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Abstract

Numerous methods have already been developed to estimate the information contained in single spike trains. In this article we explore

efficient methods for estimating the information contained in the simultaneous firing activity of hundreds of neurons. Obviously such

methods are needed to analyze data from multi-unit recordings. We test these methods on generic neural microcircuit models consisting of

800 neurons, and analyze the temporal dynamics of information about preceding spike inputs in such circuits. It turns out that information

spreads with high speed in such generic neural microcircuit models, thereby supporting—without the postulation of any additional neural or

synaptic mechanisms—the possibility of ultra-rapid computations on the first input spikes.
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1. Introduction

Common analytical tools of computational complexity

theory cannot be applied to recurrent circuits with complex

dynamic components, such as biologically realistic neuron

models and dynamic synapses. In this article we explore the

capability of information theoretic concepts to throw light on

emergent computations in recurrent circuit of spiking

neurons (we refer to p. 429 of Panzeri, Rolls, Battaglia, &

Lavis, 2001 for a discussion of advantages in using

information theoretic methods in this context). This approach

is attractive since it may potentially provide a solid

mathematical basis for understanding such computations.

But it is methodologically difficult because of systematic

errors caused by under-sampling problems that are ubiqui-

tous even in extensive computer simulations of relatively

small circuits. Previous work on these methodological

problems had focused on estimating the information in

spike trains, i.e. temporally extended protocols of the activity
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of one or a few neurons. In contrast to that this paper

addresses methods for estimating the information that is

instantly available to a neuron that has synaptic connections

to a large number of neurons. The proposed formalism to

study simulated neural circuits has the advantage that it

allows direct comparisons with experimental results on

neural coding. In view of the very large existing literature on

neural coding and relevant applications of information

theory we cannot discuss here the preceding literature in

detail. We refer to Borst and Theunissen (1999), deCharms

and Zador (2000), Hertz (1999), Hertz and Panzeri (2003),

Pola, Schultz, Petersen, and Panzeri (2003), and Rieke,

Warland, van Steveninck, and Bialek (1997) for recent

reviews. The dynamics of information in neural circuit

models has previously been studied in Panzeri et al. (2001).

In that study the speed of pattern completion was studied in a

circuit model consisting of very realistic neuron models but

static synapses. The network inputs consisted there of spatial

patterns encoded by step currents, which represented

fragments of more complete patterns from a fixed set of

spatial patterns. Nevertheless, the results reported in that

article about the speed of information processing are quite

consistent with those reported in this article for the case

where the network input consists of spike trains, and the

fusion of information from several segments of these spike
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inputs is examined (rather than the fusion of information

between static input patterns and information stored in

synaptic weights as in Panzeri et al., 2001).

We will define the specific circuit model used for our

study in Section 2 (although the methods that we apply

appear to be useful for to a much wider class of analog and

digital recurrent circuits). The combination of information

theoretic methods with methods from machine learning that

we employ is discussed in Section 3. The results of

applications of these methods to the analysis of the

distribution and dynamics of information in a generic

recurrent circuit of spiking neurons are presented in

Section 4. Applications of these methods to the analysis of

emergent computations are discussed in Section 5.
2. Our study case: a generic neural microcircuit model

As our study case for analyzing information in high-

dimensional circuit states we used a randomly connected

circuit with sparse, primarily local connectivity consisting

of 800 leaky integrate-and-fire (I&F) neurons, 20% of which

were randomly chosen to be inhibitory. Constants of

neurons and synaptic parameters were chosen to reflect

the diversity of parameters reported in experimental studies

(see Destexhe & Marder, 2004 for a discussion).1 The 800

neurons of the circuit were arranged on two 20!20 layers

L1 and L2.2 Circuit inputs consisting of five spike trains

were injected into a randomly chosen subset of neurons in

layer L1 (the connection probability was set to 0.25 for each

of the five input channels and each neuron in layer L1). We

modeled the (short term) dynamics of synapses according to

the model proposed in Markram, Wang, and Tsodyks

(1998), with the synaptic parameters U (use), D (time

constant for depression), F (time constant for facilitation)

randomly chosen from Gaussian distributions that model

empirical data for such connections. Parameters of neurons

and synapses were chosen as in Maass et al. (2002) to fit

data from microcircuits in rat somatosensory cortex (based

on Gupta, 2000; Markram et al., 1998).
1 Neuron parameters: membrane time constant 30 ms, absolute refrac-

