
All sensory stimuli generate spatiotemporal patterns of 
action potentials (spikes) that are conveyed to the CNS 
by sensory afferents. A fundamental goal of neuroscience 
is to understand how neural networks extract informa-
tion from both the spatial and the temporal structure of 
these complex spike patterns; however, our understand-
ing is currently biased towards the processing of spatial 
information. Indeed, it is not even known whether the 
spatial and temporal dimensions of stimuli are processed 
by the same or different networks. Temporal informa-
tion is crucial to most forms of sensory processing; for 
example, in the visual modality, the temporal structure 
of stimuli is crucial in determining not only the direction 
and velocity of objects, but also the duration and inter-
val between sensory events. In the somatosensory sys-
tem, temporal structure contributes not only to motion 
detection, but also to object and texture discrimina-
tion1. However, it is perhaps in the auditory system that 
temporal processing is most prominent; for example, 
both the spatial (spectral) and the temporal structure of 
animal vocalizations — from frog calls to bird song to 
monkey calls — encode information2. Similarly, speech 
is rich in spatiotemporal structure, and removing either 
spatial or temporal information impairs speech recog-
nition3,4. The importance of the temporal structure of 
speech, and the brain’s ability to process complex tem-
poral stimuli, is evidenced by the fact that language can 
essentially be reduced to a single-channel temporal code 
— as in Morse code. Given the importance of temporal 
information for the processing of natural stimuli, it is 
not surprising that neural responses are often strongly 
dependent on temporal features of stimuli5–7. Indeed, 

many neurons respond selectively to specific spatio-
temporal stimuli, such as birdsong motifs or patterns 
of simple stimuli8–12. Together, the universal presence of  
spatiotemporal patterns in natural stimuli and the sen-
sitivity of cortical neurons to spatiotemporal structure 
argue that any general model of cortical processing 
must account for the ability of the cortex to process both  
spatial and temporal information.

How do we discriminate lines of different orienta-
tions? Any neuroscience textbook provides an answer 
to this question by describing the mechanisms that con-
tribute to the orientation selectivity of V1 cells to a bar of 
light. However, the answer to the equally sensible ques-
tion ‘How does the brain discriminate between different 
durations of a bar of light?’ remains largely unanswered. 
Indeed, relatively few models address this simple ques-
tion. Early artificial neural-network models, such as 
the perceptron13 and later multi-layer perceptron14, proved 
capable of classifying complex spatial patterns; however, 
they were ill-suited to performing even a simple interval-
discrimination task because there was no representation 
of time — the patterns being processed were static and 
not time-varying. Later models processed sequences of 
spatial patterns by either creating an explicit representa-
tion of time by transforming it into an additional spatial 
dimension (BOX 1), or by taking into account preceding 
network states through the incorporation of recur-
rent connections15–17. It has proved difficult to develop 
these abstract models into more realistic models that 
are based on spiking neurons (such as integrate-and-fire 
neurons) and in which time is continuously represented. 
In parallel, spiking models of the sensory cortex also 
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Perceptron
A simple linear neuron model 
that computes a weighted sum 
of its inputs, and outputs 1 if 
the weighted sum is larger than 
some threshold, and 0 
otherwise. Weights and 
thresholds can be learned by 
the perceptron learning rule.

Multi-layer perceptron
A feedforward network of units, 
the computational function of 
which is similar to that of a 
perceptron, except that  
a smooth function (instead of a 
threshold) is applied to the 
weighted sum of inputs at each 
unit. Weights and thresholds 
can be learned by the 
back-propagation learning rule.

State-dependent computations: 
spatiotemporal processing in  
cortical networks
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Abstract | A conspicuous ability of the brain is to seamlessly assimilate and process spatial 
and temporal features of sensory stimuli. This ability is indispensable for the recognition of 
natural stimuli. Yet, a general computational framework for processing spatiotemporal 
stimuli remains elusive. Recent theoretical and experimental work suggests that 
spatiotemporal processing emerges from the interaction between incoming stimuli and the 
internal dynamic state of neural networks, including not only their ongoing spiking activity 
but also their ‘hidden’ neuronal states, such as short-term synaptic plasticity.
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Integrate-and-fire neuron
A simple model of a spiking 
neuron. It integrates synaptic 
inputs with a passive 
membrane time constant. 
Whenever the resulting 
membrane voltage reaches a 
firing threshold, it generates an 
output spike.

Retinotopy
A spatial arrangement in which 
neighbouring visual neurons 
have receptive fields that cover 
neighbouring (although partly 
overlapping) areas of the visual 
field.

Somatotopy
A spatial arrangement in which 
neighbouring sensory neurons 
respond to the stimulation of 
neighbouring receptors in the 
skin.

focused primarily on spatial processing. These models 
successfully accounted for the ability of cortical neurons 
to develop selective responses to the spatial properties 
of stimuli, such as retinotopy, somatotopy and orienta-
tion selectivity18,19. but again, they were not designed to 
cope with the inherent spatial and temporal structure of 
natural stimuli.

In this review, we describe a framework in which 
spatiotemporal computations emerge from the time-
dependent properties of neurons and the inherent 
dynamics in cortical networks20–22. These models posit 
that spatial and temporal processing are inextricably 
linked and that information is encoded in evolving neu-
ral trajectories (FIG. 1). Thus, in this framework the com-
putation is in the voyage through state space as opposed 
to the destination. Additionally, we examine the predic-
tions generated by this framework, including that the 
state of a network at any point in time encodes not only 
the present but also the past.

Inputs interact with internal states
The response of a population of neurons in a network is 
determined not only by the characteristics of the external 
stimulus but also by the dynamic changes in the inter-
nal state of the network12,21,23–26. In other words, whether 
a neuron responds to a tone depends not only on the 
frequency of the tone but also on whether the neuron is 
receiving additional internally generated excitatory and 
inhibitory inputs and on the current strength of each 

of its synapses (which vary on a rapid timescale). This 
general point can be intuitively understood by making 
an analogy between neural networks and a liquid20. A 
pebble thrown into a pond will create a spatiotemporal 
pattern of ripples, and the pattern produced by any sub-
sequent pebbles will be a complex nonlinear function 
of the interaction of the stimulus (the pebble) with the 
internal state of the liquid (the pattern of ripples when 
the pebble makes contact). ripples thus establish a short-
lasting and dynamic memory of the recent stimulus his-
tory of the liquid. Similarly, the interaction between 
incoming stimuli and the internal state of a neural net-
work will shape the population response in a complex 
fashion. However, defining the internal state of a neural 
network is not straightforward, and it will thus be useful 
to distinguish between two components, which we will 
refer to as the active and the hidden states.

