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ABSTRACT

This chapter discusses models for computation in cortical microcircuits in the light of

general computational theories and biological data. We first review some basic concepts

from computation theory. We then discuss existing models for computation in cortical

microcircuits within this precise conceptual framework. We argue that models for online

computing in dynamical systems require particular attention in this context, since they

provide the best fit to the types of computational tasks that are solved by the brain, as well

as the best fit to biological data about the anatomy and physiology of the underlying

circuits.

INTRODUCTION

The neocortex has enabled a quantum leap in the ability of mammals to adapt to

a rapidly changing environment by supporting the emergence of sophisticated

cognitive functions. Higher cognitive function depends critically on the ability

of a system to predict future events in order to generate appropriate and intelli-

gent responses in a rapidly changing environment. The neocortex solves this

computational challenge by transforming multisensory information in parallel

and in real time into a multidimensional output using information that was pro-

cessed and stored at almost any combination of time points in the past. There-

fore, a central challenge is to understand how the neocortex is designed to solve

this task and what kind of theoretical framework could explain the computa-

tional principles it uses to solve this task.

The neocortex is characterized by precise topographic maps where informa-

tion from the senses is mapped onto different regions of the neocortex, and



different regions of the neocortex are mapped back onto subcortical brain re-

gions and onto effector organs that drive the body. Different regions of the neo-

cortex are also intricately mapped onto each other to fuse all the modalities into a

coherent perception. These topographical maps onto, between, and from the

neocortex specify precisely the primary function of each cortical region; they

also mean that all functions of the neocortex are interlinked. It is the manner in

which these functions are interlinked that forms the cognitive architectures that

allow the neocortex to construct integrated high-dimensional sensorimotor

models to simulate and predict future events.

The principle of precise topographic mapping combined with massive recur-

rent links is applied in the neocortex not only between brain areas, but down to

the most detailed level of the circuit design. The neocortex is, for example, ar-

ranged into vertical layers, each with unique afferent and efferent connectivity;

this allows different brain regions to map onto different layers of the same col-

umn of neocortex. The nonspecific thalamus is mapped onto layer I, association

regions onto layers II and III, specific thalamus onto layer IV, higher association

areas and specific thalamus are mapped onto layer V, and multiple brain regions

as well as specific thalamic nuclei are mapped onto layer VI. In terms of output,

layer II/III neurons provide the main output to association cortical regions, layer

V provides the main output to subcortical regions and contralateral hemi-

spheres, and layer VI provides the main output to thalamus and brain regions

specializing in processing different modalities. While each layer is specialized

to process primarily specific input and generate a specific output, the layers are

also highly interconnected (Thomson and Morris 2002), indicating that infor-

mation from multiple brain regions is interlinked in columns of neurons. It is the

manner in which these layers are mapped onto each other that governs how sen-

sory input, ongoing activity, and output are coordinated to create a coherent per-

ception and appropriate response.

Within neocortical layers, neurons are also intricately mapped onto each

other, where the anatomical and physiological properties as well as probabilities

of connections between neurons are unique for each type of pre- and post-

synaptic neuron combination (Gupta et al. 2000). The computational advantage

of such a specific design of this recurrent microcircuit must be extremely power-

ful compared to a mere random recurrent network, because this intricate design

is duplicated and applied throughout the neocortex in all mammalian species.

Remarkable stereotypy exists in terms of morphology of cells (morphological

stereotypy), electrical behavior of cells (electrophysiological stereotypy), posi-

tioning of cells (spatial stereotypy), patterning of the anatomical and physiolog-

ical properties of synaptic connections between neighboring cells (local synap-

tic stereotypy), and in terms of long-range afferent and efferent connectivities

(distal connection stereotypy) (Silberberg et al. 2002). Although there clearly

exists a unique design with a considerable degree of stereotypy across different

regions, ages, and species, variations are found that seem to be adaptations to the

specific requirements of the brain region or species.
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The stereotypy of the neocortical microcircuit led many early anatomists to

propose that neocortical neurons could be grouped anatomically into columns,

roughly the diameter of the spread of the basal axonal and dendritic arbors of py-

ramidal neurons (about 500 µm) (see Silberberg et al. 2002). Indeed, more than

80% of the synapses of neocortical interneurons are devoted to interconnecting

neurons within a diameter of 500 µm. Experiments in the late 1950s and early

1960s further indicated that the neocortical sheet may also be regarded function-

