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CHARACTERIZATION OF RECURSIVELY ENUMERABLE SETS
WITH SUPERSETS EFFECTIVELY ISOMORPHIC
TO ALL RECURSIVELY ENUMERABLE SETS
BY
WOLFGANG MAASS'

ABSTRACT, We show that the lattice of supersets of a recursively enumerable (r.e.) set
A is effectively isomorphic to the lattice of all r.e. sets if and only if the complement
A of 4 is infinite and {e| W, N A4 finite} <, @" (i.e. 4 is semilow, 5). It is obvious
that the condition “A semilow, 5" is necessary. For the other direction a certain
uniform splitting property (the “outer splitting property”) is derived from
semilow, 5 and this property is used in an extension of Soare’s automorphism
machinery for the construction of the effective isomorphism. Since this automor-
phism machinery is quite complicated we give a simplified proof of Soare’s Exten-
sion Theorem before we add new features to this argument.

1. Introduction. For any subset S of the natural numbers N let &(S) be the lattice
of sets {W N S| W recursively enumerable} under inclusion and let &*(S) be the
quotient lattice of &(.S) modulo the ideal of finite subsets of S. One writes D* for
the equivalence class in &*(S) containing D € &(S). &, &* are abbreviations for the
lattices of all recursively enumerable (r.e.) sets &(N), respectively 6*(N).

An isomorphism ®: &*(5,) —» &*(S,) is called effective if there is a recursive
permutation 4 of N such that Ve € N(®(W, N §))*) = (W, N S,)*). This .
obviously equivalent to the existence of total recursive functions f, g such that

Ve € N(o((W, N 5,)*) = (W,

o NS)FAQ(W, N 8,)*) = (Wyey N S))*)

(Soare [6]).

The notion semilow, s was introduced by Soare [7] in the context of computational
complexity. A simple definition in terms of “information content” can be given as
follows.

DEFINITION 1.1 (SOARE [7]). S C N is semilow, 5: < {e| W, N S finite} <, @".

We write A for N — A. If A is r.e. then 4 semilow, s turns out to be an essential
dynamical property of 4. We will survey these properties in §2.

The following result will be proved in this paper.
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THEOREM 1.2. If A is r.e. then &*(A) is effectively isomorphic to &* if and only if A
is infinite and A is semilow s.

PROOF OF DIRECTION “ = ” OF THEOREM 1.2 (SOARE [7]). Assume 4 is r.e. and ®
is an isomorphism from &*(4) onto &* and 4 is a recursive permutation of N such
that Ve € N(®((W, N A)*) = W},,). Then we have

Ve € N(We N A finite < Wiie) finite).

It is obvious that {i| W, finite} = &" (see Rogers [4]). Thus A is semilow, 5. Further
A is infinite because &* is infinite.

In §2 we introduce the outer splitting property. All r.e. sets A with A semilow, s
possess this property. This fact is crucial for the isomorphism construction in §4.

In §3 we give a simplified proof of Soare’s Extension Theorem. The Extension
Theorem is the key step in the proof of Soare’s famous result that all maximal sets
are automorphic in &. Soare [6] introduced the automorphism machinery in order to
prove this Extension Theorem. It is still the easiest understandable application of
this technique. All difficulties in this basic construction are multiplied when one tries
to apply it to more difficult situations like semilow, 5 sets.

In §4 we prove the missing direction of Theorem 1.2. We extend the automor-
phism machinery and add the special tools for semilow, s sets from §2. This
construction generalizes the previous applications of the automorphism machinery to
maximal set (Soare [6]) and semilow, sets (Soare [9]).

We attempt to give complete proofs and to supply some motivation for the
automorphism machinery in order to make this paper self-contained.

This paper is part of the general program to characterize all lattices which arise as
lattices of supersets of r.e. sets and in the long run to characterize all orbits of r.e.
sets under automorpism of &* together with the degrees of the involved r.e. sets. A
survey and references are given in Soare [8].

The first major results in this program are due to Lachlan, Martin and Soare.
Lachlan has shown that exactly the 3V3-Boolean algebras occur as lattices of
supersets of hyperhypersimple r.e. sets. Martin has shown that the degrees of
hyperhypersimple r.e sets are exactly the high r.e. degrees. Later Soare introduced
the automorphism machinery in order to prove that for every finite Boolean algebra
P the r.e. sets A with &*(A4) = £ are automorphic in &*.

The only other lattice of supersets of an r.e. set which has been explictly described
so far is &* itself. Observe that the study of r.e. sets 4 with &*(A4) = &* is a natural
next step in the general program after Lachlan’s result for hyperhypersimple sets. If
an r.e. set A is not hyperhypersimple then &* is effectively embeddable into & *(A)
(obvious).

If A is recursive and A4 is infinite then &*(4) is trivially isomorphic to &*. Soare
9] has shown (using the full automorpmsm machinery) that for every r.e. set 4 with
A infinite and semilow, (i.e. {e| W, N A # Br<r O ’) &*(A) is effectively isomor-
phic to &*. By definition if 4 is of low degree then A is semilow,. In addition every
r.e. degree contains an r.e. set 4 with A semilow,. Besides r.¢. sets A with 4 semilow,
no other r.e. sets have been found with &*(A) isomorphic to &* (effectively or not).
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The question of an exact characterization of r.e. sets 4 with &*(A) effectively
isomorphic to &* has been discussed in papers by Soare [7,9], Bennison and Soare
[1] and Shore [5]. Soare [7] noticed that A is necessarily semilow, ;. Bennison and
Soare [1] constructed for every r.e. set A with A infinite and semilow, s and any given
3v3-Boolean algebra £ an re. set B D A with &*(B) = £. Nevertheless they ex-
pected that not for all these sets A, &*(A) is effectively isomorphic to &*. An
example for an r.e. set A where 4 is semilow, 5 but not semilow, is given in Bennison
and Soare [1].

One can now use Theorem 1.2 to get a much larger &*-definable class of r.e. sets
than the recursive sets so that for all sets 4 in this class &6*(A) is effectively
isomorphic to &*. Shore [5] defined: An r.e. set A is effectively nowhere simple if
there is a total recursive function f such that

Ve € N(W,, C W, N A A (W, N Ainfinite = W,,, infinite)).

Trivially if A is effectively nowhere simple then A is semilow, ;. It is easy to
construct an effectively nowhere simple set 4 such that A is not semilow,. David
Miller was the first who noticed that for A infinite the preceding definition is
equivalent to the following definition over &*: 3 r.e. § (S is infinite ANSNA=*3
AV re. W (W N A infinite — W N S infinite)) (define S:= U, .\ Wy,,, for the
other direction set W, := S N W,). Thus the class of effectively nowhere simple
sets A with A infinite has the desired properties.

Finally we would like to mention one point of technical interest. The construction
in §4 is the first example of an application of the automorphism machinery where
not every stream in one machine is covered by some stream in the other machine.

2. Semilow, ; and the outer splitting property. For the proof of Theorem 1.2 we
need only Lemma 2.3 from this section.

In the following lemma we survey some characteristic properties of r.e. sets 4 with
A semilow, ;. The equivalences (a), (b), (c), (d) are due to Bennison and Soare [1].
Property (e) characterizes the dynamical properties of the considered sets in stan-
dard recursion theoretic terms. Observe that if one writes in (¢) W, = W, instead of
W, =* W, this property becomes equivalent to A semilow,.

For fixed enumerations of r.e. sets W,, W, we define as usual the r.e. set

VVe\VVE:: {X|3S(X € VVe,s /\x e I/Vé',s)}'

LEMMA 2.1. For an r.e. set A the following are equivalent:

(a) 4 is semilow, 5.

(b) A has a type 1 r.e. complexity sequence.

(¢) A has an effective type 1 r.e. complexity sequence.

(d) There exists a total 0-1 valued recursive function g such that for every e € N,
lim, g(s, e) exists and lim g(s,e) =1 =W, N A finite and lim,g(s,e)=0=W,N
A+ 2.

(€) There is a simultaneous enumeration of A and r.e. sets (W,),c such that for
every e € N, W, =* W, and W\ A infinite = W, — A infinite.
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PRrROOF. The equivalence of the first four properties is shown in Bennison and
Soare [1].

(a) = (e). Let f be a total recursive function such that for all e € N, W, N A
infinite < W,,, infinite. Fix an enumeration of (W,),cy and 4. Enumerate the sets
(W,),.cy as follows.

