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Abstract

Itis open how neuronsin the brain are able to learn withopéswision to discrim-
inate between spatio-temporal firing patterns of presyoamurons. We show
that a known unsupervised learning algorithm, Slow Feaguralysis (SFA), is
able to acquire the classification capability of Fisherisdar Discriminant (FLD),
a powerful algorithm for supervised learning, if tempoyaddjacent samples are
likely to be from the same class. We also demonstrate thaables linear readout
neurons of cortical microcircuits to learn the detectiomayeating firing patterns
within a stream of spike trains with the same firing statsstas well as discrimi-
nation of spoken digits, in an unsupervised manner.

1 Introduction

Since the presence of supervision in biological learningtmaaisms is rare, organisms often have
to rely on the ability of these mechanisms to extract stasistegularities from their environment.
Recent neurobiological experiments [1] have suggestddlieabrain uses some type of slowness
objective to learn the categorization of external objedthout a supervisor. Slow Feature Analysis
(SFA) [2] could be a possible mechanism for that. We estaldiselationship between the unsu-
pervised SFA learning method and a commonly used methodifmrsised classification learning:
Fisher’s Linear Discriminant (FLD) [3]. More precisely, vsbow that SFA approximates the classi-
fication capability of FLD by replacing the supervisor wittetsimple heuristics that two temporally
adjacent samples in the input time series are likely to benftbe same class. Furthermore, we
demonstrate in simulations of a cortical microcircuit miodhat SFA could also be an important
ingredient in extracting temporally stable informatioarfr trajectories of network states and that it
supports the idea of “anytime” computing, i.e., it providie®rmation about the stimulus identity
not only at the end of a trajectory of network states, butaalyemuch earlier.

This paper is structured as follows. We start in section hwitief recaps of the definitions of
SFA and FLD. We discuss the relationship between these mefloo unsupervised and supervised
learning in section 3, and investigate the application & 8Ftrajectories in section 4. In section 5
we report results of computer simulations of several SFAloeids of a cortical microcircuit model.
Section 6 concludes with a discussion.

2 Basic Definitions

2.1 Slow Feature Analysis (SFA)

Slow Feature Analysis (SFA) [2] is amsupervised learning algorithm that extracts the slowest
componentg; from a multi-dimensional input time serigsby minimizing the temporal variation



A(y;) of the output signa};, which is defined in [2] as the average of its squared templer@rative.
Thus the objective is to minimize

min - A(y) = (i) 6y
The notation(-); denotes averaging over time, apds the time derivative of). The additional
constraints of zero meary(;); = 0) and unit variance(¢?), = 1) avoid the trivial constant so-
lution y;(t) = 0. If multiple slow features are extracted, a third constr&{p;y;): = 0,Vj < 1)
ensures that they are decorrelated and ordered by deqgesdgimness, i.ey; is the slowest feature
extractedy, the second slowest feature, and so on. In other words, SFA fita$e functions; out
of a certain predefined function space that produce the slopessible outputg; = g¢;(x) under
these constraints.

This optimization problem is hard to solve in the generakddd, but if we assume that the time
seriesx has zero mean(x); = 0) and if we only allow linear functiong = w’x the problem
simplifies to the objective

wl (xxT)w

in J = 2
min - Jsra(w) wT (xxT),w 2)
The matrix(xx”'), is the covariance matrix of the input time series @ré’'); denotes the covari-
ance matrix of time derivatives (or time differences, fosaliete time) of the input time series. The

weight vectorw which minimizes (2) is the solution to the generalized eigédue problem
()'()'(T>tw = /\<XXT>tW 3)
corresponding to themallest eigenvalue\. To make use of a larger function space one typically

considers linear combinatiops= w? 'z of fixed nonlinear expansions= h(x) and performs the
optimization (2) in this high-dimensional space.

2.2 Fisher’s Linear Discriminant (FLD)

Fisher's Linear Discriminant (FLD) [3], on the other hansl a@supervised learning method, since
it is applied tolabeled training examplegx, ¢), wherec € {1,...,C} is the class to which this
examplex belongs. The goal is to find a weight vecterso that the ability to predict the classxf
from the value ofw”'x is maximized.

