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ON THE ORBITS OF HYPERHYPERSIMPLE SETS
WOLFGANG MAASS!

Abstract. This paper contributes to the question of under which conditions recursively
enumerable sets with isomorphic lattices of recursively enumerable.supersets are automorphic
in the lattice of all recursively enumerable sets. We show that hyperhypersimple sets (i.c. sets
where the recursively enumerable supersets form a Boolean algebra) are automorphic if there
is a X'§-definable isomorphism between their lattices of supersels. Lerman, Shore and Soare
have shown that this is not true if one replaces £ by 9.

§1. Introduction. For any subset S of the natural numbers N let £(S ) be the lattice
of sets {W N S| W recursively enumerable} under inclusion and let & *(S) be the
quotient lattice of &(S) modulo the ideal of finite subsets of S. One writes D* for the
equivalence class in *(S) containing D € £(S). & and &* are abbreviations for
the lattice of all recursively enumerable (r.e.) sets §(N) and & *(N), respectively. We
write 4 for N — A. Observe that if 4 is r.e. then &(4) is trivially isomorphic to the
lattice {W | W r.e. and W 2 A} of r.e. supersets of A.

An isomorphism @: §*(S,) — £*(S,) is called a Z-isomorphism if thereisa > o
function # which maps N one-one onto N such that Ve e N[O((W,nS))*) =
(Wiey n S,)* 1. This is obviously equivalent to the existence of 5 9-functions f, g such
that

Vee N[¢((m i Sl)*) = (Wf(e) NS)* A 4571((% N Sz)*) . (VVg(e) N S)*]

(see Soare [5]).

DEFINITION 1.1. An r.e. set A is called hyperhypersimple (hhs) if A is infinite and
&(A4) (or equivalently &*(A)) forms a Boolean algebra.

Hyperhypersimple sets were introduced as a strengthening of the notion of a
simple set (i.c. sets which have a thin complement). An r.e. set is called simple if A is
infinite and A n W # @& for every infinite r.e. set W. Lachlan [1] (see also Soare [7])
proved that an r.e. set A is hhs iff for every recursive function f such that the sets
W, are finite and pairwise disjoint there is some n € N s.t. Wi € A((W,)eenis a
standard enumeration of the r.c. sets).
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We would like to introduce another characterization of hhs sets. In order to
strengthen the definition of a simple set one can demand that 4 meets more sets than
just the infinite r.c. sets, e.g. all infinite differences of two r.e. sets. There is of course a
limitation: A itself is an infinite difference of two r.e. sets.

PROPOSITION 1.2. An r.e. set A is hyperhypersimple if and only if A is infinite and
An(V-W)#J for all r.e. sets V, W such that V — W is infinite and not co-r.e.

The proof is obvious.

Lachlan [1] proved that the Boolean algebras which occur as & *(A)for hhs sets 4
are exactly those that have a 2 9-representation. Soare [5] invented the automor-
phism machinery in order to show that r.e. sets 4, B are automorphic (ie. there is
an automorphism & of & such that #(4) = B, or equivalently, there is an automor-
phism @ of &* such that &(4*) = B*) if §*(4) and £*(B) are the same finite
Boolean algebras.

Later Lerman, Shore and Soare [2] produced examples of hhs sets 4, B such that
both &*(A) and &*(B) are the countable atomless Boolean algebra (ie. 4 and B
are “atomless hhs”) but 4 and B are not automorphic. Obviously if 4 and B are
atomless hhs then the standard back and forth construction yields a X3-
isomorphism between §*(A) and &*(B). Therefore Lerman, Shore and Soare [2]
asked, “as a final attempt to generalize the maximal set automorphism result to hhs
sets”, whether hhs sets A and B are automorphic if there is a X 9-isomorphism
between &*(A) and £*(B).

