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Abstract

We show that under suitable assumptions (primarily linearization) a simple and
perspicuous online learning rule for Information Bottleneck optimization with
spiking neurons can be derived. This rule performs on commonbenchmark tasks
as well as a rather complex rule that has previously been proposed [1]. Further-
more, the transparency of this new learning rule makes a theoretical analysis of
its convergence properties feasible. A variation of this learning rule (with sign
changes) provides a theoretically founded method for performing Principal Com-
ponent Analysis (PCA) with spiking neurons. By applying this rule to an ensem-
ble of neurons, different principal components of the inputcan be extracted. In
addition, it is possible to preferentially extract those principal components from
incoming signalsX that are related or are not related to some additional target
signalYT . In a biological interpretation, this target signalYT (also called rele-
vance variable) could represent proprioceptive feedback,input from other sensory
modalities, or top-down signals.

1 Introduction

The Information Bottleneck (IB) approach [2] allows the investigation of learning algorithms for
unsupervised and semi-supervised learning on the basis of clear optimality principles from infor-
mation theory. Two types of time-varying inputsX andYT are considered. The learning goal is
to learn a transformation fromX into another signalY that extracts only those components from
X that are related to the relevance signalYT . In a more global biological interpretationX might
represent for example some sensory input, andY the output of the first processing stage forX in
the cortex. In this articleY will simply be the spike output of a neuron that receives the spike trains
X as inputs. The starting point for our analysis is the first learning rule for IB optimization in for
this setup, which has recently been proposed in [1], [3]. Unfortunately, this learning rule is compli-
cated, restricted to discrete time and no theoretical analysis of its behavior is feasible. Any online
learning rule for IB optimization has to make a number of simplifying assumptions, since true IB
optimization can only be carried out in an offline setting. Weshow here, that with a slightly different
set of assumptions than those made in [1] and [3], one arrivesat a drastically simpler and intuitively
perspicuous online learning rule for IB optimization with spiking neurons. The learning rule in [1]
was derived by maximizing the objective function1 L0:

L0 = −I(X,Y ) + βI(Y, YT ) − γDKL(P (Y )‖P (Ỹ )), (1)

1The termDKL(P (Y )‖P (Ỹ )) denotes the Kullback-Leibler divergence between the distributionP (Y )

and a target distributionP (Ỹ ). This term ensures that the weights remain bounded, it is shortly discussed in
[4].
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whereI(., .) denotes the mutual information between its arguments andβ is a positive trade-off fac-
tor. The target signalYT was assumed to be given by a spike train. The learning rule from [1] (see
[3] for a detailed interpretation) is quite involved and requires numerous auxiliary definitions (hence
we cannot repeat it in this abstract). Furthermore, it can only be formulated in discrete time (steps
size∆t) for reasons we want to outline briefly: In the limit∆t → 0 the essential contribution to the
learning rule, which stems from maximizing the mutual informationI(Y, YT ) between output and
target signal, vanishes. This difficulty is rooted in a rather technical assumption, made in appendix
A.4 in [3], concerning the expectation valueρ

k
at time stepk of the neural firing probabilityρ ,

given the information about the postsynaptic spikes and thetarget signal spikes up to the preceding
time stepk − 1 (see our detailed discussion in [4])2. The restriction to discrete time prevents the
application of powerful analytical methods like the Fokker-Planck equation, which requires contin-
uous time, for analyzing the dynamics of the learning rule.
In section 2 of this paper, we propose a much simpler learningrule for IB optimization with spiking
neurons, which can also be formulated in continuous time. Incontrast to [3], we approximate the
critical termρ

k
with a linear estimator, under the assumption thatX andYT are positively corre-

lated. Further simplifications in comparison to [3] are achieved by considering a simpler neuron
model (the linear Poisson neuron, see [5]). However we show through computer simulation in [4]
that the resulting simple learning rule performs equally well for the more complex neuron model
with refractoriness from [1] - [5]. The learning rule presented here can be analyzed by the means of
the drift function of the corresponding Fokker-Planck equation. The theoretical results are outlined
in section 3, followed by the consideration of a concrete IB optimization task in section 4. A link
between the presented learning rule and Principal Component Analysis (PCA) is established in sec-
tion 5. A more detailed comparison of the learning rule presented here and the one of [3] as well as
results of extensive computer tests on common benchmark tasks can be found in [4].