ally as being composed of small repeating columns of several thousand cells of

about 500 µm in diameter. Such functional modules have now been observed in

many neocortical areas and in many species. More recent experiments have re-

vealed multiple overlying functional columns, which indicate that the notion of

a cortical column as a set anatomical entity is not correct. Functional modules

are overlaid (Swindale et al. 2000) such that a group of neurons collaborating to

perform one operation may not necessarily collaborate to perform a different op-

eration. The dense local connectivity within a diameter of 500 µm, embedded in

a continuous sheet of interconnected neurons, seems therefore to impart the neo-

cortex with the remarkable ability of allowing multiple functional columns to

form and overlie dynamically on the same cortical sheet. The properties of the

local as well as afferent and efferent connectivity and the microcircuit continuity

enable a functional neocortical column to form potentially at any point in the

neocortex.

In summary, the neocortex is composed of heterogeneous microcircuits that

differ with age, across brain regions, and across species. Nevertheless, many

properties of the microcircuit are stereotypical, suggesting that neocortical

microcircuits are merely variations of a common microcircuit template. Such a

template could subserve the impressive computational capability of the neocor-

tex, and diversification could allow microcircuits to meet the specific require-

ments demanded by different neocortical areas, environmental conditions, and

species adaptations. The theoretical question is how such a generic template can

display sufficiently powerful and versatile information-processing capabilities.

Below we introduce some basic concepts that are useful for a more rigorous

discussion of this question in the context of computation theory. Thereafter we

review a few existing hypotheses regarding the computational function of

microcircuit dynamics in the light of various computational theories. Conse-

quences for future research are discussed in the final section.

BASIC CONCEPTS FROM THE THEORY OF COMPUTING

We begin by defining a few basic concepts that are useful for highlighting char-

acteristic differences among competing models for cortical computation. We re-

fer to Savage (1998) for details regarding general computational models. De-

tails on the computational power of artificial neural networks can be found in

Sima and Orponen (2003). An elementary introduction to artificial neural net-

works is given in Tsodyks (2002).
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Input–Output Conventions

If all of the input for a computation is available when the computation begins,

one speaks of batch input. In contrast, online computations receive a possibly

“never-ending” stream of inputs and need to be able to integrate information

from previously received input segments with information from the current in-

put segment. If the output of a computation has to be delivered by a specific

deadline (e.g., within 100 ms after a specific input segment has arrived), one

calls this real-time computing. If the computational machinery can even be

prompted at any time to provide its current best guess of a suitable output, with-

out a prespecified schedule for output demands as in real-time computing, then

it implements an anytime algorithm. If there exists no deadline for delivering the

output of a computation, this is referred to as offline computing1.

Programs, Learning, and the Difference between Computing and Learning

The program of a computational model specifies which algorithm is applied to

what type of input, and where and when the output of a computation is provided.

One usually contrasts fully programmed computational models (such as Turing

machines or cellular automata) with models that are able to learn (such as

multilayer perceptrons with backprop). One usually says that a machine (or or-

ganism) learns when information contained in current inputs affects the way in

which it processes future inputs. Of course, the way in which current inputs can

change future processing has to be prespecified by a learning algorithm. Thus a

computational device that learns also requires a program—one on a higher level

that specifies the organization of learning for the system (i.e., how the handling

of future inputs is affected by current or preceding inputs). Even “self-organiz-

ing” computational models require such higher-level programs (which might, of

course, be encoded through distributed local operating rules).
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1 Offline computing in combination with batch input is the most common mode considered in com-

putational complexity theory, where upper bounds are provided for the number of computation

steps that a specific algorithm needs on a specific computational model for completing its compu-

tation for any input of length n. Such upper bounds are usually expressed by terms that may, for

example, have the form c1 · nd + c2 with arbitrary constants c1, c2 (abbreviated O(nd)) that absorb

all finite size effects into the constants c1 and c2. In the more general parts of computational com-

plexity theory, one focuses on the exponent d. For example, the best-known complexity class

consists of all families of computational problems for which there exists a (deterministic) algo-

rithm and some finite exponent d so that any instance of this computational problem of any length

n can be solved on a Turing machine within time O(nd) by this algorithm. Although this complex-

ity class P is frequently viewed as a characterization of the universe of computationally solvable

problems, one has to be careful in applications of these asymptotic concepts to scenarios such as

computations in the brain, where it is clear that only inputs of length n≤ n0 (for some specific fi-

nite bound n0) can occur, and finite size effects that determine, for example, the size of the previ-

ously mentioned constants c1 and c2 may become quite relevant. It should also be mentioned that

the class P, as well as most other concepts from classical computational complexity theory, are

only meaningful for offline computations on batch input.