Stage s + 1. For every e enumerate all elements of W, N A, into W,. Further if
some new clement is enumerated in W, at stage s + 1 enumerate as well all the
other elements of W,  into W,.

(e) = (a). For an enumeration of (W,),., and A4 as in () we have W, N A
infinite < W,\ 4 infinite.

DEFINITION 2.2. An r.e. set A has the outer splitting property if there are total
recursive functions f;, f; such that for every e € N

Wiy "Wy =@, WU Wyy= W, Wy N A finite,

and
(W, N A infinite = W), N 4 # 2.

The outer splitting property is slightly stronger than saying that A is effectively
nowhere hyperhypersimple.

This splitting property is a counterpart to some inner splitting properties which
arose earlier. If one demands e.g. from the uniform split W, ), W},., instead that
W, () € 4 and (W, infinite = W, ,, infinite) then this is equivalent to 4 promptly
simple (Maass [2]). Observe that for both definitions the strength lies solely in the
uniformity (unlike the splitting property in Maass, Shore and Stob [3]).

LEMMA 2.3. Assume A is r.e. and A is semilow, s. Then A has the outer splitting
property.
PrOOF. We use an idea from Bennison and Soare [1]. Let f be a recursive function
s.t.
Ve € N(W, N A infinite = W, infinite).
By the recursion theorem we can assume that we have already indices / and j for the

recursive functions f and f; which are going to construct.
Finally there is trivially a recursive function 4 s.t.

Ve e N(W,N 4= @ = W, infinite).

Construction: Stages + 1. Placexe W, ., — W, ;in

e,s

Wi Wi iyiens 1P Winen.s| s
W, (e, otherwise.

End of the construction.
The clause | W), Q(e»'s|>| Wi iicen.s| tells us that at stage s + 1 it looks more
likely that W ,, N A4 becomes empty rather than that it becomes infinite.
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In the end we cannot have W, N A infinite because we would then have
| Waiycen.s < Wi(jyey.s | for almost all s and therefore we would place almost all
elements of W, in W, (ey- Similarly if W,y 1N A becomes  empty then we would place
almost all elements of W, in W}, and therefore W, N 4 must be finite.

THEOREM 2.4. There exists an r.e. set A such that A has the outer splitting property
but A is not semilow, (i.e. {e|W, N A finite} £ 0”).

ProOF. Fix a pairing function { , ) which maps N X N one-one onto N. Set
N;:= {{x,i)|x € N}. Let h be a total recursive function such that for all i € N,
N, = Wiy

If 4 is semilow, then there is a total recursive function ¢, of two arguments such
that foralle € ¥

(1) W, N A infinite < 3k € N(W, , ,, infinite).

We will construct 4 in such a way that in case that ¢, is total (1) fails for e : = h(i).

Let (¢,);c » be a recursive enumeration of all two place partial recursive functions.
Fix a simultaneous enumeration of the r.e. sets (W, ), » Without repetitions.

Construction of an r.e. set A and r.e. sets W., W' for every e € N.

Stage s. Assume (x, i) is enumerated in W, at stage s. If {x, i ) is already in 4 we
put (x, i) in W,. Otherwise consider the following two cases.

(a) i = e. If W’ contains already an element of some N, j=e, weput (x,i)in
W,. Otherwise we enumerate ( x, i ) in W',

(b) i <e. If W) contains already an element of N, which is not yet in 4 we put
(x, i) in W/. Otherwise we enumerate (x, i) in W’

At the end of stage s we enumerate for every j, k such that #,(h(Jj), k) converges
by stage s and has value e the first element of N, — A,_, into 4 which is not among
the first k elements of N, — A,_, and which is not yet in some W7/ for & < max(}, k).
End of the construction.

It is obvious that there are total recursive functions f,, f; such that for every
eEN W, =W, . and W =W, ., Further

W, UW=W, and W, NW)=0

e

for everye € N.

By construction we have all k,i € N
(2) Wy NN, NA|<].

Assume that ¢; is total. We show that (1) fails for e := h(i). If W, 4 is
infinite for some k € N then because of (2) at most k + max(i, k) elements remain
inN,NA=W,,NA B

On the other hand if W, ,;, ,, is finite for every k € N then we get [N, N A|= n
for any given n € N. We just go to a stage s where the finite sets Wy, niinhy K <1,
are completely enumerated. Then the first n elements N, N A, stay outside of A.
Thus A4 is not semilow,.

Concerning the outer splitting property it is obvious from (2) and case (a) in the
construction that W' N A4 is finite for every e € N.
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Assume that W, N A is infinite. If W, N A N N, # @ for some j = e we put an
element of W, into W’ according to case (a) in the construction. This element is
never enumerated into 4. Otherwise W, N A N N, is infinite for some j < e. This
implies as before that there is no k € N such that ¢,(h(j), k) converges and
W¢(h( 1k 1s infinite. Therefore only finitely many elements of W) N N, are enu-
merated into A. Thus one of the infinitely many elements of W, N AN N is placed

in W." according to case (b) and stays in A.

3. A simplified proof of Soare’s Extension Theorem. In this section we prove
Soare’s Extension Theorem in such a way that the construction can easily be
generalized to more difficult situations like semilow, 5 sets. Whenever possible we use
the notation from Soare [6, 9].

For fixed enumerations of r.e. sets W,, W; one defines

WAW; = {x|3s(x € W, , A x & Ws)}

and
W Wz = (WAW:) N W,

We fix two copies of the natural numbers, N and N. We use the variables x, y,...
(%, 9,...) for elements of N (N) We will construct a simultaneous enumeration of
r.e. sets (U,),en> (V)GEN, U),en» (V.)oen- The sets U, V. are subsets of N, the
sets U V, are subsets of N. Further we will consider an r.e. set 4 C N and an r.e. set
B C N. We write U, , for the set of elements which are enumerated in U, by the end

of stage s, analogously for the other sets.
For any x € N, any stage s and any number e with 0 < e < x we define

v(s,e,x) = <e, (i<elx€U,},{i<elx€ 17”}>
Similarly for x € N we set

V(s,e,.£)3=< {1\e|xe sh{i<elx€eV, }>

We use the symbol » as variable for triples (e, 0, 7) where e =0 is a natural

number and o, 7 are subsets of {0,...,e}. We call these triples states and we call
|v|:= e the length of state » = (e, 0, 7). For states » = (e,0,7) and »'=
(€', o', ") we define

v < »’ (vis an initial segment of »’): > e < e’ Ao

=0'N{0,....,e} Nt=7"1N{0,...,e}.

We say that x (X) has state » at the end of stage s if » < »(s, x, x) (v < »(s, X, X)).
We say that x (£) has final state » if » < lim »(s, x, x) (v < lim »(s, X, X)).
The following is a key definition for all isomorphism constructions in &*. For
states v = (e, 0, 1), ¥ = (e, 0’, ") we define
v=p' (vcoversv'): o0 Do’ N1 CT,
v =, (vo-exactly covers v’): © 0 =0’ A7 C 7/,

!

v=_v' (v 7-exactly covers»’): @0 Do’ A1 =1".
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These relations are crucial for the following reason. It will be our goal to find for
elements x € N that have final state » w.r.t. (U,),cn. (V.),en some matching
clements # € N that have final state » w.r.t. (U,),cn» (V.),cn; and vice versa. This
will be not so easy, since we have only control over the sets AW (U)een
whereas the “opponent” enumerates all the other sets. Now if we see an element
x € N with » = v(s,e, x) and and element £ € N with » = »(s, e, ) (see the
definitions above) then it is in our power to bring x and X into the same state of
length e (by enumerating x into some sets 17, and X into some sets U,.) if and only if
v = p’. Further we can do this by only enumerating x into some sets 17, iff v=,v
and we can do this by only enumerating £ into some sets 0, iffv=_v"

Once we have brought elements in N and elements in N into matching states (as
e.g. in the conclusion of the following Extension Theorem) it is relatlvely easy (see
Soare [6]) to construct an actual isomorphism in &* that maps U* on U* and whose
inverse maps V¥ on V,*. We will give this construction in detail in the proof of
direction “ = " of Theorem 1.2 at the very end of §4.

