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a b s t r a c t

The neocortex is a continuous sheet composed of rather stereotypical local microcircuits that consist of
neurons on several laminae with characteristic synaptic connectivity patterns. An understanding of the
structure and computational function of these cortical microcircuits may hold the key for understanding
the enormous computational power of the neocortex. Two templates for the structure of laminar cortical
microcircuits have recently been published by Thomson et al. and Binzegger et al., both resulting from
long-lasting experimental studies (but based on different methods).

We analyze and compare in this article the structure of these two microcircuit templates. In particular,
we examine the distribution of network motifs, i.e. of subcircuits consisting of a small number of neurons.
The distribution of these building blocks has recently emerged as a method for characterizing similarities
and differences among complex networks. We show that the two microcircuit templates have quite dif-
ferent distributions of network motifs, although they both have a characteristic small-world property. In
order to understand the dynamical and computational properties of these two microcircuit templates, we
have generated computer models of them, consisting of Hodgkin–Huxley point neurons with conduc-
tance based synapses that have a biologically realistic short-term plasticity. The performance of these
two cortical microcircuit models was studied for seven generic computational tasks that require accumu-
lation and merging of information contained in two afferent spike inputs. Although the two models exhi-
bit a different performance for some of these tasks, their average computational performance is very
similar. When we changed the connectivity structure of these two microcircuit models in order to see
which aspects of it are essential for computational performance, we found that the distribution of degrees
of nodes is a common key factor for their computational performance. We also show that their compu-
tational performance is correlated with specific statistical properties of the circuit dynamics that is
induced by a particular distribution of degrees of nodes.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many complex networks from biochemistry and neurobiology
as well as engineering share certain global properties (Newman,
2003; Strogatz, 2001; Watts and Strogatz, 1998), like degree distri-
butions (distribution of the number of edges per node) and small-
world properties, i.e. local clustering of edges in a graph while
maintaining a short path between nodes. But they often have dif-
ferent local properties, yielding different distributions of stereo-
ll rights reserved.

nce Fund FWF # S9102-N13
6593 (SECO), project # FP7-
(ORGANIC) of the European

eusler), schuch@igi.tugraz.at
typical connectivity patterns for few nodes, called motifs (Milo
et al., 2002, 2004; Shen-Orr et al., 2002).

Neurobiological studies have shown that cortical circuits have a
distinctive modular and laminar structure, with stereotypical con-
nections between neurons that are repeated throughout many cor-
tical areas (Douglas et al., 1995; Douglas and Martin, 2004;
Kalisman et al., 2005; Mountcastle, 1998; Nelson, 2002; Silberberg
et al., 2002; White, 1989). It has been conjectured that these ste-
reotypical canonical microcircuits are not merely an artifact of
the specific mapping of afferent and efferent cortical pathways or
other anatomical constraints like evolutionary processes or devel-
opment, but are also advantageous for generic computational oper-
ations that are carried out throughout the neocortex.

Over the past years detailed statistical data became available
that are based on two different experimental methods: dual intra-
cellular recordings in vitro and cell morphology. The first dataset
assembled by Thomson et al. (2002) was estimated from 998
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1 Some of the pairings were rarely observed and the corresponding entries suffer
from small sample size (see Thomson et al., 2002 for details). Also very small neurons
in rat may have been missed in this study (Thomson, 2005). In addition it is likely that
in some cortical microcircuits connections exist between pairs of neurons for which
no connections were reported in Thomson et al. (2002) (see for example (Dantzker
and Callaway, 2000) for the case of connections to inhibitory neurons in layers 2/3).

2 One should note that the layers defined by this and other microcircuit templates
are not induced by their graph structure (like the layers in a multi layer perceptron).
Rather the layer to which a neuron belongs should formally be viewed as a label of the
corresponding node in the graph.
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paired intracellular recordings with sharp electrodes in slices of
somatosensory, motor and visual areas of adult rats and adult cats.
It specifies connection probabilities and connection strengths of
effectively established synaptic connections between excitatory
and inhibitory neocortical neurons, to which we will refer as func-
tional connectivity in this paper. The second dataset assembled by
Binzegger et al. (2004) was predicted from bouton and target den-
sities in cat primary visual cortex estimated from three-dimen-
sional cell reconstructions. This dataset does not specify the
distribution of functional connections, but rather represents poten-
tial synaptic connectivity. The probabilities of synaptic connections
between excitatory and inhibitory neurons located in different lay-
ers, i.e. layer 2/3, 4 and 5, differ significantly for the functional and
the potential microcircuit template (see Thomson and Lamy, 2007).
In addition this dataset also includes neurons in layer 6.

We investigate these two cortical microcircuit templates with
regard to structural and functional properties. In order to evaluate
the computational properties of microcircuit templates we carried
out computer simulations of detailed cortical microcircuit models
consisting of 560 Hodgkin–Huxley type point neurons and synaptic
connections with stereotypical dynamic properties (such as paired
pulse depression and paired pulse facilitation) from Markram et al.
(1998). Similar to Häusler and Maass (2007), our analysis is based
on the assumption that stereotypical cortical microcircuits have
some ‘‘universal” computational capabilities, and can support quite
different computations in different cortical areas. Consequently we
concentrate on generic information processing capabilities that are
likely to be needed for many concrete computational tasks: to
accumulate, hold and fuse information contained in Poisson input
spike trains from two different sources (modeling thalamic or cor-
tical feedforward input that arrives primarily in layer 4, and lateral
or top-down input that arrives primarily in layer 2/3). In addition
we examine the capability of such circuit models to carry out linear
and nonlinear computations on time-varying firing rates of these
two afferent input streams. In order to avoid rather arbitrary
assumptions about the specific type of neuronal encoding of the re-
sults of such computations, we analyzed how much information is
available about the results of such computations to the generic
‘‘neural users”, i.e., to pyramidal neurons in layer 2/3 (which typi-
cally project to higher cortical areas) and to pyramidal neurons in
layer 5 (which typically project to lower cortical areas or to subcor-
tical structures, but also project for example from V1 back to non-
specific thalamus, i.e. to the intralaminar and midline nuclei that
do not receive direct primary sensory input, and through this relay
to higher cortical areas, see Callaway (2004)).

In Häusler and Maass (2007) it was shown that the cortical
microcircuit model based on the template from Thomson et al.
(2002) exhibits specific computational advantages over various
types of control circuits that have the same components and the
same global statistics of neurons and synaptic connections, but
are missing the lamina-specific structure of real cortical microcir-
cuits. Furthermore it was demonstrated that the connectivity
graphs defined by this cortical microcircuit template has a small-
world property. However we had shown that the degree distribu-
tion of neurons is more salient for their computational perfor-
mance than the small world property.

Here we extend this study by showing that the two cortical
microcircuit templates of Thomson et al. (2002) and Binzegger
et al. (2004) share some global structural properties, like degree
distributions and small-world properties, but have significantly
different local structural properties, i.e. network motif distribu-
tions. A comparison of the information processing capabilities of
both microcircuit templates reveals that they have a similar aver-
age computational performance but significantly different compu-
tational properties for specific tasks. We also address the question
which aspect of the microcircuit template of Binzegger et al. (2004)
is essential for its computational performance, by scrambling spe-
cific aspects of their connectivity pattern in a variety of control cir-
cuits. We find that, like for the template of Thomson et al. (2002),
the degree distribution of nodes is essential for its computational
performance. This result is, besides their similar average computa-
tional performance, a second common property of these otherwise
quite dissimilar microcircuit templates. We also identify specific
properties of the dynamics of the two networks that correlate with
their superior computational performance.