FLD searches for that projection directienwhich maximizes the separation between classes while
at the same time minimizing the variance within classesetheminimizing the class overlap of the
projected values:
7 . wlSpw 4

max Jprp(w):= " — (4)
For C' point setsS,., each with/N, elements and means,, Sg is the between-class covariance
matrix given by the separation of the class me&s= > N.(p, — p)(pe, — p)*', andSyy is the
within-class covariance matrix given I8t = > > ¢ (x — p.)(x — u.)T. Again, the vector
w optimizing (4) can be viewed as the solution to a general&genvalue problem,

Spw = ASyw, )
corresponding to thkargest eigenvalueh.

3 SFA can acquire the classification capability of FLD

SFA and FLD receive different data types as inputs: unlabgiee series for SFA, in contrast to
labeled single data points for the FLD. Therefore, in ordespply the unsupervised SFA learning
algorithm to the same classification problem as the supsshi4.D, we have to convert the labeled
training samples into a time series of unlabeled data polatscan serve as an input to the SFA
algorithmt. In the following we investigate the relationship betwekea weight vectors found by
both methods for a particular way of time series generation.

LA first link between SFA and pattern recognition has beenbéisteed in [5]. There the optimization is
performed over all possible pattern pairs of the same claksvever, it might often be implausible to have
access to such an artificial time series, e.g., from the petise of a readout neuron that receives input on-the-
fly. We take a different approach and apply the standard Sgévithm to a time series consisting of randomly
selected patterns of the classification problem, where hgsat each time step is switched with a certain
probability.



We consider a classification problem with classes, i.e., assume we are given point sets
S1,859,..., 8¢ C R™. Let N, be the number of points i§. and letN = Ele N, be the total
number of points. In order to create a time sesigsut of these point sets we define a Markov model
with C statesS = {1,2,...,C}, one for each class, and choose at each timetstep,...,T a
random point from the class that corresponds to the curtatg & the Markov model. We define
the transition probability from statec S to statej € S as

N; o,
a- ifi#£ 7
Py = N L 6

{1_Zk¢jpik |fl:]7 ( )

with some appropriate constamt> 0. The stationary distribution of this Markov model4s =
(N1/N,N3/N,...,Nc/N). We choose the initial distributiop, = =, i.e., at any timef the
probability that pointk, is chosen from classis N./N.

For this particular way of generating the time series fromahiginal classification problem we can
express the matricelskx?'); and (xx”'); of the SFA objective (2) in terms of the within-class and
between-class scatter matrices of the FLD $4); andS 3, in the following way [6]:

1 1
(xx") = 8w + S @)
.. 2 2
<XXT>t: NSw—Fa-NSB (8)

Note that only(xx”); depends om, whereagxx’'), does not.

For smalla we can neglect the effect &z on (xxT); in (8). In this case the time series consists
mainly of transitions within a class, whereas switchingn@sn the two classes is relatively rare.
Therefore the covariance of time derivatives is mostly deteed by the within-class scatter of
the two point sets, and both matrices become approximatejyastional: (xx”); ~ 2/N - Sy.
Moreover, if we assume th&;, (and thereforéxx’),) is positive definite, we can rewrite the SFA
objective (2) as

in Jsma (W) < 1 - wl (xxT)w
min w max ———— < max
SEA Jsra(w) w? (3T )yw
1 1 wT's
& max§ + 3 ﬁ < maxJrprp(w). (9)

That is, the weight vector that optimizes the SFA object®edlso optimizes the FLD objective
(4). ForC > 2 this equivalence can be seen by recalling the definition & & a generalized
eigenvalue problem (3) and inserting (7) and (8):

FxTY W = (xxT),WA
SpW =Sy W [2A7! — EJ, (10)

whereW = (wq,...,w,) is the matrix of generalized eigenvectors ahd= diag A1, ..., \,) IS

the diagonal matrix of generalized eigenvalues. The lastdif (10) is just the formulation of FLD as

a generalized eigenvalue problem (5). More precisely, iperwectors of the SFA problem are also
eigenvectors of the FLD problem. Note that the eigenvaloesspond by\/'tP = 2/ \5F4 — 1,
which means the order of eigenvalues is reversed’¢ > 0). Thus, the subspace spanned by the
slowest features is the same that optimizes separabilitgrins of Fisher's Discriminant, and the
slowest feature is the weight vector which achieves maxgapération.

