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Abstract. We consider under the assumption PINP questions concerning the structure of the
lattice of NP sets together with the sublattice P. We show that two questions which are slightly
more complex than the known splitting properties of this lattice cannot be settled by arguments
which relativize. The two questions which we consider are whether every infinite NP set contains
an infinite P subset and whether there exists an NP-simple set. We construct several oracles, all
of which make P I NP, and which in addition make the above-mentioned statements either true
or false. In particular we give a positive answer to the question, raised by Bennett and Gill
(1981), whether an oracle B exists making PBINPt and such that every infinite set in NPB has

an infinite subset in PB. The constructions of the oracles are finite injury priority arguments.

1. Introduction

Very few properties of the collection of NP sets are kno$/n. The central problems
of complexity theory having to do vr/ith NP, e.g., whether P: NP or NP: co-P,

have yet to be solved. One approach which has yielded a number of interesting
results has been to study the structure of NP under the assumption that P # NP.

Such results are of interest not only because it is widely believed that P I NP but
as well because one might hope to shed some light on the central problems
themselves by seeing what these assumptions entail.

In this paper we consider questions about the lattice of NP sets (where set-
theoretic union and intersection are the lattice operations), together with the
sublattice P, under the assumption P I NP. One aspect of this lattice which has

been studied are its splitting properties (see Ladner [6]). Probably the strongest
results here is that of Breitbart [4]. He shows that for every recursive infinite,
coinfinite set A there is a set B recognizable in real time and log space which splits
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A (i.e.,each of A 
^ 

B, A 
^ 

B, A 
^ 

B, A n B is infi nite). This implies that every infinite
set in NP or co-NP can be split into two infinite sets of the same class. Thus there
are for example no maximal elements in the lattice of NP sets mod finite sets.

We consider here two further properties of NP sets; whether there are any simple
sets in NP and whether every infinite set contains an infinite subset in P. An
NP-simple set is a coinfinite set in NP v/hose complement contains no infinite NP
sets. As is the case with maximal sets, simple sets are the ones whose complements
are in some sense small. Hence, once the question of maximal sets is settled, it is
natural to look for NP-simple sets. We show that any answer to this question does
not relativize. That is, we construct oracles relative to which P I NP and for which
the statement that NP-simple set exist is true respectively false,

A P-immune set is an infinite set which contains no infinite subset in P. The
problem of whether there exists a P-immune set in NP is of some practical interest
as it is useful to have a practically computable approximation to a set in NP. In
[3] Bennett and Gill show that, with probability one, for an oracle A there is an
infinite set in NPA which has no infinite subset in PA. Further they ask whether an
oracle B exists such that P" I NP" and every infinite set in NPB contains an infinite
subset in PB. We ans\ryer this question affirmatively. Hence, any argument which
solves under the assumption P I NP the problem of whether any infinite NP set
contains an infinite subset in P does not relativize.

These considerations are somewhat analogous to the study of the lattices of
recursively enumerable and recursive sets. This study has led to the discovery of
significant new constructions in recursion theory. The questions concerning the
lattice of r.e. sets corresponding to those which we ask about NP sets are easily
answered. It almost immediately follows from the definitions that every infinite
recursively enumerable set contains an infinite recursive subset. Constructions of
various types of simple sets are ubiquitous in recursion theory (see Soare [7]).

The methods of constructing oracles in this paper are in general more complex
than those which have previously been used for this purpose (see [1] or [2]). The
constructions are (with the exception of Theorem 3.1) finite injury priority argu-
ments. The oracles that are constructed in Theorems 3.1,4.L and 4.5 are recursive
sets; the oracle in Theorem 3.2 is recursively enumerable.

We expect that with further, more sophisticated constructions of oracles along
the lines of this paper one will be able to show as well that even under the assumption
P I NP some immediate questions about P-degrees of sets in NP cannot be answered

by using arguments that relativize (e.g. recursion theoretic arguments).