2 Neuron model and learning rule for IB optimization

We consider a linear Poisson neuron withN synapses of weightsw = (w1, . . . , wN ) . It is driven by
the inputX, consisting ofN spike trainsXj(t) =

∑

i δ(t − tij), j ∈ {1, . . . , N}, wheretij denotes
the time of the i’th spike at synapsej. The membrane potentialu(t) of the neuron at timet is given
by the weighted sum of the presynaptic activitiesν(t) = (ν1(t), . . . , νN (t)):

u(t) =

N
∑

j=1

wjνj(t) (2)

νj(t) =

∫ t

−∞

ǫ(t − s)Xj(s)ds.

The kernelǫ(.) models the EPSP of a single spike (in simulationsǫ(t) was chosen to be a decaying
exponential with a time constant ofτm = 10ms). The postsynaptic neuron spikes at timet with the
probability densityg(t):

g(t) =
u(t)

u0

,

with u0 being a normalization constant. The postsynaptic spike train is denoted asY (t) =
∑

i δ(t−
tif ), with the firing timestif .
We now consider the IB task described in general in [2], whichconsists of maximizing the objective
function LIB, in the context of spiking neurons. As in [6], we introduce a further termL3 into
the the objective function that reflects the higher metabolic costs for the neuron to maintain strong
synapses, a natural, simple choice beingL3 = −λ

∑

w2
j . Thus the complete objective functionL

to maximize is:

L = LIB + L3 = −I(X,Y ) + βI(YT , Y ) − λ

N
∑

j=1

w2

j . (3)

2The remedy, proposed in section 3.1 in [3], of replacing the mutual information I(Y, YT ) in L0 by an
information rateI(Y, YT )/∆t does not solve this problem, as the termI(Y, YT )/∆t diverges in the continuous
time limit.
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The objective functionL differs slightly from L0 given in (1), which was optimized in [3]; this
change turned out to be advantageous for the PCA learning rule given in section 5, without signifi-
cantly changing the characteristics of the IB learning rule.
The online learning rule governing the change of the weightswj(t) at timet is obtained by a gradient
ascent of the objective functionL:

d

dt
wj(t) = α

∂L

∂wj

.

For small learning ratesα and under the assumption that the presynaptic inputX and the target
signalYT are stationary processes, the following learning rule can be derived:

d

dt
wj(t) = α

Y (t)νj(t)

u(t)u(t)

(

− (u(t) − u(t)) + β
(

F [YT ](t) − F [YT ](t)
))

− αλwj(t), (4)

where the operator(.) denotes the low-pass filter with a time constantτC (in simulationsτC = 3s),
i. e. for a functionf :

f(t) =
1

τC

∫ t

−∞

exp

(

−
t − s

τC

)

f(s)ds. (5)

The operatorF [YT ](t) appearing in (4) is equal to the expectation value of the membrane potential
〈u(t)〉X|YT

= E[u(t)|YT ], given the observations(YT (τ)|τ ∈ R) of the relevance signal;F is thus
closely linked to estimation and filtering theory. For a known joint distribution of the processesX
andYT , the operatorF could in principal be calculated exactly, but it is not clearhow this quantity
can be estimated in an online process; thus we look for a simple approximation toF . Under the
above assumptions,F is time invariant and can be approximated by a Volterra series (for details see
[4]):

〈u(t)〉X|YT
= F [YT ](t) =

∞
∑

n=0

∫

R

· · ·

∫

R

κn(t − t1, . . . , t − tn)

n
∏

i=1

YT (ti)dti. (6)

