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ous experimental data show that cortical networks of neurons are not
silent in the absence of external inputs, but rather maintain a low
spontaneous firing activity. This aspect of cortical networks is likely
to be important for their computational function, but is hard to
reproduce in models of cortical circuits of neurons because the
low-activity regime is inherently unstable. Here we show—through
theoretical analysis and extensive computer simulations—that short-
term synaptic plasticity endows models of cortical circuits with a
remarkable stability in the low-activity regime. This short-term plas-
ticity works as a homeostatic mechanism that stabilizes the overall
activity level in spite of drastic changes in external inputs and internal
circuit properties, while preserving reliable transient responses to
signals. The contribution of synaptic dynamics to this stability can be
predicted on the basis of general principles from control theory.

I N T R O D U C T I O N

Cortical neurons fire not only in response to sensory inputs,
but also spontaneously, as part of an ongoing network activity
of the neocortex. According to Steriade (2001), the rates of
spontaneous firing recorded extracellularly from motor and
association areas of awake monkeys and cats are typically in
the range of 10–15 Hz. Baddeley et al. (1997) found that cells
in area IT (recorded extracellularly in awake macaque) fire at
a rate of 14 � 8.3 Hz during blank-screen viewing. Intracel-
lular recordings from regular-spiking neurons (presumed to be
pyramidal cells) in motor, association, primary somatosensory,
and visual association areas of awake adult cats yielded a
spontaneous firing rate of 9.4 � 1.7 Hz (Steriade et al. 2001).
The functional role of this spontaneous firing of neocortical
neurons is unknown. It was previously conjectured that persis-
tent neuronal activity, which is “conspicuously absent in cer-
ebellar and basal ganglia circuits,” is an essential feature of the
neocortex, which enables it “to incorporate the past into the
system’s present state” (Buzsáki 2006). It was also previously
conjectured to support “flexible cooperation among local and
distant cell assembles,” which is “believed to underlie the
efficacy of cortical performance and is an essential ingredient
for cognition” (Buzsáki 2006). On a more technical level, it
was pointed out that not only recurrent circuits of neurons in
the neocortex, but dynamical systems in general support higher
computational performance if they operate not in the ordered
(or dissipative) regime, but closer to a critical state—which
amounts to a substantial spontaneous firing activity in a neural
circuit—so that also small external inputs can cause significant

system responses (Buzsáki 2006; Legenstein and Maass 2007).
Spontaneous brain activity is commonly assumed to be

generated by a combination of intrinsic electrophysiological
properties of single neurons and synaptic interactions in the
network (for a recent review see Destexhe and Contreras
2006). It was already pointed out in Abeles (1991) that “it
seems to be very difficult to stabilize a network of inhibitory
and excitatory neurons at very low levels of activity.” Through
theoretical analysis and extensive computer simulations we
show that the short-term dynamics of synapses—more pre-
cisely, the empirically found diversity of mixtures of paired-
pulse depression and paired-pulse facilitation that depend on
the type (excitatory or inhibitory) of pre- and postsynaptic
neurons—endows networks of leaky integrate-and-fire (LIF)
neuron models with either conductance-based or current-based
synapses, with a remarkable stability of spontaneous network
activity, even for rather low average firing rates, such as 10 Hz.

It is well known that synapses in the neocortex do not
respond in the same way to each spike in a train of spikes.
Rather, the amplitude of the postsynaptic response [excitatory
postsynaptic potential (EPSP) or excitatory postsynaptic cur-
rent (EPSC)] to a presynaptic spike depends on the history of
presynaptic firing activity. If the response amplitude for the
second spike in a pair of spikes is smaller than that for the first
one, one calls this effect paired-pulse depression. If the re-
sponse amplitude for the second spike is larger, one calls this
paired-pulse facilitation. Actually, however, most neocortical
synapses exhibit a mixture of depression and facilitation and
the amplitude of the postsynaptic response depends in a com-
plex manner on the temporal pattern of several preceding
presynaptic spikes. This effect is commonly referred to as
synaptic dynamics or short-term plasticity. In contrast to long-
term synaptic plasticity this short-term plasticity does not
usually depend on the pattern of postsynaptic firing and its
effect is not long-lasting (more precisely: it depends only on
the temporal pattern of presynaptic spikes during the last few
seconds). We refer to Abbott and Nelson (2003), Thomson
(2003), and Abbott and Regehr (2004) for recent reviews of
biological data and proposed functional roles of short-time
synaptic plasticity. The dynamics of cortical synapses can be
fitted quite well by the phenomenological model from
Markram et al. (1998), where the short-term dynamics of
synapses is characterized by three parameters: U (which
roughly models the release probability of a synaptic vesicle for
the first spike in a train of spikes), D (time constant for
recovery from depression), and F (time constant for recovery
from facilitation). Hereafter we call this set of parameters
UDF. An essentially equivalent model was previously pro-
posed in Varela et al. (1997).
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In contrast to the static synapse of an artificial neural
network, a dynamic synapse does not just provide a fixed
amplification of presynaptic activity, but rather implements a
nonlinear filter that could potentially serve a number of differ-
ent purposes, such as cortical gain control (Abbott et al. 1997),
burst detection (Lisman 1997), or temporal integration of
information (Haeusler and Maass 2007; Maass et al. 2004). In
Tsodyks et al. (1998) it was shown that depressing synapses
can create in a mean-field model for a population of excitatory
neurons a stable fixed point for its activity and that dynamic
synapses can create a variety of rhythmic and irregular activity
patterns if one adds a population of inhibitory neurons.

One intriguing aspect of biolocial data on synaptic dy-
namics is that this short-term dynamics—more precisely,
the parameters UDF— differ from synapse to synapse.
Moreover, the UDF values form clusters within the three-
dimensional (3D) UDF parameter space and the cluster to
which the UDF value of a particular synapse belongs de-
pends on the type (excitatory or inhibitory) of its presynap-
tic neuron and in some cases also on the type of the
postsynaptic neuron (Galarreta and Hestrin 1998; Gupta et
al. 2000; Markram et al. 1998; Thomson 1997). It has been
difficult to identify a possible functional role for the rules
that assign a particular region in the 3D UDF parameter
space to different types of synaptic connections. Herein we
show that the assignment of different ranges of UDF values
to different types of synapses makes it possible to imple-
ment a self-tuning principle for the firing rate of a cortical
circuit. This self-tuning principle enables neural circuits to
respond to external perturbations with a characteristic tran-
sient response in the firing rate of excitatory neurons and
then returns to its previous firing rate within a few hundreds
of milliseconds back into a given target range. The firing
rate of inhibitory neurons is automatically adjusted by the
synaptic dynamics so that it compensates the external per-
turbation. A similar self-tuning property can be demon-
strated for changes within the circuit, such as those caused
by long-term synaptic plasticity or changes in the concen-
tration of neurotransmitters.

We show that this self-tuning principle in models of cortical
networks of neurons is related to an abstract self-tuning prin-
ciple recently proposed for much simpler dynamical systems in
control theory (Moreau and Sontag 2003a,b). Their abstract
self-tuning principle enables some simple two-dimensional
(2D) dynamical system to return in a reliable manner to a
particular operating regime (e.g., the vicinity of a bifurcation),
in spite of external perturbations. They considered the follow-
ing dynamical system with external input v(t) that has just two
variables: x (firing rate) and � (synaptic strength)

ẋ � ��0x��x � v�t� (1)

�̇ � f�x� � g��� (2)

The parameter �0 is here assumed to be unknown and condi-
tions1 on the functions f and g are given under which the
variable x moves (in the absence of external input) to a steady
state x* with ẋ � 0 (i.e., � � �0) regardless of the value of this
parameter �0. The system expressed by Eqs. 1 and 2 is

obviously quite far removed from models for recurrent neural
networks consisting of excitatory and inhibitory neurons with
nonnegative firing rates. However, it is remarkable that its
self-tuning property relies on the assumption that the strength
� of the positive feedback in Eq. 2 varies as a function of x,
unlike the usual “static” synaptic weights in artificial neural
networks. Furthermore, the required assumptions on the func-
tions f and g in Eq. 2 imply that � decreases when x grows
beyond its steady-state value x*. Thus the resulting dynamics
of the “synaptic weight” � has some properties in common
with synapses between excitatory neurons in the cortex (which
have been found to be usually depressing), although apparently
no relation to synaptic dynamics had been intended (or even
discussed) in Moreau and Sontag (2003). Herein we show (see
the end of RESULTS and the Supplementary material2 that this
control principle can be generalized and adapted to more
complex dynamical systems that consist of two interacting
modules (e.g., a population of excitatory neurons and a popu-
lation of inhibitory neurons) that have profoundly different
functional roles. It turns out that an application of the control
principle to such a distributed system requires not only an
activity-dependent modulation of “weights” �(x), but different
rules for the modulations �mn(x) of different weights, that
depend on the type n of the source of the feedback �mn(xn)�xn
and the type m of the target of the synaptic connection (where
m, n range over excitatory and inhibitory neurons). Thus in
applications to models for cortical circuits, this principle re-
quires differential synaptic dynamics for different types of
synaptic connections.

More precisely, our theoretical analysis predicts that the
UDF parameters that characterize the dynamics of synapses
belong to a specific region within the UDF space (which we
call the “N-volume”) if a strengthening of this type of synaptic
connection tends to increase the firing rate of excitatory neu-
rons in the circuit, or into another region (“P-volume”) if a
strengthening of this type of synaptic connection tends to
decrease the firing rate of excitatory neurons. A comparison of
these predicted ranges of UDF values with empirically found
UDF values gives a quite satisfactory (although not perfect)
match. This is remarkable because many aspects that are
relevant for the dynamics of cortical circuits of neurons (dif-
ferent input–output behaviors of excitatory and inhibitory
neurons), further differentiation of neuronal dynamics accord-
ing to subclasses of inhibitory (Gupta et al. 2000) and excita-
tory neurons, subnetworks formed by particular subtypes of
neurons (Yoshimura and Callaway 2005; Yoshimura et al.
2005), and modulation of neuronal dynamics through neuro-
modulators (Gulledge and Jaffe 1998, 2001) are not reflected in
the network models consisting of LIF neurons that we examine
herein.

