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Abstract

We show that under suitable assumptions (primarily lirezion) a simple and
perspicuous online learning rule for Information Bottlekeoptimization with
spiking neurons can be derived. This rule performs on combemthmark tasks
as well as a rather complex rule that has previously beenogexp[1]. Further-
more, the transparency of this new learning rule makes ar¢tieal analysis of
its convergence properties feasible. A variation of tharméng rule (with sign
changes) provides a theoretically founded method for periftgy Principal Com-
ponent Analysis (PCA) with spiking neurons. By applyingsthile to an ensem-
ble of neurons, different principal components of the inpam be extracted. In
addition, it is possible to preferentially extract thosepipal components from
incoming signalsX that are related or are not related to some additional target
signal Y. In a biological interpretation, this target signé} (also called rele-
vance variable) could represent proprioceptive feedbiagkit from other sensory
modalities, or top-down signals.

1 Introduction

The Information Bottleneck (IB) approach [2] allows the eéstigation of learning algorithms for
unsupervised and semi-supervised learning on the basieaf optimality principles from infor-
mation theory. Two types of time-varying inpul§ and Y are considered. The learning goal is
to learn a transformation fronX' into another signal” that extracts only those components from
X that are related to the relevance sigial. In a more global biological interpretatioki might
represent for example some sensory input, &nthe output of the first processing stage forin
the cortex. In this articl@” will simply be the spike output of a neuron that receives thikestrains
X as inputs. The starting point for our analysis is the firstigay rule for IB optimization in for
this setup, which has recently been proposed in [1], [3].ddmhately, this learning rule is compli-
cated, restricted to discrete time and no theoretical aigbf its behavior is feasible. Any online
learning rule for IB optimization has to make a number of difgimg assumptions, since true IB
optimization can only be carried out in an offline setting. $dew here, that with a slightly different
set of assumptions than those made in [1] and [3], one aravagirastically simpler and intuitively
perspicuous online learning rule for IB optimization witbilking neurons. The learning rule in [1]
was derived by maximizing the objective functiohy:

Lo =—I(X,Y)+ BI(Y,Yr) — yDk(P(Y)||P(Y)), @

The termDKL(P(Y)HNP(f/)) denotes the Kullback-Leibler divergence between the distribuftF )
and a target distributio®(Y"). This term ensures that the weights remain bounded, it is shortly distirsse

[4].




wherel(.,.) denotes the mutual information between its argumentssand positive trade-off fac-
tor. The target signal was assumed to be given by a spike train. The learning rufe fig (see
[3] for a detailed interpretation) is quite involved and uégs numerous auxiliary definitions (hence
we cannot repeat it in this abstract). Furthermore, it cdy ba formulated in discrete time (steps
size At) for reasons we want to outline briefly: In the lindit — 0 the essential contribution to the
learning rule, which stems from maximizing the mutual imfation (Y, Y7 ) between output and
target signal, vanishes. This difficulty is rooted in a ratteehnical assumption, made in appendix

A.4 in [3], concerning the expectation vallﬁé at time stepk of the neural firing probability ,
given the information about the postsynaptic spikes andaiget signal spikes up to the preceding
time stepk — 1 (see our detailed discussion in [&])The restriction to discrete time prevents the
application of powerful analytical methods like the Fokldanck equation, which requires contin-
uous time, for analyzing the dynamics of the learning rule.

In section 2 of this paper, we propose a much simpler leamitggfor IB optimization with spiking
neurons, which can also be formulated in continuous timecolmtrast to [3], we approximate the

critical termﬁk with a linear estimator, under the assumption tkaand Y are positively corre-
lated. Further simplifications in comparison to [3] are &#id by considering a simpler neuron
model (the linear Poisson neuron, see [5]). However we shoaugh computer simulation in [4]
that the resulting simple learning rule performs equallylvia@ the more complex neuron model
with refractoriness from [1] - [5]. The learning rule preses here can be analyzed by the means of
the drift function of the corresponding Fokker-Planck egpra The theoretical results are outlined
in section 3, followed by the consideration of a concrete firnization task in section 4. A link
between the presented learning rule and Principal Compd\alysis (PCA) is established in sec-
tion 5. A more detailed comparison of the learning rule pnése here and the one of [3] as well as
results of extensive computer tests on common benchmaek tas be found in [4].

