
Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1 What makes a dynamical system

computationally powerful?

Robert Legenstein and Wolfgang Maass

Institute for Theoretical Computer Science

Technische Universität Graz

Austria, 8010 Graz

{legi, maass}@igi.tugraz.at

We review methods for estimating the computational capability of a complex

dynamical system. The main examples that we discuss are models for cortical neural

microcircuits with varying degrees of biological accuracy, in the context of online

computations on complex input streams. We address in particular the question to

what extent earlier results about the relationship between the edge of chaos and the

computational power of dynamical systems in discrete time for off-line computing

also apply to this case.

1.1 Introduction

Most work in the theory of computations in circuits focuses on computations in

feedforward circuits, probably because computations in feedforward circuits are

much easier to analyze. But biological neural circuits are obviously recurrent, in

fact the existence of feedback connections on several spatial scales is a characteristic

property of the brain. Therefore an alternative computational theory had to be

developed for this case. One neuroscientist who emphasized the need to analyze

information processing in the brain in the context of dynamical systems theory was

Walter Freeman, who started to write a number of influential papers on this topic in

the 1960s; see (Freeman, 1975) and (Freeman, 2000) for references and more recent

accounts. The theoretical investigation of computational properties of recurrent

neural circuits started shortly afterwards. Earlier work focused on the engraving

of attractors into such systems in order to restrict the dynamics to achieve well-

defined properties. One stream of work in this direction (see, e.g. Grossberg, 1967;

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

2 What makes a dynamical system computationally powerful?

D., 1968; Amari, 1972; Little, 1974) culminated in the influential studies of Hopfield

regarding networks with stable memory, called Hopfield networks (Hopfield, 1982,

1984), and the work of Hopfield and Tank on networks which are able to find

approximate solutions of hard combinatorial problems like the traveling salesman

problem (Hopfield and Tank, 1985, 1986). The Hopfield network is a fully connected

neural networks of threshold or threshold-like elements. Such networks exhibit rich

dynamics and are chaotic in general. However, Hopfield assumed symmetric weights,

which strongly constrains the dynamics of the system. Specifically, one can show

that only point attractors can emerge in the dynamics of the system, i.e. the activity

of the elements always evolves to one of a set of stable states which is then kept

forever.

Somewhat later the alternative idea arose to use the rich dynamics of neural

systems which can be observed in cortical circuits rather than to restrict them

(Buonomano and Merzenich, 1995). In addition one realized that one needs to

look at online computations (rather than off-line or batch computing) in dynamical

systems in order to capture the biologically relevant case (see Maass and Markram,

2005, for definitions of such basic concepts of computation theory). These efforts

resulted in the “liquid state machine” model by Maass et al. (2002) and the “echo

state network” by Jäger (2002) which were introduced independently. The basic

idea of these models is to use a recurrent network to hold and nonlinearly transform

information about the past input stream in the high-dimensional transient state of

the network. This information can then be used to produce in real-time various

desired online outputs by simple linear readout elements. These readouts can be

trained to recognize common information in dynamical changing network states

because of the high dimensionality of these states. It has been shown that these

models exhibit high computational power (Legenstein et al., 2003; Joshi and Maass,

2004; Jäger and Haas, 2004). However, the analytical study of such networks with

rich dynamics is a hard job. Fortunately, there exists a vast body of literature on

related questions in the context of many different scientific disciplines in the more

general framework of dynamical systems theory. Specifically, a stream of research is

concerned with system dynamics located at the boundary region between ordered

and chaotic behavior which was termed “edge of chaos”. This research is of special

interest for the study of for neural systems because it was shown that the behavior

of dynamical systems is most interesting in this region. Furthermore, a link between

computational power of dynamical systems and the edge of chaos was conjectured.

It is therefore a promising goal to use concepts and methods from dynamical

systems theory to analyze neural circuits with rich dynamics and to get in this

way better tools for understanding computation in the brain. In this chapter, we

will take a tour, visiting research concerned with the edge of chaos and eventually

arrive at a first step towards this goal. The aim of this chapter is to guide the reader

through a stream of ideas which we believe are inspiring for research in neuroscience

and molecular biology, as well as for the design of novel computational devices in

engineering.

After a brief introduction of fundamental principles of dynamical system and

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.2 Chaos in Dynamical Systems 3

Table 1.1 General properties of various types of dynamical systems.

cellular iterative Boolean cortical microcircuits

automata maps circuits and gene regulation
networks

analog states? no yes no yes

continuous time? no no no yes

high-dimensional? yes no yes yes

with noise? no no no yes

with online input? no no usually no yes

chaos in Section 1.2, we will start our journey in Section 1.3 in the field of theoretical

biology. There, Kauffman studied questions of evolution and emerging order in

organisms. We will see that depending on the connectivity structure, networks may

operate either in an ordered or chaotic regime. Furthermore, we will encounter the

edge of chaos as a transition between these dynamic regimes. In Section 1.4, our tour

will visit the field of statistical physics, where Derrida and others studied related

questions and provided new methods for their mathematical analysis. In Section 1.5

the reader will see how these ideas can be applied in the theory of computation.

The study of cellular automata by Wolfram, Langton, Packard, and others led to

the conjecture that complex computation are best performed in systems at the

edge of chaos. The next stops of our journey in Section 1.6 and Section 1.7 will

bring us close to our goal. We will review work by Bertschinger and Natschläger

who analyzed real-time computations on the edge of chaos in threshold circuits. In

Section 1.8, we will briefly examine self-organized criticality, i.e. how a system can

adapt its own dynamics towards the edge of chaos. Finally, Section 1.9 presents

the efforts of the authors of this chapter to apply these ideas to computational

questions in the context of biologically realistic neural microcircuit models. In

this section we will analyze the edge of chaos in networks of spiking neurons and

ask the following question: In what dynamical regimes are neural microcircuits

computationally most powerful? Table 1 shows that neural microcircuits (as well

as gene regulation networks) differ in several essential aspects from those examples

for dynamical systems that are commonly studied in dynamical systems theory.

1.2 Chaos in Dynamical Systems

In this section we briefly introduce ideas from dynamical systems theory and chaos.

A few slightly different definitions of chaos are given in the literature. Although

we will mostly deal here with systems in discrete time and discrete state space, we

start out with the well established definition of chaos in continuous systems and

return to discrete systems later in this section.

The subject known as dynamics deals with systems that evolve in time (Strogatz,

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

4 What makes a dynamical system computationally powerful?

1994). The system in question may settle down to an equilibrium, may enter a

periodic trajectory (limit cycle), or do something more complicated. In (Kaplan

and Glass, 1995) the dynamics of a deterministic system is defined as being chaotic

if it is aperiodic and bounded with sensitive dependence on initial conditions.

The phase space for an N -dimensional system is the space with coordinates

x1, . . . , xN . The state of an N -dimensional dynamical system at time t is represented

by the state vector x(t) = (x1(t), . . . , xN (t)). If a system starts in some initial

condition x(0), it will evolve according to its dynamics and describe a trajectory

in state space. A steady state of the system is a state xs such that if the system

evolves with xs as its initial state, it will remain in this state for all future times.

Steady states may or may not be stable to small outside perturbations. For a stable

steady state, small perturbations die out and the trajectory converges back to the

steady state. For an unstable steady state, trajectories do not converge back to the

steady state after arbitrarily small perturbations.

The general definition of an attractor is a set of points or states in state space

to which trajectories within some volume of state space converge asymptotically

over time. This set itself is invariant under the dynamic evolution of the system.1

Therefore, a stable steady state is a zero-dimensional, or point, attractor. The set

of initial conditions that evolve to an attractor A is called the basin of attraction

of A. A limit cycle is an isolated closed trajectory. Isolated means that neighboring

trajectories are not closed. If released in some point of the limit cycle, the system

flows on the cycle repeatedly. The limit cycle is stable if all neighboring trajectories

approach the limit cycle. A stable limit cycle is a simple type of an attractor. Higher

dimensional and more complex types of attractors exist.

In addition, there exist also so called strange, or chaotic attractors. For example

all trajectories in a high dimensional state space might be brought onto a two-

dimensional surface of some manifold. The interesting property of such attractors

is that, if the system is released in two different experiments from two points on

the attractor which are arbitrarily close to each other, the subsequent trajectories

remain on the attractor surface but diverge away from each other. After a sufficient

time, the two trajectories can be arbitrarily far apart from each other. This

extreme sensitivity to initial conditions is characteristic for chaotic behavior. In fact,

exponentially fast divergence of trajectories (characterized by a positive Lyapunov

exponent) is often used as a definition of chaotic dynamics (see e.g. Kantz and

1. For the sake of completeness, we give here the definition of an attractor according to
Strogatz (1994): He defines an attractor to be a closed set A with the following properties:

a A is an invariant set: any trajectory x(t) that starts in A stays in A for all time.

b A attracts an open set of initial conditions: there is an open set U containing A such
that if x(t) ∈ U , then the distance from x(t) to A tends to zero as t → ∞. The largest
such U is called the basin of attraction of A.

c A is minimal: there is no proper subset of A that satisfies conditions a and b.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.3 Randomly Connected Boolean Networks 5

Schreiber, 1997). There might be a lot of structure in chaotic dynamics since the

trajectory of a high-dimensional system might be projected merely onto a two-

dimensional surface. However, since the trajectory on the attractor is chaotic, the

exact trajectory is practically not predictable (even if the system is deterministic).