Altogether this article provides a novel explanation for the
functional role of short-term synaptic dynamics, in particular
also for the empirically found diversity of synaptic dynamics in
dependency on the type of pre- and postsynaptic neurons. In
addition it contributes new ideas and principles for the inves-
tigation of a research topic, obviously of primary importance—
the remarkable stability of cortical circuits of neurons against
numerous perturbations and parameter drifts. This stability has
so far not been reproduced with either artificial neural networks1 It is shown in Moreau and Sontag (2003) that it suffices to assume that 1)

f is decreasing, 2) g is strictly increasing, and 3) there exists some x* such that
f (x*) � g(�0). 2 The online version of this article contains supplemental data.
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or with biologically more realistic models for cortical circuits
and thus an understanding of its prerequisites may provide
important insight into design principles of cortical networks.
The general program to investigate fundamental aspects of the
design of neural circuits by focusing on their stability proper-
ties has already produced remarkable insight into another type
of neural circuit: the pattern-generating pyloric circuit in the
crustacean stomatogastric ganglion (for a recent review see
Marder and Goaillard 2006). It turns out that this circuit is
endowed with intricate homeostatic mechanisms that move a
high-dimensional vector of internal parameters (conductances,
etc.) to a different setting if one method for producing the
desired firing pattern becomes unavailable, such as because of
changes in the concentration of neuromodulators. Thus it is
essential for the functioning of this pattern-generating circuit
that it can produce “multiple solutions to the production of
similar behavior” (Marder and Goaillard 2006). We propose
that analogous design principles are implemented in cortical
circuits of neurons, which have to maintain a stable computa-
tional function in spite of drastic changes in the intensity of
external inputs and in the concentrations of neuromodulators
(that affect the excitability of neurons within the network;
Gulledge and Jaffe 1998, 2001). More specifically, we propose
that the short-term dynamics of synapses is essentially in-
volved in design principles that produce a stable function of
cortical networks.

M E T H O D S

Neuron models

We used two leaky integrate-and-fire neuron models (LIF): one
with current-based synapses and the other with conductance-based
synapses. The current-based LIF neuron is defined by

�mem

dV�t�

dt
� � �V�t� � Vrest� � Rm��

j�1

KE

jE,j�t� � �
j�1

KI

jI, j�t� � Iext�t�� (3)

where V is the membrane voltage; �mem is the membrane time
constant; Vrest is the resting membrane voltage; Rm is the membrane
resistance; JE,j (t) and JI,j (t) are the KE and KI synaptic currents from
the excitatory and inhibitory synapses, respectively; and Iext(t) is an
external input composed of mean input current Iinject and a white noise
current Inoise(t), with zero mean and SD �noise. The LIF neuron with
conductance-based synapses is defined by

Cm

dV�t�

dt
� � gleak�V�t� � Vrest� � �

j�1

KE

gE,j�t��V�t� � EE�

� �
j�1

KI

gI,j�t��V�t� � EI� � Iext�t� (4)

where Cm is the membrane capacitance; gleak is the leak conductance
of the neuron; and gE,j(t) and gI,j(t) are the KE and KI synaptic
conductances from the excitatory and inhibitory synapses, respec-
tively. The constant EE is the reversal potential for the excitatory
synapses and the constant EI is the reversal potential for the inhibitory
synapses. The dynamics of each synapse over time are defined by

dj �t�

dt
� �

j �t�

�syn

� W��t � tsp� (5)

where j(t) is the instantaneous synaptic current or conductance,
depending on the model, and W is the synaptic weight. The
currents or conductances decrease exponentially with time constant

�syn and increase instantaneously by adding W to the running value
of j(t) whenever a spike occurs in the presynaptic neuron at time
�sp. Herein we compare the use of static synapses to dynamic
synapses and so the synaptic weight W was constant in some
simulations and in other simulations allowed to vary according to
known biological rules of synaptic plasticity [i.e. W(t)]. In the case
of dynamic conductance-based synapses we varied the maximal
conductance and in the case of dynamic current-based synapses we
varied the maximal current. When static synapses were used (i.e.,
when W is constant) we use the notation J to denote the synaptic
weight and always state whether the simulation used conductance-
or current-based synapses. When dynamic synapses were used
[i.e., when W(t) is implied] we use the notation � to denote the
synaptic weight.

We chose values for these LIF neurons that qualitatively reflect the
high conductance, in vivo UP state measured in in vivo studies of
cortical neurons (Destexhe et al. 2003). The membrane resistance was
Rm � 10 M	, the membrane time constant was �mem � 10 ms, and,
in the case of neurons with conductance-based synapses, the capaci-
tance was set to Cm � 10 ms/10 M	 � 1 nF. The neurons’ resting
potential was Vrest � �60 mV and the firing threshold was Vthresh �
�50 mV. When the neuron spiked, the membrane voltage was reset to
Vreset � �60 mV, where it remained for a refractory period of �refr �
3 ms. The excitatory synaptic time constant �syn was �e � 4 ms; the
inhibitory value was �i � 8 ms. In the case of neurons with conduc-
tance-based synapses gleak � 1/Rm � 100 nS and the reversal
potentials for the excitatory and inhibitory neurons were EE � 0 mV
and EI � �80 mV. We modeled background synaptic inputs (from
neurons outside of the simulated circuit) through Iext � Iinject � Inoise

with a constant Iinject � 2.455 
 10�9 A and values of Inoise drawn
from a 0-mean Gaussian with �noise � 6 
 10�9 A SD. Iext caused an
average membrane potential of �55.4 mV and SD of 4.3 mV in the
absence of recurrent synaptic feedback (and when the threshold Vthresh

was temporarily raised to 0 mV to prevent spikes). This resulted in a
firing rate of approximately 20 Hz for each neuron in the absence of
recurrent synaptic input Irec and was chosen because it is the median
value of the firing rates of irregular and tonic discharges reported in in
vivo conditions in waking animals (Destexhe et al. 2003; Steriade et
al. 2001) and is thus suitable for studying stability involving both up-
and downregulation of firing rates.

Spiking network model

In our simulations we created sparse, random-spiking networks of
5,000 neurons, with 4,000 excitatory neurons and 1,000 inhibitory
neurons. Neurons were either excitatory or inhibitory. The network
models contained either purely LIF neurons with conductance-based
synapses or purely LIF neurons with current-based synapses; we refer
to the former as “conductance-based networks” and the latter as
“current-based networks.” We use the term sparse to denote that the
number of excitatory connections Ke and inhibitory connections Ki to
a given neuron are much less than both the total number of excitatory
neurons Ne or inhibitory neurons Ni in the network. We use the term
random to denote that the connections between neurons are chosen
randomly and follow no other design principle. Following Vogels and
Abbott (2005), the neurons were connected randomly to each other
with a 2% connection probability. The network connectivity between
neuron types is shown in Fig. 1.

Dynamic synapse model

We used two equivalent forms of dynamic synapse models for
networks with spiking and nonspiking neurons. The first set of
expressions constituting the Eq. 6 system is taken from Markram et al.
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(1998)3 and describes for the case of spiking neurons the magnitude
of the synaptic weight �k (a current or conductance, depending on the
network model) for the kth spike in a spike train with interspike
intervals �1, �2, . . . , �k�1

�k � ARkuk

uk � U � uk�1�1 � U� exp� � �k�1/F�

Rk � 1 � �Rk�1 � uk�1Rk�1 � 1� exp(��k�1/D)

u1 � U

R1 � 1 (6)

where u is the running variable for synaptic utilization and R is the
running variable for synaptic availability, with u, R � [0, 1]. The
constants U, D, and F (for curtness further denoted as UDF or AUDF
when the strength scaling factor A is included) represent the release
probability for the first spike, the depression time constant, and
facilitation time constant, respectively. The synaptic weight for the kth
spike is then defined by �k (i.e., W :� �k in Eq. 5) and has an arbitrary
strength scale set by A.

An equivalent, continuous mean-field model for dynamic synapses
was developed in Tsodyks et al. (1998), which can be used in
nonspiking mean-field models with continuous time. The mean-field
equations for dynamic synapses are given by

� � ARU1

u̇ � �
u

F
� U�1 � u�x�t�

Ṙ �
1 � R

D
� U1Rx�t�

U1 � u�1 � U� � U (7)

where x(t) represents the instantaneous firing rate of the presynaptic
neuron; U1 is simply an algebraic term introduced for clarity; and �,
u, R, U, D, and F have the same meaning as in the Eq. 6 system. Note
the magnitude �(t) of the synaptic weight at time t depends not only

on the current presynaptic firing rate x(t), but through the auxiliary
variables u and R also on the history of this presynaptic firing rate.

The steady-state equations for this continuous dynamic synapse
model yield in the case of a constant presynaptic firing rate x(t) � x*

�* � AR*U1*

u* �
FUx*

1 � FUx*

R* �
1

1 � DU1x*

U1* � u*�1 � U� � U (8)

where the * notation denotes steady-state values of u, U1, R, and �. In
particular for m, n � {e, i} the value �*mn (xn) defined according to Eq.
8 denotes the steady-state synaptic weight from any neuron in popu-
lation n to any neuron in population m as a function of the presynaptic
firing rate x* � xn.

Linking UDF parameters to network stability

We show that the fundamental property of dynamic synapses for
creating a network with a stable firing rate is the relationship between
the slopes of the steady-state synaptic weight curves �*mn (xn) for
different synapse types. We searched for UDF parameters that gen-
erate a negative derivative for the connections E 3 E and I 3 I
because for our parameters an increase in the strength of either leads
to a higher firing rate xe of the excitatory neurons and a positive
derivative for the steady-state curves for the connections E 3 I and
I3 E because an increase in their strengths leads to a lower firing rate
xe (see Supplemental materials for further explanation). More specif-
ically, we searched for UDF settings that generated either a strictly
positive or strictly negative derivative between the frequencies 10 and
100 Hz of the presynaptic firing rate and that additionally were in a
physiological range (see Table 1). We uniformly sampled the UDF
space in the range U � (0, 1], D � (0, 1] s, and F � (0, 1] s (at

3 The variable uk�1 in the third expression in the Eq. 6 system was
erroneously replaced by uk in Markram et al. (1998); see the discussion in
Maass and Markram (2002).