In the next section we present the main definitions and notations. Section 3
contains the construction of an A s.t. NPA : co-NPA and some infinite set in NPA

contains no infinite subset in PA and of an oracle A such that an NPÁ-simple set

exists, Section 4 contains the construction of an oracle B such that PB I NPB and

every infinite set in NPB contains an infinite subset in PB. Finally, this same method
is used to construct a B with P" I NP" such that no NPB-simple set exists. In
Section 5 we indicate that the previous arguments can also be used to show that
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the existence of P-universal sets in NP is independent from the assumption P # NP
(in the same sense as above).

2. Definifions

We consider computations on oracle Turing machines. Without loss of generality
we assume that the tape alphabet of our machines is f : {0, 1}. Our languages will
be subsets of )* : {finite strings from alphabet f}.

We fix enumerations {P;}i.ro and {Ni}i.rs (N denotes the natural numbers) of
polynomial-time bounded deterministic respectively non-deterministic oracle Tur-
ing machines. We may assume that p¡(n):i+n' is a strict upper bound on the
length of any computation by P¿ or N¿ with any oracle X on inputs of length r. Pf
and Nf denote oracle Turing machines using oracle X. We also write PI for the
set {a e f * 

lmachine Pf accepts a (i.e., machine Pf gives output 0 on input a )}.
Similarly we write Nf for the set {a e f*lNf accepts *}.Pt is the collection of
all the sets Pl i e N. NPx is the collection of all sets Nf, i e N. For a more complete
account of these definitions see [5].

For any string s, sn is s concatenated with itself ¡r times. We use the notation

l. l to denote both the length of a string and the cardinality of a set, depending on

the context. Finally, we will make use of a recursive paring function (. , .) on the
integers. We require that the pairing function be one-one and, for a fixed first
argument, be strictly monotonic in its second argument.

3. Oracles relatiye to which P-immune and NP-simple sets exist

Bennett and Gill 13] have already shown that, v/ith probability one, for a random
oracle A there is an infinite set in NPA which has no infinite subset in PA and
NPA I co-NPA.

We show here that one can as well directly construct a recursive oracle A s.t.
some set in NPA has no infinite subset in PA. The corresponding requirements Ri
make it necessary to restrain many elements from A (in general infinitely many
for one R¡). Therefore the construction is most interesting if one combines these
with other requirements that make NPA : co-NPA, which require an enumeration
of a great number of elements into A. There occur no injuries of requirements in
this construction.

Theorem 3.1. There is a recursiue oracle A s.t. some infinite s¿l in NPA has no

infinite subset in PA and s.r. NPA : co-NPA.

Proof. In order to construct A s.t. some set in NPA has no infinite subset in PA it
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is enough to make

M:{Oulke ruand3ae2* (l'l:k nrreA)}

infinite and to satisfy for every i e N the requirement

R¡:Pln{ok lk e N} infinite -> r! ø M

(it is obvious thaf M e NPA).

According to Baker, Gill and Solovay [1] it is sufficient to make sure that the
complement of

K(A): {(i, a, 0")l some computation of Nf accepts a in fewer than n steps}

is an NPA in order to make NPA: co-NPA (K(A) is polynomial complete in NpA).

Construction
Stage k. Let A¡, be the set of elements that are already in A at the beginning

of stage k.

For every ¡ < àk s.t. p¡&) <2u/" we restrain all strings of length >k lrom A that
are not in A¡ and that are queried in the computation o1 e!' on input 0k. Further,
if for one of these i, R¡ has not yet received attention and Pfn accepts 0k, we
restrain all strings of length k fromA (and thus make OkÉM). We then say that
R¡ receives attention at stage k.

Finally for every string a É K(Aò s.t. there is a string p of length k s.t. p continues
the string a, B is not restrained from A,2lal.lpl=¿lrl and B has a f. in position

lal+1 and 0 at positions lol+2, ...,21o1, \rye enumerate p in A. (Then we can

recover a from the code p by taking the first half of string B and stripping off the
1 and all 0's at the end of the first half .)

We first note that there is some ke s.t. for all k >ko at most 2kla strings of length
k are restrained from A via the first clause. The effect of this first restraint clause

is, that if some Pf accepts infinitely many 0k, then there are infinitely many k s.t.

Pfu accepts 0k. Therefore Ri receives attention at some stage and thus we have

P! ø tur.