Systems in discrete time and with a finite discrete state space differ from contin-

uous systems in in several aspects. First, since state variables are discrete, trajecto-

ries can merge, whereas in a continuous system they may merely approximate each

other. Second, since there is a finite number of states, the system must eventually

reenter a state previously encountered and will thereafter cycle repeatedly through

this state cycle. These state cycles are the dynamical attractors of the discrete sys-

tem. The set of states flowing into such state cycle or lying on it constitutes the

basin of attraction of that state cycle. The length of a state cycle is the number

of states on the cycle. For example, the memory states in a Hopfield network (a

network of artificial neurons with symmetric weights) are the stable states of the

system. A Hopfield network does not have state cycles of length larger then one.

The basins of attraction of memory states are used to drive the system from re-

lated initial conditions to the same memory state, hence constituting an associative

memory device.

Characteristic properties of chaotic behavior in discrete systems are a large length

of state cycles and high sensitivity to initial conditions. Ordered networks have

short state cycles and their sensitivity to initial conditions is low, i.e. state cycles

are quite stable. We note that state cycles can be stable with respect to some

small perturbations, but unstable to others. Therefore, “quite stable” means in this

context that the state cycle is stable to a high percentage of small perturbations.

These general definitions are not very precise and will be made more specific for

each of the subsequent concrete examples.

1.3 Randomly Connected Boolean Networks

The study of complex systems is obviously important in many scientific areas. In

genetic regulatory networks, thousands or millions of coupled variables orchestrate

developmental programs of an organism. In 1969, Kauffman started to study such

systems in the simplified model of Boolean networks (Kauffman, 1969, 1993). He

discovered some surprising results which will be discussed in this section. We will

encounter systems in the ordered and in the chaotic phase. The specific phase

depends on some simple structural feature of the system and a phase transition will

occur when this feature changes.

A Boolean network consists of N elements and connections between them. The

state of its elements is described by binary variables x1, . . . , xN . The dynamical

behavior of each variable, whether it will be active (1) or inactive (-1) at the next

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

6 What makes a dynamical system computationally powerful?

time step, is governed by a Boolean function.2 The (directed) connections between

the elements describe possible interactions. If there is a connection from element

i to element j, then the state of element i influences the state of element j in the

next time step. We say that i is an input of element j.

An initial condition is given by a value for each variable x(0). Thereafter, the

state of each element evolves according to the Boolean function assigned to it. We

can describe the dynamics of the system by a set of iterated maps

x1(t + 1) = f1(x1(t), . . . , xN (t))
...

xN (t + 1) = fN (x1(t), . . . , xN (t)),

where f1, . . . , fN are Boolean functions.3 Here, all state variables are updated in

parallel at each time step.

The stability of attractors in Boolean networks can be studied with respect to

minimal perturbations. A minimal perturbation is just the flip of the activity of a

single variable to the opposite state.

Kauffman studied the dynamics of Boolean networks as a function of the number

of elements in the network N , and the average number K of inputs to each element

in the net. Since he was not interested in the behavior of particular nets but

rather in the expected dynamics of nets with some given N and K, he sampled

at random from the ensemble of all such networks. Thus the K inputs to each

element were first chosen at random and then fixed, and the Boolean function

assigned to each element was also chosen at random and then fixed. For each such

member of the ensemble Kauffman performed computer simulations and examined

the accumulated statistics.

The case K = N is especially easy to analyze. Since the Boolean function of each

element was chosen randomly from a uniform distribution, the successor to each

circuit state is drawn randomly from a uniform distribution among the 2N possible

states. This leads to long state cycles. The median state cycle length is 0.5 · 2N/2.

Kauffman called such exponentially long state cycles chaotic.4 These state cycles

are unstable to most perturbations, hence there is a strong dependence on initial

conditions. However, only a few different state cycles exit in this case: the expected

number of state cycles is N/e. Therefore, there is some characteristic structure in

the chaotic behavior in the sense that the system will end up in one of only a few

long term behaviors.

As long as K is not too small, say K ≥ 5, the main features of the case K = N

2. In (Kauffman, 1969), the inactive state of a variable is denoted by 0. We use -1 here
for reasons of notational consistency.
3. Here, xi potentially depends on all other variables x1, . . . , xN . The function fi can
always be restricted such that xi is determined by the inputs to elements i only.
4. In (Kauffman, 1993), a state cycle is also called attractor. Because such state cycles
can be unstable to most minimal perturbations, we will avoid the term attractor here.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.4 The Annealed Approximation by Derrida and Pomeau 7

persist. The dynamics is still governed by relatively few state cycles of exponential

length, whose expected number is at most linear in N . For K ≥ 5, these results can

be derived analytically by a rough mean field approximation. For smaller K, the

approximation becomes inaccurate. However, simulations confirm that exponential

state cycle length and a linear number of state cycles are characteristic for random

Boolean networks with K ≥ 3. Furthermore, these systems show high sensitivity to

initial conditions (Kauffman, 1993).

The case K = 2 is of special interest. There, a phase transition from ordered to

chaotic dynamics occurs. Numerical simulations of these systems have revealed

the following characteristic features of random Boolean networks with K = 2

(Kauffman, 1969). The expected median state cycle length is about
√

N . Thus,

random Boolean networks with K = 2 often confine their dynamical behavior

to tiny subvolumes of their state space, a strong sign of order. A more detailed

analysis shows that most state cycles are short, whereas there are a few long ones.

The number of state cycles is about
√

N and they are inherently stable to about

80 to 90 percent of all minimal transient perturbations. Hence, the state cycles of

the system have large basins of attraction and the sensitivity to initial conditions is

low. In addition to these characteristics which stand in stark contrast to networks

of larger K, we want to emphasize three further features. First, typically at least 70

percent of the N elements have some fixed active or inactive state which is identical

for all the existing state cycles of the Boolean network. This behavior establishes a

frozen core of elements. The frozen core creates walls of constancy which break

the system into functionally isolated islands of unfrozen elements. Thus, these

islands are prevented from influencing one another. The boundary regime where

the frozen core is just breaking up and interaction between the unfrozen islands

becomes possible is the phase transition between order and chaos. Second, altering

transiently the activity of a single element typically propagates but causes only

alterations in the activity of a small fraction of the elements in the system. And

third, deleting any single element or altering its Boolean function typically causes

only modest changes in state cycles and transients. The latter two points ensure

that “damage” of the system is small. We will further discuss this interesting case

in the next section.

Networks with K = 1 operate in an ordered regime and are of little interest for

us here.

1.4 The Annealed Approximation by Derrida and Pomeau

The phase transition from order to chaos is of special interest. As we shall see in the

sections below there are reasons to believe that this dynamical regime is particularly

well suited for computations. There were several attempts to understand the

emerging order in random Boolean networks. In this section, we will review the

approach of Derrida and Pomeau (1986). Their beautiful analysis gives an analytical

answer to the question where such a transition occurs.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

8 What makes a dynamical system computationally powerful?

In the original model, the connectivity structure and the Boolean functions fi

of the elements i were chosen randomly but were then fixed. The dynamics of the

network evolved according to this fixed network. In this case the randomness is

quenched because the functions fi and the connectivity do not change with time.

Derrida and Pomeau presented a simple annealed approximation to this model which

explains why there is a critical value Kc of K where the transition from order to

chaos appears. This approximation also allowed the calculation of many properties

of the model. In contrast to the quenched model, the annealed approximation

randomly reassigns the connectivity and the Boolean functions of the elements

at each time step. Although the assumption of the annealed approximation is

quite drastic, it turns out that its agreement with observations in simulations of

the quenched model is surprisingly good. The benefits of the annealed model will

become clear below.

It was already pointed out that exponential state cycle length is an indicator

of chaos. In the annealed approximation however, there are no fixed state cycles

because the network is changed at every time step. Therefore, the calculations

are based on the dependence on initial conditions. Consider two network states

C1, C2 ∈ {−1, 1}N . We define the Hamming distance d(C1, C2) as the number

of positions in which the two states are different. The question is whether two

randomly chosen different initial network states eventually converge to the same

pattern of activity over time. Or, stated in other words, given an initial state C1

which leads to a state C(t)
1 at time t and a different initial state C2 which leads to

a state C(t)
2 at time t, will the Hamming distance d(C(t)

1 , C(t)
2) converge to zero for

large t? Derrida and Pomeau found that this is indeed the case for K ≤ 2. For

K ≥ 3, the trajectories will diverge.