We give a positive answer to this question in Theorem 2.2. The proof of Theorem
2.2 follows the same outline as the proof for maximal sets in Soare [5]. We start
with the given Z9-isomorphism between &*(A) and &*(B). Lerman, Shore and
Soare [2] note that one can write every X'$-isomorphism as an isomorphism which
is effective on suitable recursive arrays of r.e. sets (X,),.y Which form skeletons
(i.e. Vedn(W, =* X,,)). We shrink the r.e. sets which are the values of the given iso-
morphism in such a way that one has still an isomorphism outside of 4 and B, butin
addition the image sets have small enough intersection with A4 respectively B
that the “covering property” holds. According to Soare’s extension theorem [5] one
can then extend the isomorphism to an automorphism of & which maps 4 on B.
In this shrinking process we first go to recursive arrays of r.e. sets (U,),y Which are
skeletons and where elements of A are almost always enumerated into these sets in
the order of their indices: if m < n then only finitely many elements of A are first
enumerated in U, and then in U, (Lemma 2.3). We use at this point that 4, B are hhs
(actually the existence of a skeleton with the preceding properties implies that 4 is
hhs). If 4 is hhs there exists for every r.e. set U, a recursive set R such that R n A
= U, n A. We construct the array (U,),. y in such a way that the index n of a set U,
withn > m contains a guess at r.e. indices of R and R for a recursive set R with R n A
= U, n A (besides this the index n contains guesses at certain values of the given X 3-
isomorphism). If U, does not guess correctly, we make it finite. If U, guesses
correctly, it can check for any number x € A whether x € U,, or not. If U, finds out
that x € U,,, it waits until x has appeared in U, before it allows the enumeration of x
in U,.

M. Stob has pointed out that with this strategy one can actually (analogously as in
Soare [5], Theorem 3.1) make sure that not only elements of A but also elements of
U,,\ A are almost always first enumerated in U,, before they come in U, (for m < n).
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We follow this suggestion because it simplifies the rest of the proof in an essential
way.

In a second step (Lemma 2.4) we use the order preserving enumeration property
of the constructed arrays in order to slow down the enumeration into sets in these
arrays in such a way that the covering property is satisfied. This step requires more
work than the corresponding step for maximal sets in Soare [5] (see the explanation
at the beginning of the proof of Lemma 2.4).

Theorem 2.2 implies that all atomless hyperhypersimple sets with semi-low,
complement are automorphic (Corollary 3.1). The problem of a complete charac-
terization of the orbit of these sets is discussed in §3.

The following conventions and definitions will be used throughout the paper.

We demand from a simultaneous enumeration of an array of r.e. sets that at
every stage at most one element is enumerated in one of the sets in the array (without
repetitions).

For fixed enumerations (A4,),.y and (B,);.y of r.e. sets 4 and B one defines
A~ B:={x|3s(xe A, — B, A xe B)} and A\ B:= {x|3s(x € 4, — By)}.

For sets 4, B < N we write 4 =* Bif 4 and B are equal except for finitely many
numbers.

For any constructed r.e. set Z we write Z, for the finite set of elements which have
been enumerated in Z by the end of stage s.

For e > 0 and arrays (X,),.y and (Y,),.y We say that a number x has e-state
e,0,7) (or simply: x has state {e,0,7)) w.r.t. (X,),cny and (Y,),.p if 0 = {n<el
x€X,} and 1= {n<e|xeY,}. We call triples {e,0,7) with 6,7 S e + 1 states
(respectively, e-states). We reserve the letter v for states. Following Soare [5] we say
for states v = {e,0,7),v' = {e,d’,7'y thatv > v' (“vcovers v'”)if 0 2 ¢’ and t < 7".

§2. Hyperhypersimple sets with > 3-isomorphic lattices of supersets. We start with
a technical lemma which will be used in the proof of Lemma 2.3. Since X°-relations
have the uniformization property, I1-relations cannot have the uniformization
property as well. Lemma 2.1 shows that nevertheless a certain “weak uniformization
property” holds for 119,

LEMMA 2.1. Assume the relation P = N x N is I1?-definable (n > 1). Then there
is a II)-function f such that dom f = {x|3yP(x, y)} and P(x,(f(x)o)) for every
x € dom f.

Proor. Consider a IT)-definition P(x, y)<>VuR(x, y,u) where R is Z°_, (re-
spectively recursive if n =1). Then the following function f has the desired
properties.

f(X) = <y,2)14 VuR(x, y,u) A ¥y’ < y3u < (R (x, ', u))
Az < z[(Vy' < yIu < Z/(MR(x, Y, w))1.

THEOREM 2.2. Assume A and B are hyperhypersimple sets and there exists a X3-
isomorphism from &*(A) onto &*(B). Then there is an automorphism & of & with
&(A) = B.

We first prove Lemma 2.3 and Lemma 2.4. These lemmata generalize Theorem 3.1
and Theorem 3.2, respectively, of Soare [5]. We show after Lemma 2.4 how
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Theorem 2.2 is proved from these two lemmata together with Soare’s extension
theorem.

