ,i if they are farther off, without requiring any change
of the learning rate, or knowledge of the ideal values w∗

a ,i .

3 The Linear Bayesian Hebb Rule

The reward-modulated Bayesian Hebb rule, equation 2.7, includes exponen-
tial terms exp(−wa ,i) and exp(wa ,i). One may argue that an exact calculation
of the exponential function is beyond the capabilities of a synaptic learn-
ing process. Therefore, we have also analyzed a linear approximation to the
Bayesian Hebb rule. The exponential function is defined by the Taylor series:

exp(x) =
∞∑

i=0

xi

i !
. (3.1)

Thus, the first-order approximations for exp(wa ,i) and exp(−wa ,i) are

exp(w) ≈ 1 + w (3.2)

exp(−w) ≈ 1 − w. (3.3)

By inserting the approximations 3.2 and 3.3 into 2.7, we obtain a computa-
tionally simpler learning rule, which we call the linear Bayesian Hebb rule.

1410 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

CBA

−2 −1 0 1 2
−0.1

−0.05

0

0.05

0.1

w
i

Δ
w

i

r=1

r=0

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5

Training Trials

w
i

Bayesian Hebb Rule

Linear Bayesian Hebb Rule

0 200 400 600 800 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

Training Trials

w
i

Bayesian Hebb Rule

Linear Bayesian Hebb Rule

Figure 3: Linear approximation of the Bayesian Hebb rule. (A) Update �wi of
the Bayesian Hebb rule, equation 2.7 (solid lines), and the linear Bayesian Hebb
rule, equation 3.4 (dashed lines), plotted as a function of the current weight
value wi for training trials with r = 1 (black curves) and r = 0 (gray curves).
(B) Example of the evolution of a single weight under the Bayesian Hebb rule,
equation 2.7, and the linear Bayesian Hebb rule, equation 3.4. The target value
is close to 0, where the approximation of the linear Bayesian Hebb rule is very
good. (C) Another example of the weight evolution, in which the two rules
converge to different weights. The target weight is close to −2, which is the
border of the weight range that the linear Bayesian Hebb rule can cover. The
approximation error is therefore large compared to B.

Whenever action a is selected and yi = 1, it updates weight wa ,i by

�wa ,i =
{

η · (2 − wa ,i), if r = 1
−η · (2 + wa ,i), if r = 0 . (3.4)

This new rule resembles strongly the typical Hebb rule with a regu-
larization term. The weights are increased by a constant if the pre- and
postsynaptic neurons “fire together” (i.e., yi = 1 and action a is selected),
and decreased by a constant if they do not. The ±wa ,i term prevents the
weights from growing too large or too small. Actually, for η ≤ 1, it always
keeps the weights within the range [−2, 2]. This shows immediately that
the linear Bayesian Hebb rule cannot learn the true reward log-odds for ar-
bitrary distributions, only an approximation. Figure 3A shows the updates
by the linear Bayesian Hebb rule (dashed lines) in comparison to those
of the exact rule, equation 2.7 (solid lines). One can see that the difference
between the updates grows for larger values of the target weight w∗

a ,i .
However, our computer experiments in section 5 will demonstrate that the
linear Bayesian Hebb rule performs remarkably well for many benchmark
tasks.

3.1 Convergence of the Linear Bayesian Hebb Rule. We show in ap-
pendix B that the equilibrium value for the linear Bayesian Hebb rule,

Reward-Modulated Hebbian Learning of Decision Making 1411

equation 3.4 (the weight value where E[�wa ,i] = 0), is at

w+
a ,i = −2 + 4 · p(r = 1 | yi = 1, a)

= 2 · (p(r = 1 | yi = 1, a) − p(r = 0 | yi = 1, a)).

This equilibrium value is monotonically increasing with w∗
a ,i , the equilib-

rium value of the exact Bayesian Hebb rule, equation 2.7. They are equal
only when p(r = 1 | yi = 1, a) = p(r = 0 | yi = 1, a): w∗

a ,i = w+
a ,i = 0.

In Figures 3B and 3C the evolution of two weights during learning for
a random distribution is shown. In Figure 3B, the target value is close to
zero, where the target values for the exact rule, equation 2.7, and the linear
Bayesian Hebb rule, equation 3.4, are very similar. Thus, no big difference in
weight space is visible. In Figure 3C, however, the target value is close to the
maximum value that the linear rule can represent; therefore, the two rules
do not converge to the same value, indicating a larger approximation error
for the linear rule. Hence, the linear Bayesian Hebb rule can be expected to
perform well if the target values of the weights have small absolute values.

4 Population Codes for Hebbian Learning of Asymptotically
Optimal Decisions

In this section, two preprocessing mechanisms are presented, which are
based on different assumptions about statistical dependencies among input
variables. Applied to these population encodings of the input, the WTA
circuit in Figure 1 selects actions that maximize the probability of obtaining
reward, according to the current statistical model represented by the input
encoding and the reward log-odds learned with the Bayesian Hebb rule.

We have previously shown that the reward-modulated Bayesian Hebb
rule, equation 2.7, has a unique equilibrium at the reward log-odd,

w∗
a ,i = log

p(r = 1 | yi = 1, a)
p(r = 0 | yi = 1, a)

. (4.1)

In order to approximate the true reward probabilities for every action
as weighted sums as in equation 2.3, every vector of input variables x =
〈x1, . . . , xm〉 needs to be suitably preprocessed into a population code vector
y = 〈y1, . . . , yn〉. If the weights wa ,i for every yi and every action a are
learned with the Bayesian Hebb rule, our previous analysis guarantees that
the resulting policy will asymptotically approach the best policy that can
be inferred for the given preprocessing function.

Let the input variables x1, . . . , xm be some arbitrary multinomial random
variables with unknown joint distribution, where each variable xk assumes
mk different values vk

1, . . . , v
k
mk

. For simplicity, we assume that vk
j = j for

j = 1, . . . , mk and k = 1, . . . , m.

1412 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

We first present a very simple population coding, which is sufficient
to represent the optimal policy as a weighted sum if the naive Bayes as-
sumption holds for the input variables; that is, the input variables xk are
conditionally independent of each other given the selected action a and the
reward r :

p(xk | r, a , x1, . . . , xk−1, xk+1, . . . , xm)

= p(xk | r, a) for all k ∈ {1, . . . , m}. (4.2)

In this case, it holds that

p(r = 1 | x, a)
p(r = 0 | x, a)

= p(r = 1 | a)
p(r = 0 | a)

m∏
k=1

p(xk | r = 1, a)
p(xk | r = 0, a)

. (4.3)

Every xk is discrete and can take on only finitely many different values.
Applying Bayes’ theorem and using an indicator function I , which is de-
fined as I (true) = 1 and I (false) = 0, one can rewrite equation 4.3 as (see
appendix C for the full derivation)

p(r = 1 | x, a)
p(r = 0 | x, a)

= p(r = 1 | a)
p(r = 0 | a)

×
m∏

k=1

⎛
⎝ p(r = 0 | a)

p(r = 1 | a)

mk∏
j=1

(
p(r = 1 | xk = j, a)
p(r = 0 | xk = j, a)

)I (xk= j)
⎞
⎠.

(4.4)

This suggests representing every xk by a population code, which has
mk + 1 binary variables, one for every possible value of xk , and one bias
variable to account for the term p(r=0|a)

p(r=1|a) . Formally we define the simple
preprocessing (SP) φ(xk) for a single variable xk as

φ(xk) = [−1, ϕ1, . . . , ϕmk

]T
, where ϕ j =

{
1, if xk = j

0, otherwise
. (4.5)

As an example, we consider the simple reward distribution with two
input variables x = 〈x1, x2〉, modeled by the Bayesian network in Figure 4A.
Under the naive Bayes assumption, the dependency of x2 on the input
variable x1 is neglected; that is, the arrow x1 → x2 in the Bayesian network
is ignored. For binary xk , the population code under this assumption is
illustrated in Figure 4C. Each input variable xk is encoded separately by
three variables yi , where one is constantly −1, and only one other yi is
active, depending on the value of xk .

Reward-Modulated Hebbian Learning of Decision Making 1413

BA

DC

Figure 4: Preprocessing for tasks with arbitrary statistical dependencies. (A) An
example Bayesian network for the joint distribution of sensory inputs x =
〈x1, x2〉 and reward r . (B) Factor graph representation for the prediction of r ,
according to the Bayesian network in A. Here, f0 represents the prior p(r),
and the factors f1 and f2 represent the conditional probabilities p(x1 | r) and
p(x2 | x1, r), respectively. (C) Population coding under the naive Bayes assump-
tion, which we refer to as simple preprocessing (SP). For every possible value
of the variables xk (here x1, x2 are binary), there is one variable yi (indicated by
a black circle) that outputs the value 1. Additionally there is one variable yi for
every xk , which is constantly at −1 (black square). The constant bias term y0

is not shown. (D) Population coding applied to the factors in the factor graph
shown in B. For each combination of values of the variables {xk, xPk } of a factor,
there is exactly one variable yi (indicated by a black circle) associated with the
factor that outputs the value 1. Other variables yi represent ORs of these val-
ues (black squares) and yield either 0 or −1. The constant bias term y0 is not
shown. We refer to the resulting preprocessing circuit that maps sensory inputs
x onto internal variables y that support Hebbian learning of optimal decisions
as generalized preprocessing (GP).

1414 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

The vectors φ(xk) for k = 1, . . . , m are concatenated into one population
code vector y for the whole input. y has n = 1 + m + ∑m

k=1 mk entries, of
which exactly 2 · m + 1 are nonzero, and the first entry y0 ≡ 1 corresponds
to the bias term p(r=1|a)

p(r=0|a) in equation 4.4:

y = 	(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

φ(x1)

φ(x2)
...

