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Abstract

It is shown that real-time computations on spike patterns and temporal integration of information in neural microcircuit models are

compatible with potentially descruptive additional inputs such as oscillations. A minor change in the connection statistics of such circuits

(making synaptic connections to more distal target neurons more likely for excitatory than for inhibitory neurons) endows such generic neural

microcircuit model with the ability to generate periodic patterns autonomously. We show that such pattern generation can also be

multiplexed with pattern classification and temporal integration of information in the same neural circuit. These results can be interpreted as

showing that periodic activity provides a second channel for communication in neural systems which can be used to synchronize or

coordinate spatially separated processes, without encumbering local real-time computations on spike trains in diverse neural circuits.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Neural microcircuit; Oscillations; Synchronization of neural activity; Real-time computing; Pattern classification; Learning; Computational

models; Dynamic synapses
1. Introduction

Theoretical results and computer simulations have

shown that generic models for neural microcircuits are

capable of integrating information from spatio-temporal

spike patterns, thereby facilitating real-time computing on

complex input streams (Maass, Natschläger, & Markram,

2002). Of course sensory input is not the only source of

neuronal firing activity in real biological neural systems. In

particular, firing activity in neural circuits is frequently

entrained by additional oscillatory input. This oscillatory

signal may be generated in a distributed way by the brain, or

it can be generated by specific neural circuits. For example

circuits in the spinal cord of vertebrates (Orlovsky,

Deliagina, & Grillner, 1999) generate periodic firing

patterns that are used to drive rhythmic movements such
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as walking. We show in this article that both types of

periodic activity are in principle compatible with temporal

integration of information and fast computations on spike

patterns, that need not even be phase-locked or otherwise

coordinated with the phase or frequency of an externally or

internally generated periodic activation pattern. In particular

neural microcircuits appear to have the capability to

multiplex the transmission of information contained in a

periodic pattern, such as its current phase, with the

transmission of information contained in nonperiodic

input streams in such a way that both types of information

can easily be separated by simple linear readouts that have

been trained for such task.

However, our computer simulations also show that there

is ‘no-free-lunch’ in the sense that simultaneous processing

of two types of inputs in the same neural circuits reduces their

capacity for each type of information processing. But this

imposes no a-priori limitation on their computational power,

since we also show that a somewhat larger neural circuit has

even in the presence of additional oscillatory input the same

capability for fast computations on spike patterns as a smaller

circuit without oscillatory input. On the other hand, an

additional oscillatory input may facilitate the synchroniza-

tion of distributed processes since its phase can be read out

with high fidelity from small ensembles of neurons in

different spatial regions of the circuit.
Neural Networks 19 (2006) 600–609
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We have tested the multiplexing of information proces-