The Extension Theorem form Soare [6] is used for the construction of nontrivial
automorphisms as follows. If 4 and B are maximal (Soare [6]) or if 4 and B are
promptly simple and have semilow complement (Soare [9], Maass [2]) then one can
construct arrays (U,),en> (V,),en S:t- for all n U, = *W, = *V, and 51mu1taneously
arrays (U,),cn» (V,),cn that serve as images of the given arrays in B C N, resp.
A C N, in such a way that the assumption of the Extension Theorem is satisfied.
This assumption is obviously necessary in order to extend the sets U,, to sets Un anr
the sets ¥, to sets V. that serve as images of U, resp. V,,, in all of N, resp. all of N.
The Extension Theorem asserts that this necessary condition is also sufficient. Thus
we get an automorphism of &* that maps U} on U*, whose inverse maps V* on V¥,

no

and which maps in addition (by construction) A* on B*.

THEOREM 3.1 (SOARE’S EXTENSION THEOREM [6)]). Assume A and B are infinite r.e.
sets and (U,), cns (V) wens (UDuens (Vy)nen are recursive arrays of r.e. sets. Suppose
there is a simultaneous enumeration of a recursive array including all the sets above
such that

ANV, = @ =B\U, foralln.

Further assume that for every state v = (e, 6, T such that
D/ = {x|3s(x €4, — A, No={i<elx €U, Nr={i<elxEV,})}

is infinite there is some state v' = (e, o', 7') < v such that
DZ:={%|3s(x €B,,, — B Ao’ ={i<e|2 €[, ) N1 ={i<e|t€V,]})]
is infinite and that for every state v’ such the D} is infinite there is some state v =y
such that D} is infinite.

Then one can extend the r.e. sets V, to r.e. sets V and the r.e. sets U tor.e. sets U

such that for every state v infinitely many elements of A have final state v iff infinitely
many elements of B have final state v.
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The rest of this section is devoted to a proof of Theorem 3.1. The construction of
the extending sets (U,), <, (¥, ), e takes place on two identical pinball machines M
and M. The numbers x € N (% € ]\7) are played on pinball machine M (M) and we
consider their state w.r.t.

((]n)nEN’ (VA;1)I1EN ((Q')HEN’(I/H)HEN).

A number x € 4 (X € B) is placed in machine M (M) as soon as it is enumerated
in A (B). x moves finitely often around in machine M (M) until it comes to rest in
one of its two pockets P or Q (I3 or 0).

Since M and M are identical (except that everybody wears a hat in machine M )
we just describe one side.

Pinball machine M consists of hole H, tracks C and D, pockets P and Q and for
every state » a box B, in pocket P. There are three rules R,, R;, R, that govern the
movement and the enumeration into sets ¥, of numbers x € N in M (there is no rule
R, the rules got their numbers from their predecessors in Soare [6]). The coopera-
tion of both machines M and M will be essential and therefore the rules R,, R;, R,
take into account what is happening simultaneously in machine M.

We start now the exact description of the construction. We fix a recursive function
g which enumerates simultaneously sets A, B, (U),cn» (V)wens (U)pen and
(V,),en as in the assumption of the Extension Theorem. We assume w.l.o.g. that g
enumerates every element of sets U,, ¥, infinitely often into these sets. In the
following we construct a simultaneous enumeration of 4, B, (U,),c x> (l}”)”E NG
(U)), v and (¥,), c v that satisfies the claim of the Extension Theorem. If one is very
exact, one will see that from time to time we fail to enumerate a number into U, or
¥, that g has enumerated into U,, resp. V,. But since this happens only finitely often
for every n, this does not make any difference as far as the claim is concerned.

Construction (the rules R, R,, R,, R,, R5, R, will be described subsequently).

Stage s = 0. Do nothing.

Stage s + 1. Adopt the first case which holds.

Case 1. Some element is on track C or D (€ or D). Apply R, (Ié3) if it is on track
C (C). Apply R, (Iéz) if it is on track D (D).

Case 2. Some element is above hole H or H. Take the least such element (if this is
not unique take the one above H) and put it on track C ( C) if it was above hole H
(H).

Case 3. Otherwise. We consider one more value of the fixed enumeration g.

(a) If g enumerates a number into U, or 17,, (n € N) which is not yet in 4 (a
number into U, or ¥V, (n € N) which is not yet in B), then we enumerate this
number into the corresponding set U,, respectively V,, (U,,, respectively V).

(b) If g enumerates a new number into 4 (B) we enumerate this number into 4
(B) and place it above hole H (H) (we say that this number is now in machine M
(M)).

(¢) If g enumerates a number x = n (£ = n) into U, (V,) which we have not yet
enumérated in U, (V) and which sits at the moment in pocket Q (0) or in a box B,
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DIAGRAM OF MACHINE M

hole H
Rule R3 determines the
enumeration of elements
into sets Gi when they
track C
go from track C to '
~
track D ~
~S
Rule Ry determines
whether an element on
track D goes into P % track D
or Q and whether
elements in P are
transferred to Q ~ — |
~ /
~N 1 to hole H
door -3 / ! \ —_
Rule R4 determines the \ —_—
enumeration of elements to pocket Q
(o)
into sets Vi while they
pocket P (consis-
sit in Q ~
\$ ting of boxes B, )
_—
to hole H
pocket Q

(B,) with |v|> n, then we remove this number from its present position, place it
above hole H (H) and enumerate it into U, (V,).
At the end of stage s + 1 we apply Rule R, (R,) to every number which is now in
pocket Q (Q). End of the construction.
We write B, , for the set of elements which are in box B, at the end of stage s.
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Before we give the exact description of the rules, some motivation might be
helpful. The ultimate goal is the extension of the sets V. to sets ¥ and of the sets U,
to sets U, such that

for every state »
® infinitely many elements of A4 have final state v iff
infinitely many elements of B have final state ».

In order to satisfy ® it is enough to satisfy for all states » the following
requirement.

R,: if infinitely many elements of B(A4) have final state » then there is at least one
element =|v| of A(B) which has final state ».

We use here the fact that if infinitely many elements of B have final state », then
there is for every k >|»| a state », of length k s.t. infinitely many of these elements
have final state »,. Thus by R, there is an element = k in A which has final state
v, Z .

All elements of B(A) come to rest either in pocket P or in pocket O (in P or Q).
In the pockets Q and Q, which collect those elements for which it is more difficult to
find matching partners in the other machine, we position the elements on a tree of
states » s.t. at most one element sits on each node ». We write §(s, ») for the element
on node » in pocket O at the end of the stage s. If it exists (i.e. §(s, ») 1), the clement
4(s, v) is in state » at the end of stage s. During the play on the pinball machines we
try to catch a partner for §(s, ») in box B, in pocket P. A priori we make sure that

(1) if 4(s, ») 1, we remove at stage s all elements from B, and place them into
pocket Q, the “garbage dump” of machine M (see Step 1 of Rule R, below) and,

(2) at any time box B, holds only elements in state v and only finitely many
elements reside permanently (i.e. from some stage on) in box B, (sce case 3(¢)) of the
construction above and the definition of the sets S, , and Steps 2 and 3 of Rule R,
below).

Because of these properties (1) and (2), in order to satisfy all requirements R, it is
suff1c1ent to satisfy for all states » the following requirement.

. if infinitely many elements remain permanently in pocket 0 (Q) in final state
v, then all boxes B,. (B .) with »’ < v get permanent residents.

Obviously there are two possible strategies to satisfy requirement R,. Either we try
to get permanent residents for all boxes By , ' =< p, or we can try to dr1ve almost all
elements that come to rest in pocket O out of state ». Since the “opponent” has
control over the sets U,, we may never be able to find elements in final state » " which
we can use as permanent residents for the boxes B,, v’ <. Therefore the first
strategy will not always succeed. But if we want to satisfy R accordlng to the second
strategy by enumerating elements that rest in 0 into addltlonal sets U, so that their
state becomes some »’ =, », we have to make sure that at least for this »” we are able
to satisfy R, by the first strategy (notice that it is impossible to satisfy all R, with
(v |=lv| via the second strategy). The decision which of the strategies we choose to
satisfy R, and in case of the second strategy into which state »’" =, » we lift elements
in state v in Q is the main problem of the whole construction. It is solved as follows.
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Based on our previous experience we write down at every stage s a list O, of
those states »’ for which at the moment it makes sense to try to satisfy R, via the
first strategy. Thus we can assume at stage s that for all states v in &, 1= {» |3’ € D,
(v’ =, )} one of the two strategies works for R,. If v € 9, we try to satisfy R, via
the first strategy. In this situation it is largely the duty of Rule R, to catch
permanent residents for boxes B,, v’ < », in the respective states. If » & 9L, but
v’ = v for some »’ € M we try to satisfy Ié,, by the second stategy (we lift elements
in state v in O into this state »’). This will be executed by Rule R 4

If there occurs at stage s in machine M an element in state » s.t. » & %,, then we
have at the moment no reasonable strategy to handle this element in such a way that
R, gets satisfied. In this case R, demands attention at stage s. If R, demands
attention at stage s we drop all previous plans concerning the satisfaction of
requirement R, with | #|>|»| in order to be able to concentrate on the satisfaction of
R, (see condition (a) in the definition of 9N, below). Thus all requirements R;
with | #|>|»| are injured at stage s.