φ(xm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.6)

Substituting the definition of y from equations 4.5 and 4.6 into 4.4 and
taking the logarithm then yields the log-odd function

log
p(r = 1 | y, a)
p(r = 0 | y, a)

= log p(r=1|a)
p(r=0|a) +

n∑
i=1

yi log
p(r = 1 | yi
= 0, a)
p(r = 0 | yi
= 0, a)

. (4.7)

If we use the population code 4.6 for y, we can apply the reward-modulated
Bayesian Hebb rule 2.7 for every yi to learn reward log-odds conditioned
on feature yi being active.2 For a yi that is constantly active, such as y0,
the weight wa ,i will converge to the prior reward probability log p(r=1|a)

p(r=0|a)
for action a . Inserting the target values, equation 4.1, of the weights into
equation 4.7, we can therefore write

log
p(r = 1 | y, a)
p(r = 0 | y, a)

=
n∑

i=0

w∗
a ,i yi . (4.8)

During learning, the current values of the weights wa ,0, . . . , wa ,n are used
to approximate the true reward log-odd for every action a as the weighted
sums in equation 2.3. Actions are selected by a heuristic method according
to their predicted probability of yielding reward (e.g., greedy or match-
ing behavior). If the naive Bayes assumption holds, the reward-modulated
Bayesian Hebb rule, in combination with a simple population coding for
every input variable xk , is therefore sufficient to asymptotically learn the
optimal action selection policy.

4.1 Learning Decisions for Arbitrary Discrete Distributions. We now
address the more general case, where conditional independence of the
input variables x1, . . . , xm cannot be assumed. We show that with a fixed
preprocessing of the input that takes their dependencies into account, the

2We consider a feature yi active if it is nonzero, that is, both yi = 1 and yi = −1 are
active features.

Reward-Modulated Hebbian Learning of Decision Making 1415

Bayesian Hebb rule enables the resulting neural network to converge quite
fast to the best performance that any action selection mechanism could
possibly achieve. The dependency structure of the underlying input and
reward distribution is given in terms of an arbitrary Bayesian Network BN
for discrete variables (e.g., Figure 4A). BN can be represented, like every
other Bayesian network, by a directed graph without directed cycles. We
do not assume any further restrictions on the structure of the Bayesian
network, so BN does not have to be a tree (as assumed in Deneve, 2008),
and it is not required to have no undirected cycles (as necessary for
guaranteed convergence of belief propagation algorithms; Bishop, 2006).

Without loss of generality, we choose a numbering scheme such that the
direct children of the reward node r in BN are x1, . . . , xm′ . The dependencies
in BN can be described by m + 1 parent sets Pk , which are possibly empty,
and explicitly exclude the reward node r . Pk is thus defined as

Pk = {i | a directed edge xi → xk exists in BN and xi
= r}.

Additionally we define Pr as the set of all parents of the reward node r . The
joint probability distribution on the variables r, x1, . . . , xm in the Bayesian
network for action a can then be factored, giving rise to a factor graph
(Kschischang et al., 2001) as indicated in Figure 4B:

p(r, x | a) = p(r | xPr , a)
m′∏

k=1

p(xk | xPk , r, a)
m∏

k=m′+1

p(xk | xPk , a). (4.9)

When calculating the log-odd of obtaining reward or not, the last terms in
equation 4.9 cancel out, and a simple application of Bayes’ theorem leads to

log
p(r =1 | x, a)
p(r =0 | x, a)

= log
p(r = 1 | xPr , a)
p(r = 0 | xPr , a)

+
m′∑

k=1

(
log

p(r =1 | xk, xPk , a)
p(r =0 | xk, xPk , a)

− log
p(r = 1 | xPk , a)
p(r = 0 | xPk , a)

)
. (4.10)

This is a sum of conditional reward log-odds, which can all be learned with
the reward-modulated Bayesian Hebb rule. We now develop a suitable
sparse encoding of x1, . . . , xm into binary variables y1, . . . , yn (with n � m),
such that the reward log-odd can be written as a weighted sum,

log
p(r = 1 | y, a)
p(r = 0 | y, a)

=
n∑

i=1

wa ,i yi ,

and the weights wa ,i correspond to conditional reward log-odds of yi ’s. For
the example Bayesian network in Figure 4A, the corresponding sparse code
is illustrated in Figure 4D: one binary variable is created for every possible

1416 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

value assignment to a variable xk and all its parents xPk , and additional
binary variables are created for every possible value assignments to the
parent nodes only. One should contrast this with the simple population
code in Figure 4C, which assumes that the naive Bayes condition holds and
therefore ignores that x2 is dependent on x1.

BN can also be viewed as a factor graph (see Figure 4B), in which there
is for every variable xk a factor fk , which is connected to r , xk , and xPk , the
parents of xk in BN. The preprocessing is then computed separately for every
factor fk . We define the fixed generalized preprocessing (GP) operation for
fk with k ≥ 1 as

�(xk, xPk) =
[

φ(xk, xPk)

−φ(xPk)

]
. (4.11)

The summands of the sum on the right-hand side of equation 4.10 are
split into two parts, and φ(xk, xPk) defines the preprocessing for the first
part, whereas −φ(xPk) defines the preprocessing for the latter part. The
variables 〈xk, xPk 〉 are viewed as a single multinomial variable, and φ(xk, xPk)
is a representation of this multinomial variable through simple population
coding. Thus, φ(xk, xPk) has as many binary output variables yk,i as there
are different assignments of values to all variables in 〈xk, xPk 〉, and exactly
one variable yk,i has value 1 for each such assignment. Let yk,i be the binary
output variable that corresponds to some assignment xk = j, xPk = u; then
the corresponding weight wa ,k,i for action a can be learned through the same
reward-modulated Bayesian Hebb rule, 2.7, as in the naive Bayes case. The
target value, to which wa ,k,i will converge, is then

w∗
a ,k,i = log

p(r = 1 | yk,i = 1, a)
p(r = 0 | yk,i = 1, a)

= log
p(r = 1 | xk = j, xPk = u, a)
p(r = 0 | xk = j, xPk = u, a)

. (4.12)

Analogously, the application of the reward-modulated Bayesian Hebb rule,
2.7, for every component yPk ,i of −φ(xPk) leads to the target weights,

w∗
a ,Pk ,i = log

p(r = 1 | yPk ,i = −1, a)
p(r = 0 | yPk ,i = −1, a)

= log
p(r = 1 | xPk = u, a)
p(r = 0 | xPk = u, a)

,

(4.13)

with the only formal modification to the update rule, equation 2.7, being
that updates are made not only when yi = 1 but also when yi = −1, which
obviously does not change the behavior of the learning process. Formally,
all preprocessed vectors �(xk, xPk) are concatenated into one vector y with

Reward-Modulated Hebbian Learning of Decision Making 1417

n = ∑m′
k=1 Nk + NPk entries:

y =

⎡
⎢⎢⎢⎢⎢⎣

�(xPr)

�(x1, xP1)
...

�(xm′ , xPm′)

⎤
⎥⎥⎥⎥⎥⎦ .

This sparse, redundant input encoding provides a weighted sum represen-
tation of the reward log-odd,

log
p(r = 1 | y, a)
p(r = 0 | y, a)

=
n∑

i=1

wa ,i yi ,

where the weights wa ,1, . . . , wa ,n can all be learned through the reward-
modulated Bayesian Hebb rule, 2.7, as described above.

5 Results of Computer Simulations

We now evaluate the performance of the reward-modulated Bayesian Hebb
rule and its linear approximation and compare it to the standard learning
model for simple conditioning tasks, the non-Hebbian Rescorla-Wagner
rule (Rescorla & Wagner, 1972).

The reward-modulated Bayesian Hebb rule, 2.7, was tested on a variety
of action selection tasks with four possible actions. A Bayesian network with
dependency structure as in Figure 4A was used to model the distribution
p(r, x1, x2 | a) for every action a , where r is the binary reward signal and
x1, x2 are the two binary input signals. We assigned a constant reward prior
p(r | a) = 0.25 to every action a and randomly generated the conditional
probability tables for p(x1 | r, a) and p(x2 | x1, r, a): for every action a , every
xk (k ∈ {1, 2}), and every possible value assignment to the parent nodes
〈xPk , r〉, a random sample q ∈ [0, 1] was drawn from a beta distribution,
and p(xk = 1 | xPk , r, a) was set to q .

The Bayesian networks that model the reward distribution were also
used to create the samples of input vectors x = 〈x1, x2〉 for every training
trial. First, one of the four Bayesian networks was chosen randomly with
equal probability, so the distribution of input or test samples does not
depend on the action selection during learning. Inputs x were drawn as
random samples from the selected network. The agent then received the
input x and chose its action a . The binary reward signal r was sampled from
the distribution p(r | x, a) and thus depends on the chosen action. The agent
used the tuple 〈x, a , r〉 to update its weights wa ,i . Training consisted of 2000
trials, in which the matching behavior strategy (see section 2.1) was used

1418 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

for action selection during learning. The evaluation of the performance of
the resulting policy after every trial used the greedy strategy, equation 2.2,
choosing actions on 500 independent test trials and measuring the average
reward. The experiment was averaged over 250 different tasks with different
reward distributions.

The preprocessed binary vectors y = �(x) ∈ {0, 1}n were created either
by simple population coding (see equation 4.6 and Figure 4C), which is
suitable for the naive Bayes case, equation 4.2, or generalized preprocess-
ing (see equation 4.11 and Figure 4D). The former mechanism is referred to
as Bayesian Hebb SP in Figure 5 and the remainder of this article, whereas
the generalized preprocessing mechanism is referred to as Bayesian Hebb
GP. The Bayesian Hebb rule with these two kinds of preprocessing mecha-
nisms was compared to the non-Hebbian Rescorla-Wagner rule (Rescorla &
Wagner, 1972). This rule predicts the value of a (multidimensional) stimulus
as a linear sum,

V(y) = w0 +
n∑

i=1

wi yi ,

and minimizes the prediction error with a delta learning rule,

�wi = ηyi

(
r − w0 −

n∑
i=1

wi yi

)
. (5.1)

It can be seen from equation 5.1 that for the update of a single weight, the
complete prediction of value for the current state, which depends on all
weights, is needed. In the experiments, the Rescorla-Wagner rule was used
to learn weights for every action separately. The classical Rescorla-Wagner
rule, equation 5.1, which we use for comparison, is directly applied to the
inputs x. We show in appendix E that the performance and learning speed
of Rescorla-Wagner can also be improved if it is applied to the preprocessed
vectors y = �(x), using the same SP and GP preprocessing mechanisms as
for the Bayesian Hebb rule.

In addition, the reward-modulated Bayesian Hebb rule was compared
to a Bayes-optimal weight learning rule. In this case, the conditional
probabilities in the Bayesian network in Figure 4A were estimated using
counter variables (see section 2.2), and exact inference was used to compute
reward probabilities for every action.