tory period 3 ms (excitatory neurons), 2 ms (inhibitory neurons), threshold

15 mV (for a resting membrane potential assumed to be 0), reset voltage

13.5 mV, constant nonspecific background current IbZ13.5 nA, input

resistance 1 MU.
2 Connectivity structure: We assumed that the neurons were located on

the integer points of a three-dimensional grid in space, where D(a, b) is the

Euclidean distance between neurons a and b. The probability of a synaptic

connection from neuron a to neuron b (as well as that of a synaptic

connection from neuron b to neuron a) was defined as C exp(KD2(a, b)/l2),

where l is a parameter which controls both the average number of

connections and the average distance between neurons that are synaptically

connected (we set lZ2, see Maass et al., 2002 for details). Depending on

whether a and b were excitatory (E) or inhibitory (I), the value of C was 0.3

(EE), 0.2 (EI), 0.4 (IE), 0.1 (II).
Since neural microcircuits in the nervous system often

receive salient input in the form of spatio-temporal firing

patterns (e.g. from arrays of sensory neurons, or from other

brain areas), we have concentrated on circuit inputs of this

type. Such firing pattern could for example represent visual

information received during a saccade, or the neural

representation of a phoneme or syllable in auditory cortex.

Information dynamics and emergent computation in

recurrent circuits of spiking neurons were investigated for

input streams over 800 ms consisting of sequences of noisy

versions of four of such firing patterns. We restricted our

analysis to the case where in each of the four 200 ms

segments one of two template patterns is possible, see

Fig. 1. In the following, we write siZ1 (siZ0) if a noisy

version of template 1 (0) is used in the ith time segment of

the circuit input.

Fig. 2 shows the response of a circuit of spiking neurons

(drawn from the distribution specified above) to the input

stream exhibited in Fig. 1B. Each frame in Fig. 2 shows the

current firing activity of one layer of the circuit at a particular

point t in time. Since in such rather small circuit (compared

for example with the estimated 105 neurons below a square

millimeter of cortical surface) very few neurons fire at any

given millisecond, we have replaced each spike by a pulse

whose amplitude decays exponentially with a time

constant of 30 ms. More precisely, the spike train from

each presynaptic neuron was convolved with the kernel

eKt/30 ms. This models the impact of a spike on the receptors

and the membrane potential of a generic postsynaptic neuron.

The resulting vector r(t)Zhr1(t),.,r800(t)i consisting of 800

analog values from the 800 neurons in the circuit is exactly

the ‘liquid state’ of the circuit at time t in the context of the

abstract computational model introduced in Maass et al.

(2002). In the subsequent sections, we will analyze the

temporal dynamics of the information contained in these

momentary circuit states r(t).3
3. Methods for analyzing the information contained

in circuit states

The mutual information MI(X, R) between two random

variables X and R can be defined by MI(X, R)Z
H(X)KH(XjR), where HðXÞZK

P
x2RangeðXÞpðxÞlog pðxÞ is

the entropy of X, and H(XjR) is the expected value (with

regard to R) of the conditional entropy of X given R, see e.g.

Cover and Thomas (1991). It is well known that empirical

estimates of the entropy tend to underestimate the true

entropy of a random variable (see e.g. Panzeri & Treves,
3 One should note that these circuit states do not reflect the complete

current state of the underlying dynamical system, only those parts of the

state of the dynamical system that are in principle ‘visible’ for neurons

outside the circuit. The current values of the membrane potential of neurons

in the circuit and the current values of internal variables of dynamic

synapses of the circuit are not visible in this sense.
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Fig. 1. Input distribution used throughout the paper. Each input consists of five spike trains of length 800 ms generated from four segments of length 200 ms

each. (A) For each segment two templates 0 and 1 were generated randomly (Poisson spike trains with a frequency of 20 Hz). (B) The actual input spike trains

were generated by choosing randomly for each segment i, iZ1,.,4, one of the two associated templates (siZ0 or siZ1), and then generating a noisy version by

moving each spike by an amount drawn from a Gaussian distribution with mean 0 and SD 4 ms.
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1996; Roulston, 1999). Hence, in situations where the true

value of H(X) is known (as is typically the case in

neuroscience applications where X represents the stimulus,

whose distribution is controlled by the experimentalist), the

generic underestimate of H(XjR) yield a generic

overestimate of the mutual information MI(X, R)Z
H(X)KH(XjR) for finite sample sizes. This undersampling

effect has been addressed in a number of studies (see e.g.