2 Neuron model and learning rule for IB optimization

We consider a linear Poisson neuron wiftsynapses of weights = (wy, ..., wy) . Itis driven by
the inputX,, consisting ofN' spike trainsX;(t) = Y=, d(t — t%), j € {1,..., N}, wheret! denotes
the time of the i'th spike at synapge The membrane potentialt) of the neuron at time is given
by the weighted sum of the presynaptic activiti€s) = (v (t),...,vn(t)):

N

u(t) = Y w(t) (2
j=1

vi(t) = [ €t — s)X;(s)ds.

The kernek(.) models the EPSP of a single spike (in simulatieft$ was chosen to be a decaying
exponential with a time constant f, = 10 ms). The postsynaptic neuron spikes at timeith the
probability densityy(¢):

Uo

with uo being a normalization constant. The postsynaptic spike isalenoted a¥’(t) = >, 6(t —
t'), with the firing timest’;.
We now consider the IB task described in general in [2], witichsists of maximizing the objective
function L1, in the context of spiking neurons. As in [6], we introduceuatlier term L3 into
the the objective function that reflects the higher metabwodists for the neuron to maintain strong
synapses, a natural, simple choice belng= —\ wa-. Thus the complete objective functidn
to maximize is:
N
L=ILp+Ls=—I(X,Y)+BI(Yr,Y) = A>_ w?. (3)

j=1

>The remedy, proposed in section 3.1 in [3], of replacing the mutuatrimdtion I(Y, Yr) in Lo by an
information ratel (Y, Yr)/At does not solve this problem, as the tef(, Yr)/At diverges in the continuous
time limit.



The objective function differs slightly from L, given in (1), which was optimized in [3]; this
change turned out to be advantageous for the PCA learniegyivén in section 5, without signifi-
cantly changing the characteristics of the IB learning.rule

The online learning rule governing the change of the weightg) at timet is obtained by a gradient
ascent of the objective functiab:

iw (t) — aaiL
dt J n awj'
For small learning ratea and under the assumption that the presynaptic idpund the target
signalY are stationary processes, the following learning rule aaddrived:
d oo Y()v(t) - T _
aw® = oy (-0 - u0) + 5 (Fvrle) - FIE) ) - ads(0), @)

where the operatdr.) denotes the low-pass filter with a time constant(in simulationsr¢c = 3s),

i. e. for a functionf:
t J—
70 == [ ew (<120 sojas ©

TC J -0

The operato’[Yr|(t) appearing in (4) is equal to the expectation value of the niangpotential
(u(t)) x|y, = Elu(t)[Yr], given the observationd’r(7)|r € R) of the relevance signali' is thus
closely linked to estimation and filtering theory. For a kmowint distribution of the processes
andYr, the operato# could in principal be calculated exactly, but it is not cleaw this quantity
can be estimated in an online process; thus we look for a simpproximation ta?’. Under the
above assumptiong; is time invariant and can be approximated by a Volterra sdf@ details see

f4]):
WOy, = FVO =3 [ [ malt=trot =) [ Vittds ©)

n=0
In this article, we concentrate on the situation, where Heawell approximated by its linearization
I [Yr](t), corresponding to a linear estimator(@f(t)) yy,.. For F1[Yr](t) we make the following
ansatz:

FlYr](t) = Fi[Yr](t) = c-up(t) = c/ k1(t —t1)Yp(t1)dty. @)
R

According to (7),F is approximated by a convolutionr(t) of the relevance signalr and a suit-

able prefactor. Assuming positively correlated andYr, x1(t) is chosen to be a non-anticipating

decaying exponentialkp(—t/79)O(t) with a time constant, (in simulationsry = 100 ms), where

O(t) is the Heaviside step function. This choice is motivatedhgydtandard models for the impact

of neuromodulators (see [7]), thus such a kernel may be im@ieged in a realistic biological mech-

anism. It turned out that the choice gf was not critical, it could be varied over a decade ranging

from 10 ms to 100 ms. The prefactor appearing in (7) can be determined from the fact thats

the optimal linear estimator of the form given in (7), leaglio:

_ {ur(t), u(t))
(ur(t), ur(t))
The quantityc can be estimated online in the following way:
%c(t) = (ur(t) —ur(t)) [(u(t) —u(t) — c(t)(ur(t) —ur(t))].