In this article, we concentrate on the situation, where F canbe well approximated by its linearization
F1[YT ](t), corresponding to a linear estimator of〈u(t)〉X|YT

. ForF1[YT ](t) we make the following
ansatz:

F [YT ](t) ≈ F1[YT ](t) = c · uT (t) = c

∫

R

κ1(t − t1)YT (t1)dt1. (7)

According to (7),F is approximated by a convolutionuT (t) of the relevance signalYT and a suit-
able prefactorc. Assuming positively correlatedX andYT , κ1(t) is chosen to be a non-anticipating
decaying exponentialexp(−t/τ0)Θ(t) with a time constantτ0 (in simulationsτ0 = 100ms), where
Θ(t) is the Heaviside step function. This choice is motivated by the standard models for the impact
of neuromodulators (see [7]), thus such a kernel may be implemented in a realistic biological mech-
anism. It turned out that the choice ofτ0 was not critical, it could be varied over a decade ranging
from 10ms to 100ms. The prefactorc appearing in (7) can be determined from the fact thatF1 is
the optimal linear estimator of the form given in (7), leading to:

c =
〈uT (t), u(t)〉

〈uT (t), uT (t)〉
.

The quantityc can be estimated online in the following way:

d

dt
c(t) = (uT (t) − uT (t)) [(u(t) − u(t)) − c(t)(uT (t) − uT (t))] .

Using the above definitions, the resulting learning rule is given by (in vector notation):

d

dt
w(t) = α

Y (t)ν(t)

u(t)u(t)
[− (u(t) − u(t)) + c(t)β(uT (t) − uT (t))] − αλw(t). (8)

Equation (8) will be called the spike-based learning rule, as the postsynaptic spike trainY (t) explic-
itly appears. An accompanying rate-base learning rule can also be derived:

d

dt
w(t) = α

ν(t)

u0u(t)
[− (u(t) − u(t)) + c(t)β(uT (t) − uT (t))] − αλw(t). (9)
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3 Analytical results

The learning rules (8) and (9) are stochastic differential equations for the weightswj driven by the
processesY (.), νj(.) anduT (.), of which the last two are assumed to be stationary with the means
〈νj(t)〉 = ν0 and〈uT (t)〉 = uT,0 respectively. The evolution of the solutionsw(t) to (8) and (9)
may be studied via a Master equation for the probability distribution of the weightsp(w, t) (see [8]).
For small learning ratesα, the stationary distributionp(w) sharply peaks3 at the roots of the drift
functionA(w) of the corresponding Fokker-Planck equation (the detailedderivation is given in [4]).
Thus, forα ≪ 1, the temporal evolution of the learning rules (8) and (9) maybe studied via the
deterministic differential equation:

d

dt
ŵ = A(ŵ) = α

1

ν0u0z

(

−C0 + βC1
)

ŵ − αλŵ (10)

z =

N
∑

j=1

ŵj , (11)

wherez is the total weight. The matrixC = −C0 + βC1 (with the elementsCij) has two contribu-
tions.C0 is the covariance matrix of the input and the matrixC1 quantifies the covariance between
the activitiesνj and the traceuT :

C0

ij = 〈νi(t), νj(t)〉

C1

ij =
〈νi(t), uT (t)〉〈uT (t), νj(t)〉

〈uT (t), uT (t)〉
.

Now the critical pointsw∗ of dynamics of (10) are investigated. These critical points, if asymptoti-
cally stable, determine the peaks of the stationary distribution p(w) of the weightsw; we therefore
expect the solutions of the stochastic equations to fluctuate around these fixed pointsw∗. If β andλ
are much larger than one, the term containing the matrixC0 can be neglected and equation (10) has
a unique stable fixed pointw∗:

w∗ ∝ CT

CT
i = 〈νi(t), uT (t)〉 .