Further an easy calculation shows that for all strings a we have ctøK(A) ifr
there is some B in A with a relation to o as in the construction. Vy'e use here that
at no more than åk many of the first ft stages all strings of length k are restrained
via the second clause. Therefore t* -K(A)e NPA.

Note that in this construction we cannot always place for aêK(A) a code p of
length 2lal in A as in [1] because of the strong restraint of the requirements R¿.

Theorem 3.2. There is an oracle A such that there exists an NP^-simple set.
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Proof. For any oracle A the set

¡ø : {O' l/ e ru and !l a e-Ð* (l"l : / 
^d 

€A)}

is obviously in NPA.
We construct A in such a way that for every i e N the requirement

R¡ :Nf n{o'l/ e N} infinite - À/f oM *Ø
and for every n e N the requirement

S" : l{/'lA contains no string of length I'}l-- n

is satisfied. This will immediately imply that

S:M u{aef*la isnotof theform0/, /e N1

is a simple set in NPA.
There are obvious conflicts between the requirements R¡, which want to add

elements to the set A, and the requirements S,, which want to keep elements out
of A. These conflicts are settled by assigning priorities to all requirements. We
only allow that action for the sake of R¡ injures ,S" (by changing the set of the first
ø lengths /' s.t. no string of length /' is in A) if i 1n, i.e., if R¡ has higher priority
than Sn.

Construction. We say that requirement R¡ is satisfied at the beginning of stage k
if there is a stage k'<k s.t. R¡ received attention at stage k' and no string that was

restrained from A for R¡ at stage k' has so far been enumerated into A.
We write A¡, for the set of elements that have been enumerated into A by the

beginning of stage ft.

Stage k. Check whether some i < t exists s.t. R¡ is not satisfied and there are

I <k, ae-I* with lal : / and an accepting computation of Ni* on input 0r so that

string a is not queried in this computation and such that a has not been restrained

from A for some R¡, with i '< i and

l{l' < tl¿,u contains no string of length l']l> i.

If such i, /, ø exist, we choose i minimal and (/, a) minimal for this i. We then say

that R¡ receives attention at stage k. We enumerate a in A and restrain from A
for R¡ all strings in 2* -A¡, which are queried in one canonically chosen accepting

computation of Ni' on input 0r in which a is not queried,

A trivial induction on i shows that every requirement Ri receives attention at

only finitely many stages (note that R¡ cân only receive attention at stages kr and

k2 with kt<kz if there exists some i'1í s.t. Ri,receives attention at some stage

k'with krlk' <kz). This already implies that every requirement S" is satisfied

because .S, can only be injured at a stage k if some R¡ with i 1n receives attention
at stage k. Thus {or | ¿ e ¡¡} -¡z is infinite.
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Lemma 3.3. For euery i € N

Ni n{o'lle N} infinite - Ni ¡M tØ.

Proof. Assume that Nl n {Or | / e N} is infinite. Choose 0' e Nl s.t.

l{t'<tlA contains no string of length l']1l>í,

no string of length / is ever restrained from A for an R¡' with i '< i and some

accepting computation of Ni on input 0r does not query every string of length /
(the latter holds as soon as p,(l)<2t).

Choose k6 s.t. no R¡, with i '< i receives attention at a stage >k6. Then requirement

R¡ is permanently satisfied from stage ks on because otherwise the existence of /
with the properties above guarantees that R¡ receives attention after stage k6. Thus

N! ¡M +Ø.

4. Oracles relative to which no P-immune or NP-simple sets exist

Theorem 4.1. There is an oracle B s.t.PB INPB and s.t. euery infinite s¿t in NPB

has an ínfinite subset in PB.

Proof. We construct an oracle B and for every i e N a deterministic oracle Turing
machine Q¡ such that

a? ç N7 and Nl infinite -, Q? infinite.

We define

Q? :{" eExlri..eB}

where t¡,o e 2* is a 'test string' which is associated with c defined bY fi,. : a 10'10",
where n:lol+i+2+pr(l"l) (p¿ is the polynomial which bounds the running time
of ¡d).