It is largely due to the work of Rule R, that every requirement Iig is only finitely
often injured. Each time a requirement R, demands attention, Rule R, records this
in a list 3C. For each such entry into list 3C Rule R, makes as soon as possible a new
attempt to solve the respective problem by producing a state »” =, » in 9, which
then puts » in &, and provides a reasonable strategy for R,,. If one assumes for a
contradiction (in Lemma 3.5) that a requirement Iiy demands infinitely often
attention, one can show that after a while the corresponding infinitely many
attempts of Rule R, are successful. Thus we get for some stage 54, Vs = 5, (v € D),
and requirement R, no longer demands attention after stage s,,.

We define below a function d(s, X) for elements X in machine M at stage s.
Essentially d(s, £) is the maximal length e < £ s.t. there exist at stage s reasonable
strategies that tell us how to process £ in order to satisfy requirements R, with
|v|=<e.

The exact description of the rules follows. We need a few auxiliary definitions
first.

If x is on track C at the end of stage s we define 5(C) as the sequence of all states
v < (s, x, x) (we say then that x causes » € 5(C)). 5(C) is empty if there is no
element on track C at the end of stage s. 5(C) is defined as the concatenation of all
sequences S(C),s € N.

Sequences 5( D), S( D) are defined analogously.

In order to define 5(Q) we consider all x which are in pocket Q at the end of
stage s and either x was not yet in Q at the end of stage s — 1 or »(s, x, x) #
v(s — 1, x, x). 5,(Q) is the sequence of all states » such that » < »(s, x, x) for one of
these x (we say then that x causes » € 5(Q)). 5(Q) is the concatenation of all
sequences o(Q), s € N.

We use X as a variable for tracks C, D and pocket Q.

For machine M we define S(C), S(D), S(Q) analogously and we use X as a
variable for C, D, Q

We say that x (£) causes » € 5( X) (S()?)) if there is some s € N such that x (£)
causes ¥ € S.(X) (5,(X)).
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Further define (in increasing order of <) a function ¢ as follows. g(s, v) is the
least y € Q. such that v <w(s, y, y) and g(s, »’) #y for every v’ <w. q(s,») is
undefined if such y does not exist.

Observe that this definition implies that for every y € Q_ there is a unique state v
with y = g(s, »). We have » < »(s, y, y) for this state v.

Define for states » and stages t €N, S, 1= {y|3t' >t (y causes » € 5,.(D))}.
We say that z is the critical element of S, , if z is the first element that appears in S, ,
(i.e. z causes v € 5,(D) for some s > ¢ and there are no ¢', y such that 1 <¢" <'s and
y causes ¥ € 9,(D)).

Rule R,. Suppose x is on track D at the end of stage s. Let s” < s be the last stage
before s such that some element was on track D at stage s’ (if no such s’ exists, let
s 1= 0).

Step 1. For each v such that §( -, ») has not had a constant value since stage s” put
every element of B, | into pocket Q.

Step 2. For each v such that B, /| = @ B, subscribes to all sets S, ; with » < »" and
v/ |<s.

Step 3. Check whether there are » and v’ such that » <»" < (s, x, x) and a stage
¢ < s such that B, has subscribed to the set S, , and x is the critical element of S, ,. If
such exist, choose » of minimal length and put x in B,. If not, put x in pocket Q. End
of Rule R,.

We define for every stage s a set 9 of states by induction on s. We set

P = {v|I €My =,7))}.

My 1= &.

yEM,,: (@eEM, and » is not excluded from M )V (» & I, and
v € 5,,,(D)).

We say that v is excluded from 9, , if » € I, and one of the following two
conditions holds.

Condition (a). 3v'AX(| v’ |<|v|and »’ € S(X) — F,).

Condition (b). 3v' <»(B, ;= @ and for every »” <’ §(-,»”) has had a
constant value since stage | » |)

Further we define O := {»|» € M, for almost all s}, ¥, := {v|v € F, for
almost all s} and by recursion over s for elements X in machine M at stage s:

d(s,2) = max({-1} U {e=0]p(s,e, %) €PN (d(z, %)= e

at all stages t < s where £ was already in machine M ) } )

Observe that lim, d(s, X) exists for every £ € B because of the last clause in the
definition.

For Rule R, define sequences JC, of pairs (», i) withi € {0, 1} as follows.

JC, consists of all pairs <V(t e, ®),0) such that for some e, X, X, 1’ we have e < %,
1" <1, % is in machine M at stage 1" and »(t, e, £) € S(X) — 9, together with all
pairs (7, 1) such that» € 5,(C).

We write I for the concatenation of the 3, t € N, and J(_, for the initial
segment 3¢, ™ - - - NI, of IC.
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Rule R5. Suppose x in on track C at the end of the stage s. Let {(», i) be the first
pair in the sequences J(_, which has not yet been checked and either i = 0 and for
(e,o,7y:=w{e 0. 7.) = p(s, e, x)wehave (e,0',7)=(e,a,7) ori =1 and
v < p(s, x, x) (if no such pair exists, put x immediately on track D). In the first case
we enumerate x in all sets ¥, with i € 7 — 7’ and place x on track D. In the second
case we put x immediately on track D. Finally we check the considered pair (», /) in
the sequence ‘).

Rule 1é4. If % is in the pocket Q at the end of stage s + 1, e i= d(s, X) =0 and
(e,0,7) = v(s, e, x) & M, then we choose among all states (e, o', 7) € M with
o' D o that one which has occurred most frequently in &(D). For this o’ we
enumerate % in U, for i € ¢’ — a.

The description of the construction is now complete.

In our previous explanations we had not mentioned that Rule R, has to leave as
well the state of many elements that pass from track C to track D unchanged. This is
accomplished by the pairs (», 1) in the list J( and it is verified in Lemma 3.2. We
need Lemma 3.2 for the proof of Lemma 3.3.

As we had described earlier, the main duty of Rule R, is to insure that if state »
occurs infinitely often in some stream S( X) in machine T then we find after a while
a reasonable strategy to satisfy requirement Ii,,. i.e. we get » € ¢ . We verify in the
proof of Claim | in the proof of Lemma 3.5 that Rule R, does this job. We further
show in Case 1 of Claim 2 in the proof of Lemma 3.5 that Rule R, does not
overreact, i.e. does not enumerate too many elements into sets V.

Rule R4 executes the second strategy to satisfy requirements RV by making sure
that infinitely many elements settle down in state » in pocket only if we can expect
to satisfy R, via the first strategy, i.e. if » € O, We verify in Lemma 3.6 that Rule
R does l[S_]Ob We show in addition in Case 2 of Claim 2 in the proof of Lemma 3.5
lhat Rule R does not enumerate too many elements into sets U

All rules are carefully balanced to make sure that every stream in one machine is
covered by a stream in the other machine, i.e. if v occurs infinitely often in a stream
S(X) in machine M then some »’ = » occurs infinitely often in some stream S( X) in
machine M and vice versa.

Concerning the list O, we use at the beginning of the proof of Lemma 3.5 that
states are excluded from 9 ,, via Condition (a). Exclusion from M, , via
Condition (b) is essential for the proof of Lemma 3.7.

We start now with the exact analysis of the construction. A trivial proof by
induction on the enumeration given by the function g shows the following. Every
x € A is placed above hole H at a certain stage. No number remains forever above
hole H. At every stage there is at most one element on one of the tracks C, D, C, D.
This number is moved downwards at the next stage. Further x € 4 can move
upwards in machine M (i.e. from P or Q to hole H) only if x is enumerated in some
new U with i < x. No number x jumps directly from one box in P to another
(although x may be recycled to H and get into a different box when it enters P the
next time). Therefore every x € 4 moves only finitely often in machine M and
remains from some stage on permanently in Q or in a box B, in P. The analogous
facts hold for elements £ € B in machine M.
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LEMMA 3.1. For every permanent resident x of Q there exists a unique state v such
that x = lim q(s, v). This state v satisfies v < lim v(s, x, x). Further if for any v
lim, g(s, v) exists and v’ < v then lim ¢(s, v') exists as well.