Hertz, 1999; Paninski, 2003; Pola et al., 2003; and the

references therein), and has turned out to be a serious

obstacle for a wide-spread application of information

theoretic methods to the analysis of neural computation.

The seriousness of this problem becomes obvious from

results achieved for our study case of a generic neural

microcircuit shown in Fig. 3A. The dashed line shows the

dependence of ‘raw’ estimates MIraw of the mutual

information MI(s2, R) on the sample size4 N, which ranges

here from 103 to 2!105. The raw estimate of MI(s2, R)

results from a direct application of the definition of MI to the

observed occupancy frequencies for a discrete set of bins,5
4 In our case the sample size N refers to the number of computer

simulations of the circuit response to new drawings of circuit inputs, with

new drawings of temporal jitter in the input spike trains and initial

conditions of the neurons in the circuit.
5 For direct estimates of the MI the analog value of each component of the

circuit state r(t) has to be divided into discrete bins. We first linearly

transformed each component of r(t) such that it has zeros mean and

variance s2Z1.0. The transformed components are then binned with a

resolution of eZ0:5. This means that there are four bins in the range Gs.
where R consists here of just dZ5 or dZ10 components of

the 800-dimensional circuit state r(t) for tZ660 ms, and s2

is the bit encoded by the second input segment. For more

components d of the current circuit state r(t), e.g. for

estimating the mutual information MI(s2, R) between the

preceding circuit input s2 and the current firing activity in a

subcircuit consisting of dZ20 or more neurons, even

sample sizes beyond 106 are likely to severely overestimate

this mutual information.

Several methods for correcting this bias towards over-

estimation of MI have been suggested in the literature. In

Section 3.1 of Pola et al. (2003), it is proposed to subtract one

of three possible bias correction terms Bnaive, Bfull, and BBayes

from the raw estimate MIraw of the mutual information. The

effect of subtracting Bnaive is shown for dZ5 components of

r(t) in Fig. 3A. This correction is too optimistic for these

applications, since the corrected estimate MInaiveZMIrawK
Bnaive at small sample sizes (e.g. 104) is still substantially

larger than the raw estimate MIraw at large sample sizes (e.g.

105). The subtraction of the second proposed term Bfull is not

applicable in our situation because it yields for MIfullZ
MIrawKBfull values lower than zero for all considered sample

sizes. The reason is, that Bfull is proportional to the quotient

‘number of possible response bins’/ N and the number of

possible response bins is in the order of 3010 in this example.

It remains an open question how well the correction term

BBayes can be made to perform in our setup.

Another way to correct MIraw is proposed in Strong et al.

(1998). This approach is based on a series expansion of MI



Fig. 2. Snapshots of the first 400 components of the circuit state r(t) (corresponding to the neurons in the layer L1) at various times t for the input shown at the

bottom of Fig. 1. Black denotes high activity, white no activity. A spike at time ts%t adds a value of exp(K(tKts)/(30 ms)) to the corresponding component of

the state r(t).

T. Natschläger, W. Maass / Neural Networks 18 (2005) 1301–13081304
in 1/N (Panzeri & Treves, 1996) and is effectively a method

to get an empirical estimate MIinfinity of the mutual

information for infinite sample size (N/N).6 It can be

seen in Fig. 3A that for moderate sample sizes MIinfinity also

yields too optimistic estimates for MI.

A further method for dealing with generic overestimates

of MI has been proposed in Strong et al. (1998). This

method is based on the equation MI(X, R)ZH(R)KH(RjX)

and compares the raw estimates of H(R) and H(RjX) with

the so-called Ma-bounds (Ma, 1981), and suggests to judge

raw estimates of H(R) and H(RjX), and hence raw estimates

of MI(X, R)ZH(R)KH(RjX), as being trustworthy as soon

as the sample size is so large that the corresponding

Ma-bounds (which are conjectured to be less affected by

undersampling) assume values below the raw estimates of

H(R) and H(RjX).7 According to this criterion a sample size

of 9!103 would be sufficient in the case of 5-neuron

subcircuits (i.e. dZ5 components of r(t)), c.f. Fig. 3B.8

However, Fig. 3A shows that the raw estimate MIraw is still

too high for NZ9!103, since MIraw assumes a substantially

smaller value at NZ2!105.