FIG. 1. Basic network architecture used in mean-field simulations and
spiking network simulations. Two populations of neurons connect to each
other, one excitatory Exc with firing rate xe and one inhibitory Inh with firing
rate xi. Blue denotes excitatory populations or recurrent excitatory connections
and red denotes inhibitory populations or inhibitory recurrent connections. If
the synaptic connections have a static synaptic weight they are denoted Jmn

from presynaptic pool n to postsynaptic pool m; if the synaptic connections
have dynamic synaptic weights then they are denoted as �mn. External
excitatory input, labeled Iinject � Inoise, is denoted by green. External input in
this paper is a constant noisy current with a stationary mean.

TABLE 1. UDF parameters

Parameter
Synapsis

Type U D, s F, s

R1 E 3 E 0.5939 0.5333 0.1828
E 3 I 0.4028 0.0016 0.0848
I 3 E 0.0007 0.1153 0.1795
I 3 I 0.5089 0.1744 0.4973

R2 E 3 E 0.6319 0.9468 0.9949
E 3 I 0.1517 0.0063 0.2701
I 3 E 0.0746 0.0001 0.9043
I 3 I 0.3029 0.4429 0.9963

R3 E 3 E 0.5762 0.6187 0.7989
E 3 I 0.1010 0.0105 0.1003
I 3 E 0.0865 0.0004 0.5779
I 3 I 0.5521 0.6139 0.4220

Experimental E 3 E 0.59 0.813 0.001
E 3 I 0.049 0.399 1.79
I 3 E 0.016 0.045 0.376
I 3 I 0.25 0.706 0.021

UDF parameters—R1, R2, and R3—were chosen randomly based on theo-
retical criteria (see METHODS). The UDF parameters for synapse types E 3 I
and I 3 E were randomly chosen from the P-volume (Fig. 4) and the UDF
parameters for synapses E 3 E and I 3 I were chosen randomly from the
N-volume. Experimental dynamic synapse parameters—U, D, and F values—
were from the experimental literature. The E3 E and E3 I synapse types had
UDF values taken from the means given in Markram et al. (1998). The I3 E
and I3 I had UDF values taken from the means given in Gupta et al. (2000).
The F1 (facilitating) parameters were used for the I3 E synapses and the F2
(depressing) parameters were used for I 3 I synapses.
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increments of 0.014 in each dimension) and found two topologically
simple volumes of parameter space that satisfied these requirements.
These were designated “P-volume” for the positive derivative and the
“N-volume” for the negative derivative. We randomly chose three
assignments R1, R2, and R3 to the UDF values of the four synapse
types to create three separate dynamic synapse UDF parameters sets.
Thus each parameter set Ri (i � 1, 2, 3) consisted of two points from
the N-volume, which were randomly assigned as the mean for the
UDF-parameters of the synaptic connections E 3 E and I 3 I, and
two points from the P-volume, which were also randomly assigned as
the mean to the synaptic connections E 3 I and I 3 E. Each
individual Ri parameter set was used separately from the others in the
network simulations. Additionally, we used experimental data on
UDF parameters from Gupta et al. (2000) and Markram et al. (1998)
for all four synapse types (see Table 1). All self-tuning simulations
were carried out for these parameters based on experimental data, as
well as all three parameter assignments R1, R2, and R3 based on a
theoretical analysis of desirable network performance. Performance
differences between the R1–R3 parameter settings were small and we
averaged the responses across the parameters sets. These UDF pa-
rameters were fixed for all self-tuning experiments and only the
scaling factors Amn of the dynamic synapses were modified on a
per-simulation or per-network basis.

Altogether synaptic parameters were chosen as follows. All
synapses were given a uniform delay of 0.1 ms. The means of the
scaling factor parameters (the A terms in Eqs. 6 and 7), mean UDF
parameters, and mean values for the initial conditions for dynamic
synapses u0 and R0 were set as described earlier. After selection of
a mean value, each actual value was drawn for each synapse in the
network from a Gaussian distribution with SD of 10% of the mean
value (e.g., all UDF parameters for every synapse were chosen
from a Gaussian distribution with a SD equal to 10% of the mean
UDF parameters, which depended on the synapse type). If the
actual value would have been set below zero, then the value was
redrawn from a uniform distribution between zero and two times
the mean.

Self-tuning simulation setup

The self-tuning simulations we performed involved measuring and
comparing the equilibrated (steady-state) average firing rates of exci-
tatory neurons with static synapses and then with dynamic synapses
for three network models: conductance-based networks, current-based
networks, and a rate-based mean-field network (see following text for
the definition). There were three types of perturbation simulations run,
with two parameters perturbed in each case:

1) mean input current strength and SD of current injection
2) excitatory synaptic strength and inhibitory synaptic strength
3) percentage excitatory neuron inactivation (a temporary cessa-

tion of function potentially caused by a variety of circumstances such
as neuromodulators) and percentage inhibitory neuron inactivation.
This resulted in 841 networks for the input perturbation experiments
and 900 networks for the synaptic weight perturbation and neuronal
inactivation experiments. Each network was generated with random
connections and first run in the control case with static synapses. The
network was then regenerated with the exact same parameters, but a
different random number seed, and run with dynamic synapses. To
test the robustness of the ideas presented, each network was tested
with four different dynamical synapse parameters sets, three based on
theoretical considerations called R1, R2, and R3 and the parameters
based on experimental data, thus requiring 841 � (841 
 4 
 3) �
10,933 separate network simulations for the input perturbation exper-
iments and 900 � (900 
 4 
 3) � 11,700 separate network
simulations for experiments with synapse strength and neuronal inac-
tivation perturbations. To measure the firing rates we let the control
networks with static synapses run for 1,500 ms and the average firing
rates of excitatory and inhibitory neurons were measured for the last

1,000 ms. The networks with dynamic synapses ran for 2,000 ms and
the steady-state firing rates were measured for the last 1,000 ms,
which allowed extra time for the dynamic synapses to equilibrate. The
measured firing rates for the theoretically derived UDF values were
then averaged across all three dynamic synapse parameters sets R1,
R2, and R3. Network simulations were performed using the CSIM
neural simulator (Natschläger et al. 2003) and MatLab (The Math-
Works, Natick, MA). The simulation time step was 0.1 ms. The
mean-field simulations were also performed using MatLab.

Correlation function

Network synchrony plays a large role in the behavior of networks
of sparsely connected, spiking neurons (Brunel 2000). We were
interested in separating asynchronous irregular activity from other
types of network activity. We used the voltage traces of randomly
sampled neurons to analyze the network correlation and then applied
the standard cross-covariance function. The covariance coefficient for
the sequences y and z, with means y� and z� , defined at the zeroth lag,
is given by

Cyz�0� �

�
n�0

N�1

�yn � y���zn � z��

��
n�0

N�1

�yn � y� �2 �
n�0

N�1

�zn � z� �2

To measure the network correlation, we created two random
groups of neurons from the excitatory neuron population (except-
ing differences in firing rate, the inhibitory neurons behave in same
manner as the excitatory neurons). The two groups each consisted
of 5% or 250 neurons. The cross-covariance coefficient was com-
puted for every pair of neurons, one from each group (excluding
identical neurons, which occurred by chance) and the average cross
covariance coefficient was taken as a measure of the network
correlation.

Mean-field models for sparsely connected neural circuits

For our analysis of network stability we developed neuronal pop-
ulation models—that is, mean-field firing rate models—for sparse,
random networks (van Vreeswijk and Sompolinsky 1996, 1998). They
model populations of current-based neurons with static and dynamic
synapses and are based on a balance of excitation and inhibition that
creates temporally irregular spiking. We assume that there are Ne

excitatory neurons and Ni inhibitory neurons. Kmn is the number of
synaptic connections from neurons in pool n to neurons in pool m (we
assume that Kmn �� Ne, Ni). We are interested in networks with
randomly chosen sparse synaptic connections because they provide
reasonable first approximation models for cortical circuits.

Because the firing rate of a neuron is dependent on both the mean input
current and the variance of the input current, we refer to its input–output
function as the FMS (firing rate, mean input, SD) surface, which we
denote by F. A sparse, random network has a parameter range that allows
for asynchronous irregular activity (Brunel 2000; for a review, see Vogels
et al. 2005) and the synaptic currents to a given cell are uncorrelated in
time for this regime, aside from a potentially fluctuating population firing
rate. In the steady-state condition, which is when all the dynamics of the
system have been allowed to equilibrate, this allows one to use the time
average of the synaptic input for estimating the synaptic input at each
point in time. Thus in the asynchronous condition, and assuming Poisson
spiking statistics, one can write down the average recurrent synaptic
current Irec and recurrent synaptic input variance �rec2 for each neuron in
their respective pools m (Shriki et al. 2003) as

I m
rec � �

n

Kmn�nxn Jmn
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�m
rec2 �

1

2�
n

Kmn�nxn J mn
2 (9)

where m, n � {e, i} represent indices into the post- and presynaptic
pools, respectively. So the total average current and total input current
variance into a neuron in a pool m is

I m
tot � I m

rec � I inject � I noise

�m
tot2 � �m

rec2 � �inject2 � �noise2 (10)

where Iinject and �noise2 represent the mean and variance of external
input to the neuron, and Im

tot and �m
tot2 are the mean and variance of the

total current injection to each cell (see METHODS).
To use these formulas to create a working neuron model one can

easily sample the FMS surface of a single current-based neuron by
injecting current with an arbitrary mean and Gaussian noise compo-
nent and then use the Eq. 9 system to translate the parameters (Jee, Jie,
xe, Jei, Jii, xi) into (Itot, �tot). Using this technique we sampled the
FMS surface F of a current-based LIF neuron with the same neuronal
parameters as the neurons used in our current-based spiking networks.
Using the samples generated from this neuron we used smoothing
splines to create a nonparametric approximation F� to F that could be
evaluated at any given point to yield a good approximation of the
postsynaptic firing rate (Fig. 2). Because the excitatory and inhibitory
neurons in our current-based networks have the same neuronal pa-
rameters, we used the same neuron model for both types. Finally, the
mean-field model for a network of excitatory and inhibitory neurons
in an asynchronous network, which also represents a sparse, random
network under the same assumptions, is defined by

�mem

dxe

dt
� � xe � F� �I e

tot, �e
tot�

�mem

dxi

dt
� � xi � F� �I i

tot, �i
tot� (11)

where xe is the average firing rate of the excitatory neurons and xi is
the average firing rate of the inhibitory neurons. For a current-based
LIF network with �e, �i � �mem, the correct time constant of the model
is the neuronal membrane time constant �mem.