To be more precise, one wants to know the probability P1(m, n) that the distance

d(C′

1, C′

2) between the states at time t = 1 is m given that the distance d(C1, C2)

at time t = 0 was n. More generally, one wants to estimate the probability

Pt(m, n) that the network states C(t)
1 , C(t)

2 obtained at time t are at distance

m, given that d(C1, C2) = n at time t = 0. It now becomes apparent why

the annealed approximation is useful. In the annealed approximation, the state

transition probabilities at different time steps are independent, which is not the

case in the quenched model. For large N , one can introduce continuous variables
n
N = x, Derrida et al. show that P annealed

1 (m, n) for the annealed network has a

peak around a value m = Ny1 where y1 is given by

y1 =
1 − (1 − x)K

2
. (1.1)

Similarly, the probability P annealed
t (m, n) has a peak at m = Nyt with yt given by

yt =
1 − (1 − yt−1)

K

2
(1.2)

for t > 1. The behavior of this iterative map can be visualized in the so called

Derrida plot, see Figure 1.1. The plot shows the state distance at time t + 1 as a

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.5 Computation at the Edge of Chaos in Cellular Automata 9

 0 0.25 0.5 0.75 1
 0

0.25

 0.5

0.75

 1

y
t+1

=y
t

K=2

K=3

K=5

y
t

y t+
1

Figure 1.1 Expected distance between two states at time t+1 as a function of the

state distance yt between two states at time t, based on the annealed approximation.

Points on the diagonal yt = yt+1 are fixed points of the map. The curves for K ≥ 3

all have fixed points for a state distance larger than zero. The curve for K = 2

stays close to the diagonal for small state distances but does not cross it. Hence,

for K = 2 state distances converge to zero for iterated applications of the map.

function of the state distance at time t. Points on the diagonal yt = yt+1 are fixed

points of the map.

For K ≤ 2, the fixed point y = 0 is the only fixed point of the map and it is

stable. In fact, for any starting value y1, we have yt → 0 for t → ∞ in the limit

of N → ∞. For K > 2, the fixed point y = 0 becomes unstable and a new stable

fixed point y∗ appears. Therefore, the state distance need no longer always converge

to zero. Hence there is a phase transition of the system at K = 2. The theoretical

work of Derrida and Pomeau was important because before there was only empirical

evidence for this phase transition.

We conclude that there exists an interesting transition region from order to chaos

in these dynamical systems. For simplified models, this region can be determined

analytically. In the following section we will find evidence that such phase transi-

tions are of great interest for the computational properties of dynamical systems.

1.5 Computation at the Edge of Chaos in Cellular Automata

Evidence that systems exhibit superior computational properties near a phase

transition came from the study of cellular automata. Cellular automata are quite

similar to Boolean networks. The main differences are that connections between

elements are local, and that an element may assume one out of k possible states

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

10 What makes a dynamical system computationally powerful?

at each time step (instead of merely two states in Boolean networks). The former

difference implies that there is a notion of space in a cellular automaton. More

precisely, a d-dimensional space is divided into cells (the elements of the network).

The state of a cell at time t+1 is a function only of its own state and the states of its

immediate neighbors at time t. The latter difference is made explicit by defining a

finite set Σ of cell states. The transition function ∆ is a mapping from neighborhood

states (including the cell itself) to the set of cell states. If the neighborhood is of

size L, we have ∆ : ΣL → Σ.

What do we mean by “computation” in the context of cellular automata? In

one common meaning, the transition function is interpreted as the program and

the input is given by the initial state of the cellular automaton. Then, the system

evolves for some specified number of time steps, or until some “goal pattern” –

possibly a stable state – is reached. The final pattern is interpreted as the output

of the automaton (Mitchell et al., 1993). In analogy to universal Turing machines,

it has been shown that cellular automata are capable of universal computation (see

e.g. von Neumann, 1966; Smith, 1971; Codd, 1968). That is, there exist cellular

automata which, by getting the algorithm to be applied as part of their initial

configuration, can perform any computation which is computable by any Turing

machine.

In 1984, Wolfram conjectured that such powerful automata are located in a

special dynamical regime. Later, Langton identified this regime to lie on a phase

transition between order and chaos (see below), i.e. in the regime which corresponds

to random Boolean networks with K = 2.

Wolfram presented a qualitative characterization of one-dimensional cellular au-

tomaton behavior where the individual automata differed by their transfer func-

tion.5 He found evidence that all one-dimensional cellular automata fall into four

distinct classes (Wolfram, 1984). The dynamics for three of these classes are shown

in Figure 1.2.

Class 1 automata evolve to a homogeneous state, i.e. a state where all cells are

in the same state. Hence these systems evolve to a simple steady state.

Class 2 automata evolve to a set of separated simple stable states or separated

periodic structures of small length. These systems have short state cycles.

Both of these classes operate in the ordered regime in the sense that state cycles

are short.

Class 3 automata evolve to chaotic patterns.

Class 4 automata have long transients, and evolve “to complex localized struc-

tures” (Wolfram, 1984).

5. He considered automata with a neighborhood of 5 cells in total and two possible cell
states. Since he considered “totalistic” transfer functions only (i.e. the function depends
on the sum of the neighborhood states only), the number of possible transfer functions
was small. Hence, the behavior of all such automata could be studied.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.5 Computation at the Edge of Chaos in Cellular Automata 11

Figure 1.2 Evolution of one-dimensional cellular automata. Each horizontal line

represents one automaton state. Successive time steps are shown as successive

horizontal lines. Sites with value 1 are represented by black squares; sites with

value 0 by white squares. One example for an automaton of class 1 (left), class 4

(middle), and class 3 (right) is given.

Class 3 automata are operating in the chaotic regime. With chaotic, Wolfram means

“unpredictability” of the exact automaton state after a few time steps. Successor

states look more or less random. He also talks about non-periodic patterns. Of

course these patterns are periodic if the automaton is of finite size. But in analogy

with the results presented above, one can say that state cycles are very long.

Transients are the states that emerge before the dynamics reaches a stable long-

lasting behavior. They appear at the beginning of the state evolution. Once the

system is on a state cycle, it will never revisit such transient states. The transients

of class 4 automata can be identified with large basins of attraction or high stability

of state cycles. Wolfram conjectured that class 4 automata are capable of universal

computations.

In 1990, Langton (1990) systematically studied the space of cellular automata

considered by Wolfram with respect to an order parameter λ. This parameter λ

determines a crucial property of the transfer function ∆: the fraction of entries in

∆ which do not map to some prespecified quiescent state sq. Hence, for λ = 0, all

local configurations map to sq, and the automaton state moves to a homogeneous

state after one time step for every initial condition. More generally, low λ-values

lead to ordered behavior. Rules with large λ tend to produce a completely different

behavior.

Langton stated the following question: “Under what conditions will physical

systems support the basic operations of information transmission, storage, and

modification constituting the capacity to support computation?” (Langton, 1990).

When Langton went through different λ values in his simulations, he found that

all automaton classes of Wolfram appeared in this parametrization. Moreover, he

found that the interesting class 4 automata can be found at the phase transition

between ordered and chaotic behavior for λ-values between about 0.45 and 0.5,

values of intermediate heterogeneity. Information theoretic analysis supported the

conjectures of Wolfram, indicating that the edge of chaos is the dominant region of

computationally powerful systems.

Further evidence for Wolframs hypothesis came from Packard (1988). Packard

used genetic algorithms to genetically evolve one-dimensional cellular automata for

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

12 What makes a dynamical system computationally powerful?

a simple computational task. The goal was to develop in this way cellular automata

which behave as follows: The state of the automaton should converge to the all-

one-state (i.e. the state where every cell is in state 1), if the fraction of one-states in

the initial configuration is larger than 0.5. If the fraction of one-states in the initial

configuration is below 0.5, it should evolve to the all-zero-state.

Mutations were accomplished by changes in the transfer function (point mu-

tations which changed only a single entry in the rule table, and crossover which

merged two rule tables into a single one). After applying a standard genetic algo-

rithm procedure to an initial set of cellular automaton rules, he examined the rule

tables of the genetically evolved automata. The majority of the evolved rule tables

had λ values either around 0.23 or around 0.83. These are the two λ values where

the transition from order to chaos appears for cellular automata with two states

per cell.6 “Thus, the population appears to evolve toward that part of the space of

rules that marks the transition to chaos” (Packard, 1988).

These results have later been criticized (Mitchell et al., 1993). Mitchell and

collaborators reexamined the ideas of Packard and performed similar simulations

with a genetic algorithm. The results of these investigations differed from Packards

results. The density of automata after evolution was symmetrically peaked around

λ = 0.5, but much closer to 0.5 and definitely not in the transition region. They

argued that the optimal λ value for a task should strongly depend on the task.

Specifically in the task considered by Packard one would expect a λ value close to

0.5 for a well performing rule, because the task is symmetric with respect to the

exchange of ones and zeros. A rule with λ < 0.5 tends to decrease the number of 1’s

in the state vector because more entries in the rule table map the state to 0. This

can lead to errors if the number of ones in the initial state is slightly larger than 0.5.

Indeed, a rule which performs very well on this task, the Gacs-Kurdyumov-Levin

(GKL) rule, has λ = 0.5. It was suggested that artefacts in the genetic algorithm

could account for the different results.