The preceding definitions are only meaningful for computations on batch in-

puts. The analysis of learning machines (or organisms that learn) becomes con-

ceptually more difficult when one looks at online computing, since there one

cannot talk about “current” and “future” inputs, one just has a (virtually) endless

input stream. One could, of course, talk about current and future segments of this

input stream, but even very simple devices for online computing, such as linear

filters or finite automata, have the property that current input segments will in-

fluence the way in which future input segments will be processed, without any

“learning” or “adaptation” being involved. Phrased differently, for any model of

online computing that integrates information from several preceding input seg-

ments for its current output (i.e., for any model that is capable of temporal inte-

gration of information), it becomes difficult or even impossible to distinguish

computing conceptually from learning. The “difference” becomes usually a

matter of perspective, where, for example, online computations that take place

on larger timescales, or which involve higher levels of computational organiza-

tion, might be referred to as learning.

Internal States and Transitions between States

The internal state of a computational model (or of an autonomously learning

system) at time t should contain all information that would have to be stored if

one interrupts its processing at time t for a while and then wants to restart it and

continue its operation at a later time t +∆ based on the information contained in

this stored information, as if there had been no interruption. Such internal states

can be digital or analog and can form finite or infinitely large sets of (possible)

internal states. A finite automaton (or finite state machine) is characterized by

the fact that it only has a finite state set, whereas a Turing machine (which is ba-

sically just a finite automaton together with a read/write tape) has an infinite set

of digital states, since its current tape inscription (whose length is finite at any

given time t, but may grow with t) is also part of its current internal state.

Transitions between internal states can be deterministic or stochastic. In the

deterministic case, a program determines transitions between internal states (de-

pendent on the current state and current input). In the case of stochastic compu-

tations, a program specifies the probability that a particular state s is assumed at

time t + 1, given the state assumed at time t and the current input.

For computational models that work in continuous time, one commonly

writes the program in the form of a differential equation. The resulting computa-

tional models are referred to as dynamical systems.

Computational Goals

Computational goals may be very specific, for example, to multiply two num-

bers or, more general, such as predicting future inputs or surviving for a long
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time in a complex real environment with limited resources. Very specific com-

putational goals, as in the first example, are characteristic of our current use of

digital computers, whereas more general computational goals are potentially

more characteristic of the brain.

Examples of Computational Models

Turing machines are computational models that are particularly suited for study-

ing deterministic offline computations on digital batch input in discrete time

with a number of internal states, which is finite at any time t, but may grow un-

boundedly with t. Turing machines are universal in the sense that one has not

been able to come up with any digital computation that cannot be carried out by a

Turing machine.

Digital or analog feedforward circuits (e.g., feedforward Boolean circuits or

feedforward neural nets) constitute another class of standard models for offline

computing. They can also be used for real-time computing (in the form of

pipelining) since their computation time on any (batch) input is limited by the

depth of the circuit. However, they can only be used for those computations on

sequences of inputs where no temporal integration of information from several

successively presented batch inputs is required.

Finite automata are computational models with a fixed finite set of internal

states that are suitable for online computations in discrete time; in fact, they are

perfectly suited for real-time computing. Their current state can hold informa-

tion about current and past inputs, and their state transitions can be deterministic

or stochastic. Cellular automata are ensembles of infinitely many identical cop-

ies of some finite automaton located on the nodes of some infinite graph, where

every node has the same finite number of neighbors (e.g., a two-dimensional

grid). At every discrete time step, each automaton changes its state and deter-

mines the output to its direct neighbors dependent on the inputs that it has re-

ceived from its direct neighbors at the end of the preceding time step.2 The input

to a cellular automaton is commonly encoded in the initial states of the individ-

ual finite automata. It is well known that every Turing machine (hence any cur-

rently existing digital computer) can be simulated by some cellular automaton.3

Artificial neural networks are also usually considered only with discrete

time, but with analog internal states (so that even a single internal state may con-

tain infinitely many bits of information). Both deterministic and stochastic state

transitions are considered. Feedforward neural nets are primarily used for
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2 The well-known “Game of Life” is an example of such a cellular automaton.
3 To be precise, this holds only for a cellular automaton consisting of infinitely many cells. A cellu-

lar automaton consisting of just finitely many cells can only simulate those Turing machine com-

putations that can be carried out within a corresponding space bound. Basic results from

computational complexity theory imply that the computational power of Turing machines (and

hence also of cellular automata) does not saturate at any finite space bound.



offline computing since they cannot integrate information from successive in-

puts; however, recurrent neural nets are suitable for offline and online computa-

tions. Although the learning capability of artificial neural networks is viewed as

one of their essential properties, the organization of learning for neural networks

is usually not controlled by the network itself, but by an external supervisor.4

From that perspective neural network models are far away from being autono-

mously learning systems.