2. Methods

2.1. Microcircuits and computational tasks

We analyzed cortical microcircuit models based on the lami-
nae-specific connectivity pattern specified by two different cortical
microcircuit templates. The first cortical microcircuit template
assembled by Thomson et al. (2002) was estimated from paired
intracellular recordings with sharp electrodes from 998 pairs of
identified neurons from somatosensory, motor and visual areas
of adult rats, and visual areas of adult cats. The sampling was made
randomly within a lateral spread of 50—100 lm (Thomson, 2005).
This cortical microcircuit template specifies functional synaptic
connectivity, i.e. connection probabilities and efficacies of synaptic
connections between neurons located in six different populations
(excitatory and inhibitory neurons in layers 2/3, 4, 5). For those
pairs where both data from rat and from cat are given in Thomson
et al. (2002), we have taken the data from rat (see Fig. 1). Only for
pairs of neurons within layer 4 no data from rat are given in Thom-
son et al. (2002), hence the corresponding data are from cat.1 We
analyzed a model of this microcircuit template that consisted of
560 neurons, with 30%, 20%, and 50% of the neurons assigned to layer
2/3, layer 4, and layer 5, respectively (the number 560 was chosen
somewhat arbitrarily, based on required simulation speed and pro-
gramming details). We will refer to the microcircuit model based
on this cortical microcircuit template as Thomson et al. circuit.2

The second cortical microcircuit template assembled by Binzeg-
ger et al. (2004) was predicted from bouton and target densities in
cat primary visual cortex estimated from three-dimensional recon-
structions of cells in vivo. This cortical microcircuit template spec-
ifies potential synaptic connectivity between neurons located in 10
specific populations (excitatory and inhibitory neurons in layers 1,
2/3, 4, 5 and 6). We omitted layer 1, because it only receives input
and provides no synaptic connections back to other layers, and is
therefore irrelevant for the analysis in this study. The connectivity
graph of the eight modeled populations is shown in Fig. 2. A num-
ber of additional unassigned connections were reported in Binzeg-
ger et al. (2004). These were not considered for the calculation of
connection probabilities in this article. The synaptic connection
probabilities were further rescaled to achieve on average the same
number of 42,540 synaptic connections as obtained for the Thom-
son et al. circuits. This resulted in a mean connection probability of
13% or, equivalently, an average number of 76 recurrent synaptic
connections per neuron. The microcircuit model consisted of 560
neurons, with 36%, 36%, 7% and 21% of the neurons assigned to
layer 2/3, layer 4, layer 5 and layer 6, respectively (see Binzegger



Fig. 1. Cortical microcircuit template estimated from paired intracellular recordings according to Thomson et al. (2002). Numbers at arrows denote connection strengths
(mean amplitude of postsynaptic potentials, PSPs, measured at soma in mV) and connection probabilities (in parentheses), for connections between cortical neurons in three
different layers, each consisting of an excitatory (E) and an inhibitory (I) population, with an estimated maximal horizontal distance of up to 100 lm. The width of arrows is
proportional to the product of these two numbers. Most of the data are from rat cortex, except for interconnections in layer 4 (italic), which are from cat. Input stream 1
models feedforward inputs, and input stream 2 models top-down or lateral input to the cortical microcircuit. Percentages at input streams denote connection probabilities for
input neurons (that produce these input streams) in our simulations. Figure reproduced with permission of Häusler and Maass (2007).
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et al. (2004) for a discussion of data which justify these estimates).3

Because the cortical microcircuit template of Binzegger et al. (2004)
provides no strengths of synaptic connections (i.e., synaptic
weights), we modeled the distribution of synaptic weights according
to the cortical microcircuit template of Thomson et al. (2002). The
strengths of synaptic connections from and to layer 6, which do
not occur in Thomson et al. circuits, were set to the average values
of all other connections of the corresponding synapse type.4 These
weights are labeled with ”?” in Fig. 2. We will refer to microcircuit
models based on the second cortical microcircuit template as Bin-
zegger et al. circuits. Each layer of both cortical microcircuit tem-
plates consisted of a population of excitatory neurons and a
population of inhibitory neurons with a ratio of 4:1.

The short term dynamics of cortical synapses (i.e., their specific
mixture of paired pulse depression and paired pulse facilitation) is
known to depend on the type of the presynaptic and postsynaptic
neuron. We modeled the short term synaptic dynamics according
to the model proposed in Markram et al. (1998), with synaptic
parameters chosen as in Maass et al. (2002) to fit data from micro-
circuits in rat somatosensory cortex (based on Gupta et al., 2000;
Markram et al., 1998). The maximum conductances of synapses
were chosen from a Gaussian distribution with a SD of 70% of its
mean (the negative values were replaced by values chosen from
an uniform distribution between zero and two times the mean).5

The mean maximum conductances of synapses were chosen to
3 We verified that the reported results are qualitatively the same for circuits
consisting of up to 1000 neurons. In general, the performance scales with the network
size (see Häusler and Maass, 2007).

4 Synapse types are defined according to the post-and presynaptic neuron type.
5 No observable differences occurred in case of replacing this distribution with a

gamma distribution with a scale parameter that equals the specified mean and a
shape parameter of 1.
reproduce the mean amplitude of PSPs given in Figs. 1 and 2 at the
resting membrane potential (in the presence of synaptic background
activity). Synaptic transmission delays between neurons were cho-
sen from Gaussian distributions with mean 1.5 ms (0.8 ms) for con-
nections between excitatory neurons (all other connections) and a
standard deviation of 0.1 times the mean.

Excitatory and inhibitory neurons were modeled as conduc-
tance based single compartment Hodgkin–Huxley neuron models
with passive and active properties modeled according to Destexhe
et al. (2001). A cortical neuron receives synaptic inputs not only
from immediately adjacent neurons, but also smaller background
input currents from a large number of more distal neurons, causing
in awake animals a depolarization of the membrane potential com-
monly referred to as ’high conductance state’. This was reflected in
our computer model by background input currents that were in-
jected into each neuron. The conductances of these background
currents were modeled as a one-variable stochastic process similar
to an Ornstein–Uhlenbeck process with parameters obtained from
a biophysical model matched to intracellular recordings from a L5
neuron from cat cerebral cortex Destexhe et al. (2001).

Two afferent input streams, each consisting of 4 or 40 spike
trains (i.e., 4 or 40 input channels), were injected into the circuit.
Each of the channels of the first input stream (representing tha-
lamic, or feedforward cortical input) was injected mainly into layer
4, i.e. to 50% of its inhibitory neurons and 80% of its excitatory neu-
rons, but also into 20% of the excitatory neurons in layer 2/3 and
10% of the excitatory neurons in layer 5 (all randomly chosen).
Each of the channels of the second afferent input stream was in-
jected into 20% of the excitatory neurons in layer 2/3. The mean
maximum conductances of all input synapses were chosen to gen-
erate a PSP with a mean amplitude of 1.9 mV at the resting mem-
brane potential in the presence of background input. Input
synapses were chosen to be static and their maximum conduc-



Fig. 2. Cortical microcircuit template predicted from bouton and target densities estimated from three-dimensional cell reconstructions according to Binzegger et al. (2004).
Numbers at arrows denote connection strengths (mean amplitude of postsynaptic potentials, PSPs, measured at soma in mV) and connection probabilities (in parentheses),
for connections between cortical neurons in four different layers, each consisting of an excitatory (E) and an inhibitory (I) population. Connection probabilities were estimated
from 39 three-dimensional single neuron reconstructions from cat primary visual cortex. Connection strengths were taken from the cortical microcircuit template described
in Thomson et al. (2002) (see Fig. 1). Weights with question marks denote unspecified connections (see text). Dashed lines denote connections that were pruned for the
experiments described in Section 3.1. The length of dashes and the width of solid lines indicate the product of the probability and the strength of a synaptic connection.

76 S. Haeusler et al. / Journal of Physiology - Paris 103 (2009) 73–87
tances were chosen from a Gaussian distribution with a SD of 70%
of its mean (with negative values replaced by values chosen from
an uniform distribution between zero and two times the mean).