Figure 5 shows that the reward-modulated Bayesian Hebb rule for both
types of preprocessing learns faster than the non-Hebbian Rescorla-Wagner
rule and converges to better policies. If generalized preprocessing is used,
the learned policy after approximately 200 trials is almost indistinguishable
from the policy of an optimal learner, and after approximately 1000 trials,
the performance is very close to the optimal performance level.

Reward-Modulated Hebbian Learning of Decision Making 1419

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
g

e
 R

e
w

a
rd

0 400 800 1200 1600 2000
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
g

e
 R

e
w

a
rd

Optimal Learner

Bayesian Hebb SP

Bayesian Hebb GP

Rescorla−Wagner

Figure 5: Performance of the reward-modulated Bayesian Hebb rule for action
selection in a four-action task with stochastic rewards. Each learner was trained
on 2000 trials, and after every trial, the performance was measured as the
average reward of the greedy policy of each learner on 500 independent test
trials (left: performance during the first 200 training trials). The results were
averaged over 250 different problems, all having the statistical dependency
structures as in Figure 4A, but random reward distributions (average learning
and preprocessing time per problem on a dual-core 2.66 GHz, 16 GB RAM
PC: 0.9 s for SP, and 4.1 s for GP). The horizontal dashed line reflects the
best possible performance of an optimal policy. The Bayesian Hebb rules with
simple population coding (Bayesian Hebb SP) and generalized preprocessing
(Bayesian Hebb GP) were compared to action learning with the non-Hebbian
Rescorla-Wagner rule. The learning rate was set to 1/Na ,i , and stochastic action
selection was used for exploration during training. The Bayesian Hebb rule
for both preprocessing methods learned faster than the non-Hebbian Rescorla-
Wagner rule and converged to better policies. With generalized preprocessing,
the Bayesian Hebb rule converged to the optimal action selection policy, as
predicted by the theoretical analysis. Error bars are in the range of 10−3 and are
omitted for clarity.

5.1 Approximations to the Bayesian Hebb Rule. We showed in sec-
tion 3 that the linear Bayesian Hebb rule, equation 3.4, can be derived as a
first-order Taylor approximation of the reward-modulated Bayesian Hebb
rule, 2.7. There are no theoretical guarantees that the linear Bayesian Hebb
rule will asymptotically converge toward weight values that allow optimal
decision making. We compared the two rules on the same random Bayesian
network tasks for action selection empirically, using both the simple pre-
processing (SP) for the naive Bayes case, and the generalized preprocessing
(GP) for arbitrary reward distributions. Figure 6 shows that this even sim-
pler rule found good policies as quick as the exact rule. The quality of the
final policy was almost indistinguishable from the policies found by the
exact Bayesian Hebb rule.

5.2 Adaptation to Changing Reward Distributions. In most realistic
scenarios, an organism experiences during its lifetime changes in the

1420 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

environment in which it lives. It is therefore important that a learning rule
can adapt quickly to a changing reward or input distribution. It is clear that
a learning rate that decays with 1

Ni
(where Ni is the number of updates for

a weight wi) is unsuitable for changing environments. We therefore used
for this task the variance tracking mechanism for learning rate adaptation,
which was first introduced by Nessler, Pfeiffer, and Maass (2009). This
mechanism keeps track of the variance of each weight and adapts learning
rates accordingly. Learning rates are reduced for weights with small
fluctuations, whereas they are increased for weights with high variance, an
indication that those weights have not yet settled at their equilibrium values.

The learning rate adaptation mechanism uses two auxiliary variables,
which can be locally estimated for every weight wi : a running average of
the weight is computed in w̄i , and a running average of the squared weight
in q̄i , using the following simple update rules:

w̄new
i ← (1 − ηi) w̄i + ηi wi

q̄ new
i ← (1 − ηi) q̄i + ηi w2

i .
(5.2)

With these values, the short-time variance of each weight can be estimated
as q̄i − w̄2

i . Assuming that samples are drawn from stationary input distri-
butions, Nessler et al. (2009) showed that the variance of a weight wi can
be related to the sample size Ni in the Bayes-optimal learning case (see also
section 2.2), where exact counters for all combinations of inputs, actions,
and rewards are used and conditional reward probabilities are modeled
with beta distributions. According to this analysis, the new learning rate
ηnew

i can be set as

ηnew
i ← q̄i − w̄2

i

1 + cosh w̄i
. (5.3)

In practice, this mechanism decays like 1
Ni

under stationary conditions. It
can also handle changing input distributions, because a new target value
for wi leads to larger updates �wi , thus increasing the short-time variance
of the weight, and by equation 5.3, the learning rate ηi . Further details, and
the theory behind this mechanism are described in Nessler et al. (2009).

The variance tracking mechanism is an analytically justified rule for
setting learning rates. Biological implementations of qualitatively similar
processes are plausible, since all auxiliary quantities can be observed locally
at the synapse. What is required is essentially a process that locally modu-
lates potentiation or depression of synapses and itself is dependent on the
magnitude of recent local synaptic weight changes. This could in principle
be achieved by a large variety of metaplasticity mechanisms that are known
to modulate synaptic plasticity (see Abraham, 2008, for a recent review).
Neuromodulators such as acetylcholine and norepinephrine could play a

Reward-Modulated Hebbian Learning of Decision Making 1421

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

0 400 800 1200 1600 2000
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

Optimal Learner
Bayesian Hebb SP
Linear Bayesian Hebb SP
Bayesian Hebb GP
Linear Bayesian Hebb GP

Figure 6: Performance of the linear approximations to the reward-modulated
Bayesian Hebb rule in the same four-action tasks as in Figure 5 (left: performance
during the first 200 training trials). Both for simple population coding (SP) and
generalized preprocessing (GP), the linear approximation to the learning rule
learned as well as the exact rule. Error bars are in the range of 10−3 and are
omitted for clarity.

A B

0 1000 2000 3000 4000 5000 6000 7000 8000
0.2

0.3

0.4

0.5

0.6

0.7

Trials

A
ve

ra
g
e
 R

e
w

a
rd

Bayesian Hebb SP

Linear Bayesian Hebb SP

0 500 1000 1500 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Updates

w
a

,
i

Bayesian Hebb SP

Linear Bayesian Hebb SP

Figure 7: Behavior of the Bayesian Hebb rule when the reward distribution
changes during training. (A) Performance of the agent if a new reward dis-
tribution is introduced after 4000 training trials. There is an immediate drop
when the distribution changes, but good performance is recovered quickly by
both rules. (B) Evolution of a single weight wa ,i when the reward distribution
changes. The weights are plotted at every trial where action a is selected, and
an update for the plotted weight occurs. The weight first settles at the desired
value for the first distribution and then quickly adapts to the new target value
when the distribution changes (indicated by the black dashed line).

special role in the control of learning rates and the reduction of oscillations
of weight updates (Doya, 2002; Yu & Dayan, 2003).

In the experiment shown in Figure 7, the weights were learned in
4000 training trials, after which the environment was changed and the
learner was trained for another 4000 trials on the new input and reward
distributions. Figure 7A shows that the performance of the learners ini-
tially improved, then dropped as soon as the distributions were switched,
but quickly adapted to the new distribution, reaching almost the same

1422 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
g

e
 R

e
w

a
rd

0 5000 10000 15000 20000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
g
e
 R

e
w

a
rd

Optimal Learner

Bayesian Hebb SP

Bayesian Hebb GP

Rescorla−Wagner

Figure 8: The Bayesian Hebb rule works well also for simulations with large
input and action spaces. Each learner was trained on 20,000 trials of action
selection problems with 10 actions, 100 binary input attributes, and stochas-
tic rewards. Every 1000 trials, the performance was measured as the average
reward of the greedy policy of each learner on 1000 independent test trials
(left: performance during the first 5000 training trials). The results were aver-
aged over 40 different problems with random statistical dependency structures
and random reward distributions (average learning and preprocessing time per
problem on a 2-core 2.66 GHz, 16 GB RAM PC: 27.8 s for SP, and 301.6 s for GP).
The learning rates were set to 1/Na ,i , and random action selection was used for
exploration during training. With generalized preprocessing, the Bayesian Hebb
rule approached the performance of an optimal learning mechanism. Error bars
are in the range of 10−2 and are omitted for clarity.

performance. Figure 7B shows the evolution of a single weight in this sce-
nario for all trials in which it was updated. It can be seen that the weight
first settled around the equilibrium value of the first distribution and grew
to reach the new target value after the switch.

5.3 Simulations for Large Input and Action Spaces. The Bayesian
Hebb rule also works well for significantly larger problems. The same algo-
rithms as in the previous sections were applied to problems with 100 binary
input attributes and 10 possible actions. The structures of the Bayesian net-
works that define the reward distributions for every action were generated
randomly, using the algorithm described in Ide and Cozman (2002). Every
node in the network could have a maximum of five parent nodes. The pro-
tocol for the generation of training samples and rewards was the same as
for the previous experiments (see beginning of section 5). During learning,
actions were selected randomly, and the greedy policy was used for the
evaluation on 1000 independent test trials (once every 1000 training trials).

Figure 8 shows that the Bayesian Hebb rule learns fast, both for simple
population coding (SP) and generalized preprocessing (GP). The latter ini-
tially performs worse than SP because the number of weights to learn is
very large (about 1000 weights for every action), and approximation errors

Reward-Modulated Hebbian Learning of Decision Making 1423

sum up. Given more training data, the Bayesian Hebb rule with generalized
preprocessing approaches the performance of an optimal learner. The lin-
ear approximations to the reward-modulated Bayesian Hebb rule perform
equally well on this task for both types of preprocessing.

6 Decision Making with Continuous Inputs

The Bayesian Hebb rule can be generalized to action-selection problems de-
fined on continuous input distributions. A rule very similar to equation 2.7
learns reward log-odds on a continuous input encoding, comparable to pop-
ulation codes with bell-shaped tuning curves that are observed in the brain.