Active and hidden internal states. Traditionally, the 
internal state of a network is defined as the population of 
active neurons — we will refer to this as the active state. At 
any time t we can think of a network of N neurons as an 
N-dimensional vector that is composed of zeros and ones 
(depending on the size of the time bin we can also repre-
sent each value as a real number representing the firing 
rate). Such a vector forms a point in N-dimensional space 
and defines which neurons are active at corresponding 
time point t. over the course of multiple time bins these 
points form a path (a neural trajectory) through state 
space (FIG. 1a). In a network that is driven by an ongoing  
external stimulus, a complex trajectory will form that 
represents the temporal evolution of active states. At 
each point t+1 the response of the neuronal population 
is dependent not only on the synapses that are directly 
activated by the input, but also on the ongoing activity 
in the network: owing to the recurrent nature of cortical 
circuits, activity in the network provides an additional 
source of synaptic inputs (the active state from other 
brain regions can also contribute to the response of a net-
work, but from the perspective of any given local network 
this is equivalent to an additional time-varying input). 
In vivo recordings demonstrate that different stimuli elicit 
distinct spatiotemporal patterns of activity24,25,27,28 — that 
is, different neural trajectories (FIG. 1b, see below). These 
time-varying changes in the active state can be driven 
directly by the stimulus structure or by internally gener-
ated dynamics produced by the recurrent connectivity. 
Indeed, in some cases even if the stimulus (for example, a 
constant odour or steady auditory tone) is not varying in 
time, the neural trajectories that represent the network’s 
active state continue to change24,29, which could contrib-
ute to computations such as the encoding of intensity  
or time. for example, because trajectories evolve through 
time in a reproducible manner for a given stimulus24, any 
given point has the potential to provide information not 
only about the stimulus presented but also about time 
itself — such as how much time has elapsed since the 
onset of the stimulus (FIG. 1a).

The response of a network is, however, more com-
plex than the interaction between the external input 
and the ongoing pattern of activity in the network. 

 Box 1 | Spatialization of time

Traditional artificial neural networks, such as the perceptron13 and multi-layer 
perceptrons14, were designed to process static spatial patterns of inputs — for 
example, for the discrimination of handwritten characters — and the network 
structure therefore had no need to implicitly or explicitly incorporate time. When these 
models began to be used for the discrimination or production of time-varying stimuli, 
such as speech, the first approach was simply to assume that time was an additional 
spatial dimension17. For example, in one well-known model that converted written 
letters into artificial speech105, the input was represented by 26 units (each 
representing a specific letter of the alphabet) and the temporal context was encoded 
by dividing time into ‘bins’ and then replicating the input layer of 26 inputs; that is, to 
encode 7 time bins (t–3, t–2 … t+3) there would be a total of 182 (26×7) inputs to the 
network. As the simulation progressed this 7-bin time window would slide forward bin 
by bin. In essence, time was ‘spatialized’ by transforming it into an additional spatial 
dimension. A spatial representation of time was also used in more biology-based 
models, such as those that simulated the fact that many forms of classical conditioning 
generated motor responses at the appropriate point in time; such ‘delay-line’ or 
‘labelled-line’ models assume that in response to a stimulus specific neurons will 
respond with specific hardwired delays106–108. Biologically speaking it is clear that time 
is not treated as an additional spatial dimension at the level of the inputs — that is, the 
sensory organs. However, in the CNS there is likely to be a spatial representation of 
some temporal features, particularly simple features such as the interval between two 
events. Thus, the question is not whether time can be centrally represented in a spatial 
code, but how this is achieved.

A second approach in artificial neural-network models was to implicitly represent 
time using recurrent connections, which allowed the state of the previous time step to 
interact with the input from the current time step, thus providing temporal context15,17. 
These networks still treated time as a discrete dimension composed of time bins that 
were updated according to a centralized clock; the units themselves were devoid of 
any temporal properties. Together, these features have made these models difficult to 
generalize to biologically realistic continuous time models composed of asynchronous 
spiking neurons.
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Neurons and synapses have a rich repertoire of time-
dependent properties — the network’s hidden internal 
state — that are shaped by previous activity and that 
can in turn influence whether a neuron fires. for exam-
ple, synapses undergo depression or facilitation for the 
duration of a timescale of hundreds of milliseconds30–33 
(FIG. 2a); because short-term synaptic plasticity is often of 
the same magnitude as long-term plasticity34, it should 
have significant effects on local neural computations. 
Thus, in the same manner that long-term potentiation 
provides a long-lasting memory of coincident pre- and 
postsynaptic activity, short-term synaptic plasticity can 
provide a memory of the recent stimulus history of the 
network. If we consider a brief sensory event presented 
to a network that is composed of excitatory and inhibi-
tory neurons, a certain subpopulation of neurons will 
fire in response to that input (FIG. 2b). The brief sensory 
event could be a short tone, a flash of light or a tap to  
a whisker. In addition to eliciting action potentials in a 
subpopulation of neurons A, the stimulus will trigger 
changes in a series of time-dependent cellular and syn-
aptic properties of the activated neurons that last on the 
order of hundreds of milliseconds. Thus, if the same brief 
stimulus is repeated 100 ms later, when neurons are no 
longer firing (the active state has returned to ‘baseline’), 
the network will nevertheless be in a different internal 
state (lower row in FIG. 2b). Consequently, it is possi-
ble that a different (albeit overlapping) subpopulation 
of neurons A′ will respond to the second (but identi-
cal) stimulus — thus providing information about the  
inter-stimulus interval.

It is important to stress that short-term synaptic 
plasticity is but one of many time-dependent neuronal 
properties that have the potential to provide a memory 
of the recent stimulus history in a network. In princi-
ple any neural or synaptic activity-triggered property 
that can shape the output of a neuron and that oper-
ates over the relevant timescale could contribute to the 
hidden state — and thus potentially to the encoding of 
time-varying stimuli. other such cellular and synaptic 
properties include slow inhibitory postsynaptic poten-
tials (IPSPs)35,36, metabotropic glutamate currents37, ion 
channel kinetics38, Ca2+ dynamics in synaptic and cellular 
compartments39,40, and NMDA (N-methyl-d-aspartate) 
channel kinetics41 (indeed, the membrane time constant can 
also contribute to the hidden state of a network, albeit 
over a shorter timescale). we refer to these neuronal and 
synaptic properties as the hidden network state, because 
they are not accessible to the downstream neurons (or to 
the neuroscientist performing extracellular recordings) 
but can influence the response of neurons to stimuli.

because both the active and the hidden states influ-
ence the response of a local cortical network to a stimu-
lus, the true internal state is a combination of both. In 
contrast to the active state, the hidden state provides a 
memory trace that can span periods of network quies-
cence. Thus, the active state that is produced by a second 
stimulus event will be influenced by the time that has 
elapsed since the previous stimulus (because of the hid-
den state), and it can therefore be used to determine the 
interval between stimuli42.