Genetic (or evolutionary) algorithms are programs for computational models

with stochastic state transitions in discrete time whose computational goal is the

generation of formal objects (“agents”) that have high “fitness” according to a

fitness function that is part of the program.

OPTIONS FOR UNDERSTANDING THE
COMPUTATIONAL FUNCTION OF

MICROCIRCUIT DYNAMICS

Obviously the computational function of the brain is to enable an autonomous

system to survive in the real world. Often the computational function of the

brain is seen more narrowly, conceptually separating computing from learning.

However, as discussed in the preceding section, such distinction is not very

meaningful for analyzing online computations on input streams (only for iso-

lated computations on batch inputs).5 Hence one needs to understand learning as

an integral part of the computational function of neural microcircuits.

In the subsequent subsections, we will review three categories of computa-

tional models for neural microcircuits that differ with regard to the type of com-

putation that is supported by these models (offline vs. online computing) and

with regard to the circuit structures on which they focus (feedforward vs. recur-

rent circuits). In addition, the models also differ with regard to their underlying

assumption about (a) the computational specialization of cortical microcircuits

(Do cortical microcircuits exist that carry out just one particular computation?),

and (b) how the computational function is “programmed” into cortical micro-

circuits (Is their computational function directly genetically programmed or ac-

quired by learning in the course of genetically programmed developmental pro-

cedures and fine-tuned by synaptic plasticity throughout adulthood?).
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with backprop cannot be viewed as an autonomously learning machine.
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spective of the organism they still constitute segments of one continuous input stream.



Microcircuits as Modules That Compute Stereotypical Basis

Functions for Computations on Batch Input

One can compute any Boolean function (i.e., any function f: {0,1}m→ {0,1}n

for arbitrary m, n ∈ N)6 on a feedforward circuit consisting of units or sub-

circuits that compute certain stereotypical basis functions. For example, it suf-

fices to have subcircuits that compute an OR of two input bits in conjunction

with subcircuits that compute a negation. It even suffices to iterate stereotypical

copies of a single subcircuit, for example, of a subcircuit that computes (xi AND

NOT x2). From a mathematical point of view there is nothing special about such

basis functions, and many different sets of basis functions exist that are com-

plete in the sense that all Boolean functions can be generated by them.

For analog computations it is more meaningful to look at ways of approxi-

mating (rather than computing) arbitrary given functions f: [–B, B]m→ [–B, B]n

from real numbers into real numbers by circuits that are composed of stereotypi-

cal subcircuits that compute suitable basis functions. Again there exist many dif-

ferent sets of basis functions that are complete in the sense that any continuous

function f: [–B, B]m→ [–B, B]n can be approximated arbitrarily closely7 through

suitable combinations of such basis functions. Since continuous functions can

be approximated arbitrarily closely by polynomials (on any bounded domain

[–B, B]m), it suffices, for example, to choose addition and multiplication of real

numbers (in combination with real or rational constants) as basis functions. The

universal approximation theorem from artificial neural networks states that one

can also choose as basis functions sigmoidal gates applied to weighted sums of

the inputs, that is, functions of the form:

In fact, one can use here instead of the sigmoidal function σ almost any nonlin-

ear function h = R→R. As an alternative it suffices to use a single application of

a winner-take-all-like nonlinearity in combination with subcircuits that com-

pute just linear weighted sums (Maass 2000). Thus we see that also for the com-

putation of analog functions there exist many different sets of basis functions

that are complete.

A tempting hypothesis regarding the computational role of cortical micro-

circuits is that there exist genetically programmed stereotypical microcircuits

that compute certain basis functions. Numerous ways in which circuits of
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neurons can potentially compute a complete set of Boolean basis functions have

been proposed (see, e.g., Shepherd and Koch 1998). For example, a single

shunting synapse can in principle compute the Boolean function (xi AND NOT

x2), which forms a complete basis. Also many possible ways in which single

neurons or circuits of neurons can potentially compute basis functions for ana-

log computing (e.g., addition and multiplication) have been collected in Table

1.2 of Shepherd and Koch (1998), which is reproduced in this chapter (see Table

18.1), and in Chapter 21 of Koch (1999).