In view of this unreliability of—even corrected—estimates

for the mutual information we have employed standard

methods from machine learning in order to derive lower
6 For a given sample size N the raw estimate for the mututal information

is estimated using several subsample sizes n1!n2!/!nk!N. Let M

Irawi be the estimate using the subsample size ni. MIinfinity is estimated as

the intercept of the least squares fit of the model MIrawiZMIinfinityC

1niC1C1ni2C2 to the observed data points hni;MIrawii.
7 Due to (Ma, 1981) a lower bound for the entropy H(R) (and analougous

for the entropy H(RjX)) can be estimated by counting coincidences. These

Ma-bounds are given by (Strong et al., 1998)

HðRÞMa ZK
X

Ri

PðRiÞ,log PðRiÞ
2ncðRiÞ

NðRiÞðNðRiÞK1Þ

� �

where the regions Ri are disjoint subspaces of the response space, PðRiÞ is

the probability that any response belongs to region Ri, NðRiÞ is the number

of observed responses in region Ri, and ncðRiÞ is the number of observed

coincidences in region Ri. According to Strong et al. (1998) the lower

bound is tightest if the responses are distributed closely to uniform in the

individual regions Ri. Hence, we have chosen the regions Ri such that the

frequency counts of the individual responses in any given region Ri differ at

most by 1.
8 These kind of results depend on a division of the space of circuit states

into subspaces, which is required for the calculation of the Ma-bound. In

our case we have chosen the subspaces such that the frequency counts of

any two circuit states in the same subspace differ by at most 1.
bounds for the MI (see for example Hertz, 1999; Paninski,

2003 for references to preceding related work). This method is

computationally feasible and yields with not too large sample

sizes reliable lower bounds for the MI even for large numbers

of components of the circuit state. In fact, we will apply it in

Sections 4 and 5 even to the full 800-component circuit state

r(t). This method is quite simple. According to the

data processing inequality (Cover & Thomas, 1991), one has

MI(X, R)RMI(X, h(R)) for any function h. Obviously

MI(X, h(R)) is easier to estimate than MI(X, R) if the dimension

of h(R) is substantially lower than that of R, especially if h(R)

assumes just a few discrete values. Furthermore, the difference

between MI(X, R) and MI(X, h(R)) is minimal if h(R) throws

away only that information in R that is not relevant for

predicting the value of X. Hence, it makes sense to use as h a

predictor or classifier that has been trained to predict the

current value of X. Similar approaches for estimating a lower

bound were motivated by the idea of predicting the stimulus

(X) given the neural response (R) (see Hertz, 1999; Paninski,

2003 and the references therein). To get an unbiased estimate

for MI(X, h(R)) one has to make sure that MI(X, h(R)) is

estimated on data which have not been used for the training of

h. To make the best use of the data one can alternatively use

cross-validation or even leave-one-out (see Duda, Hart, &

Storck, 2001) to estimate MI(X, h(R)). Fig. 3C–F shows for

three different predictors h how the resulting lower bounds for

the MI depend on the sample size N.

It is noteworthy that the lower bounds MI(X, h(R))

derived with the empirical Bayes classifier9 increase

significantly with the sample size10 and converge quite

well to the upper bounds MIraw(X, R). This reflects the fact

that the estimated joint probability density between X and R

gets more and more accurate. Furthermore, the computa-

tionally less demanding11 use of linear classifiers h also
9 The empirical Bayes classifier operates as follows: given observed (and

discretized) d components r(d)(t) of the state r(t) it predicts the input which

was observed most frequently for the given state components r(d)(t)