We want to return here to the notion of computation. Wolfram and Langton were

interested in universal computations. Although universality results for automata

are mathematically interesting, they do not contribute much to the goal of un-

derstanding computations in biological neural system. Biological organisms usually

face computational tasks which are quite different from the off-line computations

on discrete batch inputs for which Turing machines are designed.

Packard was interested in automata which perform a specific kind of computation

with the transition function being the “program”. Mitchell at al. showed that there

are complex tasks for which the best systems are not located at the edge of chaos.

In (Mitchell et al., 1993), a third meaning of computation in cellular automata

— a kind of “intrinsic” computation – is mentioned: “Here, computation is not

6. In the case of two-state cellular automata, high λ values imply that most state
transitions map to the single non-quiescent state which leads to ordered dynamics. The
most heterogeneous rules are found at λ = 0.5.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.6 The Edge of Chaos in Systems with Online Input Streams 13

interpreted as the performance of a ’useful’ transformation of the input to produce

the output. Rather, it is measured in terms of generic, structural computational

elements such as memory, information production, information transfer, logical

operations, and so on. It is important to emphasize that the measurement of such

intrinsic computational elements does not rely on a semantics of utility as do the

preceding computational types.” (Mitchell et al., 1993). It is worthwhile to note

that this “intrinsic” computations in dynamical systems can be used by a readout

unit which maps system states to desired outputs. This is the basic idea of the liquid

state machine and echo state networks, and it is the basis of the considerations in

the following sections.

To summarize, systems at the edge of chaos are believed to be computationally

powerful. However, the type of computations considered so far are considerably

different from computations in organisms. In the following section, we will consider

a model of computation better suited for our purposes.

1.6 The Edge of Chaos in Systems with Online Input Streams

All previously considered computations were off-line computations where some

initial state (the input) is transformed by the dynamics into a terminal state or

state cycle (the output). However, computation in biological neural networks is quite

different from computations in Turing machines or other traditional computational

models. The input to an organism is a continuous stream of data and the organism

reacts in real-time (i.e., within a given time interval) to information contained in

this input. Hence, as opposed to batch processing, the input to a biological system

is a time varying signal which is mapped to a time varying output signal. Such

mappings are also called filters. In this section, we will have a look at recent work

on real-time computations in threshold networks by Bertschinger and Natschläger

(2004) (see also (Natschläger et al., 2005)). Results of experiments with closely

related hardware models are reported in (Schuermann et al., 2005).

Threshold networks are special cases of Boolean networks consisting of N ele-

ments (units) with states xi ∈ {−1, 1}, i = 1, . . . , N . In networks with online input,

the state of each element depends on the state of exactly K randomly chosen other

units and in addition on an external input signal u(·) (the online input). At each

time step, u(t) assumes the value ū + 1 with probability r and the value ū − 1

with probability 1 − r. Here, ū is a constant input bias. The transfer function of

the elements is not an arbitrary Boolean function but a randomly chosen threshold

function of the form

xi(t + 1) = Θ





N
∑

j=1

wijxj(t) + u(t + 1)



 (1.3)

where wij ∈ R is the weight of the connection from element j to element i and

Θ(h) = +1 if h ≥ 0 and Θ(h) = −1 otherwise. For each element, exactly K of its

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

14 What makes a dynamical system computationally powerful?

incoming weights are nonzero and chosen from a Gaussian distribution with zero

mean and variance σ2. Different dynamical regimes of such circuits are shown in

Figure 1.3. The top row shows the online input and below typical activity patterns

of networks with ordered, critical, and chaotic dynamics. The system parameters

for each of these circuits are indicated in the phase plot below. The variance σ 2 of

nonzero weights was varied to achieve the different dynamics. The transition from

the ordered to the chaotic regime is referred to as the critical line.

Figure 1.3 Threshold networks with online input streams in different dynamical

regimes. The top row shows activity patterns for ordered (left), critical (middle),

and chaotic behavior (right). Each vertical line represents the activity in one time

step. Black (white) squares represent sites with value 1 (−1). Successive vertical

lines represent successive circuit states. The input to the network is shown above

the plots. The parameters σ2 and ū of these networks are indicated in the phase

plot below. Further parameters: Number of input connections K = 4, number of

elements N = 250.

Bertschinger and Natschläger used the approach of Derrida to determine the

dynamical regime of these systems. They analyzed the change in Hamming distance

between two (initial) states and their successor states provided that the same

input is applied in both situations. Using Derridas annealed approximation, one

can calculate the Hamming distance d(t + 1) given the Hamming distance d(t) of

the states at time t. If arbitrarily small distances tend to increase, the network

operates in the chaotic phase. If arbitrarily small distances tend to decrease, the

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.7 Real-Time Computation in Dynamical Systems 15

network operates in the ordered phase. This can also be expressed by the stability

of the fixed point d∗ = 0. In the ordered phase, this fixed point is the only fixed

point and it is stable. In the chaotic phase, another fixed point appears and d∗ = 0

becomes unstable. The fixed point 0 is stable if the absolute value of the slope of

the map at d(t) = 0

α =
∂d(t + 1)

∂d(t)

∣

∣

∣

d(t)=0

is smaller than 1. Therefore, the transition from order to chaos (the critical line) is

given by the line |α| = 1. This line can be characterized by the equation

rPBF (ū + 1) + (1 − r)PBF (ū − 1) =
1

K
, (1.4)

where the bit-flip probability PBF (v) is the probability that a single changed state

component in the K inputs to a unit that receives the current online input v leads to

a change of the output of that unit. This result has a nice interpretation. Consider

a value of r = 1, i.e. the input to the network is constant. Consider two network

states C1, C2 which differ only in one state component. This different component

is on average mapped to K elements (because each gate receives K inputs, hence

there are altogether N · K connections). If the bit-flip probability in each of these

units is larger than 1
K , then more than one of these units will differ on average in the

successors states C ′

1, C′

2. Hence, differences are amplified. If the bit-flip probability

of each element is smaller than 1
K , the differences will die out on average.

1.7 Real-Time Computation in Dynamical Systems

In the previous section we were interested in the dynamical properties of systems

with online input. The work we discussed there was influenced by recent ideas

concerning computation in neural circuits that we will sketch in this section.

The idea to use the rich dynamics of neural systems which can be observed in

cortical circuits rather than to restrict them resulted in the “liquid state machine”

model by Maass et al. (2002) and the “echo state network” by Jäger (2002). 7 They

assume time series as inputs and outputs of the system. A recurrent network is

used to hold nonlinearly transformed information about the past input stream in

the state of the network. It is followed by a memoryless readout unit which simply

looks at the current state of the circuit. The readout can then learn to map the

current state of the system onto some target output. Superior performance of echo

state networks for various engineering applications is suggested by the results of

7. The model in (Maass et al., 2002) was introduced in the context of biologically inspired
neural microcircuits. The network consisted of spiking neurons. In (Jäger, 2002), the
network consisted of sigmoidal neurons.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

16 What makes a dynamical system computationally powerful?

Jäger and Haas (2004).

The requirement that the network is operating in the ordered phase is important

in these models, although it is usually described with a different terminology. The

ordered phase can be described by using the notion of fading memory (Boyd and

Chua, 1985). Time invariant fading memory filters are exactly those filters which

can be represented by Volterra series. Informally speaking, a network has fading

memory it its state at time t depends (up to some finite precision) only on the values

(up to some finite precision) of its input from some finite time window [t−T, t] into

the past (Maass et al., 2002). This is essentially equivalent to the requirement that

if there are no longer any differences in the online inputs then the state differences

converge to 0, which is called “echo state property” in (Jäger, 2002).

Besides the fading memory property, another property of the network is impor-

tant for computations on time series: the pairwise separation property (Maass et al.,

2002). Roughly speaking, a network has the pairwise separation property if for any

two input time series which differed in the past, the network assumes at subsequent

time points different states.

Chaotic networks have such separation property, but they do not have fading

memory since differences in the initial state are amplified. On the other hand,

very ordered systems have fading memory but provide weak separation. Hence, the

separation property and the fading memory property are antagonistic. Ideally, one

would like to have high separation on salient differences in the input stream but still

keep the fading memory property (especially for variances in the input stream that

do not contribute salient information). It is therefore of great interest to analyze

these properties in models for neural circuits.

A first step in this direction was made in (Bertschinger and Natschläger, 2004)

in the context of threshold circuits. Similar to Section 1.6, one can analyze the

evolution of the state separation resulting from two input streams u1 and u2 which

differ at time t with some probability. The authors defined the “network mediated

separation” (short: NM -separation) of a network. Informally speaking, the NM -

separation is roughly the amount of state distance in a network which results from

differences in the input stream minus the amount of state difference resulting from

different initial states. Hence, the NM -separation has a small value in the ordered

regime, where both terms are small, but also in the chaotic regime, where both terms

are large. Indeed, it was shown that the NM -separation peaks at the critical line,

which is shown in Figure 1.4a. Hence, Bertschinger and Natschläger (2004) offer a

new interpretation for the critical line and provide a more direct link between the

edge of chaos and computational power.