Obviously for every i e N there is a deterministic Turing machine which runs in
polynomial time and which produces for input ø the output /¡,.. Therefor" Q7 .Pt
for every B cE*,

The test strings t¡.o àÍe chosen in such a way that the nondeterminsitic machine
N¡ cannot query the oracle about string f¿,. during a computation on input a (because

It,'l> p,(lrrl)), Further the function

(a, i) -> ¡,.,

is one-one. Finally we observe that for every I € N the set

F,: {ß € t- I lp I 
: / and the last [å/l elements of the string p are not all 0's]
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does not contain any string of the form fi,.. Further F¡ has at least ()tt/21 - 1) many
elements and thus the function

l-lRl
majorizes every polynomial after a while.

We define a set M e NPB by

¡ø:{O' l/e ru and Ft¡B *Ø}.

For every i e N we have a requirement

S¡:M * Pl.

If all the requirements S¡ are satisfied we have M É.PB .

We have to satisfy in addition for all i>0, n >0 the requirements

R¿,":Nl infinite -, leTl>n.
We assign priority (i, 0) to requirement $ and priority (i, n) to requirement R¿,".

Following the usual convention we say that requirement T' has higher priority than
requirement 7 if (priority of T') < (priority of T).

In the following construction of oracle B we sometimes try to satify S¡ at a certain
stage of the construction and later we see that we have to sacrifice this attempt in
order to satisfy a requirement of higher priority than S;. Nevertheless we will be
able to satisfy every requirement S¡ because it can be injured only finitely often
(at most once by every requirement R¡,^ of higher priority than S¡). Thus we just
have to be persistent enough in our attempts to satisfy $.

It will be obvious that the constructed oracle B is recursive because we enumerate
the strings in B in the order of their length.

Construction. We say that requirement S¡ is satisfied at the beginning of stage k
(k e N) if there is a stage k' 1k where S¡ received attention and s.t. no string that
was restrained from B at stage k' for Sr has so far been enumerated into B.

We say that requirement R¡,n is satisfied at the beginning of stage I if there is a
sfage k'< k where R¡., received attention.

Stage k. Let B¡, be the set of elements that are already in B at the beginning of
stage fr, Define

/r:max[{k}u{lengths of all strings that are in Br or that have been

restrained from B at previous stages)]+ 1.

Choose i minimal s.t. ,S¡ is not satisfied and p¡(l)< lf,"l.
Case l. There is a requirement R¡,, of higher priority than Si which is not satisfied

and there is a string a s.t. a €Nin, lr',. l=/u, f¡,o has not been restrained from B for
a requirement of higher priority than R¡,,, and

1r,,. | > max{lB ll p . n u}.

285
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We choose R¡,, and a with these properties s.t. R¡., has the highest possible

priority and enumersta t¡,o in B. We say that R¿n receives attention at stage k.
Case 2. Otherwise.
In this case $ receives attention at stage k. We restrain for requirement S¡ all

strings from B about which the oracle is queried during the compuation of Plu on

input 0¡u. Further, if Pf' does not accept 0ru, we enumerate the alphabetically first
string p e F¡u into B s.t. B is not restrained from B for requirement S j.If P?'accepts
Olu, we restrain all strings in F¡u from B for $.

Lemma 4,2. M:{0'l/ e N ønd Ft¡B +ØløPB

Proof. We first note that every requirement R¡,, receives attention at most once

during the construction. Further, a requirement $ can only receive attention at

stages fr1, krwith kr<k" if some R¡,^ with (i, n)<(i, 0) receives attention at some
stage k' with kr < k' < kz. Therefore, every requirement $ only finitely often receives

attention during the construction.
Fix some i e l\. In order to prove that M + P? we consider a large enough stage

k s.t. no requirement of priority < (i,0) receives attention at any stage > k and

such that p¡(lò<lf,.l. fnen $ is satisfied at the beginning of stage k because

otherwise some requirement of priorify < (i,0) would receive attention at stage k.

Therefore, there is a stage k' < k where S; received attention and s.t. no string that
was restrained from B at stage k' for $ has been enumerated into B by the
beginning of stage k. By the choice of k none of these restrained strings is

enumerated into B at any stage Ë. =-k (because no R¡., of higher priority than $
receives attention at any stage Ê>k). This implies that Pf accepts OIu'ifr Pl,
accepts 0t'' ifr }tu' É. M.

Lemma 4.3. For euery i e N, Qi c N7 and

N! tnfnite -' Q? infinite.