LEMMA 2.3. Assume A and B are hyperhypersimple r.e. sets and 'V is an isomorphism
from &*(A) onto &*(B) witha 2 9-function h that maps N one-one onto N such that, for
every e€ N, W((W,n A)*) = (W, B)*. Then there exist a strictly increasing
function t: N — N and a simultaneous enumeration of A, B and re. sets (U,),en»
(IZI)IIEN’ (ﬁn)neN’ (Vn)neN suCh that

(D) Yoy = Vi = We for every e € N,

Q) VgD A= Wi-1p0 A and Uy, n B = W, N B for every e € N,

(3) U,, V,, U,, V, are finite if nis not in the range of t, and

(4) for every m < n the sets
Uy B T Vs (U Un) 0 (Up\ ),
U,~0,, V.U, (V,xV,)n(V,\B)
are finite, and for every m < n the sets
(7, ~ Up) " (U \A) and (T, V) (V,\ B)

are finite.
PRrOOF. We define the desired function ¢ inductively. For every e € N the value t(e)
contains (in coded form) t | ¢, h(e), h ™~ *(e) and numbers e, for j € {0,..., 7} such that
WmmﬂzWem/I, w,, W,
I/Vez N /I - I/Vh’l(e) N /L VV;; S VV],—1(2),

W.,nB=WnB, W, < W,

If

o 12

39

N}

(@)

] N%l m%l
1
Ng mg n:%

eq4 — 4 59

W,nB=W,nB,  W,sW, W,=W,

ee —

Obviously (a) implies that all the sets W, are recursive. Indices ¢, that satisfy (a)
clearly exist for every e € N because A and B are hyperhypersimple. E.g. foreveryr.e.
set W, there is some re. set W; such that W,nA = W;n A We have then
W, U (W, U A) = N, and by applying reduction to the sets W, and W, u A we getr.e.
sets W, , W,, as desired.

One can express by a IT9-formula that numbers e,,...,e; have property (a)
relative to given indices e, h(e), h™'(e). Since his 2 9 by assumption one can define a
function t with all the mentioned properties by a X$-formula (one uses here 2 92
uniformization in order to choose numbers e, ..., e, that satisfy (a)). This is not yet
quite enough because we need a IT 9-definition of ¢ in order to get a simultaneous
enumeration with property (4). For our strategy to get (4) it is essential that if index n
guesses t(e) correctly (and therefore U, = W, etc.), the only indices m < n where one
of the sets U, V,,, Uy, V,, is infinite are those which guess (&) correctly for some
¢ < e. In this case we have U, = W, etc., and index n knows the indices of recursive
sets which coincide with U,,, V,,, U,, ¥,, outside of A (respectively B)(we use here that
t | eis contained in t(e)). For a Z3-definition of ¢ there are in general many different
witnesses for the first quantifier in the £-definition of ¢ at argument e, and each of
these witnesses gives rise to a different index n which guesses t(e) correctly.

At this point we use Lemma 2.1. Define the function ¢ by a IT 9-formula such that,

forevery e e N, t(e) = {(t(€))o> - --»(t(¢))12 ), the numbers ¢;: = (t(e)); for j < 7 satisfy
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(@), (t(e)s = e, (t(e))o = 1 [ e, (t(e) 0 = he), (t(e));1y = h~'(e) and ((¢)), , contains all
the additional unique components of the value which arise through the application
of Lemma 2.1 to those X$-functions which were previously mentioned at the
induction step of the definition of ¢ (apply Lemma 2.1 to the IT3-kernel of these £9-
definitions). Fix a I19-formula such that

Vy3zR(e,n, y,z)<>t(e) = n,

where R is recursive.

Fix a simultaneous enumeration of 4, Band (W,),_y. Properties (1) and (2) are the
positive requirements which have to be satisfied by our simultaneous enumeration
of 4, B and re. sets (Uy)yexs (% )sens (T ys (Vdyen- We specify in the following
several restraints to the enumeration which ensure simultaneously the other
properties.

In order to satisfy property (3) we

(b) enumerate at stage s a kth element into
U7, 0,,V,) onlyif Vy<kiz<s R((n)g,n, y,z).