In addition to these data there remain three parameters SI1; SI2

and SRW that scale (in the form of multiplicative factors) the ampli-
tudes of PSPs for all recurrent synapses, and EPSPs from the two in-
put streams (1 and 2). These parameters were adjusted for inputs
consisting of 40 Poisson spike trains at 20 Hz to induce biologically
plausible average firing rates. The parameter SI1ðSI2Þ was chosen so
that its respective afferent input stream caused in the absence of
the other input stream SI2ðSI1Þ and without recurrent connections
ðSRW ¼ 0Þ but with background input currents injected into each
neuron an average firing rate of 15 Hz in layer 4 (10 Hz in layer
2/3). The parameter SRW was set to a value that produced for the
previously fixed parameters SI1 and SI2 in the presence of synaptic
background noise a realistic low but significant firing activity of
8.5 Hz in layer 5 and an average firing rate of 24 Hz in layer 2/3,
layer 4 and layer 5. To achieve these firing rates for the Binzegger
et al. circuits, the parameter SRW had to be scaled down by a factor
of 3.3 compared with its value for the Thomson et al. circuits. For
the analysis reported in Figs. 8 and 10 we performed simulations
with 40 randomly chosen scaling parameters (SI1; SI2 and SRW ) that
were drawn uniformly from the interval [0.2, 2] times the previ-
ously described standard values. The resulting average firing rates
ranged from 4 to 55 Hz.

We further modeled hypothetical projection neurons in layer 2/
3 and layer 5. The set of presynaptic neurons for such a hypothet-
ical readout neuron was chosen according to Fig. 1 for Thomson
et al. circuits and Fig. 2 for Binzegger et al. circuits, but no synaptic
connections from a readout neuron back into the circuit were in-
cluded. This amounted for the Thomson et al. circuits to an average
of 84 presynaptic neurons for a readout neuron in layer 2/3, and
109 presynaptic neurons for a readout neuron on layer 5. To allow
a fair comparison between the two cortical microcircuit templates
the connections probabilities for the hypothetical readout neurons
of Binzegger et al. circuits were rescaled by a multiplicative factor
to obtain the same number of presynaptic neurons for each of the
two readout neurons.

The projection or readout neurons themselves were modeled as
linear neurons, i.e., their output was a weighted sum of low pass
filtered spikes (exponential decay with a time constant of 15 ms,
modeling the time constants of synaptic receptors and membrane
of a readout neuron). The weights of synaptic connections from the
presynaptic neurons to the readout neuron were optimized for
specific tasks. Care was taken to make sure that weights from
excitatory (inhibitory) presynaptic neurons could not become neg-
ative (positive) by using a standard method of linear regression
with sign-constraints.

The information processing tasks comprised spike pattern classi-
fication tasks, i.e. classification of spike patterns in either of the two
afferent input streams, memory tasks (classification of earlier spike
patterns in one of the two input streams), and non-linear fusion of
information from spike patterns in both input streams, as well as
real-time computations on the firing rates of both input streams.
For information processing tasks with spike patterns we randomly
generated spike pattern templates consisting of 30 ms segments
of 40 Poisson spike trains at 20 Hz (see Fig. 3). More precisely, the
spike trains of each of the two input streams were of length
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Fig. 3. Input distributions for the spike pattern classification/memory and exclusive-or (XOR) tasks. The spike trains of each of the two input streams were of length 450 ms
and consisted of 15 time segments of length 30 ms. For each segment two templates were generated randomly (40 Poisson spike trains at 20 Hz). The actual spike trains of
each input of length 450 ms used for training or testing were generated by choosing for each segment one of the two previously chosen associated templates, and then
generating a jittered version by moving each spike by an amount drawn from a Gaussian distribution with mean 0 and a SD 1 ms (a sample for two time segments is shown in
the panel on the right hand side). Figure reproduced with permission of Häusler and Maass (2007).

6 For Thomson et. al circuits (Binzegger et al. circuits) the average values of NEE ,
NII ; NEI , and NIE are 31,011 (32,243), 2533 (785), 5370 (4762), and 3086 (4210),
respectively.
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450 ms and consisted of 15 consecutive time segments of length
30 ms. For each time segment 2 spike pattern templates were gen-
erated randomly. For the actual input one of the two templates of
each time segment was chosen randomly (with equal probability)
and a noisy variation of it was injected into the circuit, where each
spike was shifted by an amount drawn from a Gaussian distribution
with mean 0 and SD 1 ms. Readout neurons were trained to classify
which of the two spike templates fixed for input 1 (input 2) was in-
jected during the last time interval ½t � 30 ms; t ms�, denoted as task
tcl1(t) (tcl2(t)). tcl1ðt � DtÞ ðtcl2ðt � DtÞÞ refers to the more difficult
task to classify at time t the spike pattern before the last one that
had been injected during the time interval ½t � 60 ms; t � 30 ms�.
Note that the latter task is more difficult because the relevant spike
input during time ½t � 60 ms; t � 30 ms� is overwritten by new input
before the readout takes place. It may be viewed as a memory task
(with distractors).

Nonlinear fusion of information from both input streams was
tested by training readouts to output the exclusive-or (XOR) of
the two bits that represent the labels of the two templates from
which the most recent spike patterns in the two input streams
had been generated. Note that this computation involves a nonlin-
ear ‘‘binding” operation on spike patterns, since it has to give a low
output value if and only if the labels of the noisy spike templates
injected in input streams 1 and 2 are identical. The XOR task has
been used in the neural network literature as a standard example
for a nonlinear computational task.

In addition we analyzed nonlinear computations on time-vary-
ing firing rates of the two input streams. The spike trains of each of
the two input streams were of length 450 ms and consisted of 15
time segments of length 30 ms. For each input stream and each
time segment 4 Poisson spike trains were generated with a ran-
domly chosen time-varying frequency between 15 Hz and 25 Hz.
The actual firing rates of both input streams, i.e. r1 and r2, used
for the computations on these input firing rates, i.e. r1ðtÞ=r2ðtÞ
and ðr1ðtÞ � r2ðtÞÞ2, were calculated from these spike trains with
a sliding window of 15 ms width. The error bars in Fig. 9 denote
standard errors. All performance results are for test inputs, and
freshly generated random initial conditions and random back-
ground noise for all neurons in the circuit. All simulations were
carried out with the CSIM software (Natschläger et al., 2003) in
combination with MATLAB. For further details see Häusler and
Maass (2007).

2.2. Control circuits

Control circuits have the same components and the same global
statistics of neurons and synaptic connections, but are missing the
lamina-specific connectivity structure of data-based cortical
microcircuits. Random control circuits were generated from data-
based circuits by randomly rewiring recurrent synaptic connec-
tions whereas no synaptic connection was allowed to occur more
than once. In order to maintain the stereotypical neuron to synapse
type alignment observed for short-term synaptic plasticity (Gupta
et al., 2000) the rewiring was carried out under the constraint that
the pre- and post-synaptic neuron type (i.e. excitatory or inhibi-
tory) of each synaptic connection stays the same. This constraint
introduces a difference in the randomized networks generated
from Thomson et al. circuits and Binzegger et al. circuits, because
the numbers of synaptic connections between excitatory neurons
ðNEEÞ are different in these two circuit templates. The same holds
for the number of synaptic connections between inhibitory neu-
rons ðNIIÞ, from inhibitory to excitatory ðNEIÞ, and from excitatory
to inhibitory neurons ðNIEÞ, although the total number of synapses
is identical for both circuits.6 The difference is largest for NII , which
is for the Thomson et al. circuits more than three times larger. We
will refer to the randomized networks generated from the two
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microcircuit templates as amorphous Thomson et al. and amorphous
Binzegger et al. circuits.7

Degree-controlled circuits (Kannan et al., 1999; Maslov and
Sneppen, 2002) preserve the degree distributions of neurons in
all layers but otherwise lack a laminae-specific connectivity pat-
tern. The degree of a neuron is defined as the total number of
incoming and outgoing synaptic connections. Degree-controlled
circuits were constructed from data-based circuits by randomly
exchanging the target neurons of pairs of recurrent synaptic con-
nections that emerge from the same neuron, and have neurons of
the same type (excitatory/inhibitory) as target.