Under this assumption the maximal mutual information between the target signalYT (t) and the
output of the neuronY (t) is obtained by a weight vectorw = w∗ that is parallel to the covariance
vectorCT .
In general, the critical points of equation (10) depend on the eigenvalue spectrum of the symmetric
matrix C: If all eigenvalues are negative, the weight vectorŵ decays to the lower hard bound0. In
case of at least one positive eigenvalue (which exists ifβ is chosen large enough), there is a unique
stable fixed pointw∗:

w∗ =
µ

λu0ν0b
b (12)

b :=

N
∑

i=1

bi.

The vectorb appearing in (12) is the eigenvector ofC corresponding to the largest eigenvalueµ.
Thus, a stationary unimodal4 distribution p(w) of the weightsw is predicted, which is centered
around the valuew∗.

4 A concrete example for IB optimization

A special scenario of interest, that often appears in the literature (see for example [1], [9] and [10]),
is the following: The synapses, and subsequently the input spike trains, formM different subgroups

3It can be shown that the diffusion term in the FP equation scales likeO(α), i. e. for small learning ratesα,
fluctuations tend to zero and the dynamics can be approximated by the differential equation (10) .

4Note thatp(w) denotes the distribution of the weight vector, not the distribution of a single weight p(wj).
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Figure 1: A The basic setup for the Information Bottleneck optimization. B-D Numerical and
analytical results for the IB optimization task described in section 4. The temporal evolution of
the average weights̃wl = 1/M

∑

j∈Gl
wj of the four different synaptic subgroupsGl are shown.

B The performance of the spike-based rule (8). The highest trajectory corresponds tõw1; it stays
close to its analytical predicted fixed point value obtainedfrom (12), which is visualized by the
upper dashed line. The trajectory just below belongs tow̃3, for which the fixed point value is also
plotted as dashed line. The other two trajectoriesw̃2 andw̃4 decay and eventually fluctuate above
the predicted value of zero.C The performance of the rate-based rule (9); results are analogous to
the ones of the spike-based rule.D Simulation of the deterministic equation (10).

Gl, l ∈ {1, . . . , N/M} of the same sizeN/M ∈ N. The spike trainsXj andXk, j 6= k, are statis-
tically independent if they belong to different subgroups;within a subgroup there is a homogeneous
covariance termC0

jk = cl, j 6= k for j, k ∈ Gl, which can be due either to spike-spike correlations
or correlations in rate modulations. The covariance between the target signalYT and the spike trains
Xj is homogeneous among a subgroup.
As a numerical example, we consider in figure 1 a modification of the IB task presented in figure 2 of
[1]. TheN = 100 synapses formM = 4 subgroupsGl = {25(l−1)+1, . . . , 25l}, l ∈ {1, . . . , 4}.
Synapses inG1 receive Poisson spike trains of constant rateν0 = 20Hz, which are mutually spike-
spike correlated with a correlation-coefficient5 of 0.5. The same holds for the spike trains ofG2.
Spike trains forG3 andG4 are uncorrelated Poisson trains with a common rate modulation, which is
equal to low pass filtered white noise (cut-off frequency5Hz) with meanν0 and standard deviation
(SD) σ = ν0/2. The rate modulations forG3 andG4 are however independent (though identically
distributed). Two spike trains for different synapse subgroups are statistically independent. The
target signalYT was chosen to be the sum of two Poisson trains. The first is of constant rateν0 and
has spike-spike correlations withG1 of coefficient 0.5; the second is a Poisson spike train with the
same rate modulation as the spike trains ofG3 superimposed by additional white noise of SD2Hz.
Furthermore, the target signal was turned off during randomintervals6. The resulting evolution of
the weights is shown in figure 1, illustrating the performance of the spike-based rule (8) as well as
of the rate-based rule (9). As expected, the weights ofG1 andG3 are potentiated asYT has mutual
information with the corresponding part of the input. The synapses ofG2 andG4 are depressed.
The analytical result for the stable fixed pointw∗ obtained from (12) is shown as dashed lines and
is in good agreement with the numerical results. Furthermore the trajectory of the solution̂w(t) to