Further we enumerate a number into U, only after it has appeared in W, orin
our new enumeration of A. Similarly we enumerate a number into V, only after it has
appeared in W, or in B. This restriction is harmless because W, S Wiy, Y A and
W. € Wy, v B. We get then

(c) foreveryee N
U\ 4 S Wiep, and ¥, \ B S Wy,

In addition we never enumerate a number into V. (T,) after it has appeared in
A(B). This restriction and property (c) will help to satisly (4).

The following restriction is essential for the satisfaction of (4). We enumerate a
number into U, only if (n), is a function ¢ from e into N, where ¢: = (n)g. Before we
put any x € W, into U, we wait until, for every i < e, x has appeared in W, or
Woan, and in W), or W, . After this has occurred we wait a little longer until x
has been enumerated in U, for every i < e, where x has appeared in Wiaiin,» and
until x has been enumerated in Vyw or in A for every i < e, where x has appeared in
me(l']Iz' -
We set up the same restrictions for the enumeration of numbers x & Wi, into V.
But in addition we wait until x has appeared in W, Or in W, , and if x appears
in Wi, we wait until x has been enumerated in U, (this is necessary in order to keep
V,\ U, small, as it is demanded in property (4)).

The restrictions for the B-side (U, and V,) are symmetrical,

In a dovetail fashion we enumerate for all n € N every element of Wons (Wenas Wiy
Wons) into U, (V,, U, ¥,) as soon as it is not anymore prohibited by some restriction.

One easily verifies properties (1) and (2) simultaneously by induction on e,

In order to prove (4) we fix some m, n with m < n. Because of (b) we can assume
that n = t(e) and m = t(i) for some i < e.

Assume first that m < n and x is first enumerated into U, and later into V,.
According to the restrictions, x is required to appear in Wiy, OF Wiy, before
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it comes into U,. x € W, is impossible if x € v, c Wein: = Weas- Therefore
x € Wy, and the enumeration of x into U, is delayed until x has appeared in V,,
orin A.

Assume now that m < n and x is first enumerated into ¥, and later into U,,. We
show that x ¢ U, \ A. Before the enumeration of x in V., x has to appear in W, or
Wiy, - We cannot have x € W), because then x can only be enumerated into V
after it has appeared in U,. Therefore x € W, and this implies x ¢ U, \ A
according to (c).

The rest is proved analogously. Note that, although we have used a different
terminology, this proof is an extension of Soare’s Theorem 3.1 in [5].

LEMMA 2.4. Assume A and B are simple r.e. sets. Further assume that there is a
simultaneous enumeration of 4, B and r.e. sets (U,)yen» (IN/,,)neN, (O)nens (Va)wen which
satisfies property (4) of Lemma 2.3 and such that for every state v

{x € A|x has state v w.r.t. (Up,en, (V)en} is infinite
< {x € B|x has state v wr.t. (U,),cn, (V,)uen} is infinite.

_Then there is a simultaneous enumeration of A, B,(U)yen> (Viwen and r.e. sets
(Vn)neN and (UM)HEN SuCh that
(I) for everyne N

V,nA=*V,nA and
(I) for everyne N

>
¢

=

ASV, = and BSU, =@,
(II) (the covering property): for every v such that
D%:= {%|3s(X € B,+y — B, A X has state v w.r.t. Oy nens Vashnen)}
is infinite,
there is some v' > v such that

D= {x|3s(x € Ayry — A, A x has state v w.r.t. (U, Jnen Vrshnen)}
is infinite,

and for every state v’ such that D4 isinfinite thereis somev <'v "such that DB is infinite.

Proor. We make U; < U, and V < V,for every i € N. The idea is to slow down the
enumeration of elements of U into U, in such a way that a number X gets into state v
w.r.t.(0);cn, (V)icy only if we have already seen some y € D#for some ¥ > v. Thusin
case that % falls later in state vinto B (so that X € D), we have already some covermg
element y on the A-side in store. The problem remains, which of the U, with £ € U,
should receive the duty to prevent X from getting into U, until this covering element y
has appeared. But since we have enumeration in order (property (4)) it is enough to
wait for the covering element y as above before we enumerate X into U,, wherei < |v|
is maximal with % e U,. This strategy gives rise to condition (c) in the following
construction. We verify in Claim 3 that the slowing down of the enumeration
according to condition (c) yields the desired covering property (III).