A possible way in which circuits of neurons could implement a sigmoidal

gate has been proposed in Maass (1997). In Pouget and Sejnowski (1997) prod-

ucts of a Gaussian function (e.g., of the retinal location of a cue) and a sigmoidal

function (e.g., of eye position) are proposed as basis functions for sensorimotor

transformations. They prove that these basis functions are complete in the sense
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Biophysical

Mechanism

Neuronal

Operation

Example of

Computation

Timescale

Action potential initia-

tion

Threshold, one-bit ana-

log-to-digital converter

0.5–5 ms

Action potentials in

dendritic spines

Binary OR, AND,

AND–NOT gate

0.1–5 ms

Nonlinear interaction

between excitatory and

inhibitory synapses

Analog AND–NOT

veto operation

Retinal directional selec-

tivity

2–20 ms

Spine–triadic synaptic

circuit

Temporal differentia-

tion high-pass filter

Contrast gain control in

the LGN

1–5 ms

Reciprocal synapses Negative feedback Lateral inhibition in olfac-

tory bulb

1–5 ms

Low, threshold calcium

current (IT)

Triggers oscillations Gating of sensory informa-

tion in thalamic cells

5–15 Hz

NMDA receptor AND–NOT gate Associative LTP 0.1–0.5 s

Transient potassium

current (IA)

Temporal delay Escape reflex circuit in

Tritonia

10–400 ms

Regulation of potassium

currents (IM, IAHP) via

neurotransmitter

Gain control Spike frequency accom-

modation in sympathetic

ganglion and hippocampal

pyramidal cells

0.1–2 s

Long-distance action of

neurotransmitters

Routing and addressing

of information

1–100 s

Dendritic spines Postsynaptic modifica-

tion of functional con-

nectivity

Memory storage ∞

Table 18.1 Potential computational functions of various biophysical mechanisms in
neural circuits (from Shepherd 1990; reprinted with permission of Oxford University
Press).



that weighted sums of such functions can approximate any desired continuous

sensorimotor transformation. It is argued that the outputs of some parietal neu-

rons can be approximated quite well by such basis functions. However, it is not

known exactly how the computation of these basis functions is neurally imple-

mented. A more general perspective of this basis function approach is given in

Salinas and Sejnowski (2001).

Most approaches based on static basis functions do not provide good models

for the biologically more realistic case of online computing on time-varying in-

put streams. Furthermore, there are no good models for explaining how the com-

position of basis functions to larger computational modules is organized or

learned by neural systems.

Microcircuits as Dynamical Systems Whose Input Is

Encoded in the Initial State

Complementary approaches towards understanding the role of stereotypical

cortical microcircuits for cortical computation emphasize that these micro-

circuits are synaptically connected in a highly recurrent manner, not in the way

of a feedforward circuit. Thus, we will now focus on recurrent circuits. In this

subsection, however, we discuss only approaches that focus on offline computa-

tions, that is, computations on batch input that are encoded in the initial state of

the system. Turing machines fall into this category, but also cellular automata,

recurrent neural networks (e.g., Hopfield nets, attractor neural networks), and

other more general dynamical systems are traditionally considered in this offline

computational mode.8 In fact it appears that the majority of computational mod-

els currently considered in computational neuroscience fall into this category.

Recurrent circuits can be composed from the same basis functions as

feedforward circuits (see previous section). However, a new problem arises. In a

feedforward circuit, the computational control that determines which subcircuit

is activated at any given moment is implicitly encoded by the underlying wiring

diagram, which is in that case a directed acyclic graph. Computations in recur-

rent circuits that implement Turing machines, cellular automata, or recurrent

neural nets in discrete time require a central clock in conjunction with a protocol

that determines which subcircuit is active at which clock tick. Although such

computational organization is theoretically also possible for a circuit consisting

of integrate-and-fire neurons (Maass 1996), the biologically more realistic case

is obviously that of computing in continuous time with the interaction between

computing elements described by differential equations. In this way one arrives

at special cases of dynamical systems. The (batch) input is traditionally encoded

in the initial state of the dynamical system, and one usually waits until it has con-

verged to an attractor, which could be a fixed point, a limit cycle, or a “strange
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attractor” as considered in chaos theory. Even dynamical systems that are com-

posed of very simple dynamic units (e.g., sigmoidal gates) can have very com-

plicated dynamics, and it is not clear what particular contribution should be ex-

pected from cortical microcircuits if they are viewed as implementations of such

dynamic units. Freeman (1975) proposed using a conceptual framework by

Ketchalsky for classifying components of recurrent circuits (K0, KI, KII sets,

etc.), but the nature of nonlinear recurrent circuits tends to be in the way of any

meaningful decomposition into simpler components.