sing on periodic and nonperiodic input streams on standard

models for generic neural microcircuits (see Maass,

Natschläger, & Markram, 2004). These circuits consisted

of 900 leaky integrate-and-fire neurons1 with biologically

realistic models for dynamic synapses according to

(Markram, Wang, & Tsodyks, 1998). Connectivity was

assumed to be primarily local. More precisely, we assumed

that the neurons were located on the integer points of a three-

dimensional grid in space, where D(a, b) is the Euclidean

distance between neurons a and b. Synaptic connections

between neurons were chosen randomly according to a

probability law that favored synaptic connections between

neurons a, bwhose distanceD(a, b) was not much larger than

a parameter l: the probability of a synaptic connection from

a to b was C exp(KD2(a, b)/l2), with a suitable scaling

constantCO0. The short term dynamics of each synapsewas

chosen to correspond to the types of pre- and post-synaptic

neurons (excitatory or inhibitory) according to data from

(Gupta, Wang, & Markram, 2000) and (Markram et al.,

1998). Further details of the circuits are described in the

appended section on methods.
2. Periodic and nonperiodic inputs can be processed

in parallel by generic neural circuits

In previous investigations of temporal integration and

computations on input streams in neural microcircuit models

(Maass et al., 2002, 2004; Legenstein et al., 2003) the

firing activity in the neural circuits was caused exclusively

by the input stream, and all firing in the circuit ceased within

50–150 ms after the input stopped. In this section we

demonstrate that temporal integration and real-time comput-

ing on complex input streams is also possible if the neural

circuit is activated by some additional oscillatory input that

keeps the circuit active independently of the information-

carrying input stream. Obviously, such additional oscillatory

input just represents ‘noise’ from the point of view of

computing on the primary (nonperiodic) input stream. In fact,

this additional oscillatory input may be seen as a large source

of noise from the point of view of readout neurons that aim at

extracting temporally integrated information from the

current firing activity (‘liquid state’) of the circuit. The

liquid state x(t) of a circuit is defined in (Maass et al., 2002) as

that part of the current state of the circuit that is in principle

accessible to a readout neuron that receives synaptic input

from all neurons in the circuit. Hence the number of

components of x(t) is equal to the number of neurons in the

circuit, and the component of x(t) that corresponds to a

neuron v in the circuit is a low pass filtered version of the

spike train emitted by neuron v. More precisely: a spike of
1 Only for the simulation whose results are reported in Fig. 3c) a circuit

with 1800 neurons was used.
neuron v at time t 0%t adds exp(K(tKt 0)/30 ms) to the

corresponding component of x(t), where the time constant of

30 ms reflects the assumed temporal dynamics of receptors

and active channels as well as the membrane time constant of

the readout neuron. Examples of liquid states of circuit

models considered in this article are shown in Fig. 5.

The periodic input may activate substantially more

neurons in the circuit than the information-carrying online

input streams (see Fig. 1a,b). Furthermore the phase of such

periodic firing activity may vary in relation to the primary

input stream whose timing is typically determined by events

in the external world. Consequently the equivalence classes

of liquid states that all represent equivalent information with

regard to the online input stream (e.g. information about the

second to last spike pattern that had previously been injected

into the circuit) become substantially larger and more

diverse in the presence of an unrelated oscillatory input: the

‘up-phases’ of the oscillatory activity tend to overwrite the

trace of activity left over from a preceding input segment,

and these ‘up-phases’ affect this memory trace in different

ways, depending on the accidental relationship between the

phase of the oscillatory input relative to the ‘phase’ of the

preceding temporal spike pattern. We show that never-

theless simple linear readouts can be trained to become

invariant to all these different appearances of the same

information caused by unrelated oscillatory activity. It

should however be stressed that these readouts need to be

trained to become invariant to specific types of background

noise. At least in our model we are not aware of a-priori

reasons, why the inherent bias of linear separators should

facilitate automatic invariance to new types of high-

amplitude background noise.

Since neural microcircuits in the nervous system often

receive salient input in the form of spatio-temporal firing

patterns (e.g. from sensory neurons, or from other brain

areas), we have concentrated on online input streams of this

type. Such firing patterns could for example represent visual

information received during a saccade, or the neural

representation of a phoneme or syllable in auditory cortex.

The online input streams in our computer simulations

consisted of 10 simultaneous spike trains over 1000 ms.

Each of the 4 segments of length 250 ms of such input stream

was a noisy version of one of two templates that had been

generated by 10 Poisson spike trains over 250 ms each, with a

firing rate of 20 Hz; see Fig. 2. The computational taskwas to

classify in real-time at the moment when this input stream of

length 1000 ms ended for each of the preceding 4 segments of

length 250 ms which of the corresponding two templates had

been used to generate that segment.2

It is clear that this task requires substantial capability for

temporal integration of information over several hundreds
2 Similar tests can also be carried out with more than two templates for

each segment, but larger circuits are needed to achieve the same level of

performance for that.



Fig. 1. Response of the generic microcircuit model to an input stream

consisting of 10 Poisson spike trains. Spike times of the neurons 1–450 (y-

axis) of the microcircuit are marked as dots. The x-axis denotes time (in ms).

(b) The same representation of spike times in the same microcircuit for the

casewhere in addition to the spike input each neuron in the circuit receives an

additional analog sinusoidal input current at 12 Hz. Information about the

online input stream is now encoded throughmodulations of the firing activity

during up-phases of the oscillation. (c) For comparison the substantially

more stereotypical firing response of the same circuit is shown for the case

where it only receives the oscillatory input, and no multiplexing occurs.
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of ms. We have demonstrated that this temporal integration