Figure 1A demonstrates this relationship on a sample twescproblem in two dimensions for the
special case oN; = N, = N/2. In this case at each time the class is switched with proipabil
p = a/2 oris left unchanged with probability — p. We interpret the weight vectors found by
both methods as normal vectors of hyperplanes in the inpatespwhich we place simply onto
the mean valug: of all training data points (i.e., the hyperplanes are defiagsw’x = 6 with

6 = wT ). One sees that the weight vector found by the applicatioBF# to the training time
seriesx; generated withh = 0.2 is approximately equal to the weight vector resulting frobbFon

the initial sets of training points. This demonstrates ®&A has extracted the class of the points as
the slowest varying feature by finding a direction that sefes both classes.
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Figure 1: Relationship between SFA and FLD for a two-clag®hiem in 2D. A) Sample point
sets with 250 points for each class. The dashed line indicateyperplane corresponding to the
weight vectorw i, p resulting from the application of FLD to the two-class peil The black
solid line shows a hyperplane for the weight vectas 4 resulting from SFA applied to the time
series generated from these training points as describétkeitext " = 5000, p = 0.2). The
dotted line displays an additional SFA hyperplane resglfiom a time series generated wijth=
0.45. All hyperplanes are placed onto the mean value of all tngjrpoints. B) Dependence of
the error between the weight vectors found by FLD and SFA ersthitching probabilityp. This
error is defined as the average angle between the weightrgemtitained on 100 randomly chosen
classification problems. Error bars denote the standaat efithe mean.

Figure 1B quantifies the deviation of the weight vector résglfrom the application of SFA to the
time series from the one found by FLD on the original pointe Wse the average angle between both
weight vectors as an error measure. It can be seen thasifow, i.e., transitions between classes
are rare compared to transitions within a class, the angledsn the vectors is small and SFA
approximates FLD very well. The angle increases moderatély increasingp; even with higher
values ofp (up to 0.45) the approximation is reasonable and a goodifitat®n by the slowest
feature can be achieved (see dotted hyperplane in FigureAkAgoon a® reaches a value of about
0.5, the error grows almost immediately to the maximal vatie0°. Forp = 0.5 (a = 1) points
are chosen independently of their class, making the mattice” ), and(xxT'); proportional. This
means that every possible vectoiis a solution to the generalized eigenvalue problem (3)ltieg

in an average angle of aboti®.

4 Application to trajectories of training examples

In the previous section we have shown that SFA approximateslassification capability of FLD

if the probability is low that two successive points in thpumhtime series to SFA are from different
classes. Apart from this temporal structure induced by thesdnformation, however, these samples
are chosen independently at each time step. In this secéomwestigate how the SFA objective
changes when the input time series consists of a sequentcaj@ftories of samples instead of
individual points only.

First, we consider a time seri&s consisting of multiple repetitions of a fixed predefinedecpry

t, which is embedded into noise input consisting of a randombyer of points drawn from the
same distribution as the trajectory points, but indepetigext each time step. It is easy to show
[6] that for such a time series the SFA objective (2) reduodstling the eigenvector of the matrix
33, corresponding to the largest eigenvall®, is the covariance matrix of the trajegtoiywith t
delayed by one time step, i.e., it measures the temporatiemezs (hence the indexof t with time
lag 1. Since the transitions between two successive pditiiedrajectoryt occur much more often
in the time series;; than transitions between any other possible pair of poB##\ has to respond
as smoothly as possible (i.e., maximize the temporal caticels) duringt in order to produce the



slowest possible output. This means that SFA is able to tlepetitions oft by responding during
such instances with a distinctive shape.