We have to justify as well, that condition (c) does not prevent too many elements
of U, n B from getting into U.. We have to make sure that (U ~ B)* is still the image
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of (U, n A)* under the considered X$-isomorphism from &*(4) onto &*(B). This is
more difficult than in the analogous construction for maximal sets in Soare [5]
(Theorem 3.2). In Soare’s situation the existence of the covering element y is
automatically guaranteed because there the considered array has the additional
property that,foreveryie N, V. B # (5 < V; n Bis finite. In our situation we have
to actively slow down the enumeration on the A-side in order to force the
appearance of the desired covering element y. Thus the clerk for the enumeration
into sets ¥, goes on strike until his demand for a certain covering element has been
satisfied. During the strike the clerk puts elements on waiting lists L, and he refuses
to enumerate an element on a waiting list L, into any set ¥, with i > |v| (this is
condition (b) in the construction below). The clerk takes elements off list L, if his
demand for a certain covering element has been satisfied. His demand is almost
always satisfied, because the elements which are put on a certain waiting list form an
r.e. set. Therefore if one puts infinitely many elements on a certain list, some element
on this list gets enumerated into the simple set A. During the time this element was
on the list, it has not been enumerated in too many sets 17, Therefore it has all the
properties of the desired covering eclement y.

We now describe the exact construction. We show afterwards in Claim 2 and
Claim 3 that the constructed simultaneous enumeration has the desired properties.
Claim 1 is needed for the proof of Claim 2. In the following enumeration sometimes
several elements are enumerated at one stage. One can easily repair this by
distributing the action at one stage over several (new) stages.

CONSTRUCTION. Stage s > 0. If in the given simultaneous enumeration some
element is enumerated at stage s into one of the sets A, B, (U);cny of (V)icn, We
enumerate this element now in our new enumeration into the same set.

_ If X was on list L, withv = {|v|,0,7) at the end of stage s — 1, then £ is taken off
L, if at stage s some j > X is enumerated into B in state (X, 6, 7;)> W.I.L. (Uis-1icns
(Vis- 1),6Nw1tho~ o, TS 15and v+ 1 eT;.

If X was on list L at the end of stage s — 1 and x € a,s — U.-,s—1 for some i < |v|,
then we cancel x from L,

% is enumerated in U, at  stage s if the following three conditions are satisfied.

(a)x¢B er U,,s 1 and, for every m < n, erms lc»erms i

(b) xis at the moment on no list L with |v] < n.

(c) Some element y > x was enumerated into A at some stage t < s in X-state v,
w.rt. (U icws v, .Jien and v, > v, where v is the X-state of X w.r.t. the arrays

UOs 15 Un 1,5— 1,N®®>- and(V,s Dien-
Fmally we put some element X on list L, at stage sif £ > [v|, X ¢ B,, X € Vii+1,s
—Ws15-1-% ¢ UM+1 s and v is the state ofxwrt Uishien> Vigien-
We proceed at stage s analogously on the A-side. ThlS ends the construction.
CLAM 1. () Only finitely many elements are cancelled from each list.
(b) If, for some list Lv, K = {X| X is put on st L , during the constructlon} is infinite,
then every element of K, elther is taken off L, or is cancelled from L,. The analogous
Sact holds for the lists L.
PROOF OF CLAIM 1. (a) If infinitely many elements are cancelled from list L, then we
have V4 1™\ U, infinite for some i < |v|. This contradicts property (4) of Lemma
2.3,
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(b) Assume K, is infinite. Assume that some element X, is put on list L,atstaget,
and x, is never taken off L, or is cancelled from L,. Define

K:= {% > %,| % is put on list L, at some stage t; > f,,
% ¢ U, for |v| < i < %, and % is not cancelled from L.

K is re. because of part (a). Further, for every i with |v| <i<X, we have
(O~ Vv|+1)m(l/|v|+1\B) finite by assumption. Since x ¢ U,, —y implies x ¢ Uy,
and since K, & V},;+;\B, we get then that almost all elements of K, are in K.
Therefore K is infinite. Since B is 51mple there exists some y e K which is
enumerated in Bat some sldge 5>ty >l yisnot cnume1ated inany U withi > |v|
as long as it is on list L, and jis not c.ancelled from list L,. Therefore j has %,-state
(X, 05, T30 W.LL (U,,,_ ,),,EN.(P:H hexWithoy S o, 17 and |v| + 1 € 75, where
vi={|v|,0,7). Then X, is taken off L, at stage s, a contrad:etton

CLAM 2. Assume that for v = {(n,0,7) the set S,:={%¢€ B|x has state v w.r.L.
(q,-),-eN, (V)icn ) is infinite. Then almost all elements of S, have state v w.r.t.
(Uiens Wien- a

The analogous fact holds for A.