Since the separation property is important for the computational properties of

the network, one would expect that the computational performance peaks near the

critical line. This was confirmed with simulations where the computational task

was to compute the delayed 3-bit parity8 of the input signal. The readout neuron

8. The delayed 3-bit parity of an input signal u(·) is given by PARITY (u(t − τ), u(t −

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.8 Self-Organized Criticality 17

a b

Figure 1.4 The network mediated separation and computational performance

for a 3-bit parity task with different settings of parameters σ 2 and ū. a) The

NM-separation peaks at the critical line. b) High performance is achieved near

the critical line. The performance is measured in terms of the memory capacity

MC (Jäger, 2002). The memory capacity is defined as the mutual information MI

between the network output and the target function summed over all delays τ > 0 on

a test set. More formally, MC =
∑

∞

τ=0 MI(vτ , yτ), where vτ (·) denotes the network

output and yτ (t) = PARITY (u(t − τ), u(t − τ − 1), u(t − τ − 2)) is the target output.

was implemented by a simple linear classifier C(x(t)) = Θ(w · x(t) + w0) which

was trained with linear regression. Note that the parity task is quite complex since

it partitions the set of all inputs into two classes which are not linearly separable

(and can therefore not be represented by the linear readout alone), and it requires

memory. Figure 1.4b shows that the highest performance is achieved for parameter

values close to the critical line, although it is not clear why the performance drops

for increasing values of ū. In contrast to preceding work (Langton, 1990; Packard,

1988), the networks used were not optimized for a specific task. Only the linear

readout was trained to extract the specific information from the state of the system.

This is important since it decouples the dynamics of the network from a specific

task.

1.8 Self-Organized Criticality

Are there systems in nature with dynamics located at the edge of chaos? Since the

edge of chaos is a small boundary region in the space of possible dynamics, only

a vanishing small fraction of systems should operate in this dynamical regime.

However, it was argued that such “critical” systems are abundant in nature,

τ − 1), u(t − τ − 2)) for delays τ > 0. The function PARITY outputs 1 if the number of
inputs which assume the value ū + 1 is odd and -1 otherwise.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

18 What makes a dynamical system computationally powerful?

see (Bak et al., 1988). How is this possible if critical dynamics may occur only

accidentally in nature? Bak and collaborators argue that a class of dissipative

coupled systems naturally evolve towards critical dynamics (Bak et al., 1988). This

phenomenon was termed self-organized criticality (SOC) and it was demonstrated

with a model of a sand pile. Imagine to build up a sand pile by randomly adding sand

to the pile, a grain at a time. As sand is added, the slope will increase. Eventually,

the slope will reach a critical value. Whenever the local slope of the pile is too steep,

sand will slide off, therefore reducing the slope locally. On the other hand, if one

starts with a very steep pile it will collapse and reach the critical slope from the

other direction.

In neural systems, the topology of the network and the synaptic weights strongly

influence the dynamics. Since the amount of genetically determined connections

between neurons is limited, self-organizing processes during brain development as

well as learning processes are assumed to play a key role in regulating the dynamics

of biological neural networks (Bornholdt and Röhl, 2003). Although the dynamics

is a global property of the network, biologically plausible learning rules try to

estimate the global dynamics from information available at the local synaptic level

and they only change local parameters. Several SOC rules have been suggested

(Christensen et al., 1998; Bornholdt and Rohlf, 2000; Bornholdt and Röhl, 2003;

Natschläger et al., 2005). In (Bornholdt and Röhl, 2003), the degree of connectivity

was regulated in a locally connected network (i.e. only neighboring neurons are

connected) with stochastic state update dynamics. A local rewiring rule was used

which is related to Hebbian learning. The main idea of this rule is that the average

correlation between the activities of two neurons contains information about the

global dynamics. This rule only relies on information available on the local synaptic

level.

Self-organized criticality in systems with online input streams (as discussed in

Section 1.6) was considered in (Natschläger et al., 2005). According to Section 1.6,

the dynamics of a threshold network is at the critical line if the bit-flip probability

PBF (averaged over the external and internal input statistics) is equal to 1
K , where

K is the number of inputs to a unit. The idea is to estimate the bit-flip probability

of a unit by the mean distance of the internal activation of that unit from the firing

threshold. This distance is called the margin. Intuitively, a node with an activation

much higher or lower than its firing threshold is rather unlikely to change its output

if a single bit in its inputs is flipped. Each node i then applies synaptic scaling to

its weights wij in order to adjust itself towards the critical line:

wij(t + 1) =

{

1
1+ν · wij(t) if P esti

BF (t) > 1
K

(1 + ν) · wij(t) if P esti

BF (t) < 1
K

(1.5)

where 0 < ν � 1 is the learning rate and P esti

BF (t) is an estimate of the bit-

flip probability P i
BF of unit i. It was shown by simulations that this rule keeps

the dynamics in the critical regime, even if the input statistics changes. The

computational capabilities of randomly chosen circuits with this synaptic scaling

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.9 Towards the Analysis of Biological Neural Systems 19

rule acting online during computation was tested in a setup similar to that discussed

in Section 1.7. The performance of these networks was as high as for circuits where

the parameters were a priori chosen in the critical regime, and they stayed in this

region. This shows that systems can perform specific computations while still being

able to react to changing input statistics in a flexible way.

1.9 Towards the Analysis of Biological Neural Systems

Do cortical microcircuits operate at the edge of chaos? If biology makes extensive

use of the rich internal dynamics of cortical circuits, then the previous considerations

would suggest this idea. However, the neural elements in the brain are quite

different from the elements discussed so far. Most importantly, biological neurons

communicate with spikes, discrete events in continuous time. In this section, we will

investigate the dynamics of spiking circuits and ask: In what dynamical regimes

are neural microcircuits computationally powerful? We propose in this section a

conceptual framework and new quantitative measures for the investigation of this

question (see also Maass et al. (2005)).

In order to make this approach feasible, in spite of numerous unknowns regarding

synaptic plasticity and the distribution of electrical and biochemical signals imping-

ing on a cortical microcircuit, we make in the present first step of this approach

the following simplifying assumptions:

1. Particular neurons (“readout neurons”) learn via synaptic plasticity to extract

specific information encoded in the spiking activity of neurons in the circuit.

2. We assume that the cortical microcircuit itself is highly recurrent, but that the

impact of feedback that a readout neuron might send back into this circuit can be

neglected.9

3. We assume that synaptic plasticity of readout neurons enables them to learn

arbitrary linear transformations. More precisely, we assume that the input to such

readout neuron can be approximated by a term
∑n−1

i=1 wixi(t), where n − 1 is the

number of presynaptic neurons, xi(t) results from the output spike train of the

ith presynaptic neuron by filtering it according to the low-pass filtering property

of the membrane of the readout neuron,10 and wi is the efficacy of the synaptic

connection. Thus wixi(t) models the time course of the contribution of previous

spikes from the ith presynaptic neuron to the membrane potential at the soma of

9. This assumption is best justified if such readout neuron is located for example in another
brain area that receives massive input from many neurons in this microcircuit and only
has diffuse backwards projection. But it is certainly problematic and should be addressed
in future elaborations of the present approach.
10. One can be even more realistic and filter it also by a model for the short term dynamics
of the synapse into the readout neuron, but this turns out to make no difference for the
analysis proposed in this chapter.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

20 What makes a dynamical system computationally powerful?

this readout neuron. We will refer to the vector x(t) as the circuit state at time t

(although it is really only that part of the circuit state which is directly observable

by readout neurons).

All microcircuit models that we consider are based on biological data for generic

cortical microcircuits (as described in Section 1.9.1), but have different settings of

their parameters.

1.9.1 Models for generic cortical microcircuits

Our empirical studies were performed on a large variety of models for generic

cortical microcircuits (we refer to (Maass et al., 2004) for more detailed definitions

and explanations). All circuit models consisted of leaky-integrate-and-fire neurons11

and biologically quite realistic models for dynamic synapses.12 Neurons (20 % of

which were randomly chosen to be inhibitory) were located on the grid points of a 3D

grid of dimensions 6×6×15 with edges of unit length. The probability of a synaptic

connection from neuron a to neuron b was proportional to exp(−D 2(a, b)/λ2), where

D(a, b) is the Euclidean distance between a and b, and λ is a spatial connectivity

constant (not to be confused with the λ-parameter used by Langton). Synaptic

efficiencies w were chosen randomly from distributions that reflect biological data

(as in (Maass et al., 2002)), with a common scaling factor Wscale.

Linear readouts from circuits with n − 1 neurons were assumed to compute a

weighted sum
∑n−1

i=1 wixi(t)+w0 (see Section 1.9). In order to simplify notation we

assume that the vector x(t) contains an additional constant component x0(t) = 1, so

that one can write w ·x(t) instead of
∑n−1

i=1 wixi(t)+w0. In the case of classification

tasks we assume that the readout outputs 1 if w · x(t) ≥ 0, and 0 otherwise.