Next, we consider a classification problem given(gets of trajectories];, 7o, . .., 7o C (R™)7,
i.e., the elements of each sé&t are sequences df n-dimensional points. We generate a time
series according to the same Markov model as described iprthéous section, except that we
do not choose individual points at each time step, rather @reeate a sequence of trajectories.
For this time series we can express the matripes’ ); and (xx”); in terms of the within-class
and between-class scatter of the individual points of thgttories inZ.., analogously to (7) and
(8) [6]. While the expression fofxx”); is unchanged the temporal correlations induced by the
use of trajectories however have an effect on the covariaht@amporal differencegxx”);. First,
this matrix additionally depends on the temporal covarakg with time lag 1 of all available
trajectories in all set§... Second, the effective switching probability is reducedldgctor of1 /7.
Whenever a trajectory is selectéld points from the same class are presented in succession.

This means that even for a small switching probalbilitye objective of SFA cannot be solely re-
duced to the FLD objective, but rather that there is a trafflé&etween the tendency to separate
trajectories of different classes (as explained by thdimidetweers 5 andSy,) and the tendency
to produce smooth responses during individual trajecsqidetermined by the temporal covariance
matrix 3;):

T /oyl 1 Tg T
min Jspa(w) = wo(XX" ) w N w'Syw  _ w Nw (11)

- wl(xxT)w N wl (xxT),w b wl (xxT)yw’

where N is here the total number of points in all trajectories ani$ the fraction of transitions
between two successive points of the time series that betoting same trajectory. The weight vec-
tor w which minimizes the first term in (11) is equal to the weighttee found by the application
of FLD to the classification problem of the individual trajexy points (note thaSp enters (11)
through(xxT);, cf. eq. (9)). The weight vector which maximizes the secamthtis the one which
produces the slowest possible response during individaj@dtories. If the separation between the
trajectory classes is large compared to the temporal @dioels (i.e., the first term in (11) dominates
for the resultingw) the slowest feature will be similar to the weight vectorriduby FLD on the
corresponding classification problem. On the other hanthesemporal correlations of the trajec-
tories increase, i.e., the trajectories themselves becnuother, the slowest feature will tend to
favor exploiting this temporal structure of the trajecesrover the separation of different classes (in
this case, (11) is dominated by the second term for the raguit).

5 Application to linear readouts of a cortical microcircuit model

In the following we discuss several computer simulationa obrtical microcircuit of spiking neu-
rons that demonstrate the theoretical arguments givereiptévious section. We trained a number
of linear SFA readoufson a sequence of trajectories of network states, each offwibidefined
by the low-pass filtered spike trains of the neurons in theudir Such recurrent circuits typically
provide a temporal integration of the input stream and mtateonlinearly into a high-dimensional
space [7], thereby boosting the expressive power of theesjulesnt linear SFA readouts. Note, how-
ever, that the optimization (2) implicitly performs an atiloihal whitening of the circuit response. As
a model for a cortical microcircuit model we use the lamirieguit from [8] consisting of 560 spik-
ing neurons organized into layers 2/3, 4, and 5, with layeresfic connection probabilities obtained
from experimental data [9, 10].

In the first experiment we investigated the ability of SFA &iett a repeating firing pattern within

noise input of the same firing statistics. We recorded citcajectories in response to 200 repetitions
of a fixed spike pattern which are embedded into a continuoiss®n input stream of the same rate.
We then trained linear SFA readouts on this sequence ofittrejectories (we used an exponential

2In fact, for sufficiently long trajectories the SFA objectiiecomes effectively independent of the switching
probability.