PROOF. Assume that there is a permanent resident x of Q such that for no »
x = lim, q(s, »). Let x be minimal with this property. Let s, be a stage such that for
every y < x withy € Q, for some s = s, there is a state », with Vs = s, (y = ¢(s, »,)).
Further we assume that »(s, x, x) is constant after stage s,. Let », be of minimal
length so that x = ¢(s, »,) for some s >s,. Since by assumption we have not
x = lim_ ¢(s, »,) there is some s; > s, such that x = q(sy, ») # q(s; + L w) =y
for some y. Then y < x according to the definition of ¢ and this contradicts the
choice of s,,.

In order to prove the last part assume that x = g(s, ») for all s =s,. By the
preceding there is some s, > s, such that for every y < x with 3s=s, (y € Q)
there is some state », with Vs =5, (y = 4(s, #,)). Consider some v’ < v. For every
s =5, q(s, ') is defined and less than x by the definition of ¢. Therefore v’ =, for
some y < X.

LEMMA 3.2. Every state which occurs infinitely often in S(C) occurs as well infinitely
often in (D).

PROOF. Assume » occurs infinitely often in §(C). Then the pair (», 1) occurs
infinitely often in the sequence JC for Rule R;. Therefore infinitely many of the
clements that cause » € S(C) are placed in the same state on track D.

LEMMA 3.3. Assume v is a state such that only finitely many states v’ >, v occur in
S(D). Then there are only finitely many stages s where v is excluded from 9,
according to Condition (b).

PROOF. Assume the claim is false for state ». By definition this implies that »
occurs infinitely often in S(D). Further it implies that there is some v, < ¥ of
minimal length such that box B, has no permanent resident. B, subscribes then for
infinitely many s to the set S, ;. Each of these sets is nonempty and the critical
elements of these sets S, | together form an infinite set. Almost all of these elements
are placed (in state ») in the box B, , because the boxes B; with # < v, subscribe only
to finitely many sets (by the minimality of »;).

By assumption there is some state # such that », < # < » and B; causes infinitely
often the exclusion of » from 9L, , via Condition (b). This implies that lim 4(s, »,)
exists. Therefore almost all of the infinitely many elements of sets S, ; which enter
box B, are later placed above hole H because they are enumerated i in some new U,
with e <| v,| . All these elements run afterwards in some state v’ >_ v over track C.
Therefore some »’ >, v occurs infinitely often in $(C) and by Lemma 3.2 as well in
S(D), a contradiction.

LEMMA 3.4. Assume that there are only finitely many stages s such that states of
length e are excluded from O, | via Condition (). Then for every state v of length e
v € 9 for infinitely many s = v € F,.
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PrROOF. The claim is obvious if there is some # € 9N with » =, ». Otherwise there
is some 7 =, » which is infinitely often added to 9 ,, and later excluded. This
implies that # occurs infinitely often in (D). Choose then »’ =, » maximal w.r.t.
=_such that »' is excluded only finitely often from 9. , via Condition (b)
according to Lemma 3.3. By the assumption of this lemma »’ is only finitely often
excluded from 9N, , via Condition (a). Thus »' € 9 and therefore v € P,

Lemma 3.5. (i) If v occurs infinitely often in S(X) for some X thenv € 9,
(ii) If v occurs infinitely often in S(X) for some X then v € %P, .

PrOOF. One proves (i) and (ii) simultaneously by induction on | #|. Assume (i) and
(i) hold for all » with |»{<<e. Then every state of length e is only finitely often
excluded from O, , or 9L, , via Condition (a).

Assume for a contradiction that (i) does not hold for state », of length e. Fix some
X such that v, occurs infinitely often in S(X). Because of Lemma 3.4 we have then
v, €S(X)— 9, for infinitely many s. This implies that v € M =|r|<e (via
Condition (a)).

Fix infinitely many difAferent numbers §;, j € N, and stages ¢; such that for all
J €N,y causes v, € S,j(X ) — 9 L Let 9; be the finite sequence of states » such that

s <y (j/jis in machine M at stage s and (v (s, e, y) = v).

Let § be the concatenation of the sequences 9, j € N.

CLAaM 1. If v occurs infinitely often in § and some v’ = v occurs infinitely often in
S(C), then some v'' = v occurs infinitely often in S(D) and v € ¥,

PrOOF OF CLAIM 1. The pair {»,0) occurs then infinitely often in the list JC.
Therefore infinitely many of the elements that cause »’ € $(C) for some v’ = v are
lifted into some state »"* =, » according to Rule R;. If »"" =_ v occurs infinitely often
in $(D) then we have for infinitely many s, »” € O, and therefore » € P.. Thus
v €9 by Lemma 3.4.

CLAIM 2. If v occurs infinitely often in § then some v’ = v occurs infinitely often in
S(C).

ProoF OF CLAIM 2, By contradiction. Fix », = (e, 0,, 1, ) so that o, is minimal
and 7, is minimal for o, such that the claim fails for »,. Because of the assumption of
the Extension Theorem (the “covering property”) we cannot have then that infinitely
many y, are already in state , when they enter machine M. Therefore there exists a
state »; = (e, 03, 73 ) # »,, an infinite set J C N and stages s; < ¢, for j € J such that
for every j €J, §; is in machine M at stage s; — L, v(s;— l,e, §;) = »; and
v(s; e, 3) = v,

Assume first that o; = 0, and 7; C 7,. Then »; = »,. By the minimal choice of ,
the claim holds for v; and thus as ;v&vell for »,. We assume now that o, C 0,. Then

there is an infinite set J' C J such that (Case 1) for every j € J/, Rule Ié;éis applied
to y; at stage s; or (Case 2) for every j € J', Rule R, is applied to J; at stage s;.

Case 1. Because of the induction hypothesis only finitely many pairs {»,0) with
|v|<< e occur in the list G for Rule 133. Therefore for almost all j € J’ one checks
during the application of R, at stage s ', some pair ((&, G, 7),0) in 9C with & = e and



326 WOLFGANG MAASS

(e, N (e+1),7 N (e+ 1))=r,. The clement in machine M which caused the
occurrence of ({¢é, &, 7),0) in 9C did therefore run in some state »’ = », over track C
(consider e.g. the first time it comes over track C after it has reached state
dN(e+ DHwrt Uy,...,U).

Case 2. We have for almost all j € J', d(s;, — 1, ;) = e (this follows from our
minimal choice of o, together with Claim 1). In case that d(s;, — 1, j;) > e for
infinitely many j € J’, there is for each of these j some »(j) > », in M, _, with
|»(j)|> e. As we have mentioned above, no state » with |»|> e is in I, Therefore
infinitely often some state » > v, is added to 9N . This implies that some » = »,
occurs infinitely often in §(D) and therefore some » = », occurs infinitely often in
&(C). In case that d(s; — 1, ;) = e for almost all j € J” we see that our claim holds
for »,. If follows then from Claim 1 that some »” =, »; occurs infinitely often in
S(D). If we choose »”* with this property maximal w.r.t. = then this »” =, »y occurs
infinitely often in (D) and »” € 9N, (by Lemma 3.3 and our induction hypothesis).
Since one chooses in Rule R, that state in 9, which occurred most frequently in
S(D), v, occurs infinitely often in (D).

The state », which was fixed before Claim 1 occurs infinitely often in 9. Therefore
Claim 1 and Claim 2 together imply that », € ¢, a contradiction.

Part (ii) of Lemma 3.5 is proved analogously.

LEMMA 3.6. For every e € N there are only finitely many numbers £ € B with
d(%) := lim, d(s, ) < e. Further if % finally remains in pocket O and d(%) = 0 then
lim, »(s, d(X), %) € M.

PROOF. If £ is in machine M at the end of stage s then % sits at the moment on
track € or D, in pocket P or Q or above hole H. If % is in pocket P, then % ran
before in state »(s, X, ®) over track D. If % is above hole H then £ runs afterwards in
state »(s, X, X) over track C. In any case for every v < »(s, %, ), X causes v € H( X)
for some X. Thus Lemma 3.5 implies that for every e € N d(%) < e for only finitely
many % € B. If £ with d(%) = 0 remains in pocket Q after some stage s, and d(s, X),
v(s, %, %) remain constant after stage s, then for every s = s,, lim (»(s, d(x), X)) =
v(s + 1, d(%), £) € 9N, because of the action of Rule R4 at stage s + 1.