5Spike-spike correlated Poisson spike trains were generated accordingto the method outlined in [9].
6These intervals of silence were modeled as random telegraph noise with a time constant of 200 ms and a

overall probability of silence of0.5.
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the deterministic equation (10) is plotted.
The presented concrete IB task was slightly changed from theone presented in [1], because for the
setting used here, the largest eigenvalueµ of C and its corresponding eigenvectorb can be calculated
analytically. The simulation results for the original setting in [1] can also be reproduced with the
simpler rules (8) and (9) (not shown).

5 Relevance-modulated PCA with spiking neurons

The presented learning rules (8) and (9) exhibit a close relation to Principal Component Analysis
(PCA). A learning rule which enables the linear Poisson neuron to extract principal components
from the inputX(.) can be derived by maximizing the following objective function:

LPCA = −LIB − λ
N

∑

j=1

w2

j = +I(X,Y ) − βI(YT , Y ) − λ
N

∑

j=1

w2

j , (13)

which just differs from (3) by a change of sign in front ofLIB. The resulting learning rule is in close
analogy to (8):

d

dt
w(t) = α

Y (t)ν(t)

u(t)u(t)
[(u(t) − u(t)) − c(t)β(uT (t) − uT (t))] − αλw(t). (14)

The corresponding rate-based version can also be derived. Without the traceuT (.) of the target sig-
nal, it can be seen that the solutionŵ(t) of deterministic equation corresponding to (14) (which is of
the same form as (10) with the obvious sign changes) converges to an eigenvector of the covariance
matrixC0. Thus, forβ = 0 we expect the learning rule (14) to perform PCA for small learning rates
α. The rule (14) without the relevance signal is comparable toother PCA rules, e. g. the covariance
rule (see [11]) for non-spiking neurons.
The side information given by the relevance signalYT (.) can be used to extract specific principal
components from the input, thus we call this paradigm relevance-modulated PCA. Before we con-
sider a concrete example for relevance-modulated PCA, we want to point out a further application
of the learning rule (14).
The target signalYT can also be used to extract different components from the input with different
neurons (see figure 2). Considerm neurons receiving the same inputX. These neurons have the
outputsY1(.), . . . , Ym(t), target signalsY 1

T (.), . . . , Y m
T (t) and weight vectorsw1(t), . . . , wm(t),

the latter evolving according to (14). In order to prevent all weight vectors from converging towards
the same eigenvector ofC0 (the principal component), the target signalY i

T for neuroni is chosen to
be the sum of all output spike trains exceptYi:

Y i
T (t) =

N
∑

j=1, j 6=i

Yj(t). (15)

If one weight vectorwi(t) is already close to the eigenvectorek of C0, than by means of (15), the
basins of attraction ofek for the other weight vectorswj(t), j 6= i are reduced (or even vanish,
depending on the value ofβ). It is therefore less likely (or impossible) that they alsoconverge toek.
In practice, this setup is sufficiently robust, if only a small number (≤ 4) of different components is
to be extracted and if the differences between the eigenvaluesλi of these principal components are
not too big7. For the PCA learning rule, the time constantτ0 of the kernelκ1 (see (7)) had to be
chosen smaller than for the IB tasks in order to obtain good performance; we usedτ0 = 10ms in
simulations. This is in the range of time constants for IPSPs. Hence, the signalsY i

T could probably
be implemented via lateral inhibition.
The learning rule considered in [3] displayed a close relation to Independent Component Analysis
(ICA). Because of the linear neuron model used here and the linearization of further terms in the
derivation, the resulting learning rule (14) performs PCA instead of ICA.
The results of a numerical example are shown in figure 2. Them = 3 for the regular PCA experi-
ment neurons receive the same inputX and their weights change according to (14). The weights and
input spike trains are grouped into four subgroupsG1, . . . , G4, as for the IB optimization discussed