Small-world control circuits have identical cluster coefficient
and average shortest path lengths as Thomson et al. circuits (but
without laminae-specific synaptic connectivity pattern). They were
constructed with two different algorithms, i.e. the spatial growth
algorithm described in Kaiser and Hilgetag (2004) (with parame-
ters a ¼ 4, b ¼ 1:32) and the algorithm proposed by Watts and
Strogatz (1998) (with parameter b ¼ 0:319). Both algorithms were
applied to generate undirected graphs that have the same size (560
nodes), clustering coefficient, and average shortest path length as
Thomson et al. circuits. Each node in these graphs was replaced
by a randomly drawn excitatory or inhibitory neuron (without
replacement) located in one of the 6 populations of Thomson
et al. circuits. Subsequently the undirected graphs were converted
to directed graphs by randomly replacing each edge with a synapse
(that is randomly oriented) or a reciprocal synaptic connection,
with a probability so that the total number of synaptic connections
and reciprocal synaptic connections is identical to the correspond-
ing number for Thomson et al. circuits.8

For all control circuits the assignment of neurons to layers, the
target neurons of input synapses, and the set of presynaptic neu-
rons for hypothetical readouts was the same as for the correspond-
ing data-based circuits.

2.3. Graph properties

A cortical microcircuit can be described by a directed graph
with nodes (neurons) and edges (synaptic connections). A con-
nected sub-graph with M nodes is called a motif of size M and
has at least M � 1 and at most MðM � 1Þ edges (ignoring self-
edges). The motif count COUNT is defined as the total number of
motifs of a certain type occurring in a directed graph that corre-
sponds to a cortical microcircuit generated from a specific micro-
circuit template. The probability of a motif is defined as the
probability that M randomly drawn neurons within a microcircuit
(that was randomly drawn from a specific microcircuit template)
are connected according to the sub-graph defined by the motif
(with no additional edges except self-edges). We analyzed sets of
motifs of size M ¼ 2; M ¼ 3 and M ¼ 4 consisting of 2, 13 and
199 sub-graphs, respectively. According to Milo et al. (2002,
2004) we did not consider motifs that contain self-edges. The motif
probabilities for data-based microcircuits, amorphous circuits and
degree-controlled circuits can be calculated analytically from the
corresponding microcircuit templates. The templates for the con-
nection probabilities of amorphous circuits can be obtained from
data-based circuits (defined in Figs. 1 and 2) by setting the proba-
bility of each synaptic connection to the weighted average proba-
bility of all synaptic connections of the same type (defined by
the type of the pre- and post-synaptic population of neurons, i.e.
excitatory or inhibitory). The contribution of each synaptic connec-
tion probability to the average is weighted proportional to the
7 Note that the connection probabilities for amorphous circuits are not uniform, but
differ for each of the four synaptic connection types.

8 It should be noted that this procedure does not reproduce the same fraction of
synapse types as for data-based circuits and amorphous circuits.
product of the pre- and post-synaptic population size. The tem-
plates for the connection probabilities of degree-controlled circuits
can be obtained from data-based templates by carrying out the fol-
lowing procedure for each type of synaptic connection. First the
probability PsðiÞ that a randomly selected synapse of a specified
type targets a specific population i is calculated from the data-
based template. Subsequently the probability of a synaptic connec-
tion between presynaptic population j and postsynaptic population
k is set to the value PsðkÞ resulting in a connectivity pattern that is
independent of the presynaptic population. Finally, the probabili-
ties of all connections with identical presynaptic population are
multiplied by a common scaling factor to obtain the same average
total number of outgoing synapses for each population as for the
data-based microcircuit template.

The probability of a certain motif PM is defined as the product of
the probabilities for the existence or absence of each edge of a sub-
graph (excluding self-edges). Care has to be taken to account for
permutations of neurons and different populations sizes. For a dis-
tribution of circuits consisting of N neurons that were generated
from a specific circuit template the mean motif count is given by

COUNT ¼ N
M

� �
� PM

and the standard deviation of the motif count is defined by

stdðCOUNTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
M

� �
� PMðPM � 1Þ

s

The motif distributions for small-world circuits were sampled using
200 circuits.

3. Results

3.1. Graph properties of the two microcircuit templates

We analyzed the two data-based cortical microcircuit tem-
plates9 shown in Figs. 1 and 2 for their differences and similarities
in connectivity structure. In order to evaluate the significance of spe-
cific structural features of the two data-based microcircuit templates
we compared them with random control circuits which consist of
the same number of components, i.e. neurons and synapses, but lack
a laminae-specific connectivity pattern. These random control cir-
cuits were generated from data-based circuits by randomly rewiring
synaptic connections.10 This rewiring was carried out under the con-
straint that the pre- and post-synaptic neuron type (i.e. excitatory or
inhibitory) of each synaptic connection stays the same, in order to
maintain the stereotypical neuron to synapse type alignment ob-
served for short-term synaptic plasticity Gupta et al. (2000) that
we have implemented in our models. We will refer to the random-
ized networks generated from the two microcircuit templates as
amorphous Thomson et al. and amorphous Binzegger et al. circuits.

In general the connectivity graph of Binzegger et al. circuits is
more similar to the connectivity graph of the corresponding amor-
phous circuits than for Thomson et al. circuits. The connection
probabilities defined by the laminae-specific connectivity tem-
plates (see Figs. 1 and 2) correlate with the connection probabili-
ties of the corresponding amorphous templates with a
correlation coefficient of 0.3 for Binzegger et al. circuits and 0.2
for Thomson et al. circuits.

Three graph properties have primarily been used for the charac-
terization of naturally occurring directed graphs: clustering, degree
distribution and motif distribution. A quantity often studied in
9 To be precise, each of these two templates is actually a probability distribution
over graphs, rather than a specific graph.

10 But no synaptic connection was allowed to occur more than once.
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relation with clustering is the small-world property defined by
Watts and Strogatz (1998). In small-world networks neighbors of
a node are more likely to be neighbors themselves when compared
to random graphs, thereby causing a so-called small-world effect.
Nevertheless any two nodes in a small-world network are con-
nected by a relative small number of edges, providing fast commu-
nication between any two nodes.11 Thomson et al. circuits as well as
the Binzegger et al. circuits exhibit a significant small-world prop-
erty. Their cluster coefficient, that is defined as the fraction of exist-
ing edges between direct neighbors of a node, is 0.36 and 0.33,
respectively, which is 37% and 30% larger than in the corresponding
amorphous circuits. Both data-based microcircuit templates imply
an average shortest path length of 1.77 edges, which is comparable
to the average shortest path length of 1.74 edges for amorphous con-
trol circuits.

The higher cluster coefficient of Thomson et al. circuits is
mainly due to excitatory and inhibitory neurons located in layer
2/3, which form highly connected hubs. The amount of conver-
gence and divergence of a node in a graph can be specified by its
degree, defined as the total number of its incoming and outgoing
connections. The average degree of a layer 2/3 neuron in Thomson
et al. circuits is 251, which is 20.3% larger than the average degree
of 208.7 for a layer 2/3 neuron in Binzegger et al. circuits. The aver-
age degree in the remaining layers was somewhat smaller and ran-
ged from 77.6 to 137.3 for Thomson et al. circuits and from 14.1 to
188.3 for Binzegger et al. circuits (without layer 1). Overall the
average degrees of neurons in layer 2/3, 4 and 5 are correlated
for both data-based circuits with a correlation coefficient of 0.74.