was carried out by the circuits (in spite of the additional

oscillatory input) by training 4 McCulloch-Pitts neurons to

extract at a later point in time this temporally integrated

information. They received as input the 450-dimensional

liquid state x(1000) of the circuit at time tZ1000 ms (with

time tZ0 defined as the moment when the online input

stream had begun). They were trained to output in real-time

(in fact instantly) the labels (0 or 1) of the templates that had

been used to generate the 4 segments of the preceding input

stream. Obviously in the presence of additional oscillatory

input whose phase can have any random value at time

tZ1000 ms, the liquid state x(1000) is largely determined

by this random phase of the oscillatory input (and is in

addition influenced by the jitter used to generate the input

streams from the underlying templates). Nevertheless

Fig. 3b shows that the template that had been used to

generate the last 250 ms segment of the input stream can be

classified with the same precision as for the case without

additional oscillatory input (see Fig. 3a). The recovery of

information from the liquid state x(t) at time tZ1000 ms

about the templates that had been used to generate the

earlier segments of the input stream is substantially more

difficult, since the spikes caused by these input segments

were overwritten by independently chosen subsequent input

segments and by several up-phases of the oscillatory input

(with a phase that varies randomly from trial to trial, and is

not communicated separately to the readouts that are trained

to extract information from the liquid state x(1000)). Fig. 3b

shows that the classification capability of these readouts on

test data is reduced by additional oscillatory input, but is still

above chance level (i.e. above an error fraction of 0.5).

Furthermore a larger circuit (with 1800 instead of 900

neurons) has even in the presence of additional oscillatory

input the same capability for temporal integration and real-

time classification of information from complex spike

patterns (see Fig. 3c) as the smaller control circuit without

additional oscillatory input (for which results are given in

Fig. 3a). Such automatic improvement of classification

correctness for a larger circuit of the same type has

previously already been reported in cases without oscil-

latory input (Maass et al., 2002). We refer to the methods

section for further details of these computer simulations.

Whereas the additional oscillatory input reduces the

information processing capability of the circuit for the

unrelated input stream, it also introduces a second channel for

communication and computing in the same neural micro-

circuit model. The phase of the oscillatory input can be read

off from the liquid state x(t) at any time t (see Fig. 4a), and

could potentially be combined with the information about

preceding spike patterns extracted from x(t) by other

readouts. Furthermore the relatively high amplitude of the

oscillatory input (see Fig. 1) that we had chosen for

demonstration purposes, has the advantage that information

about its phase is broadcast quite clearly throughout the

circuit, and hence can be recovered from the current firing



Fig. 2. Structure of online input streams used for all simulations. Each input consists of 10 spike trains of length 1000 ms generated from 4 segments of length

250 ms each. (a) For each segment two labeled templates 0 (upper row) and 1 (lower row) were generated randomly (more precisely, as Poisson spike trains

with a frequency of 20 Hz). (b) The actual input streams for our simulations were generated by choosing randomly for each segment i, iZ1,.,4, one of the two

associated templates (labeled 0 or 1), and then generating a noisy version of that template by moving each spike by a different amount drawn from a Gaussian

distribution with mean 0 and SD 4 ms.
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pattern of a subpopulation of a few adjacent neurons

anywhere in the circuit (see Fig. 4b), in spite of the unrelated

input stream that may represent just a source of noise from

this perspective (although in a biological circuit both sources

might also contain complementary pieces of information that

need to be combined by suitable readouts). Such information

about the oscillatory input could be used for other

computational tasks at different locations in a larger circuit

or system, such as for example tasks that require a global

synchronization of local processes.
3. Multiplexing pattern generation with real-time

computing within the same circuit

With small modifications the same models for generic

neural microcircuits that were previously used for real-time

computing on complex input streams can also be used to

generate periodic patterns. It suffices for example, to make

sure that the probability of a synaptic connection fromneuron

a to neuron b is somewhat larger in case that a is an excitatory

neuron. This assumption is justified both for the cortex (based

on the wide axon trees of pyramid cells) and for the spinal

cord in a variety of species (tadpole (Roberts et al., 1998),

lamprey (Buchanan, 1982)). Then, if one just injects a

constant input current into the neurons on layer 1 of the

circuit, a periodic pattern is generated (see Fig. 5a). A more

stable and spatially more clearly organized pattern

(a traveling wave) is generated by such circuit if there exists
a spatial gradient for connection probabilities in the circuit,

even if the strength of the tonic input is uniform throughout

the circuit (see Fig. 5b); details can be found in the methods

section. Another way to trigger the emergence of traveling

waves in a generic neural microcircuit model is to choose the

synaptic connection density uniform throughout the circuit

(like for Fig. 5a), and to introduce a spatial gradient for the

probability that a neuron receives a tonic depolarizing input

current (see Section 6 for details). This option (see Fig. 5c),

which may be viewed as the most realistic one for the

generation of periodic patterns in the cortex, is used for the

subsequent analysis discussed in Fig. 6.