This model can also be used to analyze system dynamics, even
though the expressions in the Eq. 11 system were developed from an

analysis of the steady state, because the neuronal dynamics of a
current-based neuron acts merely as a low-pass filter. A major as-
sumption of this approach is that all combinations of (Jee, Jie, xe, Jei,
Jii, xi) lead to asynchronous, irregular network firing, which is not
always the case for sparse, random-spiking networks. Thus for the
mean-field model to correctly predict the behavior of the spiking
network, the range of parameters must be limited to ensure this
assumption and, consequently, the network correlation and coefficient
of variation (CV) of interspike intervals were measured.

Finally, we introduce dynamic synapses (Eq. 7 system) into the
sparse, random mean-field model of the Eq. 11 system. The model is
defined by the expressions in Eq. 11 with slightly different definitions
for Im

rec and �m
rec2

I m
rec � �

n

Kmn�nxn�mn�xn, t�

�m
rec2 �

1

2 �
n

Kmn�nxn�mn�xn, t�2 (12)

where have replaced the static synaptic weight value Jmn with the
dynamic synaptic weight value �mn(xn, t).

R E S U L T S

Conditions on dynamic synapses to create network stability

The goal of introducing dynamic synapses into the sparse,
random model is to set up a stable fixed point at a desired target
network firing rate xe � xi � x*, so that xe is robust to various
types of perturbations (i.e., the circuit is self-tuning). We view
self-tuning as the ability of a system to ultimately return a
system value to given range, despite a perturbation in system
parameters or input. We define the output of the network to be
the average excitatory firing rate xe, which is the firing rate that
is actively controlled, perhaps by increasing or decreasing xi.
Although sparse, random networks also have steady-state firing
rates as a function of static synaptic weight values Jmn, we will
show that introducing dynamic synapses with relatively gen-
eral constraints endows the network with much greater robust-
ness under a variety of perturbations. This improved robustness

FIG. 2. FMS (firing rate, mean current injection, SD of
current noise injection) surface surface for leaky integrate-
and-fire (LIF) neuron. A: approximated FMS surface F� of LIF
neuron with �m � 10 ms, �rp � 3 ms, Vrest � �60 mV, and
Vreset � �60 mV. Approximated F� gives a very good fit with
mean absolute error 0.2 Hz. Dashed black line shows the
firing rate as a function of the external current noise level
assuming a constant current injection of 2.455 
 10�9 A.
Solid black line shows the firing rate as a function of mean
input, with injected noise value of 6 
 10�9 A. Intersection of
these 2 lines denotes the external input (mean current and
noise level) that every neuron in all simulations of spiking
neurons received and resulted in a steady-state firing rate of
20 Hz in the absence of synaptic feedback.
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is achieved if the UDF parameters (the parameters of the
dynamic synapse model; see METHODS) of the dynamic synapses
are chosen to satisfy the following three conditions.4

1) Maintain the synaptic weight values if the presynaptic
firing rate is equal to the desired firing rate.

2) Increase the strength of the E 3 E and I 3 I synapses
and decrease the strength of the E 3 I and I 3 E synapses if
the presynaptic firing rate is below the target firing rate.

3) Decrease the strength of the E 3 E and I 3 I synapses
and increase the strength of the E 3 I and I 3 E synapses if
the presynaptic firing rate is above the target firing rate.

The first constraint involves creating the fixed point at a
target firing rate by setting the scaling factor A of the dynamic
synapse model according to the formula

Amn �
Jmn

R*mn�x*�U*mn
1 �x*�

(13)

where Jmn represents specific synaptic weight values of a
corresponding network with static synapses and R*mn (x*) and
Umn

1* (x*) are the steady-state values for the internal dynamic
synapse variables as a function of presynaptic firing rate, here
set to the desired steady-state firing rate (see Eqs. 6 and 7 in
METHODS). Equations 6 and 13 ensure that the steady-state
dynamic synapse weight is equal to the static synaptic weight
[�*mn (x*) � Jmn] for a presynaptic firing rate x*. We refer to
�*mn (x*) as the steady-state value for �mn (see METHODS, Eq. 8)
and designate the resulting function of x* as the steady-state
synaptic weight curve (see Fig. 3). In the asynchronous range,
when static synaptic weight values (Jee, Jei, Jie, Jii) are set for
a sparse, random network, the network has a specific steady-
state firing rate associated with those synaptic strengths, x*
(van Vreeswijk and Sompolinsky 1996, 1998). Because the
network already has a fixed point with firing rate x* for these
static weights, we simply scale the dynamic synapses to take
these static weights at x*. We do this by setting the value of
Amn according to Eq.13, which gives �*mn (x*) � AmnR*mn

(x*)U1*(x*) � Jmn[R*mn (x*)U1*(x*)/R*mn (x*)U1*(x*)] � Jmn,
thus returning the firing rate x*.

Satisfying the second and third constraints involve setting
the UDF parameters of the dynamic synapses such that if there
is a perturbation in the network that affects the steady-state
firing rate then the dynamic synapses attempt to compensate
and bring xe back to x*. The UDF parameters are responsible
for the shape of the steady-state synaptic weight curve. Thus to
create an attractor at x*, which produces firing rate stability, we
choose UDF parameters such that the synapse types E3 E and
I 3 I have negative derivatives in their steady-state synaptic
weight curves and the synapse types E 3 I and I 3 E have
positive derivatives in their steady-state synaptic weight curves
(see Fig. 3). To test the validity of this analysis, we ran a
parameter search over the range of physiological UDF values
to determine whether there were simple volumes of UDF space
that fulfill these two requirements through the range of firing
rates 10–100 Hz. (See METHODS for a description of how and
why these values were chosen.) Based on these theoretical
considerations we chose three sets of UDF parameters (R1, R2,
and R3) for each of the four synapse types randomly from the
appropriate subvolume of UDF space: for synaptic connections
E 3 E and I 3 I six points were chosen from the blue
N-volume, for E 3 I and I 3 E six points were chosen from
the red P-volume (see Fig. 4, A and B). All resulting UDF
parameters are listed in Table 1. The three conditions explained
earlier create a stable fixed point for the firing rates of the
resulting dynamical system. At the target firing rate xe � xi �
x*, the dynamic synapses equilibrate to (Jee, Jei, Jie, Jii), which
maintains the firing rate. At a firing rate less than x* the
synapses E 3 E and I 3 I increase their absolute synaptic
weight values to values greater than Jee and Jii and the synapses
E 3 I and I 3 E decrease their absolute strength to less than
Jei and Jie, leading to an increased excitatory firing rate. At a
firing rate greater than x* the synapses E 3 E and I 3 I
decrease their absolute synaptic weight values to less than Jee
and Jii and the synapses E 3 I and I 3 E increase their
absolute synaptic weight values to greater than Jei and Jie,
leading to a decreased excitatory firing rate.

4 See the Supplemental materials for a theoretical justification of these
choices.
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FIG. 3. Steady-state synaptic strengths.�*mn are used to control the excitatory firing rate in a network with dynamic synapses. A: synaptic strengths to the
excitatory population as a function of presynaptic firing rate. Dashed, straight lines show static synapse values such that xe � xi � 10 Hz (blue, Jee; red, Jei).
Thicker, curved lines show the dynamical synapse steady-state strengths tuned such that exactly at 10 Hz (black “✕ ”), the static and dynamic synapse values match
up [blue, �*ee(xe); red, �*ei(xi)] and therefore a network with dynamic synapses also supports the 10-Hz excitatory and inhibitory firing rate of the network with
static synapses. B: same as A but for the inhibitory population. Note the inversion of the slopes of the steady-state synaptic strengths. Dashed, straight lines: blue,
Jie; red, Jii; thicker, curved lines: blue, �*ie(xe); red, �*ii(xi). Arrows in A show how the dynamic synapses will push the excitatory firing rate toward 10 Hz in
the event of a system perturbation. If a perturbation causes xe to increase, then �*ee(xe) decreases (A) and �*ie(xe) increases (B), thereby causing a decrease in xe

and an increase in xi; the latter induces an increase in �*ei(xi), causing an additional decrease in xe by xi. If a perturbation causes xe to decrease then the same
curves explain an increase in xe.
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In addition, we took experimentally found UDF values
reported in Markram et al. (1998) and Gupta et al. (2000) and
compared their contribution to network stability with that of
the theoretically deduced parameters that were selected as
previously described. We sampled random points from Gauss-
ian distributions with means and SDs as reported in these
articles and plotted the resulting UDF values in Fig. 4, C–F.
The UDF values for E 3 E synapses from Markram et al.
(1998) (blue circles in Fig. 4, C and D) lie clearly in the
N-volume. The UDF values for E3 I synapses (green circles)
from that study lie much closer to the P-volume, but are not
contained in it. The UDF values of GABAergic synapses of
type F1 (facilitating) , F2 (depressing), and F3 (recovering)
reported in Gupta et al. (2000) are contained in the N-volume
(see green, cyan, and black pluses in Fig. 4, E and F), but those
for types F1 and F3 are close to the P-volume. This ambiguous
position of UDF parameters for GABAergic synapses could be
related to the fact that, from a theoretical perspective for
improved homeostatic plasticity, the I3 I and I3 E connec-
tions may have either positive or negative derivatives depend-
ing on other network parameters (see Supplemental materials).
In Wang et al. (2006) several additional clusters of UDF values
for E 3 E synapses in prefrontal cortex are reported. These

values (plotted in Fig. 4, G and H) all fall clearly into the
N-volume (into which they should fall according to the pro-
posed theoretical analysis).