3We interpret the linear combination defined by each slomuieagas the weight vector of a hypothetical
linear readout.
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Figure 2: Detecting embedded spike patterds). krom top to bottom: sample stimulus sequence,
response spike trains of the network, and slowest featurée. stimulus consists of 10 channels
and is defined by repetitions of a fixed spike pattern (darly)gnhich are embedded into random
Poisson input of the same rate. The pattern has a lengthoofis and is made up by Poisson spike
trains of rate20Hz. The period between two repetitions is drawn uniformly besgwl00ms and
500ms. The response spike trains of the laminar circuit of [8] dreven separated into layers 2/3, 4,
and 5. The numbers of neurons in the layers are indicatedeolett) but only the response of every
12th neuron is plotted. Shown are the 5 slowest featyrer y5, for the network response shown
above. The dashed lines indicate values of B) Fhase plots of low-pass filtered versions (leaky
integration,r = 100ms) of individual slow features in response to a test sequeh&@ embedded
patterns plotted against each other (black: traces dunagattern, gray: during random Poisson
input).

filter with 7 = 30ms and a sample time dfms). The period of Poisson input in between two such
patterns was randomly chosen.

At first glance there is no clear difference in Figure 2A betwehe raw SFA responses during
periods of pattern presentations and during phases of magge due to the same firing statistics.
However, we found that on average the slow feature respahseyy noise input are zero, whereas
a characteristic response remains during pattern prasmmga This effect is predicted by the the-
oretical arguments in section 4. It can be seen in phase glataces that are obtained by a leaky
integration of the slowest features in response to a tesesen of 50 embedded patterns (see Figure
2B) that the slow features span a subspace where the resgorisg pattern presentations can be
nicely separated from the response during noise input. i§hlay simple threshold operations on the
low-pass filtered versions of the slowest features one cantitiple detect the presence of patterns
within the continuous input stream. Furthermore, this astied information is not only available
after a pattern has been presented, but already during ¢éisepiation of the pattern, which supports
the idea of “anytime” computing.

In the second experiment we tested whether SFA is able toiisate two classes of trajectories
as described in section 4. We performed a speech recogtastrusing the dataset considered orig-
inally in [11] and later in the context of biological circaiin [7, 12, 13]. This isolated spoken digits
dataset consists of the audio signals recorded from 5 spepk@nouncing the digits “zero”, “one”,
..., ‘nine” in ten different utterances (trials) each. Wegocessed the raw audio files with a model
of the cochlea [14] and converted the resulting analog @adrams into 20 spike trains (using the

algorithm in [15]) that serve as input to our microcircuit dab (see Figure 3A). We tried to dis-



SFA applied to trajectories of test utterances
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Figure 3: SFA applied to digit recognition of a single spegak@) From top to bottom: cochlea-
grams, input spike trains, response spike trains of theor&tvand traces of different linear readouts.
Each cochleagram has 86 channels with analog values betaed 1 (white, near 1; black, near
0). Stimulus spike trains are shown for two different utteras of the given digit (black and gray,
the black spike times correspond to the cochleagram showweab The response spike trains of
the laminar circuit from [8] are shown separated into lay®f% 4, and 5. The number of neurons
in each layer is indicated on the left, but only the resporfsevery 12th neuron is plotted. The
responses to the two stimulus spike trains in the panel ad@ehown superimposed with the cor-
responding color. Each readout trace corresponds to a vesigtum ) of network states of the
black responses in the panel above. The trace of the sloeaistré (“SF1”, se®) is compared to
traces of readouts trained by FLD and SVM with linear keroaliscriminate at any time between
the network states of the two classes. All weight vectorsiarenalized to length 1. The dotted line
denotes the threshold of the respective linear classiidrResponse of the 5 slowest featugggo

y5 of the previously learned SFA in response to trajectorighethree test utterances of each class
not used for training (black, digit “one”; gray, digit “tw®” The slowness index = T'/27/A(y)

[2] is calculated from these output signals. The anglgenotes the deviation of the projection di-
rection of the respective feature from the direction fougdih.D. The thick curves in the shaded
area display the mean SFA responses over all three testttvegs for each classC Phase plots
of individual slow features plotted against each othem(thies: individual responses, thick lines:
mean response over all test trajectories).

criminate between trajectories in response to inputs spording to utterances of digits “one” and
“two”, of a single speaker. We kept three utterances of eagihfor testing and generated from the
remaining training samples a sequence of 100 input sanmglesided for each sample the response
of the circuit, and concatenated the resulting trajectoinetime. Note that here we did not switch
the classes of two successive trajectories with a certaibaiility because, as explained in the pre-
vious section, for long trajectories the SFA response igfrashdent of this switching probability.
Rather, we trained linear SFA readouts on a completely naniglajectory sequence.