The emergence of traveling waves in generic neural

microcircuits is consistent with experimental data, in

particular with the generation of traveling waves by slices

of cerebral cortex (Golomb & Amitai, 1997). The

generation of two-dimensional traveling waves in generic

models for neural microcircuits could also be expected on

the basis of preceding theoretical and simulation work for

one-dimensional circuit models (Golomb & Ermentrout,

1999) and simpler models for two-dimensional circuits

(Osan & Ermentrout, 2001; Kaske, Weinberg, & Coester,

2003). It is shown in (Kaske & Bertschinger, 2005) that the

frequency, orientation and wavelength of the traveling

waves generated by such generic neural microcircuit models

can be influenced by various details of a biologically more

realistic circuit model, such as the inclusion of commissural

inhibitory neurons that impose inhibition on neurons on the

other side of a spatially extended circuit, the presence of



Fig. 3. Evaluation of the information about preceding spike inputs

contained in the liquid state x(t) of the neural microcircuit at time

tZ1000 ms. The y-axis gives the probability of a correct classification by a

trained linear readout on test data (new noisy variation of spike templates),

for each of the 4 segments of length 250 ms. Labels on the x-axis give the

position of the segment within this spike input over 1000 ms for which such

classification is carried out (there exist 4 readout neurons, one for each

segment, which carry out their classification simultaneously and in parallel

when the 4th input segment ends at time tZ1000 ms. (a) Fraction of correct

classifications (on test data) of the trained readout at time tZ1000 ms of the

templates used to generate each of the 250 ms segments of the preceding

Fig. 4. Analysis of information transmission in generic neural microcircuits

via oscillations. The solid line shows the phase of the oscillatory input as a

function of time (x-axis in ms). (a) Dashed line shows the output of a linear

readout that was trained to extract at any time t from the liquid state x(t) of

the 450 neurons on layer 1 the current phase of the oscillatory input. (b)

Same as in (a), but for a linear readout that receives as input only 50

components of x(t) corresponding to 50 neurons at a randomly chosen

location of the circuit. This demonstrates that the current firing activity of

the neurons in the circuit contains not only information about preceding

aperiodic spike input, but also about the current phase of the oscillatory

input. Hence the latter may be used to coordinate spatially distributed

responses to an aperiodic spike input (that could represent for example

proprioceptive or sensory input).
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bursting neurons, and the inherent dynamics of depressing

synapses in the circuit.

To the best of our knowledge, no attempt was previously

made to construct circuits of spiking neurons that combine
input stream. Error bars represent the standard deviation. (b) Same

experiment for the same circuit but for the case where all neurons in the

circuit receive an additional oscillatory input. (c) Same as in panel b, but for

a circuit of twice the size (consisting of 1800 neurons). The relative good

classification performance for the pattern in the first time segment of these

experiments (compared with that in the second time segment) results from

the fact that only the membrane potential but not synaptic states were

randomly chosen at the beginning of each simulation.

3
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Fig. 6. Information processing capability of a pattern generating circuit. (a)

Performance of the same task as considered in Fig. 3 (for an additional input

stream consisting of 10 spike trains). (b) Estimate of the current spatial

phase (in terms of the order number of the horizontal row of neurons in

Fig. 5 that currently has the highest activity) of the traveling wave

generated by the circuit. Target values are shown as solid line. The outputs

of a linear readout (that received as input at any time t the 450-dimensional

liquid state x(t) corresponding to the 450 neurons on layer 1 of the circuit)

which was trained to estimate this target value at any time t are marked by

stars. The rather good performance of this readout shows that the pattern

generated by the circuit is not disturbed too much by the online spike input,

and may be viewed as a quasi-independent communication channel within

the same neural microcircuit.
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within the same circuit pattern generation with online

processing of online input streams, that could represent for

example proprioceptive or sensory feedback to the spinal

cord. But this question appears to be of interest, since there

exists reasonable experimental evidence that pattern
Fig. 5. Generation of periodic patterns by generic neural microcircuits (with exci

firing activity of a neuron at the corresponding position in the circuit (scaled ac

450-dimensional liquid states x(iD), iZ0,.,7, generated by the 30!15 neurons o

[0, 7D] covers a little more than one period of the periodic pattern generated by the

Fig. 2b. (a) The same constant input current is injected into all neurons on layer

neurons on layer 1. But due to a gradient in the number of synapses from the top to

DZ25 ms. (c) There is no gradient in the synaptic connectivity in this circuit, but th

input current (see Appendix). DZ20 ms.