Figure 1 | Trajectories of active and hidden states. a | A schematic of a neural 
trajectory. If we consider the firing pattern of two neurons over five time bins, we can 
visualize the trajectory of this two-neuron network by plotting the number of spikes of 
each neuron during each time bin on the axes of a two-dimensional plot. The spikes 
generated by two different hypothetical stimuli are represented in blue and red, and 
each produces a different neural trajectory (lower plot). Importantly, each point on the 
trajectory can potentially be used to determine not only which stimulus was presented, 
but also how long ago the stimulus was presented (colour-coded circles). Thus, the neural 
trajectory can inherently encode spatial and temporal stimulus features. The coordinates 
represent the number of spikes of each neuron at each time bin (derived from the upper 
plot). b | An example of the active trajectory of a population of neurons from the locust 
antennal lobe. For a large number of neurons it is possible to use mathematical 
techniques to visualize their trajectory. In this case 87 projection neurons from the locust 
were recorded during multiple presentations of 2 odours (citral and geraniol). These  
data were used to calculate the firing rate of each neuron using 50 ms time bins. The 87 
vectors were then reduced to 3 dimensions. The resulting three-dimensional plot reveals 
that each odour produces a different trajectory, and thus different spatiotemporal 
patterns of activity. The numbers along the trajectory indicate time points (seconds), and 
the point marked B indicates the resting state of the neuronal population. Part b is 
modified, with permission, from REF. 24  (2006) Cell Press.
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Figure 2 | Active and hidden network states. a | An example of short-term plasticity of excitatory postsynaptic 
potentials (EPSPs) in excitatory synapses between layer 5 pyramidal neurons. Short-term plasticity can take the form of 
either short-term depression (left) or short-term facilitation (right). The plots show that the strength of synapses can vary 
dramatically as a function of previous activity, and thus function as a short-lasting memory trace of the recent stimulus 
history. The traces represent the EPSPs from paired recordings; each presynaptic action potential is marked by a dot.  
b | Hidden and active states in a network. The spheres represent excitatory (blue) and inhibitory (red) neurons, and the 
arrows represent a small sample of the potential connections. The baseline state (‘rest’ state, top left panel) is represented 
as a quiescent state (although in reality background and spontaneous activity must be taken into account). In the presence 
of a brief stimulus the network response will generate action potentials in a subpopulation of the excitatory and inhibitory 
neurons (light shades), which defines the active state of the network (top right panel). After the stimulus, the neurons in 
early cortical areas stop firing. However, as a result of short-term synaptic plasticity (represented by dashed lines) and 
changes in intrinsic and synaptic currents (represented by different colour shades), the internal state may continue to 
change for hundreds of milliseconds. Thus, although it is quiescent, the network should be in a different functional state at 
the time of the next stimulus (at t = 100 ms) — this is referred to as the ‘hidden’ state (bottom left panel). The fact that the 
network is in a different state implies that it should generate a different response pattern to the next stimulus (bottom 
right panel), even if the stimulus is identical to the first one (represented as a different pattern of blue spheres). Part a is 
reproduced, with permission, from REF. 31  (1999) Society for Neuroscience.
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Liquid-state machine
A class of computational model 
that is characterized by one or 
several read-outs applied to 
some generic dynamical 
system, such as a recurrent 
network of spiking neurons. 
Whereas the dynamical system 
contributes generic 
computational operations, 
such as fading memory and 
nonlinear combinations of 
features that are independent 
of concrete computational 
tasks, each read-out can be 
trained to extract different 
pieces of the information that 
is accumulated in the 
dynamical system.

Echo-state network
A class of artificial neural 
network model that is based 
on recurrent connections 
between analogue units, in 
which the connection weights 
are random but appropriately 
scaled to generate stable 
internal dynamics. These 
models can encode temporal 
information as a result of the 
active state but do not have 
hidden states.

State-dependent network
A class of model that is based 
on the characteristics 
described in this Review. The 
state-dependent network 
model proposes that cortical 
networks are inherently 
capable of encoding time and 
processing spatiotemporal 
stimuli as a result of the 
state-dependent properties 
imposed by ongoing activity 
(the active state) and as a 
result of time-dependent 
neural properties (the hidden 
states).

Reservoir computing
A general term used primarily 
in machine learning to refer to 
models that rely on mapping 
stimuli onto a high-dimensional 
space in a nonlinear fashion. 
Such models include 
echo-state machines, 
liquid-state machines and 
state-dependent networks.

Linear discriminator
A type of classifier that can be 
computed by a perceptron.

Synaptic weights
The strength of synaptic 
connections between neurons.

The interaction between internal states and time- 
varying external inputs has been proposed to be a key 
step in cortical function20–22,29,43. Some theoretical mod-
els, with varying degrees of biological plausibility, have 
relied on this principle for the processing of spatio-
temporal stimuli. In some of the models, the encoding of 
past stimuli was based solely on ongoing changes in the 
active state produced by the recurrent architecture17,44–47. 
In other models, the memory of previous events was con-
tained in the active and/or hidden states20,22,42,48,49. In the 
context of neuroscience and machine learning, several 
instantiations of the general framework discussed in this 
review have emerged, including liquid-state machines20,50, 
echo-state networks45, state-dependent networks2,22 and  
reservoir computing51. As is explained in the next sec-
tion, a key result that arises from these models is that 
trajectories of active network states can, in spite of their 
complexity, be used for noise-robust computations on 
time-varying external inputs.

Decoding neural trajectories
In response to a stimulus, the active state of a network  
of neurons typically changes on a fast timescale of tens of  
milliseconds. How can downstream systems extract use-
ful information about the external stimulus, such as the 
identity of an odour or of a spoken word, from these 
trajectories of transient states?