In order to investigate the influence of synaptic connectivity on computational

performance, neural microcircuits were drawn from this distribution for 10 different

values of λ (which scales the number and average distance of synaptically connected

neurons) and 9 different values of Wscale (which scales the efficacy of all synaptic

connections). 20 microcircuit models C were drawn for each of these 90 different

assignments of values to λ and Wscale. For each circuit a linear readout was trained

to perform one (randomly chosen) out of 280 possible classification tasks on noisy

variations u of 80 fixed spike patterns as circuit inputs u. See Figure 1.5 for two

examples of such spike patterns. The target performance of any such circuit was

11. Membrane voltage Vm modeled by τm
dVm

dt
= −(Vm − Vresting) + Rm · (Isyn(t) +

Ibackground + Inoise), where τm = 30 ms is the membrane time constant, Isyn models
synaptic inputs from other neurons in the circuits, Ibackground models a constant unspecific
background input and Inoise models noise in the input. The membrane resistance Rm was
chosen as 1MΩ.
12. Short term synaptic dynamics was modeled according to (Markram et al., 1998), with
distributions of synaptic parameters U (initial release probability), D (time constant for
depression), F (time constant for facilitation) chosen to reflect empirical data (see Maass
et al. (2002) for details).

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.9 Towards the Analysis of Biological Neural Systems 21

0 50 100 150 200
t [ms]

a

0 50 100 150 200
t [ms]

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3
0.5
0.7

1

2

4

8

1

2

3

λ

W
sc

al
e

b

0.6

0.65

0.7

SD

0.025

0.03

0.035

Figure 1.5 Performance of different types of neural microcircuit models for clas-

sification of spike patterns. a) In the top row are two examples of the 80 spike

patterns that were used (each consisting of 4 Poisson spike trains at 20 Hz over

200 ms), and in the bottom row are examples of noisy variations (Gaussian jit-

ter with SD 10 ms) of these spike patterns which were used as circuit inputs. b)

Fraction of examples (for 200 test examples) that were correctly classified by a lin-

ear readout (trained by linear regression with 500 training examples). Results are

shown for 90 different types of neural microcircuits C with λ varying on the x-axis

and Wscale on the y-axis (20 randomly drawn circuits and 20 target classification

functions randomly drawn from the set of 280 possible classification functions were

tested for each of the 90 different circuit types, and resulting correctness-rates were

averaged). Circles mark three specific choices of λ, Wscale-pairs for comparison with

other figures, see Figure 1.6. The standard deviation of the result is shown in the

inset on the upper right.

to output at time t = 200 ms the class (0 or 1) of the spike pattern from which

the preceding circuit input had been generated (for some arbitrary partition of

the 80 fixed spike patterns into two classes). Each spike pattern u consisted of 4

Poisson spike trains over 200 ms. Performance results are shown in Figure 1.5b for

90 different types of neural microcircuit models.

1.9.2 Locating the edge of chaos in neural microcircuit models

It turns out that the previously considered characterizations of the edge of chaos

are not too successful in identifying those parameter values in the map of Fig. 1.5b

that yield circuits with large computational power (Maass et al., 2005). The reason

is that large initial state differences (as they are typically caused by different spike

input patterns) tend to yield for most values of the circuit parameters nonzero

state differences not only while the online spike inputs are different, but also long

afterwards when the online inputs agree during subsequent seconds (even if the

random internal noise is identical in both trials). But if one applies the definition

of the edge of chaos via Lyapunov exponents (see (Kantz and Schreiber, 1997)),

the resulting edge of chaos lies for the previously introduced type of computations

(classification of noisy spike templates by a trained linear readout) in the region of

the best computational performance (see the map in Fig. 1.5b, which is repeated

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

22 What makes a dynamical system computationally powerful?

0 1 2 3 4 5 6 7 8 9 10
 0

0.001

t [s]

circuit 1

 0

0.04 circuit 2

0

4 state separation for a spike displacement of 0.5 msec. at time t=1 sec.a circuit 3

1.9 2 2.1 2.2 2.3
−2

−1

0

1

2

3
0.5 ms

1 ms
2 ms

λ

Ly
ap

un
ov

 e
xp

on
en

t µ

b

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3

0.5
0.7

1

2

4

8

1

2

3

λ

W
sc

al
e

c

µ=−1

µ=0

µ=1

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3

0.5
0.7

1

2

4

8

1

2

3

λ

W
sc

al
e

d

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Figure 1.6 Analysis of small input differences for different types of neural mi-

crocircuit models as specified in Section 1.9.1. Each circuit C was tested for two

arrays u and v of 4 input spike trains at 20 Hz over 10 s that differed only in the

timing of a single spike at time t = 1 s. a) A spike at time t = 1 s was delayed by

0.5 ms. Temporal evolution of Euclidean differences between resulting circuit states

xu(t) and xv(t) with 3 different values of λ, Wscale according to the 3 points marked

in panel c). For each parameter pair, the average state difference of 40 randomly

drawn circuits is plotted. b) Lyapunov exponents µ along a straight line between

the points marked in panel c) with different delays of the delayed spike. The delay

is denoted on the right of each line. The exponents were determined for the average

state difference of 40 randomly drawn circuits. c) Lyapunov exponents µ for 90

different types of neural microcircuits C with λ varying on the x-axis and Wscale

on the y-axis (the exponents were determined for the average state difference of 20

randomly drawn circuits for each parameter pair). A spike in u at time t = 1 s was

delayed by 0.5 ms. The contour lines indicate where µ crosses the values −1, 0, and

1. d) Computational performance of these circuits (same as Figure 1.5b), shown for

comparison with panel c).

for easier comparison in Fig. 1.6d). For this definition one looks for the exponent

µ ∈ R which provides through the formula

δ∆T ≈ δ0 · eµ∆T

the best estimate of the state separation δ∆T at time ∆T after the computation was

started in two trials with an initial state difference δ0. We generalize this analysis to

the case with online input by choosing exactly the same online input (and the same

random noise) during the intervening time interval of length ∆T , and by averaging

the resulting state differences δ∆T over many random choices of such online inputs

(and internal noise). As in the classical case with offline input it turns out to be

essential to apply this estimate for δ0 → 0, since δ∆T tends to saturate for each

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.9 Towards the Analysis of Biological Neural Systems 23

fixed value δ0. This can be seen in Fig. 1.6a, which shows results of this experiment

for a δ0 that results from moving a single spike that occurs in the online input

at time t = 1s by 0.5 ms. This experiment was repeated for 3 different circuits

with parameters chosen from the 3 locations marked on the map in Fig. 1.6c. By

determining the best fitting µ for ∆T = 1.5s for 3 different values of δ0 (resulting

from moving a spike at time t = 1s by 0.5, 1, 2 ms) one gets the dependence of this

Lyapunov exponent on the circuit parameter λ shown in Fig. 1.6b (for values of λ

and Wscale on a straight line between the points marked in the map of Fig. 1.6c).

The middle curve in Fig. 1.6c shows for which values of λ and Wscale the Lyapunov

exponent is estimated to have the value 0. By comparing it with those regions

on this parameter map where the circuits have the largest computational power

(for the classification of noisy spike patterns, see Fig. 1.6d), one sees that this line

runs through those regions which yield the largest computational power for these

computations. We refer to (Mayor and Gerstner, 2005) for other recent work on

studies of the relationship between the edge of chaos and the computational power

of spiking neural circuit models.

Although this estimated edge of chaos coincides quite well with points of best

computational performance, it remains an unsatisfactory tool for predicting param-

eter regions with large computational power for three reasons:

i) Since the edge of chaos is a lower dimensional manifold in a parameter map (in

this case a curve in a 2D map), it cannot predict the (full dimensional) regions of

a parameter map with high computational performance (e.g. the regions with light

shading in Fig. 1.5b).

ii) The edge of chaos does not provide intrinsic reasons why points of the parameter

map yield small or large computational power.

iii) It turns out that in some parameter maps different regions provide circuits with

large computational power for different classes of computational tasks (as shown

in (Maass et al., 2005) for computations on spike patterns and for computations

with firing rates). But the edge of chaos can at best single out peaks for one of

these regions. Hence it cannot possibly be used as a universal predictor of maximal

computational power for all types of computational tasks.

These three deficiencies suggest that one has to think about different strategies

to approach the central question of this chapter. The strategy we will pursue in the

following is based on the assumption that the computational function of cortical

microcircuits is not fully genetically encoded, but rather emerges through various

forms of plasticity (“learning”) in response to the actual distribution of signals that

the neural microcircuit receives from its environment. From this perspective the

question about the computational function of cortical microcircuits C turns into

the questions:

a) What functions (i.e. maps from circuit inputs to circuit outputs) can the circuit

C learn to compute.

b) How well can the circuit C generalize a specific learned computational function

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

24 What makes a dynamical system computationally powerful?

to new inputs?

In the following, we propose quantitative criteria based on rigorous mathematical

principles for evaluating a neural microcircuit C with regard to questions a) and

b). We will compare in Section 1.9.5 the predictions of these quantitative measures

with the actual computational performance achieved by neural microcircuit models

as discussed in Section 1.9.1.

1.9.3 A measure for the kernel-quality

One expects from a powerful computational system that significantly different input

streams cause significantly different internal states, and hence may lead to different

outputs. Most real-world computational tasks require that the circuit gives a desired

output not just for 2, but for a fairly large number m of significantly different inputs.