The Bayesian Hebb rule has previously been defined only for discrete
inputs xk , which were mapped to binary variables yi with various ways of
preprocessing. We now present a learning rule to approximate distributions
of a binary reward variable for continuous inputs. The preprocessing for
this case is a population code that uses radial basis functions (RBFs)3 to map
continuous input variables xk to new continuous features yi , which may,
for example, correspond to firing rates in a neural population code. Popu-
lation codes with RBF- or bell-shaped tuning curves have been observed,
for example, in area MT of the visual system for direction-sensitive cells
(see Pouget & Latham, 2002, for a review), place cells in rat hippocampus
(O’Keefe, Burgess, Donnett, Jeffery, & Maguire, 1998), or for the encoding of
movement directions in primate motor cortex (Georgopoulos, Schwartz, &
Kettner, 1986). Networks of RBF units are also commonly used for models
of visual object recognition (Riesenhuber & Poggio, 1999).

Consider the input variables x = 〈x1, . . . , xm〉 ∈ X ⊆ R
m and a binary re-

ward variable r ∈ {0, 1}. The continuous input x is mapped to a new set of
n continuous nonnegative features yi . The activation of feature yi is propor-
tional to the activation of an RBF kernel φi (x):

φi (x) = exp

(
−

m∑
k=1

|xk − ci,k |2
s2

i,k

)
. (6.1)

The centers of the RBF kernels are located at ci = 〈ci,1, . . . , ci,m〉, and the
widths of the kernels are given by si,k (different widths may be used for
different input dimensions). The preprocessed vector y = 〈y1, . . . , yn〉 is ob-
tained by calculating the activations of all n different RBFs and normalizing
the vector:

yi (x) = φi (x)∑n
j=1 φ j (x)

. (6.2)

3Other mappings are also possible but are not presented in this article.

1424 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

F
e
a
tu

re
 A

c
ti
v
a
ti
o
n

φ
i
(x)

y
i
(x)

Figure 9: Example of a continuous population code with five equally spaced
RBF kernels (width s = 0.2) for a one-dimensional input x. The activations of
the RBF kernels φi (x) depend on the distance between x and the center ci of
the kernel. The normalized features yi (x) are obtained by dividing every φi (x)
by the total sum of activations. The RBF kernel activations φi (x) (black crosses
mark the intersection of the vertical line at x = 0.35 with the five RBF kernels
indicated by dotted lines) and the normalized feature activations yi (x) (dark
bars) are shown here for an example input at x = 0.35 (gray dashed line).

Notice that this kind of preprocessing can take combinations of variables
into account, such as RBF kernels on R

m, not only single variables. Figure 9
illustrates a simple continuous population code for five RBF kernels in one
input dimension.

A rule for learning reward log-odds conditioned on a single feature
yi = yi (x) can be defined by generalizing the reward-modulated Bayesian
Hebb rule, 2.7. Whenever action a is selected, every weight wa ,i is updated
by

�wa ,i =
{

η · yi (x) · (1 + e−wa ,i), if r = 1

−η · yi (x) · (1 + ewa ,i), if r = 0
. (6.3)

This rule is a generalization of rule 2.7 in which the updates are weighted
by the activation of feature yi . For the previously described discrete popu-
lation codes, where yi is either 0 or 1, rule 6.3 is equivalent to 2.7.

For the analysis of the equilibrium of rule 6.3, we use an alternative popu-
lation code of virtual binary features ỹ1, . . . , ỹn. We interpret y1(x), . . . , yn(x)
as (nonnormalized) probabilities for randomly selecting one i ∈ {1, . . . , n},
for which one sets ỹi = 1 (while setting ỹj = 0 for j
= i). This gives a new in-
terpretation to the continuous population code features yi (x), because they
are proportional to the probability that ỹi = 1 (we then say that “feature ỹi

is active”).

Reward-Modulated Hebbian Learning of Decision Making 1425

To find the equilibrium of rule 6.3 for the weight wa ,i , we set the expected
update E[�wa ,i] to zero and rewrite it as

E[�wa ,i] = 0 ⇔ (1 + e−wa ,i)
∫

X
yi (x) p(r = 1, x | a) dx

−(1 + ewa ,i)
∫

X
yi (x) p(r = 0, x | a) dx = 0.

We show in appendix D that this condition is fulfilled if and only if wa ,i is
at the target value:

w∗
a ,i = log

p(r = 1 | ỹi = 1, a)
p(r = 0 | ỹi = 1, a)

.

If the active (virtual) feature ỹi was known, the corresponding weight
wa ,i would directly indicate the log-odd of obtaining reward with action
a . In this scenario, however, only the continuous features yi (x), i = 1, . . . , n
are known. Due to the normalization, the feature values sum up to 1, and
one can therefore weight every wa ,i by yi (x), yielding,

La (x) =
n∑

i=1

wa ,i yi (x), (6.4)

which is an interpolation between the reward log-odds wa ,i for different
features ỹi . The interpolation weights are in this case the factors yi (x), that
means that those features ỹi that are more likely to be active contribute more
to the weighted sum, since yi (x) is proportional to p(ỹi = 1 | x). La (x) thus
approximates the reward log-odd log p(r=1|x,a)

p(r=0|x,a) , and the reward probability
p(r = 1 | x, a) can be approximated by

p(r = 1 | x, a) ≈ σ (La (x)) = 1
1 + e−La (x)

, (6.5)

where σ (.) is the log-sigmoidal transfer function.

6.1 Computer Experiments with Continuous Input. For the following
experiment, reward distributions were defined on single continuous input
variables x ∈ [0, 1]. For every action, a different reward distribution was
modeled, and the learner’s task was to approximate the true reward dis-
tributions with the continuous Bayesian Hebb rule, 6.3, and to choose the
action with the highest reward probability. Two thousand training trials
with inputs drawn from a uniform distribution on [0, 1] were used, and

1426 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

A

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

Trials

A
v
e

ra
g

e
 R

e
w

a
rd

0 400 800 1200 1600 2000
0.5

0.6

0.7

0.8

0.9

1

Trials

A
v
e
ra

g
e
 R

e
w

a
rd

Bayesian Hebb continuous

B

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
(r

 |
 x

,
a
)

x

Action 1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
(r

 |
 x

,
a
)

x

Action 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
(r

 |
 x

,
a
)

x

Action 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p
(r

 |
 x

,
a
)

x

Action 4

Figure 10: Performance of the Bayesian Hebb rule for continuous inputs. The
input preprocessing consists of 20 RBF kernels that yield a population code
y for the continuous inputs x. (A) Average reward of the learner obtained on
500 independent test trials during training on 2000 trials (left: performance
during the first 200 training trials). The performance level rises quickly and in
the end is close to the best possible performance of an optimal action selector
(horizontal dashed line). Error bars are in the range of 10−3 and are omitted
for clarity. Results are averaged over 32 runs. (B) Approximation of the reward
probabilities learned by the continuous Bayesian Hebb rule after 2000 training
trials. The learned approximation (dashed line) is very close to the true reward
distribution (gray solid line).

the performance after every update was measured on 500 independent test
trials. Twenty RBFs with constant widths s = 0.05 were used for the in-
put preprocessing. The centers of the RBFs were equally distributed in the
interval [0, 1].

Figure 10 shows the performance at every training trial, and the approx-
imations of the reward distributions that were obtained after 2000 training
trials. The average reward obtained after training is close to the best possible
performance, and the reward distributions are learned accurately.

7 Discussion

7.1 Summary and Open Problems. We have proposed in this article
a simple neural network architecture for learning and decision making,
which makes use of two learning processes that operate on two different

Reward-Modulated Hebbian Learning of Decision Making 1427

timescales. We assume that generic dependencies among sensory input vari-
ables or features, or in other words, the factors of the underlying Bayesian
network, are detected on a larger timescale, and that combinations of con-
ditionally dependent input features are presented to the decision stage
through sparse population coding. We have shown that on the basis of such
preprocessing, the optimal policy can be represented as a WTA operation
applied to weighted sums, and the corresponding weights can be learned
very fast. In fact, we have shown that a very simple Hebbian learning
rule (the reward-modulated Bayesian Hebb rule) can integrate information
from experience in a close to optimal way. The models that we presented
and analyzed are biologically plausible and arguably minimal with re-
gard to their complexity, but nevertheless can be shown to asymptotically
approximate theoretically optimal performance. All information from ex-
perience is stored in synaptic weights of simple linear neuron models and
can therefore immediately be used for online decision making. In contrast
to other learning rules that have previously been proposed for modeling
animal learning—such as the Rescorla-Wagner rule (Rescorla & Wagner,
1972; Yuille, 2006), the perceptron learning rule, or learning rules based on
the Kalman filter model (Sutton, 1992; Dayan & Kakade, 2001)—this new
learning rule is a truly Hebbian learning rule. Its weight updates depend
on the current pre- and postsynaptic activity, as well as on a third signal
(Bailey et al., 2000) that contains information about the success or failure of
the currently selected decision, but not on the current values of the other
weights (or the resulting weighted sums of input variables). All information
required for the weight update is therefore available locally at the synapse.

A major advantage of the local nature of purely Hebbian learning rules
is that synapses can be removed or added to a neuron without changing the
target weights of the other synapses. One can therefore view the reward-
modulated Bayesian Hebb rule as a candidate for learning in self-organizing
organisms with developing neural structure. Assume, for example, that an
input variable xnew is added, and the population code is appropriately
modified. Then all weights belonging to factors in the factor graph that
are not connected to xnew are unaffected and can still be used for decision
making. Removal or addition of single weights does, however, affect the
decision-making process if the resulting population code does not match
either the SP or GP encoding.

The Bayesian Hebb rule is one of very few online learning rules that ad-
mit a rigorous theoretical analysis of their convergence properties. We have
shown that the theoretically optimal values of the weights are fixed-point at-
tractors for expected weight changes (see Figure 2B). This implies, in partic-
ular, that learning cannot get stuck in local minima of some loss function. In
fact, one can easily show that the expected weight updates give rise to an ex-
ponentially fast contracting dynamical system in weight space. Hence, this
learning process falls into the theoretical framework of contracting systems,
proposed by Lohmiller and Slotine (1998). According to this theory, this

1428 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

learning process can therefore be combined with other adaptive processes
that also exhibit a contracting dynamics of adaptive parameters. Their the-
ory guarantees that the resulting hybrid learning system will also converge.