Synfire chains (Abeles 1991) have been proposed as potential dynamic mod-

ules of complex recurrent circuits that inject a particular timing structure into the

recurrent circuit. This is theoretically possible since a synfire chain (in its most

basic form) is a feedforward circuit whose subsets of neurons are activated in a

sequential manner. However, no significant computations can be carried out by

a single synfire chain. It has been conjectured that interactions between several

overlapping synfire chains may attain significant computational power, but this

has not yet been demonstrated (without postulating an “intelligent” higher-order

structure). Obviously, one needs to find principles by which a network of synfire

chains could be autonomously created, structured, and updated. Another inter-

esting open problem is how such a network could learn to process time-varying

input streams.

Microcircuits as Generic Modules for Online Computing

in Dynamical Systems

We now consider models for the computational function of cortical micro-

circuits that allow them to carry out online computations on complex input

streams (which requires temporal integration of information). Finite automata

are capable of carrying out such computations, although only on digital inputs in

discrete time. To implement an arbitrary finite automaton, it suffices to combine

a feedforward Boolean circuit that computes the transition function between

states with computational units that act as registers for storing and retrieving in-

formation. One possible neural implementation of such registers was proposed

in Douglas et al. (1995), using hysteretic effects in recurrent circuits. Altogether

the main weakness of finite automata as a conceptual framework for neural com-

putation is their strongly digital flavor (discrete time and discrete states), which

makes learning or adaptation (that in neural systems usually involves gradient

descent in one form or another, except for genetic algorithms) less powerful in

this context.

Another attractive conceptual framework for the analysis of neural computa-

tion on online input streams is provided by linear and nonlinear filters. Numer-

ous biophysical mechanisms that implement specific linear and nonlinear filters

have been identified (see Table 18.1; Shepherd and Koch 1998; Koch 1999).

Marmarelis and Marmarelis (1978) introduced into neurophysiology a number
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of useful techniques for modeling the input–output behavior of black-box neu-

ral circuits by linear and nonlinear filters. A more recent account is given in

Rieke et al. (1997). These techniques rely on Volterra series (or equivalently

Wiener series) as mathematical frameworks for modeling online computations

of neural systems on continuous input streams or spike trains as inputs. Volterra

series model the output of a system at time t by a finite or infinite sum of terms of

the form:

where some integral kernel hd is applied to products of degree d of the input

stream u(·) at various time points t – τi back in the past. Usually only linear (d =

1) or quadratic (d = 2) filters are used for modeling specific neural systems, since

too many data would be needed to fit higher-order kernel functions hd. Not all

possible computations on input streams u(·) can be modeled by Volterra series

(of any degree), since any Volterra series (with convergent integral terms) has

automatically a fading memory, where features of the input streams u(·) at any

specific time point in the past have decreasing influence on the current output at

time t when t grows. In addition, a Volterra series can only model outputs that de-

pend in a smooth manner on the input stream u(·). Thus they can, for example,

model spike output only in the form of smoothly varying firing rates or firing

probabilities. On the other hand this mathematical framework imposes no con-

straint on how slowly the memory fades and how fast the smoothly varying out-

put changes its value.

This conceptual framework of filters, which has traditionally been used pri-

marily for analyzing signal processing rather than computing, was recently used

by Maass and Sontag (2000) and Maass et al. (2002, 2004) as the basis for a new

approach towards understanding the computational function of microcircuit dy-

namics. The liquid state machine was introduced as a generalization of the

model of a finite automaton to continuous time and continuous (“liquid”) states

(see Figure 18.1).

To make this model better accessible to learning than the finite automaton, it

was postulated that the liquid states (i.e., that part of the current state of the cir-

cuit that is expressed in its spiking activity and, therefore, “visible” for readout

neurons) generated by a neural microcircuit should contain sufficient informa-

tion about the recent input stream u(·) that other neurons (“readout neurons”)

have to learn in order to select and recombine those parts of the information

stream contained in the time-varying liquid state useful for their specific compu-

tational task. Here, it is natural to apply a variant of the basis function idea dis-

cussed earlier and look for possible characterizations of sets of basis filters (that

could be implemented, for example, by specific components of cortical micro-

circuits), which endow the resulting liquid states with the capacity to absorb
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enough information about the input stream u(·). A mathematical theorem

(Maass et al. 2002) guarantees that sufficient diversity of the basis filters imple-

mented by the components of a neural microcircuit, for example, neurons or dy-

namic synapses with sufficiently diverse time constants (Maass and Sontag

2000), suffices to endow the resulting liquid state machine with the capability to

approximate in principle any input–output behavior that could potentially be ap-

proximated by a (finite or infinite) Volterra series. The available amount of

diversity in a microcircuit can be measured indirectly via its separation property

(Maass et al. 2002).