This decoding problem becomes less formidable 
if one considers it from the perspective of a down-
stream or ‘read-out’ neuron. read-out neurons, which 
extract information from upstream areas and project 
it to downstream systems, are typically contacted by a 
large set of input neurons — thus each read-out neuron 
receives a high-dimensional sample of the active state  
of the upstream network. from a theoretical perspective, 
the high-dimensionality of the sample space facilitates the  
extraction of information by read-out neurons (see 
below). Let us assume for simplicity that read-out neu-
rons are modelled by perceptrons — that is, that they 
have the discrimination capability of a linear discriminator.  
Such a linear discriminator, when applied to a point  
x1, x2 … xd from a d-dimensional state space (which corre-
sponds to the active state of a population of d presynaptic 
neurons), computes a weighted sum w1x1 + w2x2 + … wdxd   
at each time point, where w1, w2 … wd are the weights of 
the discriminator (corresponding to the synaptic weights 
of each presynaptic input); it outputs 1 whenever the 
weighted sum is above the threshold, and 0 otherwise. 
In this fashion, linear read-out neurons can classify the 
time-varying active states of presynaptic neurons accord-
ing to the external stimuli that caused these active states 
— in other words, the read-out neurons become a detec-
tor, in that their activity reflects the presence of a specific 
stimulus. An example of such a separation of trajectories 
of active states is shown in FIG. 3.

robust separation of the trajectories is difficult in few 
dimensions (that is, few presynaptic inputs) (see BOX 2 
figure, part a), but mathematical results demonstrate 
that a linear separation of trajectories becomes much 
easier when the state space has many dimensions (see 
BOX 2 figure, part b). In particular, linearly inseparable 

classes of external stimuli tend to become linearly sepa-
rable once they are projected nonlinearly into a higher-
dimensional state space52 (BOX 2). The nonlinearity of 
the projection of stimuli into high-dimensional space 
is a product of the inherent complexity and nonlinear 
nature of the interaction between the internal state and 
external stimuli. Indeed, from a theoretical perspective64 
it is not the precise nature of the transformation itself, but 
rather the increase in the dimensionality of the represen-
tation that is crucial to the computation. As mentioned 
above, because a typical read-out neuron in a cortical area 
receives synaptic input from thousands of neurons, it has 
a high likelihood of being able to separate the trajectories 
of active states of its presynaptic neurons according to the 
external stimuli that caused these trajectories.

Can read-out neurons learn to decode time-varying 
active states? Experimental and theoretical results to 
date indicate that read-out neurons are in principle 
able to separate complex trajectories of active states of 
pre synaptic neurons if their synaptic weights are deter-
mined by a suitable learning rule (see below)44,53–55. It 
remains unknown, however, whether the appropriate 
set of synaptic weights can be learned in vivo.

In the case in which a read-out neuron is modelled 
by a linear discriminator, if one assumes that the read-
out neuron is informed during learning which trajectory 
resulted from stimulus class A and which from class b (a 
process known as supervised learning), then traditional 
learning rules (such as the perceptron learning rule or 
backpropagation)13,56 converge to a weight vector that 
achieves the desired separation — provided that such 
a set of weights exists. Traditional artificial neural net-
work learning rules do not capture information that is 
contained in previous time steps — that is, information 
encoded in the temporal pattern of active states; how-
ever, some supervised-learning rules have also proved 
effective in allowing spiking read-out neurons to extract 
information from the spatiotemporal pattern of inputs 
generated by different stimuli57.

Additionally, it is plausible that a biological read-out 
neuron can learn to decode the active states of a recurrent 
network through trial and error in a reward-based setting. 
for example, it has been shown that reward-modulated 
spike timing-dependent plasticity (STDP) allows spiking 
neurons to learn to discriminate different trajectories 
using reinforcement learning58,59 — a form of learning 
in which the animal or network receives a global positive 
or negative feedback signal based on its performance.

In a third model for decoding spatial or spatio-
temporal patterns of activity, read-out neurons learn to 
separate trajectories in the absence of a ‘teacher’ and of 
rewards — that is, in an unsupervised fashion. one such 
model, termed slow-feature analysis, takes advantage of 
the observation that stimuli remain present on time-
scales that generally exceed those over which the neural 
trajectories are changing. It has been shown that a spik-
ing read-out neuron can learn through STDP to extract 
the slow features from the trajectory of active states of 
presynaptic neurons under certain conditions60. This 
approach has been applied to unsupervised learning of 
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Learning rule
A rule that governs the 
relationship between patterns 
of pre- and postsynaptic 
activity and long-term changes 
in synaptic strength. For 
example, spike 
timing-dependent plasticity.

Recurrent network
A network in which any neuron 
can be directly or indirectly 
connected to any other — the 
flow of activity from any one 
initial neuron can propagate 
through the network and return 
to its starting point. By 
contrast, in a feedforward 
network information cannot 
return to the point of origin.

Spike timing-dependent 
plasticity
(STDP). Traditionally, a form of 
synaptic plasticity in which the 
order of the pre- and 
postsynaptic spikes 
determines whether synaptic 
potentiation (pre- and then 
postsynaptic spikes) or 
depression (post- and then 
presynaptic spikes) ensues.

invariant pattern classification of moving visual inputs by 
linear discriminators61.

A question related to how read-out neurons learn to 
respond in a stimulus-specific manner is whether the 
read-out neurons exhibit robust generalization — indeed, 
the ability to properly respond to a novel stimulus and 
to similar instances of the same stimulus is fundamental 
for effective sensory processing. Theoretical results from 
statistical learning theory62 imply that linear read-outs 
exhibit better generalization than highly nonlinear neu-
rons, because they have fewer degrees of freedom during 
learning63. Analysis of network properties that favour 
robust generalization of trained read-outs to new net-
work inputs shows that a necessary and sufficient condi-
tion for generalization is that the inputs that need to be 
classified differently by a read-out neuron result in tra-
jectories that stay farther apart than two trajectories that 
are caused by two trials with the same external input64.

It should be noted that to date there is little direct 
experimental evidence regarding how neurons in vivo 
learn to extract information from upstream areas. 
However, the theoretical work reviewed above suggests 
that variations on experimentally described forms of 
synaptic plasticity could in principle suffice. finally, it 
should be pointed out that models related to the frame-
work described here — in which linear discriminators 
are used to read out information from complex recurrent 
artificial neural networks — have proved to be a power-
ful tool in engineering and machine-learning applica-
tions, such as time series prediction, speech classification 
and handwriting recognition45,51.