A third approach to characterize graphs, which also takes the
direction of edges into account, is to analyze which subgraphs (mo-
tifs) occur with a frequency significantly higher or lower than in
corresponding amorphous networks (see Section 2.3). The motif
distributions of Thomson et al. circuits and Binzegger et al.circuits
are shown in Fig. 4 for motifs consisting of two and three nodes.

The deviation of the motif distribution of the data-based micro-
circuits from the motif distribution of the corresponding amor-
phous circuits was evaluated for each motif by means of its Z
score (Milo et al., 2002, 2004) defined as

Z ¼ COUNTdata-based � COUNTamorphous

stdðCOUNTamorphousÞ
;

where std denotes the standard deviation and COUNT denotes the
mean motif count obtained for a distribution of circuits that were
generated from a specific circuit template. Remarkably the proce-
dure of generating amorphous control circuits generates more reci-
procal connections for the Thomson et al. circuits but fewer
reciprocal connections for the Binzegger et al. circuits, as indicated
by the Z scores for motif number 2 for the motif class consisting of
two nodes ðM ¼ 2Þ, see Fig. 4C and E. Also the Z scores for motifs
consisting of three nodes differ significantly for the two templates.
In particular, the motifs 3, 5 and 11 (which represent converging or
diverging sub-graphs) are over-represented, whereas the motifs 2, 4
and 7 (which represent feed-forward or circular sub-graphs) are un-
der-represented in Thomson et al. circuits. The more frequent
appearance of motif 5 in Thomson et al. circuits can be attributed
to the typical structure of connections from layer 4 to layer 2/3
and from layer 2/3 to layer 5. In both cases excitatory neurons with-
in the target and the source layer are often directly synaptically
connected (corresponding to the edge from the right to the top node
of motif 5). Additionally, excitatory neurons in the target layer re-
ceive input from inhibitory neurons in the source layer (edge from
the left to the top node of motif 5) that receive input from excitatory
11 Note that both properties refer to the structure of the underlying undirected
graph, where directed edges are replaced by undirected edges.
neurons within the source layer (edge from the right to the left node
of motif 5). Therefore the excitation spreading from layer 4 (layer 2/
3) to layer 2/3 (layer 5) is balanced by an inhibitory pathway pass-
ing through inhibitory neurons in layer 4 (layer 2/3).

In contrast, motifs with three nodes in Binzegger et al. circuits
that consist only of two edges are significantly under-represented,
whereas motifs with many edges appear more frequently than in
corresponding amorphous circuits (see Fig. 4E). This may be par-
tially attributed to the more frequent appearance of reciprocal con-
nections compared to amorphous circuits.

The characteristic shape of the motif distribution of Binzegger
et al. circuits is not due to the additional connections with layer
6, which are not specified in Thomson et al. circuits. The motif dis-
tributions of Binzegger et al. circuits with and without layer 6 have
a correlation coefficient of 0.96. Moreover the characteristic shape
of their motif distribution is also not caused by the comparatively
high number of connections with low probability (<10%). The cor-
relation coefficient of the motif distributions of Binzegger et al. cir-
cuits and pruned Binzegger et al. circuits, for which all connections
with a connection probability lower than 10% were removed
(dashed lines in Fig. 2), is 0.97.

3.2. Relationships between graph theoretical properties

In order to identify the structural aspects of data-based micro-
circuit templates that are responsible for the characteristic devia-
tion in their motif distributions, we generated additional random
control circuits which preserve the degree distributions of neurons
in all layers, but otherwise lack a layer specificity of synaptic con-
nections. These degree-controlled circuits (Kannan et al., 1999;
Maslov and Sneppen, 2002) were constructed from data-based cir-
cuits by randomly exchanging the target neurons of pairs of syn-
apses that emerge from the same neuron, and have neurons of
the same type (excitatory/inhibitory) as target. In contrast to the
scrambling procedure that generates amorphous circuits, this pro-
cedure preserves not only the type but also the identity of the pre-
synaptic neuron. The motif distribution of Thomson et al. circuits
changes very little through this scrambling procedure (compare
Fig. 5B with Fig. 4C). The motifs 2 and 5 that represent feed-for-
ward pathways from the right to the top node of the sub-graph
(see Fig. 4A) appear less frequent, but nevertheless the Z score
for data-based circuits and degree-controlled circuits correlates
with a correlation coefficient of 0.94. Therefore the characteristic
motif distribution of Thomson et al. circuits is mainly induced by
the specific distribution of degrees of neurons over layers.

In contrast, the motif distribution of degree-controlled circuits
generated from Binzegger et al. circuits resembles the one for
amorphous circuits (see the Z-score plotted in Fig. 5C). In particu-
lar, motifs consisting of many edges appear less frequently in de-
gree-controlled circuits compared to data-based circuits.
Although the Z score is smaller for the majority of motifs in de-
gree-controlled circuits, it nevertheless correlates with the Z score
of the Binzegger et al. circuits with a correlation coefficient of 0.79.
Thus the motif distribution of Binzegger et al. circuits is induced by
the laminae-specific connectivity pattern between layers and less
by the specific degree distributions of neurons. Similar results are
obtained for the distributions of motifs consisting of four nodes
(see Fig. 6).12

In order to demonstrate that the motif distribution of Thomson
et al. circuits cannot only be attributed to its specific clustering prop-
erties (small world property), we additionally generated control cir-
cuits with identical cluster coefficient and average shortest path
12 For M ¼ 4 motifs the Z score for Thomson et al. circuits (Binzegger et al. circuits)
and the corresponding degree-controlled circuits correlates with a correlation
coefficient of 0.91 (0.41).
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13 It should be noted that this procedure does not reproduce the same fraction of
synapse types as for data-based circuits and amorphous circuits.
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length as Thomson et al. circuits but without laminae-specific syn-
aptic connectivity pattern. In order to show that the motif distribu-
tion does not depend on a specific construction algorithm we
generated two types of small-world control circuits. The first one
was constructed with the spatial growth algorithm described in Kai-
ser and Hilgetag (2004) and the second type of control circuits was
generated with the algorithm proposed by Watts and Strogatz
(1998). The spatial growth algorithm of Kaiser and Hilgetag (2004)
is capable of constructing networks with multiple, interconnected
clusters, whereas the algorithm described by Watts and Strogatz
(1998) does not preferentially connect highly connected hubs with
each other. Note that both algorithms generate undirected graphs
that were subsequently converted to directed graphs by randomly
replacing each edge with a synapse (that is randomly oriented) or
a reciprocal synaptic connection, with a probability so that the total
number of synaptic connections and reciprocal synaptic connec-
tions is identical to the corresponding number for data-based cir-
cuits.13 The M ¼ 3 motif distribution for both types of small-world
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circuits is similar but differs significantly from the motif distribution
of data-based microcircuits (see Fig. 5A). The correlation coefficient
for the motif distribution of small-world circuits, and Thomson et al.
circuits and the Binzegger et al. circuits is 0.37 and�0.29, respectively.