One could of course test whether a circuit C can separate each of the
(

m
2

)

pairs of

such inputs. But even if the circuit can do this, we do not know whether a neural

readout from such circuit would be able to produce given target outputs for these

m inputs.

Therefore we propose here the linear separation property as a more suitable quan-

titative measure for evaluating the computational power of a neural microcircuit

(or more precisely: the kernel-quality of a circuit; see below). To evaluate the lin-

ear separation property of a circuit C for m different inputs u1, . . . , um (which are

in the following always functions of time, i.e. input streams such as for example

multiple spike trains) we compute the rank of the n×m matrix M whose columns

are the circuit states xui
(t0) resulting at some fixed time t0 for the preceding input

stream ui. If this matrix has rank m, then it is guaranteed that any given assign-

ment of target outputs yi ∈ R at time t0 for the inputs ui can be implemented by

this circuit C (in combination with a linear readout). In particular, each of the 2m

possible binary classifications of these m inputs can then be carried out by a linear

readout from this fixed circuit C. Obviously such insight is much more informative

than a demonstration that some particular classification task can be carried out by

such circuit C. If the rank of this matrix M has a value r < m, then this value

r can still be viewed as a measure for the computational power of this circuit C,

since r is the number of “degrees of freedom” that a linear readout has in assigning

target outputs yi to these inputs ui (in a way which can be made mathematically

precise with concepts of linear algebra). Note that this rank-measure for the lin-

ear separation property of a circuit C may be viewed as an empirical measure for

its kernel-quality, i.e. for the complexity and diversity of nonlinear operations car-

ried out by C on its input stream in order to boost the classification power of a

subsequent linear decision-hyperplane (see Vapnik, 1998).

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.9 Towards the Analysis of Biological Neural Systems 25

1.9.4 A measure for the generalization-capability

Obviously the preceding measure addresses only one component of the computa-

tional performance of a neural circuit C. Another component is its capability to

generalize a learnt computational function to new inputs. Mathematical criteria for

generalization capability are derived in (Vapnik, 1998) (see Ch. 4 in Cherkassky and

Mulier, 1998, for a compact account of results relevant for our arguments). Accord-

ing to this mathematical theory one can quantify the generalization capability of

any learning device in terms of the VC-dimension of the class H of hypotheses that

are potentially used by that learning device.13 More precisely: if VC-dimension (H)

is substantially smaller than the size of the training set Strain, one can prove that

this learning device generalizes well, in the sense that the hypothesis (or input-

output map) produced by this learning device is likely to have for new examples an

error rate which is not much higher than its error rate on S train, provided that the

new examples are drawn from the same distribution as the training examples (see

Eqn. 4.22 in Cherkassky and Mulier, 1998).

We apply this mathematical framework to the class HC of all maps from a set

Suniv of inputs u (into {0, 1} which can be implemented by a circuit C. More

precisely: HC consists of all maps from Suniv into {0, 1} that a linear readout

from circuit C with fixed internal parameters (weights etc.) but arbitrary weights

w ∈ R
n of the readout (that classifies the circuit input u as belonging to class 1 if

w · xu(t0) ≥ 0, and to class 0 if w · xu(t0) < 0) could possibly implement.

Whereas it is very difficult to achieve tight theoretical bounds for the VC-

dimension of even much simpler neural circuits, see (Bartlett and Maass, 2003),

one can efficiently estimate the VC-dimension of the class HC that arises in our

context for some finite ensemble Suniv of inputs (that contains all examples used

for training or testing) by using the following mathematical result (which can be

proved with the help of Radon’s Theorem):

Theorem 1.1

Let r be the rank of the n × s matrix consisting of the s vectors xu(t0) for all

inputs u in Suniv (we assume that Suniv is finite and contains s inputs). Then

r ≤ VC-dimension(HC) ≤ r + 1.

Proof idea. Fix some inputs u1, . . . , ur in Suniv so that the resulting r circuit

states xui
(t0) are linearly independent. The first inequality is obvious since this

set of r linearly independent vectors can be shattered by linear readouts from the

circuit C. To prove the second inequality one assumes for a contradiction that

there exists a set v1, . . . , vr+2 of r + 2 inputs in Suniv so that the corresponding

13. The VC-dimension (of a class H of maps H from some universe Suniv of inputs into
{0, 1}) is defined as the size of the largest subset S ⊆ Suniv which can be shattered by H.
One says that S ⊆ Suniv is shattered by H if for every map f : S → {0, 1} there exists a
map H in H such that H(u) = f(u) for all u ∈ S (this means that every possible binary
classification of the inputs u ∈ S can be carried out by some hypothesis H in H).

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

26 What makes a dynamical system computationally powerful?

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3
0.5
0.7

1

2

4

8

1

2

3

λ
W

sc
al

e

a

0.14

0.16

0.18

0.2

SD
0.02

0.025

0.03

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3
0.5
0.7

1

2

4

8

1

2

3

λ

W
sc

al
e

b

200

250

300

350

400

450

SD
0

20

Figure 1.7 Measuring the generalization capability of neural microcircuit models.

a) Test error minus train error (error was measured as the fraction of examples that

were misclassified) in the spike pattern classification task discussed in Section 1.9.1

for 90 different types of neural microcircuits (as in Figure 1.5b). The standard

deviation is shown in the inset on the upper right. b) Generalization capability for

spike patterns: estimated VC-dimension of HC (for a set Suniv of inputs u consisting

of 500 jittered versions of 4 spike patterns), for 90 different circuit types (average

over 20 circuits; for each circuit, the average over 5 different sets of spike patterns

was used). The standard deviation is shown in the inset on the upper right. See

Section 1.9.5 for details.

set of r + 2 circuit states xvi
(t0) can be shattered by linear readouts. This set M

of r + 2 vectors is contained in the r−dimensional space spanned by the linearly

independent vectors xu1
(t0), . . . ,xur

(t0). Therefore Radon’s Theorem implies that

M can be partitioned into disjoint subsets M1, M2 whose convex hulls intersect.

Since these sets M1, M2 cannot be separated by a hyperplane, it is clear that no

linear readout exists that assigns value 1 to points in M1 and value 0 to points in

M2. Hence M = M1 ∪ M2 is not shattered by linear readouts, a contradiction to

our assumption.

We propose to use the rank r defined in Theorem 1.1 as an estimate of VC-

dimension(HC), and hence as a measure that informs us about the generalization

capability of a neural microcircuit C. It is assumed here that the set Suniv contains

many noisy variations of the same input signal, since otherwise learning with a

randomly drawn training set Strain ⊆ Suniv has no chance to generalize to new

noisy variations. Note that each family of computational tasks induces a particular

notion of what aspects of the input are viewed as noise, and what input features are

viewed as signals that carry information which is relevant for the target output for

at least one of these computational tasks. For example for computations on spike

patterns some small jitter in the spike timing is viewed as noise. For computations

on firing rates even the sequence of interspike intervals and temporal relations

between spikes that arrive from different input sources are viewed as noise, as long

as these input spike trains represent the same firing rates.

An example for the former computational task was discussed in Section 1.9.1.

This task was to output at time t = 200 ms the class (0 or 1) of the spike pattern

from which the preceding circuit input had been generated (for some arbitrary

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

1.9 Towards the Analysis of Biological Neural Systems 27

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3
0.5
0.7

1

2

4

8

λ

W
sc

al
e

a

200

250

300

350

400

450

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3
0.5
0.7

1

2

4

8

λ

b

200

250

300

350

400

450

0.5 1 1.4 2 3 4 6 8
0.05

0.1

0.3
0.5
0.7

1

2

4

8

1

2

3

λ

c

0

5

10

15

20

SD
0

5

10

Figure 1.8 Values of the proposed measures for computations on spike patterns.

a) Kernel-quality for spike patterns of 90 different circuit types (average over 20

circuits, mean SD = 13). b) Generalization capability for spike patterns: estimated

VC-dimension of HC (for a set Suniv of inputs u consisting of 500 jittered versions of

4 spike patterns), for 90 different circuit types (same as Figure 1.7b). c) Difference

of both measures (the standard deviation is shown in the inset on the upper

right). This should be compared with actual computational performance plotted

in Figure 1.5b.

partition of the 80 fixed spike patterns into two classes, see Section 1.9.1). For a

poorly generalizing network, the difference between train and test error is large. One

would suppose that this difference becomes large as the network dynamics become

more and more chaotic. This is indeed the case, see Figure 1.7a. The transition is

is pretty well predicted by the estimated VC-dimension of HC , see Figure 1.7b.