Network parameter ranges

To find ranges of synapse strengths for static synapses
that were compatible with low firing rates and low network
correlation in current-based or conductance-based networks,
we varied the excitatory and inhibitory synaptic weights of
conductance-based and current-based networks (see METH-
ODS and Fig. 5). Specifically, we varied two synaptic weight
values, one excitatory synaptic weight Je and one inhibitory
synaptic weight Ji, and set the all synaptic weight values
such that Jee � Jie � Je and Jei � Jii � Ji. So that results
between conductance- and current-based networks could be
compared we scaled the conductance-based synapses so that
the conductance- and current-based synapses had equal
strength when the conductance-based synapses were multi-
plied by their respective driving forces at the neurons’
resting potential. We found a broad parameter range of
synaptic weights that could potentially support dynamic
synapses as a network feedback mechanism in the asynchro-
nous, irregular regime. However, because we measured the

FIG. 4. Two volumes in the UDF [designation for collective set of parameters: U (which roughly models the release probability of a synaptic vesicle
for the first spike in a train of spikes), D (time constant for recovery from depression), and F (time constant for recovery from facilitation)] parameter
space where the steady-state synaptic weights.�*mn (xmn) have either positive or negative derivatives with respect to presynaptic firing rate, which are essential
for the theoretical prediction of resulting self-tuning properties of the resulting network. A and B: randomly generated UDF parameters (E3 E and I3 I, denoted
by blue “*”; and I3 E and E3 I denoted by red “*”), which are used to test the theoretically predicted stability properties of UDF values from these 2 volumes.
A: “N-Volume” of UDF space (blue) denotes that parameter range in which �*(xpre) has a negative derivative between the firing rates of 10 and 100 Hz (also
in C, E, and G). B: “P-Volume” of UDF space (red) denotes that parameter range in which �*(xpre) has a positive derivative between the firing rates of 10 and
100 Hz (also in D, F, and H). C and D: sampled UDF values for pyramid to pyramid (blue circles) and pyramid to interneuron (green circles) connections based
on means and SDs from Markram et al. (1998). E and F: sampled UDF values for F1 facilitating synapses (green “�”), F2 depressing synapses (cyan “�”), and
F3 recovering synapses (black “�”) based on means and SDs from Gupta et al.(2000). These are all UDF values of GABAergic synapses whose targets are
either excitatory or inhibitory neurons; thus no clear prediction for the ranges of their values can be made through the proposed theoretical analysis. UDF values
of F1 and F2 synapses lie close to the border region between the P- and N-volume. G and H: sampled UDF values for medial prefrontal cortex
excitatory-to-excitatory synapses (PFCe1, PFCe1a, and PFCe1b samples as yellow“✕ ”; PFCe2, PFCe2a, and PFCe2b samples as black “✕ ”; and PFCe3, PFCe3a,
and PFCe3b samples as magenta “✕ ”) based on means and SDs from Wang et al. (2006). All these UDF values lie in the N-volume, as predicted by the theoretical
analysis.
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firing rate, network correlation, and coefficient of variation
of the interspike interval (ISI CV) for only a 2D manifold of
the four-dimensional (4D) space of synaptic weights (Jee,
Jei, Jie, Jii), these parameter maps serve only as a guide with
which to start our simulations because the parameter space
becomes 4D when the dynamic synapses are allowed to vary
the synaptic strengths according to individual dynamic syn-
apse formulas with different AUDF parameters. We always
started our networks with synaptic weight initial conditions
from these 2D maps, so that the networks started in a setting
where the network behavior is asynchronous irregular and
the feedback current magnitudes are on par with or smaller
than the level of the background current injection. Based on
these maps, we used the synaptic weight parameter range
shown in Fig. 5, A, D, and G as the starting point for the rest
of our conductance- and current-based spiking network
simulations, as well as our sparse, random mean-field sim-
ulations of the Eq. 11 system, all of which used dynamic
synapses. Specifically, Jee, Jie � [0, 0.1] 
 10�9 A and Jei,
Jii � [0, 1.67] 
 10�9 A for current-based spiking networks
and the current-based mean-field model and Jee, Jie � [0,
1.67] 
 10�9 S and Jei, Jii � [0, 10] 
 10�9 S for the
conductance-based spiking networks and the dynamic syn-
apses were set to these values using Eq. 13.

As a verification of our current-based mean-field model
(Eqs. 9–11) without dynamic synapses, we used the same
settings as in the networks of current-based spiking neurons
(see Fig. 5G) for the mean-field model and compared the
average firing rate. The mean-field model was in excellent
agreement with the current-based spiking network simulations
across the very wide parameter range sampled, with a mean
absolute error (MAE) of 0.8 Hz and a maximum error of 3.8 Hz
over the parameter range.

Interaction of synaptic dynamics with network activity

To give an idea of how dynamic synapses interact with the
network, we discuss an example in detail. The example in Figs. 6

and 7 shows a burst in a network of current-based spiking neurons
followed by a convergence to a steady-state firing rate (a conduc-
tance-based example would work nearly identically, except that
the effect on the synaptic conductances would be harder to
visually interpret as a result of the effect of the driving force on
each synapse). We also show a sparse, random mean-field simu-
lation using the same parameters. A network was chosen that
normally fires at 20 Hz in the absence of dynamic synapses, Jee �
Jie � 0.05 
 10�9 A and Jei � Jii � �0.1 
 10�9 A. The
network was initialized with the dynamic synapse parameter
initial conditions set to a 5-Hz steady-state firing rate and the
desired firing rate for the network was set to 10 Hz, by adjusting
the scaling factors Amn in the Eq. 8 system. The firing rate initial
conditions for the network were also set to 5 Hz, as best as
possible. Because a firing rate of 5 Hz gives an overall positive
network gain when the target firing rate is set to 10 Hz, the firing
rate shot up at the beginning of the simulation (Fig. 6, A and B).
The dynamic synapses adapted to this new firing rate and brought
it back down, ultimately reaching nearly the steady-state of 10 Hz
for the excitatory population, whereas the inhibitory population
firing rate remained near 20 Hz. Thus we see that an excitatory
firing rate very near the target firing rate x*e was reached from
quite different initial conditions and then maintained. During
the simulation, the average dynamic synapse weights were
modified and caused the changes shown in the network firing
rates (Fig. 6, C–J). We can assert that the dynamic synapses
caused the change in network firing rate (and not the other
way around) because the time constants of the dynamic
synapses are much longer than any neuronal time constants.
Again there is excellent agreement between the current-
based mean-field model and the current-based spiking net-
work simulation.

A spike raster of a random subset of neurons in the
current-based spiking network example (Fig. 7A) shows that
the network functioned in the asynchronous range, aside
from correlation induced by a common network firing rate.
Figure 7, B–D shows data from a single example neuron in
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FIG. 5. Parameter search over synaptic
weights for conductance-based spiking net-
works, current-based spiking networks, and
mean-field firing-rate networks with static syn-
apses. y-axis is Je � Jee � Jie and the x-axis is
Ji � Jei � Jii. A–C: network statistics for
conductance-based spiking networks with
static synapses. A: network steady-state firing
rate. B: coefficient of variation (CV) for con-
ductance-based spiking networks over the
range of synaptic weights. C: network correla-
tion of excitatory population as measured as
described in METHODS. There was no signifi-
cant network correlation. D–F: network statis-
tics for current-based spiking networks with
static synapses. D: network steady-state firing
rate. Five colored circles represent the current-
based spiking network settings used in the
target firing-rate simulation. E: CV for current-
based spiking networks over the range of syn-
aptic weights. F: network correlation of exci-
tatory population. There was no significant
correlation over the range of synaptic weights
tested. G: network steady-state firing rate for
mean-field firing rate model.
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the simulation. The total synaptic current hovered around
the background current and the recurrent synapses subtly
influenced this current. When the network achieved the
steady-state firing rate, the total current was slightly below
the normal background current (Fig. 7B), thus creating an
average firing rate of 10 rather than 20 Hz without dynamic
synapses. The individual synaptic currents in Fig. 7C show
differences in magnitude of three- to fourfold as a result of
the short-term plasticity.

Self-tuning in networks of spiking neurons

To investigate the self-tuning properties of dynamic syn-
apses on spiking networks we asked whether dynamic synapses
could help tune a spiking neural network to a steady-state
target firing rate even if the external input was perturbed
because it occurs, for example, in primary sensory areas of the
cortex in response to sensory stimuli. To test this, we used a
conductance-based spiking network (Jee � Jie � 0.4 
 10�9 S
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FIG. 6. Example showing the firing rates
and synaptic weights over time to demon-
strate the effect of dynamic synapses on the
network firing rate. Scaling factors Amn were
set such that the desired steady-state firing
rate is 10 Hz, even though the synaptic
weight values [Je, Ji] � [0.5, �1] 
 10�10 A
gave a steady-state firing rate of 20 Hz with-
out dynamic synapses. Initial conditions of
the dynamic synapses were set to values
corresponding to 5-Hz steady-state firing
rate. A: firing rate curve of mean-field model:
xe in blue, xi in red. B: firing-rate curve of
network simulation; the firing rate is
smoothed with a low-pass filter (box car filter
with length equivalent to 20 ms). Two firing
rate curves are in good qualitative agreement
(the drop in firing rates at 500 ms is only a
filtering artifact). C–J: synaptic weights
through time as set by the dynamic synapse
equations. C and D: �ee. E and F: �ei. G and
H: �ie. I and J: �ii. C, E, G, and I: mean-field
model. D, F, H, and J: spiking network
model. Dashed lines represent the values Jee,
Jei, Jie, and Jii. Comparison of the panels on
the left and right shows a good agreement
between the mean-field model and the spik-
ing network.