LeEMMA 3.7. If infinitely many elements remain permanently in pocket QO in final state
v, then infinitely many elements remain permanently in pocket P in final state v.

PROOF. Assume S is an infinite set such that every element of S remains
permanently in Q in final state v. We show first that box B, gets a permanent
resident in final state ».

According to Lemma 3.1 there is for every £ € S some state »; with £ =
lim, §(s, v¢) and » < v; or » > »;. Since no two £ € S have the same »; there is some
% € § with » < »,. Therefore for every »” <, lim g(s, »") exists according to
Lemma 3.1. Fix some stage s, such that

Vo <, Vs s, d(s,0") = 450, 1),
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By Lemma 3.6 T:= {»'|y' = lim, »(s, d(%), X) for some X € §} is an infinite
subset of I . Fix some », € T with v, > v and |», |= 5. Define

o= p, V=t (v, €9,).

Because of Condition (b) in exclusion from 9, , we have Vi =1, (B, , # 9).
Therefore B, subscribes only to finitely many sets and the critical element of one of
these sets remains permanently in B,. According to Rule R, every element that
enters box B, is in state ». This state does not change as long as it remains in B,.
Thus every permanent resident of B, has final state ».

In order to show the existence of infinitely many permanent residents of pocket P
in final state » we observe that for every e =|v| there is some state », > v such that
infinitely many £ € § have final state »,. By the preceding there is a permanent
resident of B, in final state ,.

LeMMA 3.8. If pocket P has infinitely many permanent residents in final state v then
pocket Q has as well infinitely many permanent residents in final state v.

PROOF. Let S be the infinite set of permanent residents of P in final state v. For
every x € § there is a state »_ such that ». <y or » < v, and x remains permanently
in box B, . Because of Step 1 in Rule R,, lim, §(s, »,) exists for every x € S. Finally
only finitely many elements can stay permanently in a single box and so {r,|x € S}
is infinite. End of the proof of the Extension Theorem.

4. Construction of the isomorphism for semilow, 5 sets. We fix for this section an
r.e. set A with A infinite and semilow, ;.
Let f be a total recursive function such that

Ve € N(W, N 4 infinite < W,., infinite).

We fix a simultaneous enumeration of (W,),c, without repetitions where only one
element is enumerated at every stage. We say that W, is verified at stage s if in this
enumeration some number is enumerated in W}, at stage s.

According to Lemma 2.3 A4 has the outer splitting property. We fix recursive
functions fy, f, as in Definition 2.2. For an r.e. set W, we call W, ,, the critical part of
Ww,.

We use the recursion theorem in order to compute during the construction r.e.
indices for various r.e. sets which are constructed on the side. We can then apply the
preceding tools to these sets during the construction.

The construction uses the same pinball machines M and M as in §3, but the rules
are slightly different. We fix again two copies N and N of the natural numbers. All
numbers x €N (£ € N) are fed into machine M (M) at some point of the
construction. But, different from §3, numbers may leave a machine: as soon as
x € N is enumerated into A we remove x forever from machine M. Thus only the
numbers in 4 remain in M whereas all elements of N remain in M.
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As before we construct on the side of machine M arrays (U,), cy» (V) and on
the side of machine M arrays (U,), <, (V,),en- The notations concerning states,
covering etc. are the same as in §3. The goal of this construction is to satisfy

(HVrn e NU, =* W,=*V,) and

(2) for every state » infinitely many x € A have final state » if and only if
infinitely many x € N have final state ».

The overall strategy to satisfy these goals is the same as in §3 and we have
formulated this earlier construction in such a way that it can easily be adapted to the
present situation.

The main difference is that now it would be fatal to maintain during the
construction an analogous covering of streams as before. If some state » occurs
infinitely often in a stream &( X) in machine M, it may be the case that all numbers
x € N that cause » € $(X) are fakes which drop later into A and which should not
be taken seriously. It we attempt to cover these x by elements & in machine M, which
we lift for this purpose into some state # < », these £ would in the end remain
without covering elements in machine M. This problem is serious because we can not
tell whether an element x is a fake or not until it is actually enumerated into 4,
which is usually too late.

The good point is of course that the opponent has promised to make A semilow, .
Therefore by using the recursion theorem we can force the opponent to reveal step
by step which r.e. sets W, are going to have an infinite intersection with A. Using our
previous terminology the opponent has to verify such W, infinitely often. Therefore
the rules of machine M do not react anymore directly to events in machine M but
instead react to verifications by the opponent concerning events in machine M.

In addition we have to make sure that the work of Rule R, is not in vain. This
may happen if it only raises states of elements that later drop into 4. Here the outer
splitting property comes to our rescue. It provides us with a sieve to catch from any
set W, with infinitely many real elements (i.e. W, N A infinite) sufficiently many but
not too many of these real elements (the elements in the critical part of W,
intersected with A4). Furthermore because of the uniformity of this splitting proce-
dure we can iterate it and use a nested sequence of sieves. Thus we can e.g. catch as
well real elements in the critical part of the uncritical part W, (i.e. W, . (.y) etc.

Rule R, nearly remains the same. But if box B, subscribes now to a set S, , then
not only the critical element of S, , but all elements in the critical part of S, ; (these
may be infinitely many) are delivered to box B,. Accordingly R, has to be aware
that it is not enough anymore to make B, ; # @ for almost all stages s because this
may be caused by infinitely many fake residents.

These precautions allow us to maintain a more adequate covering of streams
during the construction. If infinitely many elements of A cause » € $(X) in machine
M then there is some # < » s.t. infinitely many elements of N cause 7 € $5(X) for
some X in machine M and vice versa.

We give now the exact description of the construction. We use the same defini-
tions as in §3 unless we say otherwise. After the construction we verify in Lemmas
4.1-4.8 that it satisfies the above-mentioned goals (1) and (2). We show after Lemma
4.8 how one derives the missing direction of Theorem 1.2 from (1) and (2).
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We fix a recursive function g which enumerates simultaneously (W,),c» and
(W,),cy Where (W,),cn ((W,),cy) are standard indexings of the r.e. subsets of N
(N). We assume that g enumerates every clement of these sets infinitely often.
Further we assume that W, = N, W, = N, W, = A and every number comes first
into W, (WO) before it comes into any other W, (We).

Construction (we use the rules R,, Rs, Ry, R,, Ry, R, in the construction which
will be described subsequently).

Stage s = 0. Do nothing.

Stage s + 1. Adopt the first case which holds.

Case 1: Some element is on track C or D (€ or D). Apply R, (133) if it is on track
C (). Apply R, (R,) if it is on track D (D).

Case 2. Some element is above hole H or H. Take the least such element (if this is
not unique take the one above H) and put it on track C (C) if it was above hole H
().

Case 3. Otherwise. We consider then one more value of the fixed enumeration
function g.

(a) If g enumerates a new number into W (WO) we enumerate this number into U,
(V,) and place it above hole H (FI ) (we say that this number now enters machine M
(M)).

(b) If g enumerates a new number into W, then we remove this number from
machine M and enumerate it into U,.

(c) If g enumerates a number x = e into W, where e > 1 (a number £ = e into We
where e = 1) which is not yet in U, (¥,) and which sits at the moment in pocket Q
(0) or in some box B, (B,) with |»|= e, then we remove this number from its
present position, place it above hole H (H) and enumerate it into U, (V).

Rule R,. Suppose x is on track D at the end of stage s. Let s” < s be the last stage
before s such that some element was on track D at stage s’ (if no such s’ exists, let
s’ 1= 0).

Step 1. For each » such that §(-, ») has not had a constant value since stage s’, put
every element of B,  into pocket Q.

Step 2. For each » such that B, ; = @ or the least number in box B, has changed
since stage s’, box B, subscribes to all sets S, , with v < »" and |»'|<s.

Step 3. Check whether there are v and »’ such that » <»" < (s, x, x) and a stage
t < s such that B, has subscribed to the set S, , and x is in the critical part of S, ,. If
such exist, choose » of minimal length and put x in B,. If not, put x in pocket Q.

We define for every stage s a set 9, of states by induction on s. We set

P o= (| € M(¥ =,v)}.

My = 2.

y €M, 1= (v €O, and » is not excluded from M, ) V (v & I and there
is some r < s + 1 with » € §,(D) and s + 1 is the first stage where for every »’ <y
the set { y|y causes »' € S(D)} has ¢ times been verified).