Noise, chaos and network dynamics. In vivo recordings 
demonstrate that there is significant variability in net-
work activity in response to nominally identical experi-
mental trials25. for example, FIG. 4b shows the variability 
of spike trains from a neuron in the primary visual cor-
tex for 50 trials in which exactly the same visual stimu-
lus was shown to an anaesthetized cat. This variability is 
generally attributed to internal noise and different ini-
tial internal states. In the context of recurrent networks, 
noise can reduce the ability to encode information about 
past stimuli (the memory span). furthermore, theoreti-
cal and modelling studies have shown that recurrent net-
works can exhibit chaotic behaviour64–69 — specifically, in 
simulations the removal of a single spike can cause large 
changes in the subsequent spiking activity67.

Computational models of recurrent networks 
establish that certain regimes — particularly when the 
strength of recurrent connections dominates network 
dynamics — can be highly sensitive to noise and exhibit 
chaotic behaviour66,67. However, it is clear that cortical 
neural networks, although they are recurrent, are not 
chaotic in the sense that trajectories of neural states 
are not dominated by noise24,25,53,70. for example, in the 
experiment described in FIG. 4, a read-out unit (FIG. 4c) 
could determine from a single trial not only the identity 
of the current stimulus but also that of a past stimulus 
that is no longer present, despite the noise in the system. 
How the brain creates these non-chaotic states in recur-
rent networks is a fundamental issue that remains to be 
fully addressed.

However, it is known that the complex dynamics 
that are associated with chaotic regimes can be avoided 
by appropriately scaling the synaptic weights45,47,64. 
furthermore, numerous computational models have 
shown robust pattern recognition in the presence of noise 
using recurrent networks and linear read-outs20,22,48,71–73. 
Additional theoretical work shows that under certain 
conditions randomly connected networks can encode 
past information in the ongoing dynamics of the active 
states, and the duration of this fading memory increases 
with network size74,75. In addressing the influence of noise 
on the framework described here, it is important to con-
sider a number of other factors. first, the external stimu-
lus can limit the sensitivity of the neural network to noise 
because it also actively shapes the neural trajectory, and 
can in effect entrain the dynamics. Indeed, the relative 
strength of the recurrent connections in relation to the 
input connections is crucial to determining the behaviour 
of the network. Notably, the recurrent connections do not 
need to be strong enough to generate self-maintaining 
activity in order to contribute to spatiotemporal compu-
tations: during the presentation of time-varying stimuli 
even weak recurrent connections provide an interaction 
between the current and immediately preceding sensory 
events. Second, for time spans over which sensory infor-
mation is often integrated (hundreds of milliseconds), 
generic models of recurrent cortical microcircuits can 
store information about past stimuli50,75. Third, theoreti-
cal analyses generally do not take into account the contri-
bution of the hidden states. Specifically, time-dependent 
properties, such as short-term synaptic plasticity and 

Figure 3 | Discrimination of complex spatiotemporal patterns. a | A sample 
spectrogram of the spoken word ‘one’. b | A spatiotemporal pattern of action potentials 
representing the word ‘one’. Cochlear models can be used to generate a spatiotemporal 
pattern of spikes generated by the word ‘one’ (left lower panel). This pattern can be 
reversed (right lower panel) to ensure that the network is discriminating the 
spatiotemporal patterns of action potentials, as opposed to only the spatial structure. 
One can perform a principal-component analysis on the spikes of the input patterns, and 
by plotting the first three dimensions create a visual representation of the input 
trajectory. The upper panels show that the trajectories are identical except that they flow 
in opposite temporal directions. Time is represented in colour: note the reverse colour 
gradient. c | Active states in a cortical microcircuit model. The raster of the recurrent 
network in response to the forward (blue) and the reverse (red) direction is plotted. The 
fact that the spatiotemporal spike patterns are no longer simply reverse representations 
of each other can be seen in the neural trajectories (lower plots). The response shown 
represents a subsample of the 280 layer-5 neurons of the model described by Haeusler 
and Maass48. The trajectory calculations plotted the fourth, fifth and sixth dimensions of 
the principal-component analysis to improve visualization. d | A linear read-out can 
distinguish between the original speech input and its time reversal at most points in time. 
A single linear read-out that received synaptic inputs from all neurons in the circuit was 
trained to produce large output values for any active state that occurred when the word 
‘one’ was spoken, but low output values at any time during the time-reversed version  
of ‘one’. The resulting output values of the read-out are shown for a new trial that 
included noise injections into the neurons. The fact that this simple linear read-out can 
distinguish at most time points the original spatiotemporal spike inputs from their 
time-reversed version demonstrates that not only does the circuit process the spatial 
aspects of these input patterns, but every active state also transmits information about 
the temporal context of each spatial input pattern. e | A schematic of the cortical 
microcircuitry model, with the components aligned with the relevant sections of parts 
b–d. Several neurons provide input to excitatory neurons that are part of a recurrent 
network. The excitatory neurons in this network send a multi-dimensional signal to a 
single downstream read-out neuron. Part a is based on simulations by S. Klampf.
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Dimension (d)Invariant pattern 
classification
The discrimination of patterns 
in a manner that is invariant 
across some transformation. 
For example, recognition of the 
same word spoken at different 
speeds or by different 
speakers.

Chaos
In theoretical work this term is 
applied only to deterministic 
dynamical systems without 
external inputs, and 
characterizes extreme 
sensitivity to initial conditions. 
In neuroscience it is also 
applied more informally to 
systems that receive ongoing 
external inputs (and that are 
subject to noise and hence  
are not deterministic), and 
characterizes neuronal systems 
with a trajectory of neural states 
that is strongly dependent on 
noise and less dependent  
on external stimuli.

Hyperplane
A hyperplane is a 
generalization of the concept 
of a plane in a 
three-dimensional space to 
d-dimensional spaces for 
arbitrary values of the 
dimension d. A hyperplane  
in d dimensions splits the 
d-dimensional space into two 
half spaces. 

slow IPSPs, also provide a memory on the timescale 
of hundreds of milliseconds. This memory is likely to 
contribute to the representation of past information in 
a fashion that is less susceptible to noise because it is not 
necessarily amplified as a result of the positive feedback 
that is inherent to recurrent connectivity. for example, as 
mentioned above, sensory cortical areas do not generally 
exhibit self-maintaining activity, and after a brief stimulus 
they return to low-level firing rates; in these cases the 
hidden state can provide a memory that bridges the gap 
between stimuli42,76, and this memory should be relatively 
insensitive to noise as the network is silent.