Another potential computational function of microcircuit dynamics arises if

one considers such a liquid state machine from the perspective of an (approxi-

mately) linear readout neuron, for which it should become feasible to learn to

select and recombine those aspects of liquid states that may be needed for spe-

cific tasks (e.g., smooth eye pursuit, or classification and prediction of dynamic

visual scenes). A microcircuit can boost the capability of any linear readout by

adding a certain redundancy to the information contained in its stream of liquid

states, for example, also precomputing nonlinear combinations of salient time-

varying variables (analogously as in the special case of gain fields), see Figure

18.2. Very recently, in Maass, Legenstein et al. (2005), a general quantitative

method was developed to evaluate such kernel capability of neural micro-

circuits (where the notion of a kernel is used here in the sense of support vector

machines in machine learning—it goes back to the idea of a fixed nonlinear pre-

processing proposed already in the 1950s by Rosenblatt’s work on perceptrons,

but applied here to a time-varying context). Forthcoming new results show that

the computational power of the resulting computational model becomes
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significantly larger if feedback from trained readouts back into the circuit is also

taken into account, as indicated by the dashed line in Figure 18.2 (Maass, Joshi

et al. 2005).

From this perspective a cortical microcircuit is not viewed as an implementa-

tion of a single computation, but as a more universal computational device that

can support simultaneously a large number of different computations. An exam-

ple is given in Figure 18.3, where 7 different linear readouts from a generic neu-

ral microcircuit model consisting of 270 neurons had been trained to output at

any time the result of 7 different computational operations on information pro-

vided to the circuit in the form of 4 spike trains (a sample is shown at the top of

Figure 18.3). After training the weights of these linear readouts had been fixed.

The results shown in Figure 18.3 are for new input spike trains that had never be-

fore been injected into the circuit, thereby demonstrating good generalization

capability of this simple learning scheme (see Maass et al. 2002 for details).

Several experimental studies in the group of Yves Frégnac have shown that

neurons can in fact be trained via current injections (even in adult animals in

vivo) to read out particular aspects of the “liquid state” represented by the cur-

rent firing activity of presynaptic neurons (see, e.g., Debanne et al. 1998). How-

ever, it has remained open by which principles readout neurons can be trained

autonomously within a neural system to perform such task. This is least dubious

in the case of prediction learning, where the arrival of the next input could pro-

vide such current injection into a readout neuron that learns to perform such pre-

diction task as in the experiments of Debanne et al. (1998). These experimental

data can be explained on the basis of standard rules for spike-timing-dependent

plasticity (STDP) (see Legenstein et al. 2005). Another quite realistic scenario is
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distribution over (0 Hz, 80 Hz) every 30 ms, and input spike trains 1 and 2 were generated
for the present 30 ms time segment as independent Poisson spike trains with this firing
rate r(t). This process was repeated (with independent drawings of r(t) and Poisson spike
trains) for each 30 ms time segment. Spike trains 3 and 4 were generated in the same way,
but with independent drawings of another firing rate ( )~r t every 30 ms. The results shown
in this figure are for test data that were never before shown to the circuit. Below the 4 in-
put spike trains the target (dashed curves) and actual outputs (solid curves) of 7 linear
readout neurons are shown in real-time (on the same time axis). Targets were to output
every 30 ms the actual firing rate (rates are normalized to a maximum rate of 80 Hz) of
spike trains 1 and 2 during the preceding 30 ms (f1), the firing rate of spike trains 3 and 4
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sen complex nonlinear combination f7 of earlier described values. Since all readouts
were linear units, these nonlinear combinations are computed implicitly within the ge-
neric microcircuit model. Average correlation coefficients between targets and outputs
for 200 test inputs of length 1 s for f1 to f7 were 0.91, 0.92, 0.79, 0.75, 0.68, 0.87, and 0.65.



the case of association learning, where a “teaching current” could be injected

into a readout neuron by projection neurons from other microcircuits in cortical

or subcortical structure that are involved in processing inputs from other sensory

modalities, or which signal external or internal rewards.