3

generation and online processing of proprioceptive or

sensory feedback cannot be separated into distinct neural

circuits in spinal cord (Baev, Esipenko, & Shimansky, 1991;

Orlovsky et al., 1999; Perreault, Shefchyk, Jimenez, &

McCrea, 1999). We have examined the performance of

pattern-generating circuit for the same computational task

as considered in Section 2. We have focused on the circuit

that generated traveling waves according to the option

considered in Fig. 5c (with a spatial gradient in the

distribution of the time-invariant tonic input), and injected

into such circuit an additional input stream consisting of 10

spike trains over 1000 ms as shown in Fig. 2b. The results

depicted in Fig. 6a show that the capability of such circuit

for pattern classification and temporal integration is quite

impressive, almost the same as for the case with an external

oscillatory input considered in Fig. 3b. This is particularly

remarkable in view of the fact that no attempt was made to

coordinate the timing of the self-generated traveling wave

with that of the input stream. This would actually have been

very difficult since the periods of the traveling wave were

modulated by the online input stream.

As for the case with an external oscillatory input, the self-

generated traveling wave opens up a second channel for

communication in the same neural circuit. A linear readout

can be trained to extract at any time t from the liquid state x(t)

of the circuit the current spatial phase of the self-generated

traveling wave (see Fig. 6b). Obviously the result of such

readout can easily be combined with the results of other

readouts that classify spatio-temporal spike patterns in the

online input stream. Hence our model provides a simple but

biologically not unrealistic computational architecture for

the control and modification of periodic movements such as

walking in generic neural circuits (e.g. in the spinal cord) that

simultaneously receive proprioceptive or sensory feedback.
4. Low dimensional noise in high dimensional state

spaces

The capability of a neural circuit to support classification

and temporal integration of spike patterns as needed for the

computational task considered in this article depends on the

amount of information contained in the current firing

activity (i.e. the current liquid state x(t)) of the circuit at

the time t when the readout neuron has to produce an

answer. For the case of a linear readout neuron that is

considered in this article, this capability depends more

precisely on the linear separability of the two classes of
tation reaching farther than inhibition, see text). Light color indicates high

cording to current firing rate in Hz). Shown are in each case 8 frames of

n layer 1 of the circuit. D is chosen sufficiently large so that the time interval

circuit. All three circuits receive simultaneously spikes of the type shown in

1. DZ15 ms. (b) The same constant input current is again injected into all

the bottom, a traveling wave emerges that travels from the top to the bottom.

ere exists a gradient in the probability that a neuron receives a constant tonic
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liquid states x(t) that emerge at trials when the readout

neuron is supposed to output 1 and on trials where the

readout neuron is supposed to output 0. Some examples for

the diversity of liquid states that may fall into the same

equivalence class were given in (Maass et al., 2004).