Most theoretical analyses of dynamics have considered 
recurrent networks in which both the connectivity and 
the weights are randomly assigned. However, given the 
universal presence of synaptic plasticity77,78 and known 
connectivity data79,80, it is clear that synaptic connectivity 
and strengths are not random in cortical circuits. Indeed, 
one of the fundamental features of the cortex is the fact 
that synaptic strength and neural circuit structure are 
modified as a function of sensory experience81–84. These 
forms of long-term and experience-dependent plas-
ticity probably play a crucial part in shaping network 
dynamics and producing stable and reproducible neural 

Box 2 | Encoding in high dimensions

Consider two neural trajectories, T
A
 and T

B
, in d dimensions 

(see the figure, part a), both of which are defined as paths 
that linearly connect sets of N randomly drawn points in 
the d-dimensional hypercube [0,1]d. A point x in this space 
represents the active state of presynaptic neurons at a 
specific time point t. Its ith coordinate could represent, for 
example, the firing rate of the ith presynaptic neuron in a 
time bin centred at t. An alternative method for 
representing the contribution of presynaptic neuron i is to 
convolve the spike train of neuron i with an exponential 
function (for example, an exponentially decaying kernel 
with a time constant of 20 ms) and take the output value of 
the resulting linear filter at time t (scaled into [0,1]) as the ith 
component of the active state55.

The read-out of the active states can be modelled by a 
perceptron15,109, which computes a weighted sum  
w

1
x

1 
+ w

2
x

2
 + … w

d
x

d
 of the inputs x. Geometrically, those 

points (x
1
, x

2
 … x

d
) at which the weighted sum is exactly 

equal to the threshold form a hyperplane in the 
d-dimensional input space. Such a hyperplane is shown as  
a grey surface in part a of the figure for the case d = 3, 
together with a trajectory T

A 
 (the green curve) and a 

trajectory T
B
 (the blue curve). The linear discriminator 

assigns the output value 1 to the points on one side of  
the hyperplane, where the weighted sum is larger than the 
threshold, and 0 to the points on the other side. The values 
of the weights and the threshold of the linear discriminator 
define the position of this hyperplane. Complete 
separation of T

A
 and T

B
 would imply that there is a linear 

read-out that could output the value 1 for all points in T
A
, 

and the value 0 for all points in T
B
. This extreme case is 

illustrated for d = 3 in part a of the figure. However, such perfect separation can in general not be expected (for example, a 
read-out neuron might not be able to separate presynaptic active states in a reliable manner immediately after stimulus 
onset), and it suffices if the hyperplane separates the trajectories during some given time window.

Although robust separation of complex trajectories is difficult in low dimensions, results from mathematical theory 
imply that a linear separation of trajectories becomes much easier when the dimension of the state space exceeds the 
‘complexity’ of the trajectories52. Part b of the figure shows that most pairs of trajectories defined by paths through any 2 
sequences of 100 points can be separated by a linear discriminator as the dimension d becomes larger than 100. The 
probability that 2 trajectories that each linearly connect 100 randomly chosen points can be separated by a hyperplane is 
plotted in black. The green curve gives the average of the minimal Euclidean distance between pairs of trajectories. It 
shows that the distance between any two such trajectories tends to increase as d grows. Thus, at higher dimensions not 
only is it more likely that any two such trajectories can be separated, but also they can be separated by a hyperplane with 
a larger ‘safety margin’. A larger margin implies that noisy perturbations of these two trajectories can be classified by the 
linear discriminator in the same way as the original trajectories. One should note that projections of external inputs into 
higher-dimensional networks are quite common in the brain. For example, ~1 million axons from the optic nerve inject 
visual information from the lateral geniculate nucleus into the primary visual cortex, in which there are ~500 million 
neurons. Thus, the primary visual cortex gives rise to trajectories in a much higher dimensional space than those 
generated by the retinal ganglion cells. Theoretical results64 suggest that the way these trajectories are generated is not 
all that important for the resultant computational capability of the network: it is primarily the linear dimension of the 
space that is spanned by the resulting trajectories that is crucial.
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Figure 4 | Population activity from the cat visual cortex encodes both the current and previous stimuli. a | A sample 
stimulus, with the receptive fields (squares) of the recorded neurons superimposed. b | The spike output of neuron number 10 
for 50 trials with the letter sequence A, B, C as the stimulus and 50 trials with the letter sequence D, B, C as the stimulus. The 
temporal spacing and duration of each letter is indicated through green shading. The lower plot is a post-stimulus time 
histogram (PSTH) showing the response of neuron 10 (shown in blue in part c) over the 50 trials shown. c | The spike response 
of 64 neurons during trial number 38 (indicated in blue in part b) for the letter sequence A, B, C (left-hand plot), and the 
read-out mechanism that was used to decode information from these 64 spike trains (upper right-hand plot). Each spike train 
was low-pass filtered with an exponential and sent to a linear discriminator. Traces of the resulting weighted sum are shown in 
the lower right-hand plot both for the trajectory of active states resulting from stimulus sequence A, B, C (black trace) and for 
stimulus sequence D, B, C (orange trace). For the purpose of classifying these active states, a subsequent threshold was 
applied. The weights and threshold of the linear discriminator were chosen to discriminate active states resulting from letter 
sequence A, B, C and those resulting from the letter sequence D, B, C. The blue traces in parts b and c show the behaviour of 
neuron 10. d | The performance of a linear discriminator at various points in time. The red line shows the percentage of the 
cross-validated trials that the read-out correctly classified as to whether the first stimulus was A or D. The read-out neuron 
contained information about the first letter of the stimulus sequence even several hundred milliseconds after the first letter 
had been shown (and even after a second letter had been shown in the meantime). Note that discrimination is actually poor 
during the A and D presentation because of the low average firing rate (blue dashed lines). Part a is reproduced, with 
permission, from REF. 55  (2007) MIT Press. Parts b–d are partly based on data from REF. 55.
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Attractor
The state of a dynamical 
system to which the system 
converges over time, or the 
state that ‘attracts’ 
neighbouring states.

Sparse code
A neural code in which only a 
small percentage of neurons is 
active at any given point in 
time.

trajectories that improve the encoding and read-out of 
behaviourally relevant stimuli. Effectively incorporating 
plasticity into recurrent networks that are composed of 
spiking neurons has proved to be a challenge, but recent 
studies have shown that certain learning rules can help 
to embed neural trajectories in recurrent networks85, and 
work on reward-modulated STDP58,59,86 has also begun to 
address this issue. Additionally, it has been shown that 
the time span over which networks can encode previous 
events can be increased in models with spiking neurons 
through long-term synaptic plasticity71.