We have also considered in section 3 a computationally simpler linear
version of the Bayesian Hebb rule. Although this rule is only an approxi-
mation to the Bayesian Hebb rule and theoretical convergence results are
weaker (see the discussion in section 3.1), we have shown that it performs
almost equally well in a large number of complex decision-making tasks
(see Figures 6, 7, and 11). The linear Bayesian Hebb rule is similar to well-
known mathematical models for Hebbian learning and may therefore pro-
vide a new interpretation of these learning rules as approximations to more
complex plasticity mechanisms

In this article, we have studied the scenario of online reward-based learn-
ing of decision making with multiple alternatives from stochastic rewards
and input signals, which is important for fields like operant conditioning or
reinforcement learning. In section 2.2 we have shown analytically and em-
pirically (see Figure 2A) that the Bayesian Hebb rule achieves near-optimal
learning in terms of learning speed and asymptotically approaches the op-
timal policy for the given preprocessing mechanism. We have supported
this theoretical prediction through a variety of computer simulations of de-
cision tasks (see Figures 5, 8, and 10). The resulting higher learning speed
is particularly interesting in our context of reward-based learning, where
most learning algorithms are too slow to be applicable to real-world prob-
lems. Hence the contribution of this article can be seen as another step in
the program to speed up reinforcement learning by making near-optimal
use of previous experience. We have shown in section 5.2 that this approach
can also be applied to nonstationary distributions of inputs and rewards.

The question of how the brain forms decisions that involve more than
two alternatives is one of the most important open research problems (Gold
& Shadlen, 2007). For binary decisions, Wald’s sequential probability ratio
test (Wald & Wolfowitz, 1948) provides a theoretically optimal tool for learn-
ing and decision making from limited evidence. In this case, it is sufficient
to update a single decision variable and compare it to a threshold value. For
problems with more than two alternatives, it is unclear whether an optimal
test exists, and tests that guarantee asymptotic optimality, such as the
method developed by Dragalin, Tartakovsky, and Veeravalli (1999) become
much more complex (see Gurney & Bogacz, 2006, for a possible neural
implementation). In this article we have studied a simpler network model,
which does not select actions optimally in the sense of sequential analysis. It
converges asymptotically to an optimal policy and uses heuristic strategies
for choosing actions during learning. We have analyzed a model that is
based on the winner-take-all (WTA) operation and directly uses the learned
weights for the evaluation of actions. We have shown that if WTA is applied
to several linear neurons, each of which learns with the Bayesian Hebb
rule to approximate the log-odd of receiving a reward for an associated

Reward-Modulated Hebbian Learning of Decision Making 1429

action (see Figure 1), our simple model can handle the case of more than
two decision alternatives without any extra effort (see sections 2 and 3 for
the theoretical analysis and Figures 5, 6, 8, and 10 for empirical tasks).

WTA circuits are of interest in the context of neural network models
for action selection, since it has been suggested that generic cortical mi-
crocircuits implement a soft version of WTA circuits (where za > 0 also for
the runner-ups in the competition among the La ; see Douglas & Martin,
2004). This view is supported by the anatomical observation that the out-
put cells (pyramidal neurons) of cortical microcircuits are subject to lateral
inhibition (each pyramidal neuron excites inhibitory interneurons that tar-
get other pyramidal neurons). It is also supported by the physiological
observation that simultaneous activation of very large numbers of sensory
neurons (for example in the retina) is transformed through cortical process-
ing into sparse activity of neurons in higher sensory areas (e.g., area IT).
Consequently, WTA circuits have become a primary target for the design of
neurally inspired electronic hardware (Hahnloser, Sarpeshkar, Mahowald,
Douglas, & Seung, 2000; Neftci, Chicca, Indiveri, Slotine, & Douglas, 2008).

The components of our neural network model (see Figure 1) have sub-
stantial experimental and theoretical support. Hebbian learning, and the
use of weighted sums for decision making (Roth, 1999), is clearly feasi-
ble for biological neurons. The other essential ingredient of our model for
reward-based learning of decision making is a suitable preprocessing of
variables x (typically representing sensory inputs) that form the evidence
on which a decision has to be based in a single trial. Our model requires a
sparse population coding of the values of these variables (for both variables
with discrete and with continuous values; see section 6). Sparse encodings
(Olshausen & Field, 1996) or population codes are common models for cod-
ing strategies of the brain, and experimental evidence for the existence of
such codes has been found in various brain areas of different species (see,
e.g., Pouget & Latham, 2002; O’Keefe et al., 1998; Georgopoulos et al., 1986).

Furthermore, in the case of conditioned dependencies among variables,
our model assumes that there exists a population coding for “complex fea-
tures” (reminiscent of neural codes reported for example for visual areas V2
and IT), that is, for combinations of variables (see Figure 4 for an example).
Hence, our simple neural network model for learning decision making en-
tails concrete predictions for the computational strategies, neural codes, and
learning mechanisms in those cortical areas that provide information about
sensory inputs in a highly processed form to other cortical areas where deci-
sions are made. It proposes that those subgroups of sensory variables (from
the same or different sensory modalities) that have statistical dependencies,
such as those represented by a factor graph (Kschischang et al., 2001), are
brought together in some cortical microcircuits and that projection neurons
from these cortical microcircuits each assume a high firing rate for a particu-
lar combination of values of these variables (thereby mimicking the output
variables yi of our general preprocessing; see section 4.1).

1430 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

This link of factor graph theory and experimentally observed population
codes provides a novel view on the potential role of sensory areas that
provide input to higher decision-making stages in the brain. The proposed
preprocessing has the advantage of relieving the subsequent decision
stage from complex computations (such as belief propagation by message
passing) and nonlinear learning devices. In fact, it enables the decision
stage to use only linear operations in conjunction with WTA. It also
enables the decision stage to accumulate evidence from history through
the very simple and robust Hebbian learning processes discussed in this
article.

In this article, we assume that the graph structure of the factor graph is
known, which is a very common assumption for parameter learning algo-
rithms in graphical models (see, e.g., Neapolitan, 2004; Jensen & Nielsen,
2007). The evolution of preprocessing circuits is obviously a complex pro-
cess, and the design of learning algorithms that generate such preprocessing
of sensory inputs is an interesting open problem. Testing variables for (con-
ditional) dependence is perhaps a less formidable problem for a neural
network than it may appear on first sight, provided one assumes that nu-
merous autonomous learning processes try to predict each variable in terms
of others. Dependencies among the variables exist and can in principle be
found autonomously by this process, whenever such prediction learning
turns out to be successful. As mentioned above, such relationships between
input signals may be learned on much longer timescales than decision
strategies, which require very fast adaptation.

Other obvious open problems that arise from our model are whether
it can be implemented with spiking neurons and whether there exist re-
lationships between the theoretically optimal reward-modulated Bayesian
Hebb rule and concrete heterosynaptic learning mechanisms of biologi-
cal synapses such as those discussed in Bailey et al. (2000). Another open
problem concerns a possible extension of our model to rewards signals with
more than two values, to third signals that represent predictions of rewards,
and to reward-based learning in continuous time.

Altogether our simple neural network model for learning decision mak-
ing has shown that this problem is in some aspects less difficult than it
may appear on first sight. It remains to be explored whether biological neu-
ral systems have adopted related implementation strategies or have found
even simpler solutions to this problem.

7.2 Related Work

7.2.1 Models for Decision Making. The study of decision making in biolog-
ical systems dates back to the classical experiments by Pavlov, in which dogs
learned associations between cues and rewards. On the other hand, oper-
ant or instrumental conditioning is concerned with associations between

Reward-Modulated Hebbian Learning of Decision Making 1431

actions and rewards and how behavior is modified through reward and
punishment. The goal is to learn a policy, that is, a way to select actions
near-optimally in response to environmental stimuli. According to Sugrue,
Corrado, and Newsome (2005), biological organisms first transform sensory
input into decision-related variables, such as value representations in area
LIP for visual discrimination tasks in monkeys (Yang & Shadlen, 2007). An
unknown computational mechanism maps the values of these variables to
the probability of reward for executing various actions, which then leads
to a motor response. An actor-critic model is assumed, in which the actor
and the critic are two modules that operate with a common reward cur-
rency. The critic adapts the value of every action to the perceived reward
probabilities, thereby altering the decision transformation, which the actor
uses to choose actions. An example for models of instrumental condition-
ing is the experiment of Montague, Dayan, Person, and Sejnowski (1995),
in which the behavior of a foraging bee is simulated with a neural network
model and a suitable learning rule (a variation of the Rescorla-Wagner rule).
Wang (2002) has described a recurrent cortical network model, which uses
feedback and winner-take-all mechanisms to integrate information in vi-
sual discrimination tasks with two possible outcomes. Gurney and Bogacz
(2006) have presented a model for optimal decision making with multi-
ple actions, which models the functionality of the basal ganglia. Further
neural network models for decision making have been reviewed in Sakai,
Okamoto, and Fukai (2006).

7.2.2 Learning Rules for Decision Making. The classical model for learning
associations of stimuli, actions, and rewards is the Rescorla-Wagner rule
(Rescorla & Wagner, 1972). It was the first mathematical model for learning
that could explain most of the effects observed in animal behavior studies.
In particular it was able to explain reactions based on combinations of stim-
uli. Reward associations for many conditioning paradigms, such as partial
reinforcement, inhibitory conditioning, or extinction, can be learned by the
Rescorla-Wagner rule (and also by the Bayesian Hebb rule). The associa-
tive model of the Rescorla-Wagner rule represents the predicted amount
of reward as a weighted sum of stimuli, and weights are updated using
the difference between the predicted and the actually received reward (see
equation 5.1). The Rescorla-Wagner rule is therefore not a strictly Hebbian
learning rule, because this error signal, rather than the activation of the
postsynaptic neuron is required for the update. Studies by Schultz, Dayan,
and Montague (1997) have, however, indicated that such an error signal
may be available in the form of the neuromodulator dopamine.

Learning rules that minimize prediction errors were also useful to ex-
plain blocking phenomena in conditioning (Dayan & Abbott, 2001). How-
ever, some observed effects like backward blocking—an established reward
association is unlearned, because another stimulus sufficiently explains the

1432 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

occurrence of rewards—cannot be sufficiently captured by the Rescorla-
Wagner rule or the Bayesian Hebb rule. The reason is that weights in these
models can only be reduced if unrewarded trials are observed (which is not
the case in the backward-blocking paradigm). Algorithms that specifically
address learning of reward associations in the backward-blocking scenario
are based on Kalman filter models for conditioning (Sutton, 1992). Dayan
and Yu (2003) argue that in addition to error correction, it is necessary
to model the uncertainty in the parameter estimates during learning, and
neuromodulators like acetylcholine or norepinephrine could signal such
uncertainty in biological systems (Yu & Dayan, 2003). An artificial recurrent
neural network model, which approximates the Kalman filter estimates of
reward associations for backward blocking, was presented by Dayan and
Kakade (2001). A different learning mechanism is suggested by Griffiths
and Tenenbaum (2005), who argue that phenomena like backward block-
ing could also be modeled by learning changes in the causal structure of
the problem rather than by learning new reward associations.