0 50 100 150 200 250 300 350 400 450 500
−80

−60

−40

V
m

 (
m

V
)

Time (msecs)

D
0 50 100 150 200 250 300 350 400 450 500

−0.3
−0.2
−0.1

0
0.1

S
yn

. I
np

ut
s 

(n
A

)

C

0 50 100 150 200 250 300 350 400 450 500
−1

0
1
2
3

T
ot

al
 S

yn
. I

np
ut

s(
nA

)

B

Circuit Response

N
eu

ro
n 

#

A

0 50 100 150 200 250 300 350 400 450 500

200

400

FIG. 7. Detailed analysis of network activ-
ity in the network example from Fig. 6. A:
spike raster showing the spiking activity of
500 neurons (out of 5,000): 400 excitatory and
100 inhibitory. B–D: data from a single exci-
tatory neuron. B: total synaptic excitatory and
inhibitory currents. Blue line shows the total
excitatory input over time; red line shows the
total inhibitory input over time; black line
shows the total amount of current into the
neuron excluding the noise injection; green
dashed line shows the mean current injection
into the neuron, which corresponds to a 20-Hz
firing rate in the absence of synaptic feedback.
C: individual synaptic currents (each color
represents a separate synapse to the neuron).
Individual synaptic currents are plotted to give
an idea of changes in synaptic weight values.
Upward exponential curves represent excita-
tory currents and downward, inhibitory cur-
rents. Peak values of these currents are set by
the dynamic synapses and vary roughly over
twofold the magnitude of the average current.
D: membrane potential of the selected neuron,
with action potentials. Thick black line repre-
sents the membrane potential of the cell; thin
black line represents the average; blue line
shows the neuron’s firing threshold.
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and Jei � Jii � 8.48 
 10�9 S), a current-based spiking
network (Jee � Jie � 0.013 
 10�9 A and Jei � Jii � �0.18 

10�9 A), and a current-based mean-field model (Jee � Jie �
0.013 
 10�9 A and Jei � Jii � �0.18 
 10�9 A), all with a
steady-state firing rate of 10 Hz. We additionally performed all
of our self-tuning tests with the current-based mean-field
model because it aids us in understanding the self-tuning
properties of networks with dynamic synapses and shows, in
particular, that the self-tuning properties of a circuit with
dynamic synapses are a property of the dynamic synapse model
and not something hidden in the many details and parameters
of a complicated spiking neural network simulation. Every
simulation was performed using both the parameters based on
experimental data and the R1–R3 dynamic synapse parameters
that were derived from our theoretical considerations (see
METHODS). The scaling factors Amn of the dynamic synapses
were set only once such that the steady-state dynamic synapse
curves intersected at 10 Hz. Thus each simulation had identical
dynamic synapse parameters. We then perturbed in small incre-
ments both the mean and SD of the external input from �50 to
�50% of their normal values (Iinject � 2.455 
 10�9 A and noise
drawn from a 0-mean Gaussian, �inject � 6 
 10�9 A SD). The
results, which are the steady-state excitatory firing rates from the
last 1 s of each simulation, are shown in Fig. 8. All the networks
that had a steady-state firing rate between 9 and 11 Hz (a
difference of �1 Hz from the target excitatory firing rate) are
shown in blue, networks with firing rates between 8 and 9 and 11
and 12 Hz (a difference between 1 and 2 Hz) are shown in cyan,

and networks with firing rates between 7 and 8 and 12 and 13 (a
difference between 2 and 3 Hz) are shown in green. In Fig. 8, A,
D, and G we show the control case with static synapses for the
three different network models for comparison. There were few
networks that supported a 10-Hz steady-state firing rate. The
maximal firing rates were 40 Hz and many networks were
essentially shut down with a firing rate very close to or equal to 0
Hz. Thus the steady-state firing rates of networks with static
synapses are quite dependent on mean current injection and
injected noise level. When we ran the same simulations with
dynamical synapses turned on (Fig. 8, remaining panels), the large
firing rates were reduced. We examined two different assignments
of UDF values to the four different types of synaptic connections
in the network: values that are sufficient for inducing stability
according to the previously (see first section of RESULTS) described
analytical approach (Fig. 8, B, E, and H) and values taken from
experimental data (Fig. 8, C, F, and I). Interestingly, for this
perturbation test the dynamic synapse parameters based on exper-
imental data somewhat outperformed the dynamic synapses pa-
rameters based on the analytical approach.

We emphasize that when viewing changes in external input
as a perturbation to the network we are examining only the
steady-state response of the network and that there is indeed a
strong transient response to external input that could provide
the excitation necessary for cortical computations, while still
allowing for homeostatic regulation on this very short time-
scale. A transient response to any network perturbation results
from the fact that dynamic synapses do not equilibrate instan-
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FIG. 8. Self-tuning with respect to perturbations of the level and variance of external input currents. All networks tested were set to a default steady-state firing
rate of 10 Hz. Scaling factors Amn were set only once; thus each set of simulations (a single panel) where dynamic synapses were used had identical synapse
parameters. Blue denotes the optimal firing rate of 10 Hz (between 9 and 11 Hz), cyan between 8 and 9 and 11 and 12 Hz, green between 7 and 8 and 12 and
13 Hz, and gray denotes networks between 0 and 1 Hz. A–C: networks with conductance-based synapses. A: response (average excitatory firing rate) of
conductance-based networks with static synapses to perturbations of external current mean and noise. B: averaged response of conductance-based networks over
dynamic synapse parameters R1–R3. C: response of conductance-based networks with the dynamic synapse parameters based on experimental data. D–F:
networks with current-based synapses. D: response of current-based networks with static synapses to perturbations of external current mean and noise strength.
E: averaged response of current-based networks over dynamic synapse parameters R1–R3. F: response of current-based networks with the dynamic synapse
parameters based on experimental data. G–I: response of current-based mean-field networks. G: response of current-based mean-field model with static synapses
to perturbations of external current mean and noise strength. H: averaged response of mean-field networks over dynamic synapse parameters R1–R3. I: response
of the mean-field networks with the parameters based on experimental data.
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taneously and thus the response will follow the timescale of the
dynamic synapses. This is shown in Fig. 9 for the case of
conductance-based spiking networks with dynamic synapse
parameters based on the experimental data shown in Table 1
(Fig. 9, A–C) and R1 dynamic synapse parameters (Fig. 9,
D–F) (the R2 and R3 parameters were similar). Figure 9, A–F
shows 50-ms excitatory firing rate “snapshots” for each net-
work at times 1–50, 251–300, and 451–500 ms. Additionally,
Fig. 9G shows a single network’s excitatory and inhibitory
response to a constant input with constant noise variance
experimentally observed UDF parameters; Fig. 9H shows the
same network with R1 dynamic synapse parameters. In the
case of experimentally observed synapse parameters the net-
work compensated for the changed external input in approxi-
mately 600 ms, resulting in an excitatory steady-state firing
rate near 11 Hz and an inhibitory steady-state firing rate of 24
Hz. In the case of the R1 dynamic synapse parameters the
network compensated for the changed external input in approx-
imately 150 ms, resulting in an excitatory steady-state firing
rate and an inhibitory steady-state firing rate of approximately
24 Hz. This 150-ms period is in the same range as the duration
of typical transient rate responses to visual stimuli in primary
visual cortex (see, e.g., Fig. 2 in Lamme and Roelfsema 2000).
The duration of transient rate responses reported for higher
visual areas (see, e.g., Rainer et al. 2004) is somewhat longer
and lies between the durations found in these network simula-
tions for R1 dynamic synapses and dynamic synapses based on
experimental data.

We next examined the effect of long-term changes in syn-
aptic weights on firing rate stability in networks with dynamic
synapses. We used the parameter range of static synaptic
weight values already shown in Fig. 5 and assumed that these
synaptic weights were a perturbation of some unknown but
correct synaptic weights that would lead to a steady-state firing
rate of 10 Hz. Taking each network with its given, possibly
perturbed static synaptic weights, we then used Eq. 13 to set

the synaptic scaling factor for spiking networks with dynamic
synapses assuming a target firing rate of 10 Hz. That is, the Amn

values were set to Amn � Jmn/[ R*mn (10 Hz)/Umn
1* (10 Hz)] and

were thus scaled by a single, constant scale factor across
simulations using the same dynamic synapse parameters.

The results of the synaptic weight perturbations for conduc-
tance-based spiking networks, current-based spiking networks,
and current-based mean-field models are shown in Fig. 10. In
Fig. 10, A, D, and G are the control cases with static synapses,
shown for comparison. With static synapses the steady-state
firing rates for networks with high excitatory synaptic weights
are in excess of 200 Hz. However, as shown in Fig. 10, B, C,
E, F, H, and I, in networks with dynamic synapses, regardless
of conductance-based (A–C) or current-based (D and E) syn-
apses and regardless of which dynamic synapses parameters
are used, the excessive firing rates disappear. Most important,
in all but the one case of current-based networks with the
dynamic synapse parameters based on experimental data, the
number of perturbed networks that nevertheless had firing rates
very close to the target firing rate increased dramatically. The
continuous mean-field predictions of the dynamic synapses
applied to the networks with synaptic weight perturbations are
shown in Fig. 10, G–I. The mean-field simulations show
excellent performance across nearly the entire range of pertur-
bations and are qualitatively similar to spiking network simu-
lations using dynamic synapses. Network correlation did not
play a role in the effect the dynamic synapses had on the
networks.

One may notice that some networks that had a firing rate
between 9 and 11 Hz without dynamic synapses no longer had
this firing rate when dynamical synapses were turned on
(compare Fig. 10, D and E, bottom left corner). Furthermore,
the mean-field model with dynamic synapses (compare Fig. 10,
G and H) expands this range of target firing rates, whereas the
current-based spiking network does not. Typically, the average
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FIG. 9. Transient firing rate responses in net-
work models with dynamic synapses. A–C: tran-
sient firing rate responses for changes in the mean
and variance of external inputs are shown for con-
ductance-based networks with experimentally ob-
served UDF parameters for dynamic synapses (see
Table 1). A: firing rate of excitatory neurons during
the time interval 1–51 ms (in response to a change
in external inputs at time 0). Black circle indicates
the specific network that is shown in G. Firing rate
of excitatory neurons over periods of 251–300 and
450–500 ms (B and C, respectively). D–F: same
for conductance-based networks using R1 dynamic
synapse parameters. G: average firing rate of exci-
tatory (blue) and inhibitory (red) neurons as a
function of time (averaged with a 20-ms sliding
window) for the network represented in A as a
black dot. H: same for the network represented in D
as a black dot (the same network with static syn-
apses assumed a steady-state firing rate of 19 Hz
for both excitatory and inhibitory neuron popula-
tions; not shown). One sees that in either case the
transient firing rate transmitted substantial informa-
tion about the new level of external input during a
significant amount of time after the change in the
external input, suggesting that a network-induced
homeostasis of firing rates is compatible with com-
putational processes that process information about
the change in external inputs.
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excitatory firing rate drops by 1 or 2 Hz when dynamic
synapses are turned on in the spiking network. The reason for
this is somewhat subtle and it has to do with the spiking
networks’ synaptic weight values, which are not always in
exact agreement with the mean-field model synaptic strength
values5. Although this effect shows up in all three self-tuning
results we show, as is clear from the figures, its effect is small,
resulting in differences between the spiking networks and the
mean-field models of only a few Hertz at most and, neverthe-
less, the results with dynamic synapses show great improve-
ment over the control case with static synapses.