ProoF OF CLAIM 2. We proceed by induction on n. It is obvious that, for every
ieN, V,c % V, and U c U.. Assume that S, is infinite. By the induction hypothesis
almost all elements of S, have state {(n — 1,6 "t NN) Wt (Uiens Viien- We
have to prove somclhmg only if ne g, in which case we show that almost all
clements of S, are enumerated in U, Because of Claim 1 only finitely many elements
of §, can be preventcd from enumeration in U, by condition (b). Therefore condition
(c) is the only serious obstacle.

_ By the assumption of this lemma the set S,:= {x € 4|x has state v w.r.t. (U});en,
(V)iew} is infinite as well. Almost all elements of S, are put on list L,, because
the given enumeration satisfies property (4) of Lemma 2.3. Therefore infinitely
many elements are taken off list L, according to Claim 1. Consider then some eS8,
Take some x > X which is taken off L, at stage t because at stage t some y > x
is enumerated in A in state {x,,,7,> W.r.t. (U, 1)icn> (V, —1)ieny With 6 € ¢, and
1, € n. This enumeration of y in A4 at stage ¢ supplles the desired witness for X to
satisfy condition (c) at stages s > .

CLAIM 3. The new enumeration satisfies the covering property (III).

Proor oF CLAIM 3. Assume that D is infinite, where v = {n,0,7). We consider
first the case where o # (. Let n’ be the maximal element of ¢. Fix a natural number
m. We show that some DZwith ¥ > v contains an element y > m. Take some element
X=mn of DB with X ¢ U~ U, forall i < n'. For the stage s where X is enumerated
into U, we have % ¢ A,, and we know because of condition (c) that there exist some
y =X and a stage t < s such that y was enumerated in 4 at stage in n-state v,
w.rt. (U )iens (Vidien and vy = v', where v' is the n-state of X with respect to
Ui piine i . 1“‘_,,N, &, B, ... and (V- )ien (We use here that X > n). Because
of condition (a) we have e U, , and, for all i <n’, X€ b, yeXe ;-
Further, by our choice of £ this element is not enumerated into any U, with i < n'
after stage s — 1. Therefore X is not enumerated into any new U, with i < n until it
enters B in state v at some later stage. This implies that v/ > v and therefore y € D{
for vi=v, >v.
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Concerning the case o = ¢ we assume without loss of generality that there is an
infinite recursive set R © A suchthat R N V; = S foralli e N. Then every element of
R is in some DZwith ¥ > v.

The other half of the covering property is proved analogously.

PROOF OF THEOREM 2.2. Let ¥ be an isomorphism from &*(A4) onto &*(B) with a
Z9-function h which maps N one-one onto N such that Y((W,n A}") = (W 0 B)*
forevery e € N. We get then a simultaneous enumeration of 4, Band r.e. sets(U,),. v,
(V),,sN, (U Inens (Vdweny Which satisfy properties (1)-(4) of Lemma 2.3, Since ¥ is an
isomorphism, the properties (1), (2) and (3) imply that

(*) {x € A|x has state v w.r.t. (U, Jne N> (V,)scn} is infinite
<= {X € B| % has state v w.r.t. (U,),c > (Vy)uen} is infinite

for every state v. Therefore all assumptions of Lemma 2.4 are satisfied and we get a
simultaneous enumeration of A, B, (U,),cn» (V,)ncn together with r.e. sets (V),le .
(U,),cx which satisfy properties (I)-(III) of Lemma 2.4. According to Soare [5],
property (I) together with (*) implies the existence of a function g which maps A
one-one onto B such that, for every n e N, g[U,n A] =* U, n B and q '[V,n B]
= V N A (see the construction of Theorem 1.3 in Soare [5] or the end of the proof
of Theorem 1.2 in Maass [3]).

Further, properties (II) and (III) are just the assumptions of Soare’s extension
theorem (Theorem 2.2 in Soare [5]). According to the extension theorem there exist
a function p and recursive arrays of r.e. sets (V, ),cn> (U, ),en such that p maps 4
one-one onto B and, for everyne N,

plU,n A1 =*(U,nB)u U, and p [V,nB]l=*(V,nA)u V.