The mathematical problem of learning optimal action selection is also
well studied in the field of reinforcement learning (RL) (Sutton & Barto,
1998). Typical RL algorithms learn value- or Q-functions, which estimate the
expected reward resulting from the execution of action a in state x. The goal
of RL is to converge to optimal policies, which select for every state those
actions that maximize the expected reward (typically a discounted long-
term reward for sequential decision problems). Classical RL algorithms do
not directly aim at maximizing the online performance, that is, the amount
of reward obtained during learning, but typically employ some heuristics
to tackle the exploration-exploitation dilemma. This dilemma concerns the
trade-off of online performance (exploitation) and exploration of unseen
parts of the state and action space in order to improve the final policy. More
recently the problem of optimizing online performance has attracted more
attention in the RL literature (e.g., Kearns & Singh, 1998; Audibert, Munos,
& Szepesvari, 2007; Auer, Jaksch, & Ortner, 2009). Asymptotic convergence
of RL algorithms to the optimal policy can be guaranteed for discrete envi-
ronments only if action values are stored in look-up tables with one entry
for every combination of state and action. Such tabular representations are
biologically not realistic, and for computers, the memory requirements are
too large for most real-world applications. Value functions are therefore
approximated, but convergence results exist only for a limited number of
approximation schemes (Bertsekas & Tsitsiklis, 1996).

Using Bayesian inference for action selection in uncertain environments
was studied by Attias (2003) and Verma and Rao (2006). They consider
the problem of planning action sequences of fixed length for partially ob-
servable Markov decision processes with one or more fixed goal states.
The dynamics of the environment are initially unknown. The learning part
uses frequency counters to update conditional probabilities for transition
and reward models. Planning is reduced to Bayesian inference in graphical

Reward-Modulated Hebbian Learning of Decision Making 1433

models based on the learned parameters, which is computed with standard
algorithms, for example, belief propagation or the junction tree algorithm
(Bishop, 2006). The posterior over actions, given that start and goal state
are fixed, is computed, and the maximally likely sequence of actions (and
intermediate states in Verma & Rao, 2006) is selected. This approach is
conceptually quite different from our approach, since our approach does
not learn sequences of actions and does not require a defined goal state.
The learned parameters in our model (the weights wa ,i) are not auxiliary
variables but are directly used in the decision-making process. Further-
more, our approach requires only very basic and apparently biologically
feasible mechanisms like Hebbian learning, weighted summations, and
winner-take-all. Implementing full Bayesian inference is a much more diffi-
cult process, for which it is not clear how the brain can achieve it efficiently,
although some models have been proposed (e.g., Rao, 2007; Deneve, 2008).
Lansner and Ekeberg (1998), Kononenko (1998), Lansner and Holst (1996),
and Sandberg, Lansner, Petersson, and Ekeberg (2002) have studied various
learning rules (although not in a reinforcement learning context) that ap-
proximate optimal Bayesian inference. The learning rules differ from the
Bayesian Hebb rule that was introduced in this article primarily by the
fact that they require auxiliary counters for storing evidence from past
experience.

7.2.3 Analogies to Recent Experimental Studies of Decision Making in Pri-
mates. Recent experimental results by Yang and Shadlen (2007) have shown
that the previous experience of macaque monkeys in probabilistic decision
tasks is represented by the firing rates of neurons in area LIP in the form
of the log-likelihood ratio of receiving a reward for a particular action a in
response to a stimulus x, as in equation 1.1 of our framework. In their exper-
iment, a monkey had to choose at each trial between two possible actions.
It could choose to move the eyes towards either a red target R (a = R) or a
green target G (a = G). The probability that a reward was received at either
choice depended on four visual input stimuli x = (x1, x2, x3, x4) that had
been shown at the beginning of the trial. Every stimulus xk, k = 1, . . . , 4,

was one shape s j out of a set of 10 possibilities {s1, . . . , s10} and had an
associated weight ωk = ω(s j), which had been defined by the experimenter.
The log-odd of obtaining a reward was equal to the sum of ω1, . . . , ω4:

log
p(r = 1 | x, a = R)
p(r = 1 | x, a = G)

=
4∑

k=1

ωk . (7.1)

The monkey thus had to combine the evidence from four visual stimuli to
optimize its action selection behavior. It also had to find out that reward
probabilities depended only on the presented shapes, not on the order or
location in which they were presented. A reward was assigned before the
trial to one of the targets according to the distribution 7.1.

1434 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

One can easily model this task in our framework, using a simple popu-
lation code y = �(x) as in equation 4.6, where the stimulus x was encoded
by a 40-dimensional binary vector y with exactly m = 4 inputs being 1. The
positions of the 1’s corresponded to the four visual shapes shown during a
trial. The log-odd of obtaining reward with action a = R can then be written
as a weighted sum,

log
p(r = 1 | y, a = R)
p(r = 0 | y, a = R)

=
40∑

i=1

w∗
i yi , (7.2)

with

w∗
i = log

p(r = 1 | yi = 1, a = R)
p(r = 0 | yi = 1, a = R)

. (7.3)

Due to the symmetry of the task (reward is either at R or G), the log-odds
in equations 7.1 and 7.2 are equivalent. The weights wi can be learned
with an efficient version of the reward-modulated Bayesian Hebb rule, 2.7,
which takes this symmetry into account. The equilibrium w∗

i of weight
wi under this slightly modified rule is then exactly at the desired value
(see equation 7.3). We simulated this task using a learner with the reward-
modulated Bayesian Hebb rule and a 1/Ni learning rate for every weight.
Figure 11A shows that this task can be successfully learned both by the exact
reward-modulated Bayesian Hebb rule 2.7 and the linear approximation,
3.4. The learning rules learn as fast as the non-Hebbian Rescorla-Wagner
rule, 5.1, and their performance is close to the theoretical optimum after 1000
training trials. Furthermore Figures 11B and 11C show that the intermediate
and final policies resemble the behavior that was reported for two monkeys
in Yang and Shadlen (2007).

The experimental data of Yang and Shadlen (2007) are consistent with
the assumption that monkeys apply a WTA operation to the log-likelihood
ratios,

La = log
p(r = 1 | x, a)
p(r = 0 | x, a)

,

which are, according to their model, represented through firing rates of
neurons in area LIP. It is not known which values are represented by the
firing rates yi of the presynaptic neurons of these neurons. In our simple
model, we model the neurons within the WTA circuit as linear neurons and
assume that their output La can be written as a linear sum La = ∑n

i=0 wa ,i yi

of variables yi that represent a population coding of the sensory input x.
As we have shown in section 4, if this population coding is chosen in a
suitable way, the true reward log-odd log p(r=1|x,a)

p(r=0|x,a) can in fact be written

Reward-Modulated Hebbian Learning of Decision Making 1435

A

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Trials

A
ve

ra
g

e
 R

e
w

a
rd

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Trials

A
ve

ra
g

e
 R

e
w

a
rd

Bayesian Hebb SP

Linear Bayesian Hebb SP

Rescorla−Wagner

B

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
e
rc

e
n
ta

g
e
 o

f
re

d
 c

h
o
ic

e
s

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
e
rc

e
n
ta

g
e
 o

f
re

d
 c

h
o
ic

e
s

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
e
rc

e
n
ta

g
e
 o

f
re

d
 c

h
o
ic

e
s

C

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
e
rc

e
n
ta

g
e
 o

f
re

d
 c

h
o
ic

e
s

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
e
rc

e
n
ta

g
e
 o

f
re

d
 c

h
o
ic

e
s

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
e
rc

e
n
ta

g
e
 o

f
re

d
 c

h
o
ic

e
s

Figure 11: Performance of the reward-modulated Bayesian Hebb rule in the
model for the conditioning task by Yang and Shadlen (2007). (A) The reward-
modulated Bayesian Hebb rule learns as fast as the non-Hebbian Rescorla-
Wagner rule (curves result from averaging over 32 repetitions of the experiment,
where the average reward was measured on 500 independent test trials). The
horizontal dashed line reflects the theoretically best possible performance. Error
bars are in the range of 10−2 and are omitted for clarity. (B, C) Action selection
policies (greedy policy according to equation 2.2) resulting from the model
using the exact Bayesian Hebb rule, 2.7 (B) or the linear Bayesian Hebb rule,
3.4 (C) after 100 (left), 500 (middle), and 1000 (right) trials, fitted by sigmoidal
curves (results are from 32 repetitions of the experiment, where the behavior
was measured on 1000 independent test trials). The policies represented by
the left and right panels are qualitatively similar to the policies adopted by
monkeys H and J in the experiments by Yang and Shadlen (2007) after learning
(see Figure 1b in Yang and Shadlen, 2007).

1436 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

as such a weighted sum. Hence our theoretical framework makes concrete
predictions about the nature of the transformation of raw sensory inputs x
to inputs y for higher brain areas that select suitable responses. The required
weights wa ,i can be learned by the reward-modulated Bayesian Hebb rule,
and a linear Poisson neuron whose weights are updated according to this
rule will adapt for each trial a firing rate proportional to the log-likelihood
ratio log p(a=R|x)

p(a=G|x) . This response matches that of the neurons in area LIP
shown in Figures 2c and 3b of Yang and Shadlen (2007).4

The Bayesian Hebb rule provides an arguably minimal model for the
biological data of Yang and Shadlen (2007). One difference between their
results and our model is that learning is much faster in our model. This
could be explained by the fact that many aspects of the probabilistic deci-
sion task of Yang and Shadlen (2007)—for example, the fact that the reward
policy was stationary, the fact that the reward probabilities did not de-
pend on the order of appearance or the spatial location of the shown icons,
and the fact that reward probabilities did not depend on any other aspects
that the monkeys had perceived before or during a session—also had to
be learned by the monkeys, whereas they were assumed as given in our
model. Learning of these invariances and symmetries was actually quite
hard in the setup of Yang and Shadlen (2007) since rewards were given
stochastically rather than by deterministic laws (note that even many hu-
mans believe they can “learn” various misleading reward-predictors while
gambling for a long time in the lottery or casinos). An interesting open
question is whether reward-based learning of decision making by humans
or animals can approach the learning speed of the Bayesian Hebb rule when
such differences between the learning tasks of the living organisms and the
mathematical model have been removed.