3.3. Dynamical properties

We investigated the dynamical properties of Thomson et al. cir-
cuits and Binzegger et al. circuits by analyzing computer simula-
tions of detailed cortical microcircuit models (see Section 2).
Fig. 7 shows a comparison of various statistical properties of the
circuit dynamics in response to generic spike inputs consisting of
40 Poisson spike trains at 20 Hz into layer 4 and layer 2/3 for both
data-based circuit templates (black lines). We found that Thomson
et al. circuits and Binzegger et al. circuits have very similar dynam-
ical properties. The mean firing rate of neurons is about 24 Hz and
the power spectral densities (PSD) of the mean firing rates show an
excess power at low frequencies between 5 and 50 Hz. Moreover
for both circuit templates the interspike interval (ISI) distributions
have an exponential tail as predicted by Poisson processes. A peak
in the ISI distribution around 7 ms indicates the occurrence of
bursts, that is a higher probability of observing two or more spikes
within a short time window of a few ms than predicted by Poisson
processes with identical mean firing rates. Furthermore the distri-
bution of the coefficient of variation of interspike intervals (CV(I-
SI)) of single neurons peaks at 0.72 for both circuit templates.
However, the mean CV(ISI) differs significantly with a value of
0.78 (SD of 0.008) and 0.99 (SD of 0.009) for Thomson et al. circuits
and Binzegger et al. circuits, respectively. As a measure of synchro-
nous spiking activity we calculated the average cross covariance of
firing rates (CC) within time bins of 1 ms for pairs of neurons (cross
correlogram at time lag 0). The CC for Thomson et al. circuits and
Binzegger et al. circuits is 0.035 and 0.066, respectively. Therefore,
Binzegger et al. circuits operate in a more synchronous firing re-
gime than Thomson et al. circuits.
3.4. Relationship between the graph structure of neural circuits and
their dynamical properties

We related the dynamical properties of the data-based micro-
circuits to their connectivity structure by comparing the statistical
properties of their circuit dynamics with the properties of corre-
sponding control circuits (see Section 2.2).

Fig. 7 shows that degree-controlled circuits (blue lines) have
similar dynamical properties when compared to corresponding
data-based circuits (black lines). Only the power spectral density
of degree-controlled circuits generated from Thomson et al. cir-
cuits shows a small deviation with a peak around 20 Hz. Addition-
ally, for degree-controlled circuits generated from Binzegger et al.
circuits the cross covariance of the firing rates of single neurons
drops to a value of 0.05 (not shown).

In contrast, amorphous circuits have different statistical proper-
ties than data-based circuits. In particular, amorphous circuits gen-
erated from Thomson et al. circuits have a different power spectral
density with a shift in power from high to low frequencies (see
Fig. 7A). Furthermore the distribution of CV(ISI) differs significantly
for amorphous circuits generated from Thomson et al. circuits with
a higher mean CV(ISI) of 0.93 (Fig. 7E). For amorphous circuits gen-
erated from Binzegger et al. circuits the change in the CV(ISI) dis-
tribution is less pronounced with a significant drop in peak count
by 7%. The mean cross covariance of the firing rates of single neu-
rons in amorphous circuits drops significantly to a value of 0.033
and 0.045 for Thomson et al. circuits and Binzegger et al. circuits,
respectively.

In order to verify that these results are in fact related to the con-
nectivity structure and not an artifact of the specific set of scaling
parameters that we had chosen for the synaptic weights of the in-
put and the recurrent connections (see Section 2) we repeated the
analysis for 40 randomly chosen scaling parameters (SRW ; SI1, and
SI2) that were drawn uniformly from the interval [0.2,2] times the
standard values. Subsequently we correlated the 40 values for each
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14 The kappa coefficient measures the percentage of agreement between two classes
expected beyond that of chance and is defined as ðPo � PcÞ=ð1� PcÞ, where Po is the
observed agreement and Pc is the chance agreement. Thus for classification into 2
equally often occurring classes one has PC ¼ 0:5.

15 The performance difference for each classification tasks stays qualitatively the
same for Poisson inputs at different rates (i.e. 10 Hz and 30 Hz), although the precise
value of the difference and its dependence on the input firing rates differs for
individual tasks and readouts.
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of three statistical properties for pairs of circuit types to quantify
their difference in circuit dynamics. Fig. 8A illustrates the results
for Thomson et al. circuits and corresponding amorphous circuits.
Amorphous circuits preserve the mean firing rate of Thomson
et al. circuits but change the cross covariance of the firing rates of
single neurons and the coefficient of variation of ISI. In contrast, de-
gree-controlled circuits largely preserve all three statistical proper-
ties of Thomson et al. circuits as indicated in Fig. 8B. Similar results
are obtained for Binzegger et al. circuits (Fig. 8C and D).

3.5. Computational properties

We compared the computational properties of Thomson et al.
circuits (as investigated in detail in Häusler and Maass (2007))
with the corresponding results for Binzegger et al. circuits. For this
purpose we analyzed to what extent these cortical microcircuit
templates support computations on information contained in gen-
eric spike inputs into layer 4 and layer 2/3, and how well they
make results of these computations accessible to (hypothetical)
projection neurons in layer 2/3 and layer 5. These projection neu-
rons were modeled as linear readout neurons that were trained in a
supervised manner to perform a variety of information processing
tasks that are likely to be related to actual computations of cortical
microcircuits.

A comparison of the performance of Thomson et al. circuits
(black bars) and Binzegger et al. circuits (gray bars) for these infor-
mation processing tasks is shown in Fig. 9. The performance of
trained readout for test inputs (which are generated from the same
distribution as the training examples, but not shown during train-
ing) was measured for all binary classification tasks by the kappa
coefficient, which ranges over [�1,1], and assumes a value P 0 if
the resulting classification of test examples makes fewer errors
than random guessing.14 For tasks that require an analog output va-
lue the performance of the trained readouts was measured on test
examples by its correlation coefficient with the analog target output.

It turns out that the mean performance (averaged over all tasks
and readouts) for both data-based circuit models is the same, i.e.
0.50, but the performance for individual tasks differs signifi-
cantly.15 In particular for tasks involving memory or non-linear com-
putations the performance changes heterogeneously and does not
depend on the readout type or task in an obvious manner. Binzegger
et al. circuits perform significantly better for the non-linear spike
template classification task that involves information from both in-
put streams during the last 30 ms (XOR task), although they have
only a similar performance as Thomson et al. circuits for the classi-
fication of individual spike templates from this time segment (on
which the non-linear classification is based). This suggests that Bin-
zegger et al. circuits better support non-linear fusion of recent infor-
mation from both input streams. Also the classification of earlier
spike patterns in input stream 2 ðtcl2ðt � DtÞÞ is significantly better
supported by these circuits. A similar effect can be observed for layer
5 readout neurons performing computations based on the firing
rates of both input streams. The performance for the total task
including the linear component of the computation does not differ
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significantly, whereas the performance on the purely non-linear
component is significantly better for Binzegger et al. circuits.16
16 This non-linear component of the target functions r1=r2 and ðr1� r2Þ2 resulted
by subtracting from these functions an (for the considered distribution of input firing
rates r1 and r2) optimally fitted linear function.
One of the main structural features of Binzegger et al. circuits is
the additional feedback loop from excitatory neurons in layer 6 to
excitatory neurons in layer 4. This feedback loop turns the cortical
feed-forward pathway into an intracortical closed-loop system.
Remarkably, removal of this synaptic feedback doesn’t significantly
change the average readout performance (averaged over tasks and
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readouts), but changes the performance for specific tasks. Binzeg-
ger et al. circuits without feedback perform significantly better
for the two template classification tasks, i.e. classification of the
previously injected spike template in input stream 1 ðtcl1ðtÞÞ for
layer 2/3 readout neurons and classification of the spike template
injected before the last one in input stream 1 ðtcl1ðt � DtÞÞ for layer
5 readout neurons. On the other hand the feedback loop improves
the average performance for rate tasks significantly by 25% (not
shown).

3.6. Relationship between structure, dynamics, and computational
properties of the circuits

In Häusler and Maass (2007) it was shown that the data-based
laminae-specific cortical microcircuit model introduced by Thom-
son et al. (2002) exhibits specific computational advantages com-
pared to various control circuits that have the same components
and the same global statistics of neurons and synaptic connections,
but are missing the laminae-specific connectivity pattern. In par-
ticular it was shown that degree-controlled circuits have similar
average computational performance (averaged over all tasks and
readouts) when compared to Thomson et al. circuits.