Computing with trajectories
The framework reviewed above proposes that cortical 
networks are inherently capable of processing complex 
spatiotemporal stimuli as a result of the interaction 
between external stimuli and the state of the internal 
network. Additionally, it suggests that sets of read-out 
neurons can extract information from the time-varying  
neural trajectories represented in high-dimensional 
space. As was recently stressed by a number of 
groups21,29,87, this notion marks a significant departure 
from the traditional hypothesis that cortical computa-
tions rely on neural networks that converge to steady-
state attractors88,89 — that is, states in which neural firing 
rates remain constant for a minimal period of time. 
Although there is evidence that in higher-order cortical 
areas these fixed-point attractors play a part in working 
memory90–92, few data suggest that they contribute to the 
pattern recognition of complex time-varying stimuli. 
Thus, earlier cortical areas, the computational task of 
which is to decide what stimulus is present, could extract 
information from neural trajectories. This framework is 
well suited to the fact that most complex forms of sen-
sory processing take place in real-time in the presence 
of ever-changing sensory stimuli.

we next review experimental data from different 
neural systems that support the notion that neural com-
putations arise from state-dependent computations and 
are represented in the trajectory of the active states in 
high-dimensional space.

Olfactory system. The mechanism that underlies the 
discrimination and coding of olfactory information has 
proved to be a valuable system for the study of neural 
dynamics in recurrent circuits93. Studies in the locust sug-
gest that even when it is presented for a prolonged period, 
a given odour is encoded in a characteristic trajectory of 
active states (FIG. 1b). Specifically, the projection neurons 
(PNs) in the antennal lobe exhibit complex time-varying 
changes in firing rate in response to a tonic stimulus. for 
each odour, a complex spatiotemporal pattern is formed 
across the approximately 800 recurrently connected 
projection neurons that represents a trajectory in a high-
dimensional space53. The trajectory is reproducible for 
a given odour at a given concentration. This trajectory 
can evolve for a few seconds and then converge to a fixed 
point. The cells that are located in the next processing 
stage — the Kenyon cells in the mushroom bodies —  
create a sparse code of olfactory stimuli that also changes 
with time. furthermore, the Kenyon cells, which can be 

thought of as read-outs of the PNs, decrease their fir-
ing when the active state of the PNs has converged to 
an attractor. That is, the Kenyon cells, which transmit 
the ‘output’ of the computation of the PNs, respond 
preferentially while the PN trajectory is in motion but 
respond less when it is in the steady state. Additionally, 
as it can take up to a few seconds for the fixed point to be  
achieved, the fixed point is unlikely to contribute to 
behavioural decisions in vivo. Consistent with the predic-
tions of the framework discussed above, the response of 
the network to an odour b was distinct from the response 
to the same odour when it was preceded by odour A24, 
reflecting the state dependency of the trajectory of the 
active states of PNs and suggesting that the network has 
the potential to encode not only the current stimulus but 
also past stimuli. The fact that the neural trajectories are 
dynamic even when the stimulus is not suggests that the 
internal dynamics have a critical role in the ongoing com-
putations29. Together, these results provide experimental 
evidence that the critical computation in olfactory dis-
crimination resides in the voyage of the network through 
high-dimensional state space, as opposed to it residing in 
the arrival at a specific location in state space.

Timing in the cerebellum. Experimental evidence 
suggests that the cerebellum regulates some types of  
motor timing94,95. Although the mechanisms that under-
lie timing are not fully understood, it has been shown that 
small lesions in the cerebellar cortex can alter the timing 
of a motor response96. Consistent with these findings, 
it has been proposed that timing relies on the spatio-
temporal dynamics of the granule cell population and 
that these dynamics arise from the interaction between 
cerebellar input and the internal state of the cerebellar 
network44,97. In the cerebellum, granule and Golgi cells 
are part of a negative-feedback loop in which granule 
cells excite Golgi cells, which in turn inhibit granule cells.  
In response to a constant stimulus, conveyed by the 
mossy fibres, the granule cell population response is not 
only a function of the current stimulus, but also depends 
on the current state of the granule cell–Golgi cell net-
work. Simulations reveal that, as a result of the feed-
back loop, a dynamically changing trajectory of active 
granule cells is created in response to a stimulus44,46,98. 
This pattern will trace a complex trajectory in neuron 
space, and as each point of the trajectory corresponds to 
a specific population vector of active granule cells, the 
network inherently encodes time. Time can then be read 
out by the Purkinje cells (the ‘read-out’ neurons), which 
sample the activity from a large population of granule 
cells. Importantly, the Purkinje cells can learn to gener-
ate timed motor responses through conventional asso-
ciative synaptic plasticity coupled to the reinforcement 
signal from the inferior olive99. In this framework, the 
pattern of granule cell activity would be expected not 
only to encode all potentially relevant stimuli, but also to 
be capable of generating a specific time stamp of the time 
that has elapsed since the onset of each potential stimu-
lus. This scheme clearly requires a very high number of 
distinct granule cell patterns. Indeed, the fact that there 
are over 5×1010 granule cells in the human cerebellum100 
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Psychophysics
Studies based on perceptual 
decisions regarding the 
physical characteristics of 
stimuli, such as the intensity or 
duration of sensory stimuli.

Tonotopy
A spatial arrangement in which 
tones that are close to each 
other in terms of frequency are 
represented in neighbouring 
auditory neurons.

suggests that they are uniquely well suited and indeed 
designed to encode the large number of representations 
that would arise from having to encode the time from 
onset for each potential stimulus.

State-dependent cortical responses. Studies in the audi-
tory cortex have demonstrated that some neurons 
respond preferentially to a given sensory event when it 
is preceded by another event. These cells are sometimes 
referred to as temporal combination-sensitive cells, and 
have been observed in the auditory systems of a number 
of species, including songbirds8,11,101, rats10, cats9,102 and 
monkeys12,103. In some of these studies, cells exhibited a 
facilitated response to tone b if it was preceded by tone 
A by a specific interval. This spatiotemporal selectivity 
tends to be highly nonlinear and thus not predictable 
on the basis of the linear combination of the response 
generated by the two tones independently. for example, 
recently it was shown that neurons in the auditory cor-
tex of monkeys that were trained to recognize a specific 
sequences of tones can exhibit dramatic facilitation to the 
target sequence104. Specifically, a neuron could respond 
strongly to the sequence Ab, but not to A or b alone. 
Interestingly, the percentage of such cells was higher in 
trained monkeys, indicating that experience-dependent 
plasticity optimizes the encoding of behaviourally relevant 
neural trajectories. In many of the experimental studies 
cited above, there was no observable ongoing activity in 
the network between tone presentations. Thus, it is pos-
sible that here the state-dependent facilitatory responses 
are the result of changes in the hidden state of the local 
neural network, or they could be a result of ongoing  
stimulus-specific activity in other brain regions.