We say that » is excluded from O, if » € 9N, and one of the following two
conditions holds.
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Condition (2). I'A%(v' |<|v| A v’ € S(X) — F.).

Condition (b). For ¢, = max{t <s|v € M, — IM,_,} there is some »’ < » such
that no element constantly remained in B, since the end of stage 7, and for every
v” <v’, §(-,»"”)has had a constant value since stage |»|.

Further we define 9, 1= {v|» € M, for almost all s}, P = {v|r € P, for
almost all s} and by recursion over s for elements £ in machine M at stage s
d(s, X) = max({-1} U {e=0|v(s,e, X) € P N (d(t,X)=e at all stages t <s
where % was already in machine M ).

Observe that lim d(s, £) always exists because of the last clause in the definition
of d(s, x).

For Rule R, we define sets JC, of pairs {», i) withi € {0, 1} as follows.

JC, consists of all pairs (v»(¢’, e, £),0) such that for some %, X, t" we have t' < ¢
and v(z,e, X) € St()?) — & together with all pairs (»,1) such that {y|y causes
v € 5(C)} is verified at stage ¢.

We well order every K, in some canonical way and we write K for the concatena-
tion of all the well-ordered sets J(,, ¢ € N. Further we write G, for the set of triples
(v, i,n) such that (v, /) appears as the nth pair in the sequence } and this
occurrence comes from (», iY€ (.G := U{G,|t € N}.

By recursion over n we define for every (v, i, n) € § a recursive set C, ; , and an
associated re. set 7,, = {x|3s({x,s)€E C,,,)}. For (»,0,n)E Y, we define
Coom={{(x,s)s >t N (x causes »' € 5(C) for some »' =r) A (there is no
(¥, i, /iy with i < n such that (x, s) € C; 77 and x is in the critical part of T; 7;)).

For (v,1,n)€ 6, we define C,,, = {(x,s)|s >t/ (x causes » € 5(C)) N
(there is no (7, i, ) with /i < n such that (x, s} € C; 7 and x is in the critical part

NN

of T; 77)}-
The sets C,, , and G, , are recursive because if (x,s)€ ;7 for some 7 <n

then x is enumerated in 7 - at stage s and we can check immediately whether x is

in the critical or in the noncritical part of T} ;.

It is obvious from these definitions that for every (x,s) there is at most one
(v,i,ny€ Gsuchthat (x,s)€ C,,, and x is in the critical partof T, ; ..

Rule R,. Suppose x is on track C at the end of stage s. If there is no
(v,i,ny€ U{§,|t =5} such that (x,s)E C,,, and x is in the critical part of
T,,, we put x immediately on track D. Otherwise we consider the unique
triple (», i, n) with this property. If i =0 we have (e, o', 7') := v(s,e,x)=v»
=:(e, 0, 7). We enumerate x in all ¥, with i € 7 — 7" and then place x on track D.
If i = 1 we put x immediately on track D.

Rule R,. For % in pocket O we choose in the case that e := d(s, £) =0 and
(e,0,7) = v(s, e, X) & M_among all states (e, ¢’, 7) € M with o’ D o that one
for which {y|y causes (e, 0’,7)€ 5(D)} has most recently been verified. We
enumerate % in Uj for every i € o’ — 0.

The following list 9, which will be used in the rules R, and R,, is slightly
different from the previous list 9.

We define for every stage s the set GJAILJ by induction on s. We set

?APS = {V]EIV’ E@AR,S (r <, V)}
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Well order ‘A}(, in some canonical way. Let ¥ be the concatenation of the
sequences i( tEN.

Rule R Suppose £ is on track C at the end of stage s. We look for some ¢ <
such that an unchecked palr {({e,0,7),i)E J{ exists with either /=0 and
(e,0,7)=v(s, e, X)=:(e,0',7") and for every é < < e the set { y|y causes 7 € &(C)
for some 7 = (& 0 N {0,...,6}, 7" N {0,...,€})} has at least ¢ times been verified
ori=1and {(e,0,7)= v(s e, ). If this does not exist we put £ immediately on
track D. Otherwise we choose the first pair ({e, 0, 7), i) in ¢ with the precedmg
properties and check it. If / = 0 we first enumerate X in U for every i € 0 — ¢’ and
then put X on track D.If i = 1 we place £ immediately on track D.

Rule R, is analogous to Rule R, and Rule R, is analogous to Rule R,.

This completes the description of the construction.

One verifies the immediate properties of the movement of elements in the machine
as in §3. But now exactly the elements of A remain in machine M and the elements
of N remain in machine M.

LEMMA 4.1. (a) For every permanent resident x of Q there exists a unique state v
such that x = lim _ q(s, v). This state v satisfies v < lim  v(s, x, x). Further if for any v
lim_ q(s, v) exists and v’ < v then lim  q(s, v") exists as well.

(b) The same holds for 0.

PrOOF. See Lemma 3.1.

LEMMA 4.2. For every state v B
(@) {y|y causes v € S(C)} N A infinite = {y|y causes v € S(D)} N A infinite and
(b) {9 causes v € S(C)} infinite = (| causes v € S(D)} infinite.

PROOF. (a) If {y|y causes v € S(C)} N A is infinite then {n|(»,1,n) € 8} is as
well infinite, where ¢ is the list in Rule R,. Fix some n with (»,1,n)€ 6. The
critical part of every set T; 7, with /i < n contains only finitely many elements of A.
Therefore x € T, |, for almost all of the infinitely many elements of A that cause

v € 5(C). Therefore the critical part of T, contains some x, € A. Consider a
stage s such that (xy, s) € C, . According to Rule R; x, is placed in state » on
track D at stage s + 1. Observe that this x, cannot be the same for infinitely many »
with (»,1,n)€E § for the following reason. If (»,1,n)€E §, then (x,, s)€E C
implies that x, causes v € 5,(C) for some s > ¢ and x, can do this for only finitely
many s.

(b) If {P|p causes v € S(C )} is infinite, then (»,1) € f;C, for infinitely many z.
Each of these pairs is checked at a stage s + 1 > ¢ where some X is placed on track D
in state » according to Rule R,.

LEMMA 4.3. (a) Assume that only finitely many elements of A cause v’ € S(D) for
some v’ >_v. Then there are only finitely many s such that v is excluded from I _,
via Condition (b).

(b) The analogous fact holds for .

PROOF. (a) Assume the claim is false for state ». By definition this implies that
infinitely many elements of 4 cause v € (D). Further it implies that there is some
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vo < » of minimal length such that box B, has no permanent resident. B, subscribes
then for infinitely many s to the set S, ;. By the remark above each of the sets S, |
has an infinite intersection with 4. Therefore there are infinitely many elements of 4
which are in the critical part of some set S, ; to which B, has subscribed. Almost all
of these elements are placed (in state ») in the box B, because the boxes B, with
7 < p, subscribe only to finitely many sets (by the minimality of »;).

By assumption there is some state # such that »; < 7 < » and B; causes infinitely
often the exclusion of » from 9L | via Condition (b). This implies that lim 4(s, v,)
exists. Therefore almost all of the infinitely many elements of A4 which enter box B,
in state » are later placed above hole H because they are enumerated in some new U,
with e <<|»,|. All these elements run afterwards in some state »’ >, » over track C.
According to Lemma 3.2 this implies that {y|y causes v’ € S(D)} N A is infinite
for some v’ >_ v, a contradiction.

Part (b) is proved in the same way.

LEMMA 4.4. (a) Assume that every state v of length e is excluded from O, , by
Condition (a) for only finitely many s. Then we have for every v of length e, v € &, for
infinitely many s = v € ¥, .

(b) The same holds for @w.

PROOF. (a) Consider some » of length e such that » € . for infinitely many s. The
claim is obvious if there is some # € 9N with 7 =, ». Otherwise there is some # =, »
which is infinitely often added to 91, , and later excluded. This implies that {y|y
causes 7 € S(D)} N A is infinite. Choose »* =, » maximal w.r.t. >, such that {y|y
causes »' € §(D)} N A is infinite. By Lemma 4.3 and our assumption we have
v €M, . Thusv € P, .

(b) is proved in the same way.

LEMMA 4.5. (i) {P|) causes v 6_5()2')} infinite for some X = » € P
(i) {y|y causes v € S(X)} N A infinite for some X =v € J, .