(maximum a posterior classification, see e.g. Duda et al., 2001). If r(d)(t)

was not observed so far a random guess about the input is made.
10 In fact, in the limit N/N the Bayes classifier is the optimal classifier

for the discretized data in the sense that it would yield the lowest

classification error—and hence the highest lower bound on mutual

information—over all possible classifiers.
11 In contrast to the Bayes classifier the linear classifiers (both for analog

and discrete data) yield already for relatively small sample sizes N good

results which do not improve much with increasing N.
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Fig. 3. Estimated mutual information depends on sample size. In all panels d denotes the number of components of the circuit state r(t) at time tZ660 ms (or

equivalently the number of neurons considered). (A) Dependence of the ‘raw’ estimate MIraw and two corrected estimates MInaive and MIinfinity of the mutual

information MI(s2, R) (see text). (B) Estimates of the entropies H(R) and H(RjX). The ‘raw’ estimates are compared with the corresponding Ma-bounds (see
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yields significant lower bounds for MI(X, R), especially if

the true value of MI(X, R) is not too small. In our application

this does not even require high numerical precision, since a

coarse binning (see footnote 3) of the analog components of

r(t) suffices, see Fig. 3C–F. All estimates of MI(X, R) in the

subsequent sections are lower bounds MI(X, h(R)) computed

via linear classifiers h. This is meaningful since we will

focus there on cases where even these simple lower bounds

for MI assume high values. These types of lower bounds for

MI(X, R) are of particular interest from the point of view of

neural computation, since a linear classifier can in principle

be approximated by a neuron that is trained (for example by

a suitable variation of the perceptron learning rule) to

extract information about X from the current circuit state R.

Hence, a high value of a lower bound MI(X, h(R)) for such h

shows not only that information about X is present in
the current circuit state R, but also that this information is in

principle accessible for other neurons.
4. Distribution and dynamics of information

in circuit states

We have applied the method of estimating lower bounds

for mutual information via linear classifiers described in

Section 3 to analyze the spatial distribution and temporal

dynamics of information for our study case described in

Section 2. Fig. 4 shows the temporal dynamics of

information (estimated every 20 ms as described in

Section 3) about input bits si (encoded as described in

Section 2) for different components of the circuit state r(t)

corresponding to different randomly drawn subsets of
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neurons in the circuit. One sees that even subsets of just five

neurons absorb substantial information about the input bits

si; however, with a rather slow onset of the information

uptake at the beginning of a segment and little memory

retention when this information is overwritten by the next

input segment. By merging the information from different

subsets of neurons the uptake of new information gets faster

and the memory retention grows. Note that for large sets of

neurons (160 and 800) the information about each input bit

si jumps up to its maximal value right at the beginning of the

corresponding ith segment of the input trains.
5. Emergent computation in recurrent circuits

of spiking neurons

In this section, we apply the same method to analyze not

only how much information a current circuit state contains

about preceding inputs, but also its information about

various potential target outputs. This provides an interesting

new method for analyzing neural computation, rather than

just neural communication and coding. Computations

require in general that some information from the input is
surpressed (e.g. for position-invariant object recognition,

but even for just computing the XOR of 2 bits), hence an

optimal communication channel is not necessarily an

optimal module for computation tasks. There exist 16

different Boolean functions f(s1, s2) that depend just on the

first two of the 4 bits s1,.,s4. Fig. 5B,C shows that all these

Boolean functions f are autonomously computed by the

circuit, in the sense that the current circuit state contains

high mutual information with the target output f(s1, s2) of

this function f. Furthermore, the information about the result

f(s1, s2) of this computation can be extracted linearly from

the current circuit state r(t) (in spite of the fact that the

computation of f(s1, s2) from the spike patterns in the input

requires highly nonlinear computational operations). This is

shown in Fig. 5B,C for those five Boolean functions of two

variables that are nontrivial in the sense that their output

really depends on both input variables. There exist five other

Boolean functions which are nontrivial in this sense, which

are just the negations of the five Boolean functions shown

(and for which the mutual information analysis therefore

yields exactly the same result). In Fig. 5D, corresponding

results are shown for parity functions that depend on three of

the 4 bits s1, s2, s3, s4. These Boolean functions are the most
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difficult ones to compute in the sense that knowledge of just

1 or 2 of their input bits does not give any advantage in

guessing the output bit.