Consider the function r:= qu ) p. r maps N one-one onto N, r[A] = B and for
every ne N we have r[U,] =* U v U, and r"'[V,]=*V, U V, . According to
property (1) we have W, = U, = ¥, for everye € N. Together this 1mp11es that for
every e € N the sets r[W,] and r~'[W,] are r.¢.. Therefore the function & defined by
D(W,*):=r[W,]* for every e € N is an automorphism of &* with #(4*) = B*

REMARK 2.5. It is easy to see that the automorphism which is constructed in the
proof of Theorem 2.2 is a X$-automorphism.

§3. Some remarks on atomless hyperhypersimple sets. A hyperhypersimple set A is
called atomless if it has no maximal superset, or equivalently, if &*(4) is the
countable atomless Boolean algebra.

According to Martin [4] every hyperhypersimple set is of high degree. But there
are many hyperhypersimple sets 4 where 4 is semi-low, (i.e. {e|W,n 4 is
infinite} <;0”; see Soare [6]). For example, all maximal sets have this property. In
addition the standard construction of an atomless hyperhypersimple set (Lachlan
[1]) automatically produces a set A where A4 is semi-low,.

COROLLARY 3.1. If A, B are atomless hyperhypersimple sets with semi-low,
complement then there is an automorphism @ of & such that ®(A) =

PROOF. Since 4, B are semi-low,, the standard back and forth construction of an
isomorphism between the countable atomless Boolean algebras £*(4) and £*(B)
produces a X9-isomorphism. Therefore A and B are automorphic according to
Theorem 2.2.
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A challenging open problem is the complete characterization of the orbit £ of
atomless hyperhypersimple sets with semi-low, complement, i.e.

# = {B e & |there exist an automorphism & of &
and an atomless hyperhypersimple
set A with A semi-low, such that ¢(4) = B}.

Of course every set in # is atomless hyperhypersimple. If the orbit 5# contains
sets A with A not semi-low,, the existing methods for the construction of
automorphisms will not suffice for a proof of this fact. All existing methods produce
Z9-automorphisms, and the property “A semi-low,” is invariant under X 9-
automorphisms. This leads to a more general open question: Is “A semi-low,”
invariant under all automorphisms of &?

On the other hand Lerman, Shore and Soare [2] have shown that some atomless
hyperhypersimple sets are not in the orbit #. According to [2] a set B = A is called
an r-maximal major subset of A (written B <,,, 4) if B is a major subset of 4 and
A— B<*R v A — Bc*R for every recursive set R. Obviously the property “A
has an r-maximal major subset” is definable over & and therefore invariant under
automorphisms. Lerman, Shore and Soare [2] construct an atomless hyperhyper-
simple set which has no r-maximal major subset. Further they show that every
atomless hyperhypersimple set with semi-low, complement has an r-maximal major
subset.

We show below that not all atomless hyperhypersimple sets with r-maximal
major subsets are automorphic and therefore the class of these sets does not coincide
with #. We do this by producing a stronger &-definable property (“4 has
everywhere r-maximal major subsets”) which divides this class. It will be obvious
that if A isin # then A has everywhere r-maximal major subsets. On the other hand
we produce in Proposition 3.5 a set 4 where A is not semi-low, but which has all
known &-definable properties of sets in # (including our new property). In order to
characterize the orbit # one will have to determine whether or not this set A isin J#.
This may be very hard. If A4 € # there are the previously mentioned difficulties in
proving this because A is not semi-low,. If A ¢ # one might be lucky and find a new
&-definable property which separates 4 from sets in 5. But it might well be the case
that A has the same 1-type as sets in 2, so that A ¢ # has to be proved by different
methods.

From the definition of an »-maximal major subset it is clear thatevery set B <,, A
defines an ultrafilter U,: = {(R n 4)*| Rrecursive and A — B =* R} on the Boolean
algebra {(R n A)* | R recursive}.

DEFINITION 3.2. A has everywhere r-maximal major subsets if for every recursive set
R such that (R n A)* # ¢* there exists a set B <,,, A with (R N A)* € U (ie. A — B
C*R).

Lerman, Shore and Soare [2] introduce the notion of a preference function for 4
in order to get information about r-maximal major subsets of 4. We relativize their
definition to a given recursive set R.