7Note that the inputX may well exhibit a much larger number of principal components. However it is only
possible to extract a limited number of them by different neurons at the same time.
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Figure 2: A The basic setup for the PCA task: Them different neurons receive the same inputX
and are expected to extract different principal componentsof it. B-F The temporal evolution of the
average subgroup weights̃wl = 1/25

∑

j∈Gl
wj for the groupsG1 (black solid line),G2 (light gray

solid line) andG3 (dotted line).B-C Results for the relevance-modulated PCA task: neuron 1 (fig.
B) specializes onG2 and neuron 2 (fig.C) on subgroupG3. D-F Results for the regular PCA task:
neuron 1 (fig.D) specialize onG1, neuron 2 (fig.E) onG2 and neuron 3 (fig.F) onG3 .

in section 4. The only difference is that all groups (except for G4) receive spike-spike correlated
Poisson spike trains with a correlation coefficient for the groupsG1, G2, G3 of 0.5, 0.45, 0.4
respectively. GroupG4 receives uncorrelated Poisson spike trains. As can be seen in figure 2D to
F, the different neurons specialize on different principal components corresponding to potentiated
synaptic subgroupsG1, G2 andG3 respectively. Without the relevance signalsY i

T (.), all neurons
tend to specialize on the principal component corresponding toG1 (not shown).
As a concrete example for relevance-modulated PCA, we consider the above setup with slight mod-
ifications: Now we wantm = 2 neurons to extract the componentsG2 andG3 from the inputX,
and not the principal componentG1. This is achieved with an additional relevance signalY 0

T , which
is the same for both neurons and has spike-spike correlations with G2 andG3 of 0.45 and 0.4. We
add the termγI(Y, Y 0

T ) to the objective function (13), whereγ is a positive trade-off factor. The
resulting learning rule has exactly the same structure as (14), with an additional term due toY 0

T .
The numerical results are presented in figure 2B andC, showing that it is possible in this setup to
explicitly select the principle components that are extracted (or not extracted) by the neurons.

6 Discussion

We have introduced and analyzed a simple and perspicuous rule that enables spiking neurons to
perform IB optimization in an online manner. Our simulations show that this rule works as well
as the substantially more complex learning rule that had previously been proposed in [3]. It also
performs well for more realistic neuron models as indicatedin [4]. We have shown that the con-
vergence properties of our simplified IB rule can be analyzedwith the help of the Fokker-Planck
equation (alternatively one may also use the theoretical framework described in A.2 in [12] for its
analysis). The investigation of the weight vectors to whichthis rule converges reveals interesting
relationships to PCA. Apparently, very little is known about learning rules that enable spiking neu-
rons to extract multiple principal components from an inputstream (a discussion of a basic learning
rule performing PCA is given in chapter 11.2.4 of [5]). We have demonstrated both analytically and
through simulations that a slight variation of our new learning rule performs PCA. Our derivation
of this rule within the IB framework opens the door to new variations of PCA where preferentially
those components are extracted from a high dimensional input stream that are –or are not– related to
some external relevance variable. We expect that a further investigation of such methods will shed
light on the unknown principles of unsupervised and semi-supervised learning that might shape and
constantly retune the output of lower cortical areas to intermediate and higher cortical areas. The
learning rule that we have proposed might in principle be able to extract from high-dimensional
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sensory input streamsX those components that are related to other sensory modalities or to internal
expectations and goals.
Quantitative biological data on the precise way in which relevance signalsYT (such as for example
dopamin) might reach neurons in the cortex and modulate their synaptic plasticity are still missing.
But it is fair to assume that these signals reach the synapse in a low-pass filtered form of the typeuT

that we have assumed for our learning rules. From that perspective one can view the learning rules
that we have derived (in contrast to the rules proposed in [3]) as local learning rules.
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