1.9.5 Evaluating the influence of synaptic connectivity on computational

performance

We now test the predictive quality of the two proposed measures for the computa-

tional power of a microcircuit on spike patterns. One should keep in mind that the

proposed measures do not attempt to test the computational capability of a circuit

for one particular computational task, but for any distribution on Suniv and for a

very large (in general infinitely large) family of computational tasks that only have

in common a particular bias regarding which aspects of the incoming spike trains

may carry information that is relevant for the target output of computations, and

which aspects should be viewed as noise. Figure 1.8a explains why the lower left

part of the parameter map in Figure 1.5b is less suitable for any such computation,

since there the kernel-quality of the circuits is too low.14 Figure 1.8b explains why

the upper right part of the parameter map in Figure 1.5b is less suitable, since a

higher VC-dimension (for a training set of fixed size) entails poorer generalization

capability. We are not aware of a theoretically founded way of combining both mea-

sures into a single value that predicts overall computational performance. But if one

14. The rank of the matrix consisting of 500 circuit states xu(t) for t = 200 ms was
computed for 500 spike patterns over 200 ms as described in Section 1.9.3, see Figure 1.5a.
For each circuit, the average over 5 different sets of spike patterns was used.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

28 What makes a dynamical system computationally powerful?

just takes the difference of both measures (after scaling each linearly into a common

range [0,1]) then the resulting number (see Figure 1.8c) predicts quite well which

types of neural microcircuit models perform well for the particular computational

tasks considered in Figure 1.5b.15

Results of further tests of the predictive power of these measures are reported in

(Maass et al., 2005). These tests have been applied there to a completely different

parameter map, and diverse classes of computational tasks.

1.10 Conclusions

The need to understand computational properties of complex dynamical systems is

becoming more urgent. New experimental methods provide substantial insight into

the inherent dynamics of the computationally most powerful classes of dynamical

systems that are known: neural systems and gene regulation networks of biological

organisms. More recent experimental data show that simplistic models for com-

putations in such systems are not adequate, and that new concepts and methods

have to be developed in order to understand their computational function. This

short review has shown that several old ideas regarding computations in dynamical

systems receive new relevance in this context, once they are transposed into a more

realistic conceptual framework that allows us to analyze also online computations

on continuous input streams. Another new ingredient is the investigation of the

temporal evolution of information in a dynamical system from the perspective of

models for the (biological) user of such information, i.e. from the perspective of

neurons that receive inputs from several thousand presynaptic neurons in a neural

circuit, and from the perspective of gene regulation mechanisms that involve thou-

sands of transcription factors. Empirical evidence from the area of machine learning

supports the hypothesis that readouts of this type, which are able to sample not

just 2 or 3, but thousands of coordinates of the state vector of a dynamical system,

impose different (and in general less obvious) constraints on the dynamics of a high

dimensional dynamical system in order to employ such system for complex com-

putations on continuous input streams. One might conjecture that unsupervised

learning and regulation processes in neural systems adapt the system dynamics in

such a way that these constraints are met. Hence suitable variations of the idea of

self organized criticality may help us to gain a system-level perspective of synaptic

plasticity and other adaptive processes in neural systems.

15. Similar results arise if one records the analog values of the circuit states with a limited
precision of say 1%.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

References

S. Amari. Characteristics of random nets of analog neuron-like elements. IEEE

Tranactions on Systems, Man, and Cybernetics, 2:643–657, 1972.

P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Physical Review A,

38(1):364–378, 1988.

P. L. Bartlett and W. Maass. Vapnik-Chervonenkis dimension of neural nets. In

M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages

1188–1192. MIT Press (Cambridge), 2nd edition, 2003.

N. Bertschinger and T. Natschläger. Real-time computation at the edge of chaos

in recurrent neural networks. Neural Computation, 16(7):1413–1436, 2004.

S. Bornholdt and T. Röhl. Self-organized critical neural networks. Physical Review

E, 67:066118, 2003.

S. Bornholdt and T. Rohlf. Topological evolution of dynamical networks: Global

criticality from local dynamics. Physical Review Letters, 84(26):6114–6117, 2000.

S. Boyd and L. O. Chua. Fading memory and the problem of approximating

nonlinear oparators with Volterra series. IEEE Trans. on Circuits and Systems,

32:1150–1161, 1985.

D. V. Buonomano and M. M. Merzenich. Temporal information transformed into

a spatial code by a neural network with realistic properties. Science, 267:1028–

1030, 1995.

V. Cherkassky and F. Mulier. Learning from Data. Wiley, New York, 1998.

K. Christensen, R. Donangelo, B. Koiller, and K. Sneppen. Evolution of random

networks. Physical Review Letters, 81:2380, 1998.

E. F. Codd. Cellular Automata. Academic Press, New York, 1968.

Cowan J. D. Statistical mechanics of nervous nets. In E. R. Caianiello, editor,

Neural Networks, pages 181–188. Springer-Verlag (Berlin), 1968.

B. Derrida and Y. Pomeau. Random networks of automata: A simple annealed

approximation. Europhysics Letters, 1(2):45–49, 1986.

W. J. Freeman. Mass Action in the Nervous System. Academic Press (New York),

1975.

W. J. Freeman. Mescoscopic neurodynamics: From neuron to brain. J. Physiology,

94:303–320, 2000.

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

30 REFERENCES

S. Grossberg. Nonlinear difference-differential equations in prediction and learning

theory. Proc. Nat. Acad. Sci. USA, 58:1329–1334, 1967.

J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proc. Nat. Acad. Sci. USA, 79:2554–2558, 1982.

J. J. Hopfield. Neurons with graded response have collective computational prop-

erties like those of two-state neurons. Proc. Nat. Acad. Sci. USA, 81:3088–3092,

1984.

J. J. Hopfield and D. W. Tank. “Neural” computation of decisions in optimization

problems. Biological Cybernetics, 52:141–152, 1985.

J. J. Hopfield and D. W. Tank. Computing with neural circuits: A model. Science,

233:625–633, 1986.

H. Jäger. Short term memory in echo state networks. GMD Report 152, German

National Research Center for Information Technology, 2002.

H. Jäger and H. Haas. Harnessing nonlinearity: predicting chaotic systems and

saving energy in wireless communication. Science, 304:78–80, 2004.

P. Joshi and W. Maass. Movement generation with circuits of spiking neurons.

Neural Computation, 2004. in press.

H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge University

Press, Cambridge, 1997.

D. Kaplan and L. Glass. Understanding Nonlinear Dynamics. Springer, 1995.

S. A. Kauffman. Metabolic stability and epigenesis in randomly connected nets. J.

Theoret. Biol., 22:437, 1969.

S. A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolu-

tion. Oxford University Press, 1993.

C. G. Langton. Computation at the edge of chaos. Physica D, 42:12–37, 1990.

R. A. Legenstein, H. Markram, and W. Maass. Input prediction and autonomous

movement analysis in recurrent circuits of spiking neurons. Reviews in the Neu-

rosciences (Special Issue on Neuroinformatics of Neural and Artificial Computa-

tion), 14(1–2):5–19, 2003.

W.A. Little. The existence of persistent states in the brain. Mathematical Bio-

sciences, 19:101–120, 1974.

W. Maass, R. A. Legenstein, and N. Bertschinger. Methods for estimating the com-

putational power and generalization capability of neural microcircuits. In Proc. of

NIPS 2004, Advances in Neural Information Processing Systems, volume 17. MIT

Press, 2005. URL http://www.igi.tugraz.at/maass/psfiles/160 col.pdf.

W. Maass and H. Markram. Theory of the computational function of microcircuit

dynamics. In Proc. of the 2004 Dahlem Workshop on Microcircuits. MIT Press,

2005. URL http://www.igi.tugraz.at/maass/psfiles/157 v2 web.pdf.

W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable

states: A new framework for neural computation based on perturbations. Neural

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/10 14:53

REFERENCES 31

Computation, 14(11):2531–2560, 2002.

W. Maass, T. Natschläger, and H. Markram. Computational models for generic

cortical microcircuits. In J. Feng, editor, Computational Neuroscience: A Com-

prehensive Approach, chapter 18, pages 575–605. Chapman & Hall/CRC, 2004.

H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon

of neocortical pyramidal neurons. PNAS, 95:5323–5328, 1998.

J. Mayor and W. Gerstner. Signal buffering in random networks of spiking neurons:

microscopic vs. macroscopic phenomena. Preprint EPFL Lausanne, 2005.

M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of chaos:

Evolving cellular automata to perform computations. Complex Systems, 7:89–

130, 1993.

T. Natschläger, N. Bertschinger, and R. Legenstein. At the edge of chaos: Real-time

computations and self-organized criticality in recurrent neural networks. In Proc.

of NIPS 2004, Advances in Neural Information Processing Systems. MIT Press,

2005. to appear.

N. Packard. Adaption towards the edge of chaos. In J. A. S. Kelso, A. J. Mandell,

and M. F. Shlesinger, editors, Dynamic Patterns in Complex Systems, pages 293–

301. World Scientific, 1988.

F. Schuermann, K. Meier, and J. Schemmel. Edge of chaos computation in

mixed-mode VLSI: a hard liquid. In Proc. of NIPS 2004, Advances in Neural

Information Processing Systems, volume 17. MIT Press, 2005. to appear.

A. R. Smith. Simple computation-universal cellular spaces. Journal of the ACM,

18(3):339–353, 1971.

S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications in Physics,

Biology, Chemistry, and Engineering (Studies in Nonlinearity). Addison-Wesley,

1994.

V. N. Vapnik. Statistical Learning Theory. John Wiley (New York), 1998.

J von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,

Urbana, Illinois, 1966.

S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1–35,

1984.