An attractive feature of this computational framework is that it produces a

possible explanation for the anytime computing capabilities of neural systems,

since readouts can learn to transform, at any moment in time, the currently pro-

vided liquid state into the best guess for a decision or a parameter value that is

needed for their specific task. Another interesting aspect is that this approach is

compatible with biological data regarding oscillations that are superimposed on

sensory inputs (Kaske and Maass 2005). Häusler and Maass (2005) have also

shown that this approach can be applied to more detailed cortical microcircuit

models with data-based connectivity between cortical layers.

This approach also provides a computational explanation for the large-scale

architecture of the brain, where sensory inputs and internal outputs are not

spread out uniformly all over the brain (see INTRODUCTION). Rather, each brain

area is characterized by the specific set of information streams that it receives.

This feature is a prerequisite for online computing with dynamical systems,

since different input streams that converge onto a single microcircuit all have an

influence on its internal dynamics, thereby facilitating computations that de-

pend on segments of all these information streams. Some other input stream that

is not relevant for these computations would influence the microcircuit dynam-

ics as well, but would represent a huge source of noise from the perspective of

these computations, in particular blowing up and possibly interleaving the

classes of equivalent circuit states (see Maass et al. 2004, Section 5) that a read-

out neuron has to learn to distinguish.

An essentially equivalent computational framework to liquid computing,

echo state networks, has been developed independently in an engineering con-

text (Jäger 2002), and currently surpasses all other known methods for various

time series predition and adaptive nonlinear filtering tasks (Jäger and Haas

2004). Other recent work relates these approaches to earlier work by Chris

Langton et al. on computation on the edge of chaos in dynamical systems (for a

review, see Legenstein and Maass 2005a, b), but applied now to anytime com-

puting on continuous input streams rather than to offline computations on static

batch input (Bertschinger and Natschläger 2004). It is argued there that neither

the “ordered” nor the “chaotic” regime of recurrent circuits (where recurrent cir-

cuits are viewed here as special cases of dynamical systems) are well suited for

computing, but rather the regime in between (the “edge of chaos”). This has

been demonstrated by Bertschinger and Natschläger (2004) for synchronized

recurrent circuits consisting of threshold gates. Results of Maass, Legenstein et

al. (2005) suggest that for more realistic models of neural microcircuits the

“edge of chaos” becomes harder to conceptualize, and they propose measuring

the computational power and generalization capability of neural microcircuits
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instead by a quantitative measure of its kernel quality and a direct estimate of its

generalization capability (VC-dimension).

Other Approaches

Various other approaches exist for explaining or modeling biological neural

computation, which have not yet given rise to specific hypotheses regarding the

computational role of cortical microcircuits. Anumber of interesting brain theo-

ries are based on information theoretic concepts, such as redundancy reduction,

the information bottleneck method, and theories of optimal neural coding. An-

other family of models for biological neural computation uses generative mod-

els, which are based on the hypothesis that the large-scale computational goal of

cortical computation is to reconstruct sensory inputs, and to “explain” them as

being generated by independent components or factors that can be learnt in an

unsupervised manner from the statistics of the inputs. An attractive feature of

this approach is that it gives rise to autonomously learning systems. However, in

a concrete biological context it is hard to demonstrate or even make precise the

theoretically very attractive goal of reconstructing the input in terms of inter-

nally represented “hidden” sources. For example, top-down connections to pri-

mary sensory cortices appear to contribute to purpose-related interpretations of

raw sensory input, rather than to the reconstruction of a (usually dynamically

varying) sensory input; see, for example, Chapter 45 of Chalupa and Werner

(2004) for the case of visual input. Unfortunately, the biologically more realistic

goal of predicting future inputs (rather than reconstructing preceding inputs) has

not yet given rise to an equally attractive theoretical approach.

DISCUSSION

This short survey shows that there exist drastic differences regarding theories on

the computational function of cortical microcircuits. To find the most appropri-

ate computational theory for a neural microcircuit one first needs to decide

whether this circuit is designed to carry out offline computations on batch inputs

or online computations on input streams. One also needs to decide to what extent

this circuit is genetically programmed to carry out one specific computational

operation, or whether it is designed to provide numerous and diverse “neural us-

ers” with a suitably processed amalgamation of the input streams that enter this

microcircuit, where the specific output delivered to any particular “neural user”

is to some degree shaped by learning.

The computational function of various salient aspects of cortical micro-

circuits is presently still not known, especially the computational role of specific

cortical layers with particular types of neurons that are connected by particular

types of synapses with particular probabilities with other specific types of
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neurons on specific layers. Another big open problem is the organization of

learning in cortical microcircuits; for example, we need to know how the plastic-

ity of its synapses is gated, and what other processes regulate the computational

function of its neurons in dependence of their individual history and the statis-

tics of their inputs.
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