8 Conclusion

We have demonstrated the functionality of a simple neural network model
for learning of asymptotically optimal action selection, which uses only bio-
logically plausible mechanisms such as reward-modulated Hebbian learn-
ing, sparse population coding, and winner-take-all computations. Further-
more we have shown that on the basis of a suitable preprocessing that
takes dependencies among salient variables into account, a very simple
Hebbian learning rule can converge toward optimal policies extremely fast.
Our approach offers concrete processing goals for brain areas that inte-
grate multimodal sensory input in order to facilitate learning and decision
making in higher brain areas. Empirical results have confirmed that the
new reward-modulated Bayesian Hebb rule, and an even simpler linear

4Note that the optimal weights w∗
i are equal to the weights ωk = ω(s j) that were

assigned to the different visual shapes s j .

Reward-Modulated Hebbian Learning of Decision Making 1437

approximation to it, compare favorably to well-known non-Hebbian learn-
ing rules for action-selection tasks. Our results suggest that learning and
decision making under uncertainty can be implemented very efficiently in
biological neural systems.

Appendix A: Convergence Proofs for the Bayesian Hebb Rule

We assume that p(r | y, a), the reward probability conditioned on the cur-
rent input and action, is stationary, and p(yi = 1, a) > 0 for all a ∈ A and
i ∈ {1, . . . , n}. Apart from the latter assumption, the equilibrium is indepen-
dent of the exploration policy π (x, a). The constraint on p(yi = 1, a) means
that all values of all input variables must have a nonzero probability in
the input distribution, and every action must have a nonzero probability
of being tried out. If p(yi = 1, a) = 0 for some yi and a , then such trials are
never encountered, and no meaningful weight wa ,i can be learned.

Since updates of wa ,i in equation 2.7 are made only when a is executed
and yi = 1, one can write

E[�wa ,i] = 0 ⇔ p(r = 1 | yi = 1, a) · η · (1 + e−wa ,i) −
−p(r = 0 | yi = 1, a) · η · (1 + ewa ,i) = 0

⇔ 1 + ewa ,i

1 + e−wa ,i
= p(r = 1 | yi = 1, a)

p(r = 0 | yi = 1, a)

⇔ ewa ,i = p(r = 1 | yi = 1, a)
p(r = 0 | yi = 1, a)

⇔ wa ,i = log
p(r = 1 | yi = 1, a)
p(r = 0 | yi = 1, a)

.

The above is a chain of equivalence transformations; therefore w∗
a ,i =

log p(r=1|yi =1,a)
p(r=0|yi =1,a) is the only equilibrium value of rule 2.7.

One can also show that the expected update of weights wa ,i is always in
the right direction:

E[�wa ,i]|w∗
a ,i +2ε = E[�wa ,i]|w∗

a ,i +2ε − E[�wa ,i]|w∗
a ,i

∝ p(r=1|yi = 1, a)e−w∗
a ,i (e−2ε − 1) − p(r=0|yi = 1, a)ew∗

a ,i (e2ε − 1)

= p(r=0|yi = 1, a)(e−2ε − 1) − p(r=1|yi = 1, a)(e2ε − 1)

= [
(p(r=0|yi = 1, a)e−ε + p(r=1|yi = 1, a)eε

]
(e−ε − eε). (A.1)

The first term in equation A.1 is always positive, and from the last term,
one can, see that whenever wa ,i > w∗

a ,i (i.e., ε > 0), the expected change of
wa ,i is negative, and it is positive if ε < 0. The expected change of weights

1438 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

is therefore always in the direction of the optimal weight, and the initial
weight values or perturbations of the weights decay exponentially fast. Fur-
thermore, trajectories of weights that start at different initial values converge
exponentially fast. Hence the resulting weight dynamics is contracting in
the sense of Lohmiller and Slotine (1998).

Appendix B: Convergence Proof for the Linear Bayesian Hebb Rule

The expected update of the linear Bayesian Hebb rule, equation 3.4, vanishes
when

E[�wa ,i] = 0 ⇔ p(r = 1|yi = 1, a) · η · (2 − wa ,i)

−p(r = 0|yi = 1, a) · η · (2 + wa ,i) = 0

⇔ 2(p(r = 1|yi = 1, a) − p(r = 0|yi = 1, a)) =
= wa ,i · (p(r = 1|yi = 1, a) + p(r = 0|yi = 1, a)) = wa ,i

⇔ wa ,i = 2(p(r = 1|yi = 1, a) − 1 + p(r = 1|yi = 1, a))

⇔ wa ,i = −2 + 4 · p(r = 1|yi = 1, a).

We have used here that the reward is binary, and so

p(r = 0|yi = 1, a) + p(r = 1|yi = 1, a) = 1.

The above is a chain of equivalence transformations, so w+
a ,i = −2 + 4 ·

p(r = 1|yi = 1, a) is the only equilibrium value of equation 3.4.

Appendix C: Derivation of the Population Code for the Naive Bayes
Case

From the naive Bayes assumption, we know that

p(r = 1|x, a)
p(r = 0|x, a)

= p(r = 1|a)
p(r = 0|a)

m∏
k=1

p(xk |r = 1, a)
p(xk |r = 0, a)

. (C.1)

Each discrete conditional distribution p(xk |r, a) for a fixed action a and a
fixed value of r is fully described by mk probability values, one for each
possible value of xk , and can be written in the form

p(xk |r, a) = p(xk = 1|r, a)I (xk=1)

·p(xk = 2|r, a)I (xk=2) · . . . · p(xk = mk |r, a)I (xk=mk),

Reward-Modulated Hebbian Learning of Decision Making 1439

where the indicator function I is defined as I (true) = 1 and I (false) = 0.
With this notation, equation C.1 can be rewritten as

p(r = 1|x, a)
p(r = 0|x, a)

= p(r = 1|a)
p(r = 0|a)

m∏
k=1

mk∏
j=1

(
p(xk = j |r = 1, a)
p(xk = j |r = 0, a)

)I (xk= j)

= p(r = 1|a)
p(r = 0|a)

m∏
k=1

mk∏
j=1

(
p(r = 1|xk = j, a)
p(r = 0|xk = j, a)

· p(r = 0|a)
p(r = 1|a)

)I (xk= j)

=
(

p(r = 1|a)
p(r = 0|a)

)1−m m∏
k=1

mk∏
j=1

(
p(r = 1|xk = j, a)
p(r = 0|xk = j, a)

)I (xk= j)

. (C.2)

Appendix D: Convergence Proof for the Continuous Bayesian Hebb
Rule

The equilibrium of the continuous Bayesian Hebb rule, equation 6.3, is
reached when the expected update E[�wa ,i] vanishes:

E[�wa ,i] = 0 ⇔ (1 + e−wa ,i)
∫

X
yi (x) p(r = 1, x|a) dx

−(1 + ewa ,i)
∫

X
yi (x) p(r = 0, x|a) dx = 0.

We now use the interpretation of yi (x) as p(ỹi = 1|x). Since the virtual pop-
ulation code feature ỹi depends only on x, not on r , one can assume that r
and ỹi are conditionally independent given x:

p(r, ỹi |x, a) = p(r |x, a) · p(ỹi |x).

This assumption, and simple transformations using basic laws of probabil-
ity lead to

E[�wa ,i] = 0 ⇔ 1 + ewa ,i

1 + e−wa ,i
=

∫
X p(ỹi = 1|x) p(r = 1|x, a) p(x|a) dx∫
X p(ỹi = 1|x) p(r = 0|x, a) p(x|a) dx

⇔ ewa ,i =
∫

X p(ỹi = 1, r = 1|x, a) p(x|a) dx∫
X p(ỹi = 1, r = 0|x, a) p(x|a) dx

⇔ ewa ,i =
∫

X p(ỹi = 1, r = 1, x|a)dx∫
X p(ỹi = 1, r = 0, x|a)dx

⇔ ewa ,i = p(ỹi = 1, r = 1|a)
p(ỹi = 1, r = 0|a)

1440 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

A

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Trials

A
v
e

ra
g

e
 R

e
w

a
rd

0 400 800 1200 1600 2000
0.5

0.55

0.6

0.65

0.7

Trials

A
v
e
ra

g
e
 R

e
w

a
rd

Optimal Learner

Bayesian Hebb SP

Bayesian Hebb GP

Rescorla−Wagner SP

Rescorla−Wagner GP

Rescorla−Wagner

B

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
v
e

ra
g

e
 R

e
w

a
rd

0 5000 10000 15000 20000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
v
e
ra

g
e
 R

e
w

a
rd

Optimal Learner

Bayesian Hebb SP

Bayesian Hebb GP

Rescorla−Wagner SP

Rescorla−Wagner GP

Rescorla−Wagner

Figure 12: The performance of the Rescorla-Wagner rule can be improved by
preprocessing input signals. The Rescorla-Wagner rule was applied to prepro-
cessed inputs using simple population coding (Rescorla-Wagner SP), or gen-
eralized preprocessing (Rescorla-Wagner GP). The Rescorla-Wagner rule with
preprocessing generally learned faster and converged to better policies than the
classical Rescorla-Wagner rule. (A) Performance for the same 4-action tasks with
2 binary input variables as in Figure 5. (B) Performance in the same 10-action
tasks with 100 binary input variables as in Figure 8.

⇔ ewa ,i = p(r = 1|ỹi = 1, a)
p(r = 0|ỹi = 1, a)

⇔ wa ,i = log
p(r = 1|ỹi = 1, a)
p(r = 0|ỹi = 1, a)

.

Appendix E: Performance of the Rescorla-Wagner Rule with
preprocessing

The performance of the Rescorla-Wagner rule, equation 5.1, can be im-
proved by preprocessing input signals before the learning rule is applied.
Figure 12 shows the average reward for the two tasks studied in Figure 5
(with 2 binary inputs and 4 actions), and Figure 8 (with 100 binary inputs
and 10 actions). When the Rescorla-Wagner rule was applied to simple
population coding (SP) or generalized preprocessing (GP), it learned faster

Reward-Modulated Hebbian Learning of Decision Making 1441

and converged to better policies, although the performance of the Bayesian
Hebb rule was mostly superior. These results suggest that the preprocessing
methods presented in section 4 could also be beneficial for other learning
mechanisms. The augmented Rescorla-Wagner rule (Yuille, 2006) uses a
preprocessing mechanism similar to GP, but it did not perform better for
the experiments in this article.