Figure 3B shows the 5 slowest featurgsto y5, ordered by decreasing slowness in response to the
trajectories corresponding to the three remaining testaitices for each class, digit “one” and digit
“two”. In this example, already the slowest featyteextracts the class of the input patterns almost
perfectly: it responds with positive values for trajecésriin response to utterances of digit “two”
and with negative values for utterances of digit “one”. Thisperty of the extracted features, to
respond differently for different stimulus classes, ide@lthe What-information [2]. The second
slowest featuregs, on the other hand, responds with shapes whose sign is indeptof the pattern
identity. One can say that, in principlg, encodes simply the presence of and the location within a
response. This is a typical example of a representatioMee-information [2], i.e., the “pattern
location” regardless of the identity of the pattern. Thesptslow featuregs to y5 do not extract ei-
therWhat- or Where-information explicitly, but rather a mixed version of boths a measure for the
discriminative capability of a specific SFA response, ite.quality as a possible classifier, we mea-
sured the angle between the projection direction corregdipgrto this slow feature and the direction
of the FLD. It can be seen in Figure 3B that the slowest feagyrns closest to the FLD. Hence,
according to (11), this constitutes an example where tharagipn between classes dominates, but
is already significantly influenced by the temporal coriielad of the circuit trajectories.

Figure 3C shows phase plots of these slow features showrguré-BB plotted against each other.
In the three plots involving featung it can be seen that the directions of the response vector (i.e
the vector composed of the slow feature values at a partipolat in time) cluster at class-specific
angles, which is characteristic fovhat-information. On the other hand, these phase plots tend to
form loops in phase space (instead of just straight linesm filwe origin), where each point on this
loop corresponds to a position within the trajectory. Thia typical property ofwhere-information.
Similar responses have been theoretically predicted iafd] found in simulations of a hierarchical
(nonlinear) SFA network trained with a sequence of one-dsignal trajectories [2].

This experiment demonstrates that SFA extracts informadimout the spoken digit in an unsuper-
vised manner by projecting the circuit trajectories ontalbspace where they are nicely separable
so that they can easily be classified by later processingstagoreover, this information is pro-
vided not only at the end of a specific trajectory, but is magglable already much earlier. After
sufficient training, the slowest featuge in Figure 3B responds with positive or negative values in-
dicating the stimulus class almost during the whole duratioof the network trajectory. This again
supports the idea of “anytime” computing. It can be seen énttbttom panel of Figure 3A that the
slowest feature, which is obtained in an unsupervised nraanhkieves a good separation between
the two test trajectories, comparable to the supervisetiodstof FLD and Support Vector Machine
(SVM) [16] with linear kernel.

6 Discussion

The results of our paper show that Slow Feature Analysis fadha very powerful tool, which is
able to approximate the classification capability that litsftom supervised classification learning.
Its elegant formulation as a generalized eigenvalue prolilas allowed us to establish a relation-
ship to the supervised method of Fisher’s Linear Discrimir{&LD). A more detailed discussion of
this relationship, including complete derivations, carfdaend in [6]. If temporal contiguous points
in the time series are likely to belong to the same class, Skhle to extract the class as a slowly
varying feature in an unsupervised manner. This abilityfiparticular interest in the context of
biologically realistic neural circuits because it couldible readout neurons to extract from the tra-
jectories of network states information about the stimwlugthout any “teacher”, whose existence
is highly dubious in the brain. We have shown in computer $itinns of a cortical microcircuit
model that linear readouts trained with SFA are able to defgecific spike patterns within a stream
of spike trains with the same firing statistics and to disanmte between different spoken digits.
Moreover, SFA provides in these tasks an “anytime” clas#ifin capability.
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