DEerINITION 3.3, Let R;:= {x|Vy < x(¢(y)| A¢(x) = 1)} for a standard
enumeration (@;); . of the partial recursive functions, and let A be a simple set. For a
given recursive set R we say that a {0, 1}-valued function his a preference function for
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A which concentrates on R if, for every initial segment 7 of h, R " R, n A is infinite,
where R:= ({R;| () = 1} n (V{R;| (i) = 0}.

The proof of Theorem 1.2 in Lerman, Shore, Soare [2] shows that for every
simple set 4 and for every recursive set R with (R N A)* # J* there exists a set
Bc,,, A with A — B<* R if and only if there is a A3-preference function for 4
which concentrates on R.

If A is semi-low,, then for every recursive set R with (R n A)* # (J* thereis a 43-
preference function for 4 which concentrates on R. Therefore all sets in the orbit #
have everywhere r-maximal major subsets.

PROPOSITION 3.4. There is an atomless hyperhypersimple set A such that A has anr-
maximal major subset but A has not everywhere r-maximal major subsets.

PROOF. Let C be an atomless hyperhypersimple set with C semi-low,, and let D be
an atomless hyperhypersimple set which has no r-maximal major subset (such a D
exists according to [2]). Fix a recursive enumeration f of C and define 4:= f[D].
According to Lachlan [1], 4 U C is then r.e. and thus 4 is atomless hyperhyper-
simple. Consider some recursive set R such that R n A = C n A. Obviously 4 has a
AS-preference function which concentrates on R (since C is semi-low,), but 4 has no
A9-preference function which concentrates on R (since D has no 43-preference
function).

PROPOSITION 3.5. There exists an atomless hyperhypersimple set A such that A has
everywhere r-maximal major subsets but A is not semi-low, .

Proor. Consider a Boolean algebra B and a sequence (b;);.y of elements of B
such that every member of B can be obtained from members in the sequence by the
operations of union, intersection and complementation. Associated with B and
(b;);c there is a function F:2<® — {0,1} defined by F(0) = 0:<+>b, =40y, where
b= ({b:|o(i) = 1} n(){b:|o(i) = 0}. If F is £ then there exists according to
Lachlan [1]a hyperhypersimple set 4 with an isomorphism ¥: 8 — §*(A). Lerman,
Shore and Soare [2] point out that Lachlan’s construction produces in addition 43-
functions f,g such that for everyie N

(b)) = (W A and ¥~ (Won A7) = U{b,| o € g()}

(for every i e N, g(i) is a finite subset of 2<¢).
We fix now a X9 set S € 0" and consider the Boolean algebra B with generators
(b));cn such that the associated function F satisfies

F(o) =0<>3i <ltho(ie S A a(i) = 1).

Obviously F is 9. We can picture this Boolean algebra B by a binary tree with the
branching at level i representing intersection with b; and b; respectively. We get the
binary tree for B by chopping off from the full binary tree all nodes on a branch to
the left which starts at a node on level i with i € S. Since § is infinite there are still
infinitely many levels where the branching is preserved. Therefore B is the countable
atomless Boolean algebra.

Let A be the associated hyperhypersimple set with functions ¥, f, g as above.
Then, for every ie N, i€ S<+b; =g 0y <> V(b)) = ¢* <> Wy, N A finite, and there-
fore A semi-low, would imply that § <;0".
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Finally, fix some recursive set R with R n A infinite. Obviously there exists some
0o € 2<“ such that Og <gb,, <g ¥ '((R N 4)*).

We now define a A43-preference function h for 4 which concentrates on R. We can
do this because in the previously described binary tree branches to the right are
never chopped off. Thus Oy <y b, <g b, if o has the form o, *0*---*0. For a given
e € N wefirst go(ina 43 way) to an index € € N such that R, = W;. Then we consider
all sequences o € g(€). If there is some o € g(€) of the form o = g, *0* -+ * 0 or such
that o = g, we set h(e) = 1. Otherwise we set h(e) = 0.

It is obvious that in the case where h(e) =0 there is some ¢ of the form
0o*0% - %0 with b, <g ¥ "'((R n R, n A)¥). Therefore for every initial segment
17 < h there is some ¢ of the form 6, *0*---*0 such that ¥ *((R 0 R, n A)*)
>gb, >4 0g. Thus h is a 43-preference function for A which concentrates on R.
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