Acknowledgments

We thank Martin Bachler, Sophie Deneve, Konrad Körding, Rajesh Rao,
and especially Dan Roth for inspiring discussions. This article was written
under partial support by the Austrian Science Fund FWF project S9102-N13
and project FP6-015879 (FACETS), project FP7-216593 (SECO), project FP7-
506778 (PASCAL2), and project FP7-231267 (ORGANIC) of the European
Union.

References

Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: Taming the beast. Nature
Neuroscience, 3, 1178–1183.

Abraham, W. C. (2008). Metaplasiticity: Tuning synapses and networks for plasticity.
Nature Reviews Neuroscience, 9, 387–399.

Attias, H. (2003). Planning by probabilistic inference. In Proc. of the 9th Int. Workshop
on Artificial Intelligence and Statistics. N.p.: Society for Artificial Intelligence and
Statistics.

Audibert, J.-Y., Munos, R., & Szepesvari, C. (2007). Tuning bandit problems in
stochastic environments. In Proc. of the 18th International Conference on Algorithmic
Learning Theory (pp. 150–165).

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite time analysis of the multi-armed
bandit problem. Machine Learning, 47(2/3), 235–256.

Auer, P., Jaksch, T., & Ortner, R. (2009). Near-optimal regret bounds for reinforcement
learning. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in
neural information processing systems, 21 (pp. 89–96). Cambridge, MA: MIT Press.

Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., & Kandel, E. R. (2000). Is
heterosynaptic modulation essential for stabilizing Hebbian plasticity and mem-
ory? Nature Reviews Neuroscience, 1, 11–20.

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Belmont, MA:
Athena Scientific.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.
Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A Hebbian learn-

ing rule. Annu Rev Neuroscience, 31, 25–46.
Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathe-

matical modeling of neural systems. Cambridge, MA: MIT Press.
Dayan, P., & Daw, N. (2008). Decision theory, reinforcement learning, and the brain.

Cognitive, Affective, and Behavioral Neuroscience, 8, 429–453.

1442 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

Dayan, P., & Kakade, S. (2001). Explaining away in weight space. In T. K. Leen, T. G.
Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13
(pp. 451–457). Cambridge, MA: MIT Press.

Dayan, P., & Yu, A. (2003). Uncertainty and learning. IETE Journal of Research, 49,
171–182.

Deneve, S. (2008). Bayesian spiking neurons I: Inference. Neural Computation, 20(1),
91–117.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian
classifier under zero-one loss. Machine Learning, 275(29), 103–130.

Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev.
Neurosci., 27, 419–451.

Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15, 495–506.
Dragalin, V., Tartakovsky, A., & Veeravalli, V. (1999). Multihypothesis sequential

probability ratio tests—Part I: Asymptotic optimality. IEEE Transactions on Infor-
mation Theory, 45(7), 2448–2461.

Farries, M. A., & Fairhall, A. L. (2007). Reinforcement learning with modulated spike
timing-dependent synaptic plasticity. Journal of Neurophysiology, 98, 3648–3665.

Frégnac, Y. (2003). Hebbian synaptic plasticity. In M. A. Arbib (Ed.), The handbook of
brain theory and neural networks (pp. 515–522). Cambridge, MA: MIT Press.

Georgopoulos, A. P., Schwartz, A. P., & Kettner, R. E. (1986). Neuronal population
coding of movement direction. Science, 233, 1416–1419.

Gittins, J. (1979). Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society, 41, 148–177.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annu. Rev.
Neuroscience, 30, 535–574.

Griffiths, T., & Tenenbaum, J. (2005). Structure and strength in causal induction.
Cognitive Psychology, 51, 334–384.

Gurney, K., & Bogacz, R. (2006). The basal ganglia and cortex implement optimal
decision making between alternative actions. Neural Computation, 19, 442–477.

Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S.
(2000). Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature, 405, 947–951.

Hebb, D. O. (1949). The organization of behavior. Hoboken, NJ: Wiley.
Ide, J. S., & Cozman, F. G. (2002). Random generation of Bayesian networks. In

Proc. of the 16th Brazilian Symposium on Artificial Intelligence: Advances in Artificial
Intelligence (pp. 366–375). Berlin: Springer-Verlag.

Jensen, F. V., & Nielsen, T. D. (2007). Bayesian networks and decision graphs (2nd ed.).
Berlin: Springer.

Kearns, M., & Singh, S. (1998). Near-optimal performance for reinforcement learning
in polynomial time. In Proc. of the 15th International Conference on Machine Learning
(ICML) (pp. 260–268). San Francisco: Morgan Kaufmann.

Kononenko, I. (1998). Bayesian neural networks. Biol. Cybernetics, 61, 361–370.
Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.
Lai, T., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 6, 4–22.

Reward-Modulated Hebbian Learning of Decision Making 1443

Lansner, A., & Ekeberg, O. (1998). A one-layer feedback artificial neural network
with a Bayesian learning rule. International Journal of Neural Systems, 1, 77–87.

Lansner, A., & Holst, A. (1996). A higher order Bayesian neural network with spiking
units. International Journal of Neural Systems, 7(2), 115–128.

Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for reward-
modulated spike-timing-dependent plasticity with application to biofeedback.
PLoS Computational Biology, 4(10), 1–27.

Lohmiller, W., & Slotine, J. J. (1998). Contraction analysis for nonlinear systems.
Automatica, 34(6), 683–696.

Maass, W. (2000). On the computational power of winner-take-all. Neural Computa-
tion, 12(11), 2519–2536.

Montague, P., Dayan, P., Person, C., & Sejnowski, T. (1995). Bee foraging in uncertain
environments using predictive Hebbian learning. Nature, 377, 725–728.

Neapolitan, R. (2004). Learning Bayesian networks. Upper Saddle River, NJ: Prentice
Hall.

Neftci, E., Chicca, E., Indiveri, G., Slotine, J., & Douglas, R. (2008). Contraction
properties of VLSI cooperative competitive neural networks of spiking neurons.
In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information
processing systems, 20. Cambridge, MA: MIT Press.

Nessler, B., Pfeiffer, M., & Maass, W. (2009). Hebbian learning of Bayes optimal
decisions. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in
neural information processing systems, 21. Cambridge, MA: MIT Press.

O’Keefe, J., Burgess, N., Donnett, J., Jeffery, K., & Maguire, E. (1998). Place cells,
navigational accuracy, and the human hippocampus. Philosophical Transactions of
the Royal Society of London, 353(1373), 1333–1340.

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381, 607–609.

Pouget, A., & Latham, P. (2002). Population codes. In M. A. Arbib (Ed.), The handbook
of brain theory and neural networks (2nd ed., pp. 893–897). Cambridge, MA: MIT
Press.

Rao, R. P. N. (2007). Neural models of Bayesian belief propagation. In K. Doya, S.
Ishii, A. Pouget, & R. P. N. Rao (Eds.), Bayesian brain (pp. 239–267). Cambridge,
MA: MIT Press.

Rescorla, R. A., & Wagner, A. R. (1972). Classical conditioning II. In A. H. Black &
W. F., Prokasy (Eds.), A theory of Pavlovian conditioning: Variations in the effectiveness
of reinforcement and nonreinforcement (pp. 64–99). New York: Appleton-Century-
Crofts.

Reynolds, J. N., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of
reward-related learning. Nature, 413, 67–70.

Riesenhuber, M., & Poggio, T. (1999). Models of object recognition. Nature Neuro-
science, 2, 1019–1025.

Roth, D. (1999). Learning in natural language. In T. Dean (Ed.), Proc. of the Interna-
tional Joint Conference on Artificial Intelligence (pp. 898–904). San Francisco: Morgan
Kaufmann.

Sakai, Y., Okamoto, H., & Fukai, T. (2006). Computational algorithms and neuronal
network models underlying decision processes. Neural Networks, 19(8), 1091–
1105.

1444 M. Pfeiffer, B. Nessler, R. Douglas, and W. Maass

Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, O. (2002). A Bayesian
attractor network with incremental learning. Network: Computation in Neural
Systems, 13, 179–194.

Schultz, W., Dayan, P., & Montague, P. (1997). A neural substrate of prediction and
reward. Science, 275, 1593–1599.

Steimer, A., Maass, W., & Douglas, R. (2009). Belief-propagation in networks of
spiking neurons. Neural Computation, 21, 2502–2523.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the
representation of value in the parietal cortex. Science, 304, 1782–1787.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater of
two goods: Neural currencies for valuation and decision making. Nature Reviews
Neuroscience, 6(5), 363–375.

Sutton, R. S. (1992). Gain adaptation beats least squares. In Proceedings of the 7th Yale
Workshop on Adaptive and Learning Systems (pp. 161–166). New Haven, CT: Yale
University.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Verma, D., & Rao, R. (2006). Goal-based imitation as probabilistic inference over
graphical models. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural
information processing systems, 18 (pp. 1393–1400). Cambridge, MA: MIT Press.

Wald, A., & Wolfowitz, J. (1948). Optimal character of the sequential probability
ratio test. Ann. Math. Statist., 19, 326–339.

Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical
circuits. Neuron, 36, 955–968.

Yang, T., & Shadlen, M. N. (2007). Probabilistic reasoning by neurons. Nature, 447,
1075–1080.

Yu, A., & Dayan, P. (2003). Expected and unexpected uncertainty: ACh and NE in
the neocortex. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural
information processing systems, 15 (pp. 157–164). Cambridge, MA: MIT Press.

Yuille, A. L. (2006). Augmented Rescorla-Wagner and maximum likelihood estima-
tion. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information
processing systems, 18 (pp. 1561–1568). Cambridge, MA: MIT Press.

Yuille, A. L., & Geiger, D. (2003). Winner-take-all networks. In M. A. Arbib (Ed.),
The handbook of brain theory and neural networks (pp. 1228–1231). Cambridge, MA:
MIT Press.

Received March 11, 2009; accepted September 10, 2009.