When periodic patterns are superimposed (with a random

phase) on the spatio-temporal spike pattern that are to be

classified, the diversity of liquid states belonging to one

equivalence class appears to grow dramatically. This can be

seen when one tries to visualize the difference in liquid

states resulting from the firing activity, shown in panel a of

Fig. 1 with that of panel c in Fig. 1. But visual appearance of

diversity of liquid states is of course not really relevant for

the performance of linear readouts from such circuit with

several hundred neurons. From their perspective the added

diversity of liquid states resulting from periodic background

activity looks relatively harmless as long as this periodic

background activity is inherently low dimensional, i.e. if it

can be characterized after a suitable coordinate transform-

ation (for example principal component analysis) by a low

dimensional dynamical system. In this case a linear

classifier has a chance to find a separating hyperplane that

is essentially parallel to the low dimensional subspace

spanned by the background activity, so that the resulting

equivalence classes become largely invariant to such

superimposed background activity. This is clearly demon-

strated by the results in Fig. 3 where the separating

hyperplanes were computed by linear regression, and are

therefore optimal (with regard to mean squared errors). The

last bar in panel a of Fig. 3 indicates that even without

background activity the correspondent equivalence classes

in the high dimensional state space are not linearly

separable. But the last bar in panel b shows that the best

separating hyperplane has managed to become invariant to

the additional noise imposed by the periodic background

input. This analysis is oversimplified since it ignores the

facts that the periodic background noise interacts in

the circuit nonlinearly with the signal, and that in particular

the impact of earlier segments of the periodic background

input can no longer be confined to such low dimensional

subspaces. On the other hand panel c of Fig. 3 indicates that

not the absolute dimensionality of the noise dynamics is

essential for the performance of linear readouts, rather the

relationship between the noise-dimension and the total

dimension of the circuit dynamics: If the latter is increased,

then the impact of the same low dimensional background

noise on the performance of optimal linear readouts is

reduced.3
3 This explanation suggests that our results do not depend on the

particular neuron model or synapse model that are used. Partial verifications

of this conjecture can be found in more recent studies of wave generation

(Kaske & Bertschinger, 2005) and pattern classification (Häusler & Maass,

submitted) in circuits consisting of Hodgkin-Huxley neurons.
5. Discussion

We have demonstrated in Section 2 that previously

proposed paradigms for temporal integration of information

and real-time classification of spatio-temporal spike patterns

are compatible with biologically realistic assumptions about

an oscillatory background activation of neural circuits and

systems. Note that the firing activity in such circuits does

not cease during periods where no phasic input arrives. Our

computer simulations suggest that such oscillatory back-

ground drive reduces somewhat the capability of neural

microcircuits to hold and process information contained in

input segments that occurred several hundred ms ago. But

we have also shown that this poses no serious limitation for

the computational power of neural microcircuits in the

presence of oscillatory background activation, since a

circuit with twice the number of neurons achieves an

equally good performance in spite of additional oscillatory

input compared with a circuit that receives no

oscillatory input. This holds even if the phase of the

oscillatory background drive has a random relation to

the timing of the information-carrying input stream. On the

other hand, additional oscillatory input makes new

information available in all parts of the circuit, such as the

current phase of the oscillatory background drive, that could

potentially be used to coordinate information processing or

muscle activation in spatially segregated parts of a larger

neural system.

In Section 3 we have demonstrated that temporal

integration of information and classification of spatio-

temporal spike patterns is also compatible with the

generation of periodic patterns within the same circuit.

Again, such multiplexing reduces somewhat the computing

capabilities of a circuit, but it facilitates computational tasks

where a modulation of a generated pattern in response to

online streams of proprioceptive or sensory feedback is

desirable. Hence our model predicts that such multiplexing

of heterogeneous tasks could for example take place in

neural circuits of the spinal cord. The analysis given in

Section 4 suggests that the feasibility of such multiplexing is

no mystery, since it depends only on the low dimensionality

of the superimposed periodic activation patterns. The

examples presented in this article demonstrate that super-

imposed periodic activation patterns may drastically change

the appearance of transient circuit states, but tend to reduce

the performance of suitably trained readouts only

moderately.
6. Methods: specifications of models and simulations

Generic neural microcircuit models were constructed as

described in (Maass et al., 2002). Neurons were modeled as

leaky integrate-and-fire neurons with a membrane time

constant of 30 ms and randomly chosen initial states.

Transmission delays between neurons were chosen to be
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quite small (1.5 ms for connections between excitatory

neurons, 0.8 ms for the other connections) in accordance

with biological data.

We modeled the synaptic dynamics according to the

model proposed in (Markram et al., 1998), with synaptic

parameters U, D, F. The model predicts the amplitude Ak of

the EPSC for the kth spike in a spike train with interspike

intervals D1, D2,.,DkK1 through the equations

Ak ZwukRk uk ZU CukK1ð1KUÞexpðKDkK1=FÞ

Rk Z 1C ðRkK1KukK1RkK1K1ÞexpðKDkK1=DÞ
(1)

with hidden dynamic variables u2[0,1] and R2[0,1] whose

initial values for the first spike are u1ZU and R1Z1

(see (Maass & Markram, 2002) for a justification of this

version of the equation, which corrects a small error in

(Markram et al., 1998)).

The parameters U, D, and F were randomly chosen from

Gaussian distributions that were based on empirically found

data for such connections (Gupta et al., 2000). Depending

on whether the input was excitatory (E) or inhibitory (I), the

mean values of these three parameters (with D, F expressed

in seconds) were chosen to be 0.5, 1.1, 0.05 (E), 0.25, 0.7,

0.02 (I). The SD of each parameter was chosen to be 10% of

its mean (with negative values replaced by values

chosen from an uniform distribution between 0 and two

times the mean).