Why should simply scaling the Amn for dynamic synapses
according to Eq. 13 have a helpful effect on the target firing
rate of the network if there is an unknown perturbation of the
factor Jmn in that same equation? Assume, for example, that
there are static synaptic strengths (J*e , J*i ) that lead to a target
firing rate of x*. Assume further that there is an unknown
perturbation of these synaptic strengths that can be written as
(J*e � 	e, J*i � 	i). Because we have increased the excitation and
decreased the inhibition we should expect an increase in the
target firing rate; that is, the perturbed synaptic strengths (J*e �
	e, J*i � 	i) lead to x* � x	. If we now examine the same
network and synaptic weight perturbation but use dynamic
synapses we see a change in behavior. As already outlined we
set the Amn according to Eq. 13, so that �*me (x*) � J*e � 	e and
�*mi (x*) � J*i � 	i because we do not know that there is a
perturbation. Now the situation with dynamic synapses is quite
different from with static synapses because at x* the dynamic
synapses equilibrate to values that support a higher firing rate
than x*, specifically x* � x	. At a firing rate of x* � x	,
however, because the derivatives of the dynamic synapses have
the correct signs, the network supports a firing rate below x* �
x	. Thus we can conclude that the firing rate must be between
x* and x* � x	, which is better than the case of static synapses,
where the network firing rate is completely dictated by the
perturbed synaptic weights and thus has a firing rate of x* � x	.
The degree to which the final firing rate will be closer to x* or

5 In a spiking network without dynamic synapses there is a distribution of
firing rates, whose mean we have used as the steady-state firing rate of the
network. In these networks even the tails of the neuronal firing rate distribution
have the same synaptic weight values Jmn. However, in the spiking network
with dynamic synapses turned on, the lower part of the firing rate distribution
will typically have synapses that are stronger than the set value �mn(x*) � Jmn

for the target firing rate and the higher part of the distribution will typically
have synapses that are weaker than Jmn. Because the steady-state dynamic
synapse efficacy curves were constructed only to make sure the derivatives had
the right signs there is no reason that the expected value of the steady-state
synaptic weight across all synapses from neuron type n to m should exactly
equal the mean-field average [i.e., that �P(xn) �*mn (xn) � Jmn, where P(xn) is
the distribution of firing rates for neuron type n]. Furthermore, changing the
target firing rate may change the shape of the steady-state firing rate distribu-
tion of the network, thus making it effectively impossible to cancel this effect
if one desires to tune the same network to different firing rates. Overall, this
effect results in no more than a 1- to 2-Hz difference between the mean-field
prediction of the effect of dynamic synapses and the spiking network results
with dynamic synapses.
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FIG. 10. Self-tuning with respect to systematic synaptic strength perturbations. All networks tested were set to a default steady-state firing rate of 10 Hz. Blue
denotes the optimal firing rate of 10 Hz (between 9 and 11 Hz), cyan between 8 and 9 and 11 and 12 Hz, green between 7 and 8 and 12 and 13 Hz, and gray
denotes networks between 0 and 1 Hz. Synaptic strength scaling factors Amn for all synaptic perturbations used the same rescaling factor. A–C: response (as
measured by the steady-state average excitatory firing rate) of the conductance-based spiking networks to systematic synaptic strength perturbations. A: response
for conductance-based spiking networks with static synapses. B: response of conductance-based spiking networks with dynamic synapses using the R1–R3
parameters. C: response for conductance-based spiking networks with dynamic synapses using the parameters based on experimental data. D–F: response of
current-based spiking networks to systematic synaptic strength perturbations. D: response of current-based networks with static synapses. E: response of
current-based networks with dynamic synapses using the R1–R3 parameters. F: response of current-based networks with dynamic synapses using the parameters
based on experimental data. G–I: response of current-based mean-field firing rate models to systematic perturbations in synaptic strength. G: response of
current-based mean-field models with static synapses. H: response of current-based mean-field models with dynamic synapses using the R1–R3 parameters. I:
response of current-based mean-field models with dynamic synapses using the parameters based on experimental data. Mean-field model differs from the
current-based network in F; see footnote 5 for discussion.
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x* � x	 depends on the magnitude of these derivatives. We
refer to the last part of the Supplementary material for an
analytical comparison of network stability with static and
dynamic synapses.

As a final self-tuning test we also investigated the effects
of systematic changes in the excitability of subpopulations
of neurons in the simulated circuit. Diverse changes in the
excitability of neurons were previously reported to be
caused by neuromodulators (especially dopamine) in vari-
ous cortical areas (Gulledge and Jaffe 1998, 2001; e.g., see
Fig. 2B in first reference). Because such changes in the
excitability of neurons cannot be modeled directly in the
context of LIF neurons, we simply inactivated (i.e., deleted)
randomly selected subsets of neurons in the circuit. For
continuity, we chose the same networks as in the input
perturbation self-tuning simulation: conductance-based
spiking networks (Jee � Jie � 0.4 
 10�9 S and Jei � Jii �
8.48 
 10�9 S), current-based spiking networks (Jee � Jie �
0.013 
 10�9 A and Jei � Jii � �0.18 
 10�9 A), and the
current-based mean-field models (Jee � Jie � 0.013 
 10�9

A and Jei � Jii � �0.18 
 10�9 A), all with a steady-state
firing rate of 10 Hz. We randomly chose excitatory and
inhibitory neurons in these networks to inactivate, with the
total number of inactivated neurons between 0 and 70% of
their respective pool totals, in small increments. The cur-

rent-based mean-field model received an analogous pertur-
bation by modifying the Kmn parameter in Eq. 9 according to
the neuronal inactivation percentage in the spiking net-
works. The control simulations with static synapses are
shown in Fig. 11 A, D, and G; results with the R1–R3
dynamic synapse parameters are shown in Fig. 11, B, E, and
H; and results with the dynamic synapse parameters based
on experimental data are shown in Fig. 11, C, F, and I. For
the networks tested, the dynamic synapse parameters based
on experimental data did not have a significant effect but the
R1–R3 dynamic synapse parameters showed improvement
over the control, with the vast majority of networks within
2 Hz of the target firing rate of 10 Hz. Again, network
correlation effects did not play a role in the results of the
simulations.

Choosing other target firing rates

Implicit in the demonstrated self-tuning properties is the
ability to set a specific fixed-point firing rate using dynamic
synapses, through use of the scaling in Eq. 13. The network
perturbations can then be viewed as a perturbation away
from this fixed point. We thus wondered, in principle, how
close a spiking network could get to a preprogrammed fixed
point, as set by Eq. 13, regardless of what the initial synaptic

0 50
0

20

40

60

% Inh. Neurons Deleted

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

 

 
A

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

 

 
B

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

 

 
C

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

 

 
D

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted
%

 E
xc

. N
eu

ro
ns

 D
el

et
ed

 

 
E

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

 

 
F

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted

 

 
G

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted

 

 
H

0

5

10

15

0 50
0

20

40

60

% Inh. Neurons Deleted

 

 
I

0

5

10

15

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

%
 E

xc
. N

eu
ro

ns
 D

el
et

ed

FIG. 11. Sparse, spiking networks demonstrate self-tuning with respect to systematic neuron inactivation. All networks tested were set to a default steady-state
firing rate of 10 Hz. Scaling factors Amn were set only once; thus each set of simulations (a single panel) where dynamic synapses were used had identical dynamic
synapse parameters. Blue denotes the optimal firing rate of 10 Hz (between 9 and 11 Hz), cyan between 8 and 9 and 11 and 12, green between 7 and 8 and 12
and 13 Hz, and gray denotes networks between 0 and 1 Hz. A–C: response (as measured by the steady-state average excitatory firing rate) of the
conductance-based spiking networks to systematic neuronal inactivation. A: response of conductance-based spiking networks with static synapses. B: averaged
response of conductance-based spiking networks with dynamic synapses using the R1–R3 parameters. C: response of conductance-based spiking networks with
the dynamic synapse parameters based on experimental data. D–F: response (as measured by the steady-state average excitatory firing rate) of the current-based
spiking networks to systemic neuronal inactivation. D: response of current-based spiking networks with static synapses. E: averaged response of current-based
spiking networks with dynamic synapses using the R1–R3 parameters. F: response of current-based spiking networks with dynamic synapses using the parameters
based on experimental data. G–I: response (as measured by the steady-state excitatory firing rate) of the current-based mean-field firing rate models to systemic
neuronal inactivation. G: response of current-based mean-field models with static synapses. H: averaged response of current-based mean-field models with
dynamic synapses using the R1–R3 dynamic synapse parameters. I: response of current-based mean-field models with dynamic synapses using the parameters
based on experimental data.
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strengths of the network were. Briefly, we used five net-
works from the current-based, spiking network synaptic
parameter range of Fig. 5D. The networks had Je and Ji as
follows (in nA): blue [0.025, �0.05], red [0.025, �0.15],
cyan [0.05, �0.1], magenta [0.075, �0.05], and green
[0.075, �0.015], leading to corresponding firing rates of 20,
12, 20, 100, and 20 Hz with static synapses. We then chose
as the target firing rates every integral firing rate in the range
of 1–120 Hz and used Eq. 13 to appropriately set the
dynamic synapses in the five networks. We do not mean to
suggest that cortical networks create fixed points at such
high firing rates, rather only to test the principle behind Eq.
13. The results, which are the steady-state excitatory firing
rates, are shown in Fig. 12A. All networks showed an ability
to enhance their firing rates toward the desired target firing
rate, although the two networks with the weakest excitatory
synapses (denoted by blue and red) were unable to follow
the target firing rate closely at 20 Hz. Another complica-
tion arose in that the two networks with the strongest
excitatory synapses (green and magenta), although able to
closely follow the target firing rate, also showed significant
network correlation at 20 Hz, shown in Fig. 12B. Despite
these caveats, the results clearly demonstrate that the ability
to tune the steady-state firing rate of a network is a general
property of the dynamic synapse configuration. The results
lend further evidence to the idea that self-tuning properties
of spiking networks with dynamic synapses are caused by
setting a firing rate fixed point, to which the networks
attempt to return after a perturbation.