State-dependent temporal processing. A few studies have 
set out specifically to test predictions that have been 
generated by state-dependent models26,55 (see below). 
In one study these predictions were examined using 
human psychophysics76. Specifically, state-dependent 
models predict that the interval between two brief tones 
can be encoded in the population response to the second 
tone. Thus, two distinct inter-stimulus intervals (of, for 
example, 100 ms and 200 ms) can be discriminated by 
comparing the network responses to the second stimu-
lus42. However, the state-dependency of this framework 
poses a potential problem: if the same 100 ms interval 
is preceded by a ‘distractor’ tone (that is, an additional 
tone before the two that define the interval), the repre-
sentation of the simple 100 ms interval should be altered. 
In other words, the network does not have an absolute 
representation of a 100 ms interval, because each event 
is encoded in the context of the previous event. Thus, 
one prediction that emerges is that if temporal process-
ing relies on state-dependent mechanisms as opposed to 
an ‘internal clock’, it will be difficult to directly compare 
the absolute interval between two stimuli if they are pre-
sented in close temporal proximity — one can think of 
this as being because the network would not have time to 
‘reset’ between stimuli. Psychophysical results revealed 
that if two intervals (each of approximately 100 ms) 
were presented 250 ms apart, the ability to determine 

which was longer was significantly impaired compared  
with when they were presented 750 ms apart 76. 
Importantly, when the two intervals were presented 
250 ms apart, but the first and second tones were pre-
sented at different frequencies (for example, 1 kHz and 
4 kHz), interval discrimination was not impaired. This 
could be interpreted as preceding stimuli being able to 
‘interfere’ with the encoding of subsequent stimuli, but 
with there being less interference if the stimuli are pro-
cessed in different local cortical circuits (as a result of 
the tonotopic organization of the auditory system). These 
results are consistent with the notion that timing relies 
on the interaction between incoming stimuli and the 
internal state of local cortical networks.

Visual cortex. The hypothesis that the response of a neu-
ronal network to a stimulus encodes that stimulus in the 
context of the previous stimuli implies that the neural 
population code could be used to determine the nature 
of the previous stimuli. This prediction has recently been 
explicitly tested in the cat primary visual cortex using a 
sequence of visual stimuli (letters). Specifically, Nikolić 
et al.55 showed that the neuronal response of 60–100 
neurons to the second stimulus contained informa-
tion not only about the letter being presented but also 
about the preceding letter. In fact, the identity of the first  
and the second letters could be recovered with high reli-
ability by a simple linear read-out from the simultane-
ously recorded spike trains of neurons in area 17, both 
during and after the presentation of the second stimulus 
(FIG. 4). This effect could be viewed as imprecision in the 
neural code for the second letter. However, it can also be 
seen as a potential mechanism for integrating informa-
tion from several frames of visual inputs, as is needed for 
the analysis of dynamic visual scenes.

Conclusions and future directions
A general model of cortical function should account 
for the ability of neural circuits to process stimuli in 
real time, and to classify and discriminate these stimuli 
based on their spatiotemporal features. Here we have 
reviewed an emerging framework that could pro-
vide a theoretical foundation to meet this goal. This 
framework is characterized by four key features. first, 
networks of neurons are inherently capable of encod-
ing complex spatiotemporal stimuli as a result of the 
interaction between external stimuli and the internal 
state of the network. This internal state is determined 
both by ongoing activity (the active state) and time-
dependent changes in synaptic and cellular properties 
(the hidden state). It is this state dependency that allows 
networks to encode time and spatiotemporal structure. 
Second, the inherent diversity of neuronal properties 
and the complexity of cortical microcircuits contrib-
ute to computations by projecting network responses 
into high-dimensional representations, which ampli-
fies the separation of network trajectories generated 
by different stimuli. Third, the high dimensionality 
of stimulus representations in neuron space, together 
with massive convergence onto downstream ‘read-out’ 
neurons, allows for decoding by appropriately adjusting 
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	Figure 3 | Discrimination of complex spatiotemporal patterns. a | A sample spectrogram of the spoken word ‘one’. b | A spatiotemporal pattern of action potentials representing the word ‘one’. Cochlear models can be used to generate a spatiotemporal pattern of spikes generated by the word ‘one’ (left lower panel). This pattern can be reversed (right lower panel) to ensure that the network is discriminating the spatiotemporal patterns of action potentials, as opposed to only the spatial structure. One can perform a principal-component analysis on the spikes of the input patterns, and by plotting the first three dimensions create a visual representation of the input trajectory. The upper panels show that the trajectories are identical except that they flow in opposite temporal directions. Time is represented in colour: note the reverse colour gradient. c | Active states in a cortical microcircuit model. The raster of the recurrent network in response to the forward (blue) and the reverse (red) direction is plotted. The fact that the spatiotemporal spike patterns are no longer simply reverse representations of each other can be seen in the neural trajectories (lower plots). The response shown represents a subsample of the 280 layer-5 neurons of the model described by Haeusler and Maass48. The trajectory calculations plotted the fourth, fifth and sixth dimensions of the principal-component analysis to improve visualization. d | A linear read-out can distinguish between the original speech input and its time reversal at most points in time. A single linear read-out that received synaptic inputs from all neurons in the circuit was trained to produce large output values for any active state that occurred when the word ‘one’ was spoken, but low output values at any time during the time-reversed version of ‘one’. The resulting output values of the read-out are shown for a new trial that included noise injections into the neurons. The fact that this simple linear read-out can distinguish at most time points the original spatiotemporal spike inputs from their time-reversed version demonstrates that not only does the circuit process the spatial aspects of these input patterns, but every active state also transmits information about the temporal context of each spatial input pattern. e | A schematic of the cortical microcircuitry model, with the components aligned with the relevant sections of parts b–d. Several neurons provide input to excitatory neurons that are part of a recurrent network. The excitatory neurons in this network send a multi-dimensional signal to a single downstream read-out neuron. Part a is based on simulations by S. Klampf.
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