Here we show that the procedure of generating degree-con-
trolled circuits, which just leaves the distribution of degrees of
excitatory and inhibitory neurons in the circuit intact (as well as
their roles as input-receiving node or readout-node), but random-
izes their interconnectivity, does not change the computational
performance of both data-based microcircuit templates in any sig-
nificant manner: For Thomson et al. circuits it causes a drop by
1.6% in the average performance for the seven computational tasks,
and for Binzegger et al. circuits a drop by 1.1%. Therefore the de-
gree distribution not only preserves statistical properties of the cir-
cuit dynamics, but also computational properties for both
microcircuit templates.

On the other hand it was shown in Häusler and Maass (2007)
that the average performance of amorphous circuits (generated
from Thomson et al. circuits), which no longer have the motif dis-
tribution of Thomson et al. circuits, drops by 25%. In contrast, for
Binzegger et al. circuits the procedure of generating amorphous
control circuits, which changes also for these circuits the distribu-
tion of motifs, causes a small but significant average performance
improvement by 5.0%.

In order to verify that these results are general properties of the
connectivity structure, and do not depend on the specific choice of
the three scaling parameters SI1; SI2 and SRW for the synaptic
weights of the input and the recurrent connections we repeated
the analysis for 40 randomly chosen values of these scaling param-
eters. We obtained similar results as for our standard values of
these scaling parameters: The average performance of degree-con-
trolled circuits doesn’t change significantly compared to data-
based circuits with an average performance improvement by
2.6% and 0.8% for degree-controlled circuits generated from Thom-
son et al. circuits and Binzegger et al. circuits, respectively. In con-
trast, the average performance of amorphous circuits generated
from Thomson et al. circuits drops significantly by 26.7% and the
performance of amorphous circuits generated from Binzegger
et al. circuits increases significantly by 6.0%.

That scrambling of the connectivity structure has a different ef-
fect on the average computational performance of both data-based
cortical microcircuits models may be attributed to three differ-
ences in the connectivity structure of their amorphous circuits,
i.e. (1) different fractions of excitatory and inhibitory synapses
for both microcircuit templates, (2) a different distribution of syn-
aptic weights for Binzegger et al. circuits (e.g. differences in synap-
tic strengths due to additional synaptic connections from and to
layer 6 and a rescaled average synaptic weight to achieve similar
firing rates for both data-based microcircuit templates) and (3) a
different set of neurons within the microcircuit that is connected
to the readout neurons. Note that the strengths of synaptic connec-
tion to and from layer 6 are unknown and were set to average val-
ues. Presumably a change in the strength of these connections has
an effect on the computational performance of Binzegger et al.
circuits.

The results for the two different microcircuit templates leave
open the possibility, that specific motif distribution enhance the
computational performance. But they certainly do not verify such
a conjecture. To do that, one would need to be able to construct
circuits with many different motif distributions. The procedure of
generating degree-controlled circuits destroys the motif distribu-
tion of Binzegger et al. circuits, see Figs. 4E and 5C, but leaves the
motif distribution of Thomson et al. circuits largely unchanged
(Figs. 4C and 5B). It also changes the number of reciprocal con-
nections, because the magnitude of the Z score of the second
M ¼ 2 motif drops consistently by 56% and 38% for Thomson
et al. circuits and Binzegger et al. circuits, respectively. These re-
sults show that there are cases where the motif distribution
changes significantly, but the computational performance re-
mains largely the same.

In order to investigate whether the computational properties
can be in fact related to specific dynamical properties that are pre-
served by degree-controlled circuits we correlated three statistical
measures for circuit dynamics with the average computational
performance (averaged over all tasks and readouts) for 40 ran-
domly chosen values of the scaling parameters for the synaptic
weights of the input and the recurrent connections. Fig. 10 shows
that the mean coefficient of variation of ISIs and the mean cross
covariance of the firing rate of single neurons correlate with the
average computational performance for Thomson et al. circuits
and Binzegger et al. circuits (although with a somewhat smaller
value for the correlation coefficient between performance and
mean cross covariance of the firing rates). Therefore, for the set
of computational tasks considered in this article the best perfor-
mance is achieved in the regular asynchronous firing regime with
small values for the mean cross covariance and the mean coeffi-
cient of variation of ISIs. For both data-based microcircuit models
the mean firing is positively correlated with the average
performance.

4. Discussion

We found that (1) the microcircuit template by Binzegger
et al. (2004) and the microcircuit template by Thomson et al.
(2002) have significant small-world properties, but quite differ-
ent motif distributions; (2) both data-based microcircuits have
similar circuit dynamics and average computational capabilities
but different computational properties for individual tasks; and
(3) the degree distribution is the aspect of the connectivity
structure of both data-based microcircuit templates that is
responsible for their dynamical properties and their computa-
tional properties.

4.1. Similar global structural properties but different motif
distributions

Thomson et al. circuits and Binzegger et al. circuits have similar
small-world properties and their degree-distributions share char-
acteristic main features. For both circuit templates the average de-
gree was highest for excitatory neurons in layer 2/3, suggesting the
importance of hubs in a layer where both cortical input streams
merge. Furthermore the average degree of neurons in layer 2/3,
layer 4 and layer 5 correlates for both cortical microcircuit tem-
plates (correlation coefficient of 0.74).
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The somewhat more amorphous-like connectivity pattern of
Binzegger et al. circuits may be attributed to a few diffuse synaptic
connections that are emerging at the boundaries between two
adjacent layers. These might be the results of slightly shifted layer
boundaries for several three-dimensional cell reconstructions ob-
tained at different locations in the primary visual cortex. Dendritic
and axonal arbors of two cells, which are non-overlapping in case
of precise layer boundaries, could in case of shifted layer-bound-
aries account for additional diffuse synaptic connectivity.

The most distinct structural difference between the two micro-
circuit templates is expressed in their motif distribution (Figs. 4
and 6).17

The number of reciprocal connections for Thomson et al. cir-
cuits is smaller than for the corresponding amorphous circuits
(Fig. 4C), whereas for the Binzegger et al. circuits it is twice as large
as for amorphous circuits (Fig. 4D). Furthermore only for Binzegger
et al. circuits highly connected motifs consisting of three nodes are
over-represented (Fig. 4E), whereas the motif distribution for
Thomson et al. circuits (Fig. 4C) can be primarily attributed to their
degree-distribution. Scrambling the connectivity structure while
leaving the degrees of nodes invariant does not change the motif
distribution for Thomson et al. circuits (see Figs. 5 and 6) but for
Binzegger et al. circuits.

Remarkably, the motif distribution of Thomson et al. circuits
matches to some degree the motif distribution of a superfamily
of biological information-processing networks reported in Milo
et al. (2004). Their connectivity patterns show highly over-repre-
sented three node motifs 5, 8, and 11 and are lacking motifs 1, 3,
4, and 6 when compared to random networks. Analogous, in Thom-
son et al. circuits motifs 5 and 11 occur with a frequency signifi-
cantly higher than in random networks, whereas motif 4 is
under-represented. The feedforward motif 5 has been theoretically
and experimentally linked to signal-processing tasks such as per-
sistence detection and pulse generation (see Alon, 2006). However,
the frequent occurrence of motif 3 is atypical for this superfamily.

It should be noted that the different results for Thomson et al.
circuits and Binzegger et al. circuits are not contradictory but
rather point out structural differences between potential synaptic
connectivity specified by Binzegger et al. circuits and functional
synaptic connectivity specified by Thomson et al. circuits. In prin-
ciple Thomson et al. circuits can be considered as sub-graphs of
17 The motif distributions for both data-based cortical microcircuits differ signifi-
cantly from the motif distributions of corresponding amorphous circuits that were
generated from the two data-based cortical microcircuits by scrambling their
connectivity structure, but these differences are not consistent for both data-based
cortical microcircuits.
Binzegger et al. circuits which were shaped by synaptic plasticity
according to their specific functional role. Furthermore the number
of synapses in a microcircuit has an effect on the local and global
structural properties. We introduced for each cortical microcircuit
template to some extent arbitrarily a global constant factor that
scales all synaptic connection probabilities to match the average
total number of synaptic connections for Thomson et al. circuits
and Binzegger et al. circuits.