The neurons were located on the grid points of a three-

dimensional 2!30!15 grid (exception: the larger circuits

used for generating the results shown in Fig. 3c employed a

2!30!30 grid), yielding a basically two-dimensional

circuit consisting of 2 layers. 20% of the neurons were

randomly chosen to be inhibitory for the circuits

considered in Section 2. The parameter l in the formula

C exp(KD2(a, b)/l2) for the connection probability for

neurons a and b (see Section 1) was set to be 2 for the

circuits considered in Section 2.

Spike trains from input streams as shown in Fig. 2b

generated EPSPs in a randomly chosen subset of neurons on

layer 1 (each of the 10 spike trains caused EPSPs in a neuron

of layer 1 chosen with probability 0.6), with randomly

chosen amplitudes. The distribution of amplitudes was not

optimized for any of the tasks or circuits discussed in this

paper (although a proper balance with oscillatory input is

likely to improve performance in each case). New noisy

variations of each spike pattern were generated for each run

of the simulation by moving each spike in a spike pattern by

a different amount drawn from a Gaussian distribution with

mean 0 and SD 4 ms. The pattern classification results

reported in Fig. 3 and Fig. 6 were achieved by 4 perceptrons

(i.e. linear weighted sums with a decision threshold) that

received as input the liquid state x(1000) of the neurons on

layer 1 of the 2-layer circuit (see Section 2). A separate

perceptron was used for the retroactive classification of each

of the 4 segments of the preceding input stream.

Reconstruction of the phase of oscillations, as reported in
Figs. 4 and 6, was carried out by an additional linear readout

that received as input at any time t the liquid state x(t) of the

neurons of layer 1.

All readouts were trained by linear regression for 2000

training runs, and the performance of the trained readouts

was recorded for 1200 test runs. In each run the initial state

of neurons in the circuit, the templates and spikes jitter in

the input stream, and (for the simulations discussed in

Section 2) the phase of the oscillatory input relative to the

beginning of the 1000 ms spike input were randomly

chosen. This protocol was repeated for 10 randomly

generated circuits, and Figs. 3 and 6 give the mean and

SD resulting from these 10 repetitions of the whole

experiment.

The pattern generating circuits considered in Section 3

were constructed slightly differently. Pattern generation

emerges if the range of excitatory connections is on

average wider than that of inhibitory connections

(Golomb & Amitai, 1997; Golomb & Ermentrout,

1999). In order to achieve this, for section 3 all neurons

on layer 1 of the 2!30!15 grid were chosen to be

excitatory, and all neurons on layer 2 were chosen to be

inhibitory. The parameter l had a value of 3 in the

formula C exp(KD2(a, b)/l2) for the probability of a

synaptic connection from an excitatory neuron a to an

excitatory or inhibitory neuron b. For connections from

inhibitory neurons a to excitatory neurons b this

parameter l had a value of 1.5 (synaptic connections

among inhibitory neurons were not modeled in Section

3). Deviating from (Maass et al., 2002) and Section 2 the

scaling parameter A for the amplitude (‘weight’) of a

synapse was chosen in section 3 from a Gaussian

distribution with a mean of 3 and SD 0.75 for synapses

between excitatory neurons, and a mean of 1 and SD 0.5

for all other synapses. In order to achieve a more regular

circuit structure (in particular in order to avoid border

effects) synaptic connections were randomly drawn until

each neuron had a prespecified fan-in of 32 (of which 11

were reserved for inhibitory synapses in the case of an

excitatory neuron). Only the circuit considered for Fig. 5b

had a gradient in the synaptic density, achieved by

linearly decreasing the fan-in from 32 to 11 along the

longest axis, i.e., along the 30 2!15 slices of the 2!
30!15 circuit.

The spatial gradient in the probability that a neuron

received tonic inputs for the circuits discussed in Figs. 5c

and 6 was implemented as follows. A source of tonic

input currents was placed in the middle of the 2!15

slice that appears as the top row in the 30!15 pixel

matrices shown in Fig. 5. This input source a was

connected to neurons b in the circuit with probability

C exp(KD2(a, b)/l2) with lZ5. Thus only neurons that

correspond to the upper rows of the pixel matrices shown

in Fig. 5 had a high probability of receiving this constant

input current.
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