One noteworthy feature in all these emergent compu-

tations is that information about the result of the

computation is already present in the current circuit state

long before the complete spatio-temporal input patterns that

encode the relevant input bits have been received by the

circuit. In fact, the computation of f(s1, s2) automatically just

uses the temporal order of the first spikes in the pattern

encoding s2, and merges information contained in the order

of these spikes with the ‘context’ defined by the preceding

input pattern. In this way the circuit supports a potential

ultra-rapid computation within just 20 ms of the beginning

of the second pattern s2. The existence of such ultra-rapid

neural computations has previously already been inferred

(Thorpe et al., 1996), but models that would support the

possibility of such ultra-rapid computations on the basis of

generic models for recurrent neural microcircuits have been

missing. Fig. 5 demonstrates that just a suitable trained

linear readout neuron is needed in order to produce from the

current state of a generic neural microcircuit model the

result of an ultra-rapid computation on complex spike

inputs.
6. Discussion

We have analyzed the dynamics of information in high-

dimensional circuit states of a generic neural microcircuit

model. We have focused on that information which can be

extracted by a linear classifier from the current state of a

neural circuit (a linear classifier may be viewed as a coarse

model for the classification capability of a biological

neuron). It had previously been shown that quite similar

linear decoding methods can be used to reconstruct moving

visual stimuli from the current state of ensembles of neurons
in the LGN of cats (Stanley, 1999), and hand movements

from the current state of ensembles of cortical neurons in

primates (Wessberg et al., 2000). In the context of our

circuit simulations such linear decoding has the additional

advantage that significant lower bounds for the information

content of high-dimensional circuit states can already be

achieved for relatively small sample sizes. Our results show

that information about current and preceding circuit inputs

is quickly spread throughout the circuit in a rather uniform

manner. Furthermore, our results show that a generic neural

microcircuit model has inherent capabilities to process new

input in the context of other information that arrived several

hundred ms ago, and that information about the outputs of

numerous potentially interesting target functions automati-

cally accumulates in the current circuit state. While this

article has focused on the spread of information in generic

cortical microcircuit models, it has not yet addressed the

open problem which computational operations on

the accumulated information are especially supported by

the structure of these circuits. A first step in this direction is

made (for a more detailed microcircuit model) in Häusler

and Maass (2005). Such emergent computation in generic

models for circuits of spiking neurons is extremely fast, and

therefore provides an interesting alternative to models based

on special-purpose constructions for explaining empirically

observed (Thorpe et al., 1996) ultra-rapid computations in

neural systems. A closely related computational model for

computations on time series has been proposed indepen-

dently in Jäger (2002) and Jäger and Haas (2004) in the

context of artificial neural network models.

Further research will have to clarify a number of

interesting questions which are left open. For example, it

would be fruitful to analyze which coding of information in

the input (and which number of input channels) to a neural

microcircuit model is most effective in injecting new

information rapidly into the circuit, or alternatively, is

most effective in making sure that this information decays
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less quickly in the circuit. Simultaneously other information

contained in input spike trains should perhaps decay

particularly fast since it just represents noise (from the

perspective of specific types of computations). In addition it

will be interesting to see how such ‘optimal input coding’

from the perspective of a specific cortical area depends on

various anatomical and physiological parameters of the

microcircuits involved. Possibly such investigation would

provide functional explanations for subtle differences in the

anatomy and physiology of neural microcircuits in primary

sensory areas for different sensory modalities (vision,

auditory, somatosensory, etc.)

The method for analyzing information contained in high-

dimensional circuit states that we have explored in this

article for a generic neural microcircuit model should also

be applicable to biological data from multi-unit recordings,

fMRI, etc. since significant lower bounds for mutual

information were achieved in our study case already for

sample sizes in the range of a few hundred (see Fig. 3).

This may provide further insight into the dynamics of

information and emergent computations in biological neural

systems.
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Häusler and Maass, 2005] Häusler, S. and Maass, W. (2005). Emergent

computational properties of lamina-specific cortical microcircuit

models. submitted for publication.

Hertz, J. (1999). Reading the information in the outcome of neural

computation. In Frontiere della Vita, Vol. 3 (pp. 631–649). Sistermi

Intelligenti, Institute della Enciclopedia Italiana. online available via

http://www.nordita.dk/~hertz/papers/infit.ps.gz.

Hertz, J., & Panzeri, S. (2003). Sensory coding and information

transmission The handbook of brain theory and neural networks

(2ndv ed.). MIT Press.
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