4.2. Similar circuit dynamics and average computational capabilities
but different computational properties

Both microcircuit templates have similar circuit dynamics
(Fig. 7). The power spectral densities show an excess power at
low frequencies between 5 and 50 Hz, which is consistent with
experimental results showing peaks in the 20–60 Hz range for cells
in area MT in behaving Monkey (Bair et al., 1994). The interspike
interval distributions show no evidence for power-law behavior
but have exponential tails as predicted by Poisson processes. Neu-
rons slightly tend to burst with longer periods of low firing activity
resembling experimental results obtained in cat cerebral cortex
during slow wave sleep (Bedard et al., 2006; Destexhe et al.,
1999; Steriade, 2003). The most frequently occurring value of the
coefficient of variation of interspike intervals for neurons in the cir-
cuits that we considered was for both microcircuit templates 0.72.
This value is lower than the reported value of about 1 for MT cells
and V1 cells in behaving monkey (Softky and Koch, 1992, 1993) in
response to bars and textured stimuli. This might be attributed to a
missing diversity in neuron types (e.g. bursting and stuttering
cells), synapse types (e.g. NMDA receptors), and a missing calcium
dynamics that introduces processes on many different time scales.

It turned out that the average information processing capabili-
ties of Thomson et al. circuits and Binzegger et al. circuits are sim-
ilar but differ for specific tasks (Fig. 9). In particular for the chosen
set of seven computational tasks Binzegger et al. circuits support
slightly superior non-linear fusion of information contained in
both input streams.

The degree distribution is the aspect of the connectivity struc-
ture of both data-based microcircuit templates that is responsible
for their dynamical properties and their computational properties

4.3. The degree distribution determines the dynamical properties and
the computational properties

The degree distribution of neurons largely determines the cir-
cuit dynamics for both microcircuit templates. Degree-controlled
circuits largely preserve the mean cross covariances of the firing
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rates of neurons and the mean coefficients of variation of inters-
pike intervals of data-based circuits independent of the dynamic
regime controlled by the scaling parameters for the synaptic
weights of the input and the recurrent connections (Fig. 8).

When we changed the connectivity structure of these two
microcircuit models in order to see which aspects of it are essential
for the computational performance, we found in agreement with
Häusler and Maass (2007) that the distribution of degrees of nodes
is also a key factor for their computational performance. Scram-
bling the connectivity structure but leaving the degree distribution
of neurons invariant did not result in a change in the average com-
putational performance (see Section 3.6).

These results suggest that the degree-controlled scrambling of
the connectivity structure preserves specific statistical properties
of the circuit dynamics that are crucial for information processing
and correlate with the average computational performance
(Fig. 10). For the chosen set of information processing tasks the best
performance is achieved in the regular asynchronous firing regime.

It is interesting to relate these results to theoretical results ob-
tained for much simpler models. Ganguli et al. (2008) showed for
networks consisting of linear neurons that the graph structure
has an impact on the computational properties, more precisely
the memory capacity of the network. Furthermore, Schrauwen
et al. (2009) have shown by means of mean-field analysis that
the performance of randomly connected recurrent networks built
from neurons whose output can only take one of two values (bin-
ary output) depends strongly on the network connectivity struc-
ture and is related to the in-degree of neurons in addition to the
distribution of synaptic weights.

It can be verified by amorphous control circuits that scrambling
of the connectivity structure can have different effects on the aver-
age computational performance. Such scrambling increases the
average performance for Binzegger et al. circuits but decreases
the average performance for Thomson et. al circuits. This suggests
that only Thomson et al. circuits are optimized for a specific set of
computations, whereas Binzegger et al. circuits represent potential
synaptic connections that provide the possibility of implementing
various different sets of computations.

4.3.1. Suggestions for further experimental and simulation based
research

The results of this article point to three directions for further re-
search. First, further work is needed to provide more reliable
microcircuit models. The two data-based cortical microcircuit tem-
plates were estimated with different experimental techniques, i.e.
dual intracellular recordings in vitro and three-dimensional cell
reconstructions, and it is up to now unclear how to relate them
to each other or if possible merge them to one unified cortical
microcircuit template. Both microcircuit templates do not account
for the lateral connectivity patterns of the neocortex. The Thomson
et al. microcircuit template was estimated from neurons in slices
within a maximum horizontal distance of 100 lm, whereas the
Binzegger et al. microcircuit template was obtained by averaging
statistical data of whole cell reconstructions discarding informa-
tion about horizontal locations of neurons. Current work in pro-
gress Potjans and Diesmann (2008) suggests that the assumption
of Gaussian lateral connectivity patterns presumably explains to
some extent the discrepancies between both microcircuit tem-
plates. Merging both datasets could potentially result in a unified
microcircuit template with computational properties and circuit
dynamics in between those obtained for the two microcircuit tem-
plates analyzed in this study.

Secondly, a thorough empirical analysis of the distribution of
motifs (especially for more than two nodes) in cortical microcir-
cuits is needed. So far we can only analyze the distribution of mo-
tifs that is induced by data connection probabilities for any two
neurons A and B. Preliminary data suggest however, that the prob-
ability of a synaptic connection from B to A depends on the pres-
ence of a synaptic connection from A to B. For instance whole-
cell recordings of layer 5 pyramidal neurons of somatosensory, vi-
sual and prefrontal areas have shown that reciprocal connections
are P 3 times more likely than in random networks (Holmgren
et al., 2003; Markram, 1997; Song et al., 2005; Wang et al.,
2006). Similarly for three neurons A; B; C (of specific types) the
probability of a synaptic connection from C to A is likely to depend
on the presence or absence of other synaptic connections between
A; B; C. This was confirmed by triple and quadruple whole-cell
recordings of layer 5 pyramidal neurons in the rat visual cortex
that showed that motifs consisting of many edges are over-repre-
sented when compared to random networks (Song et al., 2005).
Likewise the probability that a layer 2/3 pyramidal neuron in rat
somatosensory cortex makes a synaptic connection with two layer
5 neurons is fourfold higher compared with random connectivity if
the layer 5 neurons are synaptically connected (motif 5 and 8)
(Kampa et al., 2006). In contrast the probability that a layer 5 pyra-
midal neuron receives input from two layer 2/3 pyramidal neurons
is threefold higher compared with random networks if the layer 2/
3 pyramidal neurons are not connected (motif 1). Reliable data for
such conditioned connection probabilities are needed not only for
all possible types of neurons A; B; C, but also for all possible lam-
inar locations of these three neurons.

Finally, the microcircuit templates should be tested on a larger
variety of computational tasks. Our results on the computational
performance of the two microcircuit templates and several varia-
tions of them depend on a somewhat arbitrary choice of seven con-
crete computational tasks, and on the decision to only specialize
the synaptic weights of readout neurons for a specific computa-
tional task, while having the weights within the circuit chosen
from data-based probability distributions(hence not specialized
for a particular computational task). Furthermore the results pre-
sumably depend also on the specific choice of distributions for in-
put spike trains from external sources. In particular, geniculate
relay cells have a firing pattern that can vary between tonic and
bursting (Sherman, 1996). Burst firing has been shown to make a
strong contribution to the initial phasic part of visual responses
to gratings (Guido et al., 1992) and flashed spots (Guido and Sher-
man, 1998).

5. Conclusions

This article has shown that the two available templates for cor-
tical microcircuits have quite interesting structural, dynamical, and
computational features. In particular we have shown that it is pos-
sible to relate the structure and the (conjectured) computational
function of these two microcircuit templates. This positive result
will hopefully stimulate further systematic experimental work on
the anatomy and physiology of cortical microcircuits, that is
needed in order to arrive at a definite understanding of the compu-
tational function of cortical microcircuits and their genetically en-
coded structural basis.
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