Using the above definitions, the resulting learning ruleieig by (in vector notation):

Gult) = a8 [ (u(t) = (1) + () 3(ur(t) ~ wr(e)] ~ adu?) ©

Equation (8) will be called the spike-based learning ruethe postsynaptic spike traif(¢) explic-
itly appears. An accompanying rate-base learning rule tsnkee derived:

Gu(t) = @z [ (u(t) ) + e 3ur(€) ~ wr(0)] - (). ©




3 Analytical results

The learning rules (8) and (9) are stochastic differentipiations for the weights); driven by the
processed’(.), v;(.) andur(.), of which the last two are assumed to be stationary with thanse
(vj(t)) = vo and(ur(t)) = uro respectively. The evolution of the solutiongt) to (8) and (9)
may be studied via a Master equation for the probabilityritistion of the weight®(w, t) (see [8]).
For small learning rates, the stationary distributiop(w) sharply peaksat the roots of the drift
function A(w) of the corresponding Fokker-Planck equation (the detaittvation is given in [4]).
Thus, fora <« 1, the temporal evolution of the learning rules (8) and (9) rbaystudied via the
deterministic differential equation:
d 1

—0 = A D) = — 0 1 U — U 1
il ) al/ouoz( C% + BCH) W — arb (20)

—~

I
] =

Wy, (11)
1

<.
Il

wherez is the total weight. The matrig’ = —C? + 8C* (with the element€’;;) has two contribu-
tions. C? is the covariance matrix of the input and the matitk quantifies the covariance between
the activitiesv; and the traceu;:

oy = (mt), ()
(i), ur (t)){ur (), v;(t))

(ur(t),ur(t))
Now the critical pointav* of dynamics of (10) are investigated. These critical poiifitasymptoti-
cally stable, determine the peaks of the stationary distiob p(w) of the weightsw; we therefore
expect the solutions of the stochastic equations to fluetaitund these fixed points*. If 5 and\

are much larger than one, the term containing the métfixxan be neglected and equation (10) has
a unique stable fixed point*:

1

w' x CT
cl = (wi(t),ur(t)).

Under this assumption the maximal mutual information betwéhe target signat(¢) and the
output of the neurorY (¢) is obtained by a weight vectasr = w* that is parallel to the covariance
vectorCT.

In general, the critical points of equation (10) depend andigenvalue spectrum of the symmetric
matrix C: If all eigenvalues are negative, the weight vecafodecays to the lower hard bouid In
case of at least one positive eigenvalue (which existsisfchosen large enough), there is a unique
stable fixed pointv*:

wt = —H p (12)
/\UQVOb

N
i=1

The vectorb appearing in (12) is the eigenvector Gf corresponding to the largest eigenvajue
Thus, a stationary unimodadistribution p(w) of the weightsw is predicted, which is centered
around the valuev*.

4 A concrete example for IB optimization

A special scenario of interest, that often appears in tkeditire (see for example [1], [9] and [10]),
is the following: The synapses, and subsequently the inglkie rains, formi/ different subgroups

%It can be shown that the diffusion term in the FP equation scale€like), i. e. for small learning rates,
fluctuations tend to zero and the dynamics can be approximated by theiié equation (10) .
“Note thatp(w) denotes the distribution of the weight vector, not the distribution of a singightig(w; ).
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Figure 1: A The basic setup for the Information Bottleneck optimizatidB-D Numerical and
analytical results for the IB optimization task describadsection 4. The temporal evolution of
the average weights; = 1/M ZjeGl w; of the four different synaptic subgrougs are shown.

B The performance of the spike-based rule (8). The highejgtctiary corresponds ta; it stays
close to its analytical predicted fixed point value obtaifiein (12), which is visualized by the
upper dashed line. The trajectory just below belong&4pfor which the fixed point value is also
plotted as dashed line. The other two trajectotigsandw, decay and eventually fluctuate above
the predicted value of zercC The performance of the rate-based rule (9); results areogoat to
the ones of the spike-based rule Simulation of the deterministic equation (10).

Gy, le{1,...,N/M} of the same siz&/M < N. The spike trainsY; and Xy, j # k, are statis-
tically independent if they belong to different subgroupihin a subgroup there is a homogeneous
covariance ternC?k = ¢, j # kfor j, k € G, which can be due either to spike-spike correlations
or correlations in rate modulations. The covariance beivibe target signal and the spike trains
X is homogeneous among a subgroup.