Theoretical analysis

There is little hope that one can give a complete theoretical
justification for the demonstrated self-tuning properties of
sparsely connected circuits of spiking neurons with dynamic
synapses or for the associated mean-field model defined by
Eqs. 7–9. The reason lies in the nonlinearity of these models
and the fairly large number of variables that are involved.

However, the demonstrated self-tuning properties of these
complex systems are clearly related to known self-tuning
properties of substantially simpler systems for which a theo-
retical analysis is feasible. These analytical results will be
discussed in the following.

An analytical result on the assignment of differential
dynamics to different types of synapses in a
distributed circuit

In the first section of RESULTS we proposed a heuristic for
choosing the signs of the derivatives of the synaptic weight
curves �*mn (xn) at x*. We then demonstrated through numerical
simulations of circuits of spiking neurons that this choice was
justified. This heuristic can also be justified analytically for a
2D mean-field model, similar to that described in Eq. 11
(assuming dynamic synapses with very small derivatives and
instantaneously equilibrating dynamic synapses). One can
prove that the derivatives dmn � (d�mn/dxn)(x*) should have
the following signs for the excitatory population to have
homeostatic properties with respect to changes in the intensity
of external input currents: dee � 0, dii  0, die  0, dei � 0 (see
Supplementary material for details). These signs agree with the
previously proposed heuristic rules for the assignment of de-
pressing and facilitating synapses to the four types of synaptic
connections (see first section of RESULTS; note that the negative
sign is included in �ei and �ii). For the excitatory population to
also have homeostatic properties with respect to changes in the
intensity of external input currents to the inhibitory population
the analytically derived condition is somewhat more compli-
cated

dce 
 0, d � 0, dic � 0, dei 
 0 if �ee�x*� �
1

�e

dee 
 0, dii 
 0, die � 0, dei � 0 if �ce�x*� 

1

�e

where �e is the derivative of the excitatory F–I curve evaluated
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FIG. 12. Many spiking networks can follow a target firing rate using dynamic synapses. Five selected current-based spiking networks with dynamic synapses
showing the networks’ abilities to follow an excitatory target firing rate using scaling factors Amn as set by the heuristic of Eq. 13. Target firing rate was set to
every integral firing rate between 1 and 120 Hz and the A values for each network were calculated based on this target frequency. A: average target firing rate;
black dashed line shows the line y � x, which is optimal performance. Mean absolute errors for each network blue, red, cyan, magenta, and green are [20.7, 21.4,
4.5, 2.1, 2.0] Hz, respectively. Networks had Je and Ji as follows (in nA): blue [0.025, �0.05], red [0.025, �0.15], cyan [0.05, �0.1], magenta [0.075, �0.05],
and green [0.075, �0.015] and are also denoted in Fig. 5D. Dynamic synapse parameters used were the R1 parameters. B: excitatory network correlation as a
function of target firing rate. There was negligible network correlation for the blue, red, and cyan networks and significant network correlation for the magenta
and green networks between the firing rates of 20 and 100 Hz.
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at the fixed point x*. Taken together these conditions imply
that regardless of the size of �ee(x*), the E 3 E connection
should always be depressing and the E 3 I should always be
facilitating to allow the circuit to return to a steady-state firing
rate in spite of a changed level of external input. Additionally,
if �ee(x*)  �e

�1 the I3 E synapses should be facilitating and
the I3 I synapses should be depressing; otherwise, the I3 E
synapses should be depressing and the I 3 I synapses should
be facilitating. The fact that this analytical result does not point
to a general rule for the optimal dynamics of synapses from
inhibitory neurons (from the perspective of firing rate stability)
could be seen as a possible explanation for the diverse distri-
bution of experimentally observed UDF parameters for these
synapses (see Fig. 4, E and F). We additionally give justifica-
tion for our self-tuning heuristic for the parameter range used
in our current-based networks in the Supplementary materials.

A theoretical analysis of the impact of changes of synaptic
weights on stability properties of networks with static and
dynamic synapses

One can prove for the same mean-field model with excita-
tory and inhibitory neurons that the steady-state firing rate x*
is less affected by small changes in synaptic weights (resulting
for example from LTP or LTD) if the synaptic connections are
dynamic and tuned using an appropriate heuristic. An analyt-
ical derivation is provided in the second part of the Supple-
mentary material, with specific reference to the fact that our
self-tuning heuristic is appropriate for the parameter regime
used in the current-based spiking networks herein. An addi-
tional example figure (Fig. S1) is also given.

D I S C U S S I O N

We have shown that the inclusion of more realistic models
for synapses, which reflect their experimentally found short-
term plasticity, provides models for cortical neural networks
with interesting stability properties. In particular, it enables
such models to return after a large variety of perturbations to a
low but nonzero spontaneous firing rate, even if the perturba-
tion, such as a change in the level of external input, a change
in synaptic strength, or even neuron deletion, is of a longer-
lasting nature. This surprising stability property of network
models with dynamic synapses, which has apparently not been
reproduced in models with static synapses, may provide a
possible explanation for the surprisingly stable low but nonzero
rate of spontaneous firing reported for cortical neurons in a
variety of studies. Several other homeostatic processes, such as
synaptic scaling, LTP and LTD, and genetic regulation of
receptor numbers are likely to support the stability of the rate
of spontaneous firing of cortical neurons on a larger timescale
(Turrigiano and Nelson 2004). However, none of these mech-
anisms would apparently be able to support stability on the
timescale of seconds, say, in response to a changed level of
sensory input or to a changed concentration of neuromodula-
tors in a cortical circuit. On the other hand, we showed in Fig.
9 that the stability property endowed by short-term synaptic
plasticity leaves a sufficiently large time window of one to
several hundred milliseconds during which the firing rate in the
circuit is affected by the external perturbation. Thus informa-
tion about such external inputs can be transmitted to other

cortical circuits and integrated into cortical computation. In
fact, the dynamic response to an increased external input
shown in Fig. 9H is on a timescale similar to that of typical
responses to visual inputs in primary visual cortex (see, e.g.,
Fig. 2 in Lamme and Roelfsema 2000). Even on a larger
timescale, however, the information about the external (or
internal) perturbation remains accessible to the neural system,
although the firing rate of excitatory neurons is returned
through synaptic dynamics to a given target level. The same
firing rate of excitatory neurons is then accompanied by a
different firing rate of inhibitory neurons (see Fig. 9, G and H)
and this rate may therefore contain substantial information
about the nature and level of the external perturbation for a
much longer time period. This observation also implies that the
same firing rate of excitatory neurons can be produced by a
virtually infinite combination of concentration levels of neu-
romodulators and activity levels of inhibitory neurons, analo-
gously to the large sets of different circuit parameters that were
reported to support the generation of a target firing pattern in
the pyloric circuit in the crustacean stomatogastric ganglion
(Marder and Goaillard 2006).

The target value of 10 Hz for the spontaneous firing rate
excitatory neurons in cortical circuits on which we have fo-
cused in our network simulations was chosen rather arbitrarily,
although it lies within a range of spontaneous firing rates
reported in a number of experimental studies (see INTRODUC-
TION). We show in Fig. 12 that a large range of other target
values can be achieved by choosing a suitable global scaling
parameter for synaptic weights, which might for example be
under genetic control. However, to demonstrate stability at
really low rates (say, 1 Hz), one needs to add neuron models to
the network that fire spontaneously even in the absence of
synaptic input (or during a release from inhibition); otherwise,
the network cannot recover from a temporary pause in firing
and will remain indefinitely silent.

We have shown in this article that the stability of the firing
rate of excitatory neurons endowed by short-term synaptic
dynamics is rooted in general principles of control theory,
recently proposed for much simpler dynamical systems. In fact,
activity-dependent rescaling of feedback strength was previ-
ously postulated as a powerful mechanism for self-tuning in
control theory for purely mathematical reasons (Moreau and
Sontag 2003). We demonstrated that this theoretical analysis of
stability properties provided by dynamic synapses can be
extended to the case of a distributed system that consists of
several interacting dynamical modules, such as an interacting
population of excitatory and inhibitory neurons in a cortical
circuit, each with thousands of neurons. In particular, we have
exhibited an analytical method for deriving rules regarding the
type of synaptic dynamics that should be assigned to different
types of synapses for the purpose of network stability. This
theoretical approach may help to provide an explanation for the
diversity of the empirically found short-term plasticity of
connections between modules with different dynamic roles
(such as excitatory and inhibitory neurons). It turns out that this
theoretical analysis provides clearer predictions for the dynam-
ics of synapses from excitatory neurons than for GABAergic
synapses. This might provide an explanation for the experi-
mentally found diversity in the dynamics of GABAergic syn-
apses.
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Finally, we emphasize that the investigation of the relation-
ship between stability properties of networks of spiking neu-
rons and the dynamics of specific types of synapses that we
have initiated in this article should be seen only as a first step.
In a second step one also needs to investigate through computer
simulations more detailed network models consisting of dif-
ferent types of excitatory and especially inhibitory neurons
with specific firing properties and more specific connectivity
patterns. A quite challenging open problem is whether one can
also extend the theoretical analysis of stability properties in-
duced by dynamic synapses to more complex networks.
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