Proof. We place a string t¡.- in B at stage k only if some requirement R¡,, receives

attention at stage k. In this case we have a e Niu and therefore as well a e Nl
because only strings of length =lt¡.l> p'(lcrl) are enumerated into B at stages >k
and the machine M cannot query its oracle about such long strings during a

computation on input a. Thus a7 çN7.
Assume that Nl is infinite. We show that, for every n e N, requirement R¡,,

receives attention at some stage. This implies that Q? is infinite because at every
stage where some requirement Rr.¿ receives attention we create a new element in
Qi. Ttrus we fix some neN. We choose some de Nl s.t. only strings of length
less than 1t,.. I are restrained from B for requirements of priority < (i, n) during the

construction and s.t. at the first stage ft where a string of length > 1t,.. I is enumerated
into B, a requirement of priority>(i,n) receives attention. Since for this k only
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elements of length >þ,'l>p,(lol) are enumerated into B at stages > k, we have
r"eN|k. Further, since a string of length =|t¡-l is enumerated into B at stage k,
we have lrr,. l=/u. Therefore, R¡,, receives attention at this stage k unless it has

already received attention at some previous stage.

Corollary 4.4, Arguments that remain ualid under relatiuization are not sufficient
to proue that

P I NP -> euerl infinite sel in NP contains an infinite subset ín P

or

P # NP -> not euery infinite s¿f in NP contains an ínfinite subset in P.

Proof. For the first statement, consider the oracle of Theorem 3.1.

For the second statement, consider the oracle of Theorem 4,1.

Theorem 4.5. There is an oracle B s.r. NPB I co-NPB and euery infinite set in
NPB u co-NPB hqs an infiníte subset in PB.

Proof. The construction of the desired oracle is an inessential extension of the

construction in the proof of Theorem 4.1.

We now have to make sure that

tø:{0' l/e Nand F¡aB#Ø}

is not in co-NPB. Thus, if requirement 57 receives attention at stage k, we make
F¡uÕB +ø ifr Oru eNiu. If Orn e Nfu, restrain for $ all strings from B which are

queried in the least accepting computation of Nf' on input Oru, On the other hand,

if Ot" É. Nl*, restrain from B all strings queried by any computation of Nf on input
oru,

Besides the sets a? çN7 one builds infinite subsets O? i"PB for every infinite
set (.Ð*-Ni) in co-NPB. We take'test strings' ñ,* that are different from the 1i,,.,

and we define

O7:{.li¡,.e8\.
If requirement

.É¡,,:r*-¡¡i innnit" - lQTl>n

receives attention at stage k, we place some ñ,. in B with aÉ.N7'. As before we

then have a/N7 because only strings of length >lí¡"1>p,(lol) are enumerated in
B atstages> k.

Corollary 4.6. Arguments that remain ualid under relatiuization are not sufficient
to proue that

P I NP -+ there exists an NP-simple set in the lattice of sets iz NP
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Proof. For the first statement consider the oracle of Theorem 4.5

For the second statement consider the oracle of Theorem 3.2.

5. P-universal sets in NP

The methods of the previous sections can be applied to other questions. Call a

set [/ PA-universal if

p" : {{o e E*l(y, a) e U}l 7 € t*}.

The question of whether there exists a set U in NP which is P-universal is open.
The existence of such a set would imply that the use of nondeterminism in
polynomial time computations allows one to compute all sets in P with the fixed
polynomial time bound of the set U in NP. The analogy with recursion theory
suggests the existence of P-universal sets in NP. Many computer scientists believe
the opposite is true.

The method of Theorem 3.1. can be used to show the following theorem.

Theorem 5.1. There is a recursíue oracle A such that P^ INPA and there is a
P^-uniuersal set in NPA.

On the other hand, we have the following theorem.

Theorem 5.2. There is a recursiue oracle B such that PB I NPB and there is no
PB-uniuersal sel i/x NPB.

Proof. The construction is similar to that of the proof of Theorem 4.1. Besides
the usual set M, which witnesses that NPB I P", for every set ¡¿l in NPB a set Oi
in PB is constructed such that V7 3a ((y,o)e Nf <+ "øQï.
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