As a numerical example, we consider in figure 1 a modificatfdheIB task presented in figure 2 of
[1]. The N = 100 synapses formi/ = 4 subgroupss; = {25(1—1)+1,...,25l}, L € {1,...,4}.
Synapses ili7; receive Poisson spike trains of constant rate= 20 Hz, which are mutually spike-
spike correlated with a correlation-coefficiertf 0.5. The same holds for the spike trains @#.
Spike trains foiG3 andG, are uncorrelated Poisson trains with a common rate modulatrhich is
equal to low pass filtered white noise (cut-off frequehdyz) with meanv, and standard deviation
(SD) o = vy /2. The rate modulations fa#; andG, are however independent (though identically
distributed). Two spike trains for different synapse swogs are statistically independent. The
target signaly’> was chosen to be the sum of two Poisson trains. The first isredtaat rate, and
has spike-spike correlations with; of coefficient 0.5; the second is a Poisson spike train wigh th
same rate modulation as the spike trainggfsuperimposed by additional white noise of SHz.
Furthermore, the target signal was turned off during randiaerval$. The resulting evolution of
the weights is shown in figure 1, illustrating the performaiot the spike-based rule (8) as well as
of the rate-based rule (9). As expected, the weights pandG5 are potentiated asr has mutual
information with the corresponding part of the input. Th@ayses of7, andG, are depressed.
The analytical result for the stable fixed point obtained from (12) is shown as dashed lines and
is in good agreement with the numerical results. Furtheentloe trajectory of the solutio(t) to

5Spike-spike correlated Poisson spike trains were generated acctwdigmethod outlined in [9].
5These intervals of silence were modeled as random telegraph noise witk adimtant of 200 ms and a
overall probability of silence of.5.



the deterministic equation (10) is plotted.

The presented concrete IB task was slightly changed fronotleepresented in [1], because for the
setting used here, the largest eigenvale# C' and its corresponding eigenvectacan be calculated
analytically. The simulation results for the original sagtin [1] can also be reproduced with the
simpler rules (8) and (9) (not shown).

5 Relevance-modulated PCA with spiking neurons

The presented learning rules (8) and (9) exhibit a closdiogldo Principal Component Analysis
(PCA). A learning rule which enables the linear Poisson oeup extract principal components
from the inputX(.) can be derived by maximizing the following objective fuct

N N
LPCA:*LIB*)\ZW?:JFI(XaY)*ﬂ[(YTvy)*)\Zw]Zv (13)
=1

j=1

which just differs from (3) by a change of sign in front bfg. The resulting learning rule is in close
analogy to (8):

d Yt
=

The corresponding rate-based version can also be derivedoiWthe trace.r(.) of the target sig-
nal, it can be seen that the solutidiit) of deterministic equation corresponding to (14) (whichfis o
the same form as (10) with the obvious sign changes) convéogen eigenvector of the covariance
matrix C°. Thus, for3 = 0 we expect the learning rule (14) to perform PCA for small téxag rates
a. The rule (14) without the relevance signal is comparablether PCA rules, e. g. the covariance
rule (see [11]) for non-spiking neurons.

The side information given by the relevance sighal.) can be used to extract specific principal
components from the input, thus we call this paradigm relegamodulated PCA. Before we con-
sider a concrete example for relevance-modulated PCA, we tegpoint out a further application
of the learning rule (14).

The target signal’r can also be used to extract different components from thet wjih different
neurons (see figure 2). Considerneurons receiving the same inplit These neurons have the
outputsYi (.), ..., Y, (t), target signals}(.),..., Y (¢t) and weight vectorsv!(¢), ..., w™(t),
the latter evolving according to (14). In order to prevehtadight vectors from converging towards
the same eigenvector 6f° (the principal component), the target sigivgl for neuroni is chosen to
be the sum of all output spike trains excépt

[(u(t) —u(t)) — c(t) Blur(t) —ur(t)] — arw(?). (14)

N
Yit)= > ;). (15)

J=1, j#i

If one weight vecton’(t) is already close to the eigenvectdrof C°, than by means of (15), the
basins of attraction o#* for the other weight vectors/(t), j # i are reduced (or even vanish,
depending on the value @. It is therefore less likely (or impossible) that they atemverge ta:".

In practice, this setup is sufficiently robust, if only a shmmber K 4) of different components is
to be extracted and if the differences between the eigeesaluof these principal components are
not too big. For the PCA learning rule, the time constaptof the kernels; (see (7)) had to be
chosen smaller than for the IB tasks in order to obtain goatbpeance; we used; = 10ms in
simulations. This is in the range of time constants for IP$R=ce, the signals;. could probably
be implemented via lateral inhibition.

The learning rule considered in [3] displayed a close refatd Independent Component Analysis

(ICA). Because of the linear neuron model used here and tieafization of further terms in the
derivation, the resulting learning rule (14) performs P@&tead of ICA.

The results of a numerical example are shown in figure 2. 7hhe 3 for the regular PCA experi-
ment neurons receive the same inguand their weights change according to (14). The weights and
input spike trains are grouped into four subgrodgs . . . , G4, as for the IB optimization discussed

"Note that the inpu¥’ may well exhibit a much larger number of principal components. Hawikis only
possible to extract a limited number of them by different neurons at tihe siane.
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Figure 2: A The basic setup for the PCA task: Thedifferent neurons receive the same ingat
and are expected to extract different principal componehis B-F The temporal evolution of the
average subgroup weights = 1/25 ZjeG,, w; for the groupss; (black solid line) G5 (light gray
solid line) andG'; (dotted line).B-C Results for the relevance-modulated PCA task: neuron 1 (fig.
B) specializes ori7> and neuron 2 (figC) on subgroups. D-F Results for the regular PCA task:
neuron 1 (figD) specialize orG{, neuron 2 (figE) on G2 and neuron 3 (figF) on G5 .

in section 4. The only difference is that all groups (except,) receive spike-spike correlated
Poisson spike trains with a correlation coefficient for theups G, G2, G3 of 0.5, 0.45, 0.4
respectively. Grouydr, receives uncorrelated Poisson spike trains. As can be adeyure 2D to

F, the different neurons specialize on different principatnponents corresponding to potentiated
synaptic subgroup&'y, G» andGs5 respectively. Without the relevance signais(.), all neurons
tend to specialize on the principal component correspanttiiiz; (not shown).

As a concrete example for relevance-modulated PCA, we dentlie above setup with slight mod-
ifications: Now we wanin = 2 neurons to extract the componeidts andG3 from the inputX,
and not the principal compone@ . This is achieved with an additional relevance sidrig) which

is the same for both neurons and has spike-spike corretatiith G> andG3 of 0.45 and 0.4. We
add the termy/(Y,Y) to the objective function (13), whergis a positive trade-off factor. The
resulting learning rule has exactly the same structure 4 (fith an additional term due t&.
The numerical results are presented in figuf®@ @ndC, showing that it is possible in this setup to
explicitly select the principle components that are extgdgor not extracted) by the neurons.

6 Discussion

We have introduced and analyzed a simple and perspicuoeghat enables spiking neurons to
perform IB optimization in an online manner. Our simulasashow that this rule works as well
as the substantially more complex learning rule that hadipusly been proposed in [3]. It also
performs well for more realistic neuron models as indicatef#]. We have shown that the con-
vergence properties of our simplified IB rule can be analyzét the help of the Fokker-Planck
equation (alternatively one may also use the theoretiemhé&work described in A.2 in [12] for its
analysis). The investigation of the weight vectors to whigis rule converges reveals interesting
relationships to PCA. Apparently, very little is known albéearning rules that enable spiking neu-
rons to extract multiple principal components from an ingiéam (a discussion of a basic learning
rule performing PCA is given in chapter 11.2.4 of [5]). We balemonstrated both analytically and
through simulations that a slight variation of our new léagnrule performs PCA. Our derivation
of this rule within the IB framework opens the door to new ations of PCA where preferentially
those components are extracted from a high dimensional simam that are —or are not—related to
some external relevance variable. We expect that a furtivestigation of such methods will shed
light on the unknown principles of unsupervised and semiesused learning that might shape and
constantly retune the output of lower cortical areas tormegliate and higher cortical areas. The
learning rule that we have proposed might in principle be=dblextract from high-dimensional



sensory input streams those components that are related to other sensory medaditito internal
expectations and goals.

Quantitative biological data on the precise way in whiclevahce signal¥ (such as for example
dopamin) might reach neurons in the cortex and modulate $ya@aptic plasticity are still missing.
But it is fair to assume that these signals reach the synamsiv-pass filtered form of the typer
that we have assumed for our learning rules. From that petigpeone can view the learning rules
that we have derived (in contrast to the rules proposed ing8]ocal learning rules.
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