PROOF. One proves (i) and (ii) simultaneously by induction on |»|. Assume (i) and
(i) hold for all » with |»|< e. Then every state of length e is only finitely often
excluded from 9N or O by Condition (a). We assume for a contradiction that (i)
does not hold for some v of length e. Fix », such that for some B {P|p causes
v, € $(X)} is infinite and », & ¥,. Fix such an X. Because of Lemma 4.3 we have
then », € $(X) — 9, for infinitely many s. This implies that » € M, =|»|< e (by
Condition (a)).

Fix infinitely many different numbers ), j € N, and stages ¢, such that for all
Jj € Ny causes v, € 5, 1 X)— @ Let 4, be the finite sequence of states » such that
Is<iy; (P is in machme M at stage s and v(s,e, ;) =») and let § be the
concatenatlon ofall§,j € N.

CLAIM 1. If v occurs infinitely often in § and {y|y causes v’ € 5(C) for some
v'=rlN Ais infinite then {y|y causes v’ € 3(D) for some v’ =, v} N A is as well
infinite and v € F,,.
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PROOF OF CLAIM 1. Assume that » = (e, o, ) occurs infinitely often in § and for

= (e, 0y, 7, )= v the set {y|y causes v, € 3(C)} N A is infinite. Then S := {n|
<V 0, n) € 8} is infinite. Fix some n € S. The critical part of every set T; 7 with
/i <n contains only finitely many elements of A. Therefore almost all of the
infinitely many elements of {y|y causes », € 5(C)} N A are enumerated into T, 0,
Thus the critical part of 7, , contains some x,, € A. According to Rule R this x,, is
placed on track D in some state (e, o', 7) with o’ D o. Only finitely many » € S can
have the same x,, because every element comes only finitely often over track C.
Therefore there exists some »’ =,» such that {y|y causes »’ € S(D)} N A is
infinite. Choose »’ with this property maximal w.r.t. =,. Then »" € 9L by Lemma
4.3 and the induction hypothesis. Thus » € 7.

CLAIM 2. If v occurs infinitely often in Y then {y|y causes v’ € o(C) for some
v’ = v} N A is infinite.

PrOOF OF CLAIM 2. By contradiction. Fix », = (e, 0,, ) so that o, is minimal
and 7, is minimal for g, such that the claim fails for »,. There is some o such that
infinitely many elements of 4 cause (e, 0, @) € S(C). Therefore o, # &. Fix some
infinite set J/ C N, a state vy = (e, 05, ;) and stages s, < rj for j € J such that for
everyj € Ju(s, — Loe, §) = (e, 03, 13) F (e.0,, 7 )= (s, e, J;). Assume first that
o, = 0, and 7, C 7,. Since (e, 05, 73) occurs infinitely often in § the set {y|y causes
y € §(C) for some v’ = (e, 04, 13)} N A is infinite by the minimal choice of 7,. But
this implies the claim for », since (e, 05, 7;)= »,. Thus we can assume that o, C 0.

Then there is an infinite set J* C J such that (Case 1) for every j € J' Rule Ié3 is
applies to y; at stage s; or (Case 2) for every j € J' Rule R is applied to y; at stage s,.

Case 1. Because of the induction hypothesm only f1mtely many pairs (»,0) w1th
|v|< e occur in the list 9C for Rule R,. Therefore for almost all j € J" one checks at
stage s, a pair ((&,6,7),0) in ¢ with é = e. If this pair comes from ‘}C then {y|y
causes # € S(C) for some # = (e, 0,, 7, )} is verified ¢ times according to Rule R3
Altogether this set is verified infinitely often and the claim holds for »,, a contradic-
tion.

Case 2. If v is a state such that for infinitely many j € J' ), is in M at stage r; and
v(r;, e, §;) = v for some r; < s, — 1 then » occurs infinitely often in § and Claim 2
holds for » by our mlnlmal ch01ce of 6,. We get then from Claim 1 that » € 9. This
implies that we have for almost all j €J' Vs <s;, — 1 () is in machine M at stage
s=v(s, e J) € ). Therefore d(s, — 1, j;) = e for almost allj € J".

In the case that d(s; — 1, §;) > e for infinitely many j € J’, there is for each of
these j some #(j) > (e, gy, 7, ) in M, _,. None of these »(j) is in I, as we have
shown before Claim 1. Therefore infinjitely often some state » = (e, 0,, 7, ) is added
to 9N, , ,. By the definition of M, , { ¥ |y causes (e, 05, 7,) € (D)} is then verified
infinitely often. Thus {y|y causes »’ € 5(C) for some »' = (e, 0,, 7,)} N A is
infinite, a contradiction.

The case remains where d(s; — 1, ;) = e for almost all j € J'. Since Claim 2
holds for (e, 0, m3) we get from Claim 1 that {y|y causes # € 5(D) for some

=.(e,05, T3y} N A is infinite. We show that then {y|y causes », € (D)} N Ais
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as well infinite, which implies that Claim 2 holds for »,—a contradiction. Consider
some # =, (e, 6, 7,) which is maximal w.r.t. =, such that {y|y causes # € 5(D)} is
verified infinitely often. As before we have # € 9IL,. But then {y|y causes », €
S(D)} is as well verified infinitely often because otherwise », # # and in the
considered applications of R 4 we would almost always raise X to some state different
from »,.

We can now finish part (i) of the induction step. The state », which was fixed
before Claim 1 occurs infinitely often in §. Therefore Claim 1 and Claim 2 together
imply that », € ?_, a contradiction.

Assume now for a contradiction that (ii) does not hold for some » of length e. Fix
v, such that for some X {y|y causes », € 5(X)} N A is infinite and », & GP Fix
such an X. By Lemma 4.4 {y|y causes v, € o(X) — ?P for some s} N A is as well
infinite. Thus v € @ll =|r|<e.

Fix infinitely many different numbers y; € A, j € N, and stages t; such that for
every j € N y, causes », € 9, (X) — GJ’ Let 9; be the finite sequence of states » such
that 3s <17, (y, is in machine M at stage s and »(s, e, y;) = ») and let § be the

oncatenatlon ofall§, j EN.

Claim 1. If v occurs infinitely often in'§ and {$| causes v' € S(C) for some
v' < p} is infinite then {J|) causes v' € S(D)for some v’ <, v} is as well infinite and
v E @w.

PrROOF OF CLAIM 1. If » = (e, 0, 7) occurs infinitely often in § then (»,0) occurs
infinitely often in (. Fix some »’ = (e, o/, 7")< » such that { /| causes »’ € S(C))
is infinite. Because of Rule R, it is enough to show that {y|y causes # € S(C) for
some 7 = (e, 0, 7')} N A is infinite. But every y; that causes an occurrence of 7 in §
at some stage r; < ¢; is either above hole H at the end of stage 7; and runs afterwards
in state » over track C or is not above hole H at the end of stage r; and did at some
stage s < r; run over C in some state 7 =, ». In any case y causes 7 € &(C) for some
7 = (e,0,7"). Thus { y|y causes »" € S(D) for some »’ <, »} is infinite because of
R,. This implies » € ?P analogously as in Claim 1.

Claim?2'. If v occurs infinitely often in 9 then infinitely often some v’ << occurs in
S(0).

ProOF OF CLAIM 2'. By contradiction. Fix », = (e, 0,, 7,) so that 7, is minimal
and o, is minimal for 7, such that the claim fails for »,. There is some + such that
(e, @, 1) occurs infinitely often in $(C). Therefore 7, # @. Fix some infinite set
J C N, astate v; = (e, 05, 73) and stages s, < ¢, forj €J such that for everyj € J
(s, — 1, e, y) = (e, 05, 1) # (e, 05, 7, )= #(s, €, ;). By the minimal choice of o,
we have analogously as before 7, C ,. Then there is an infinite set J* C J such that
either (Case 1) for every j € J’ RTlle R, is applied to y; at stage s; or (Case 2) for
every j € J' Rule R is applied to y; at stage s ;.

Case 1. By the induction hypothesis only finitely many triples {»,0, n) with
|v|< e occur in the list §. The critical part of every set contains only finitely many
elements of A and » € A for every j € J'. Thus for almost all j € J’ there is some
(7,0,n)E€ G such that (y,s, —1)€ 4, and y; is in the critical part of T, ,
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with v of the form » = {(e’, 0, 7) such that ¢’ = e, v(s;, — 1, e, )= {e, 04, T3)=>
(e,aN{0,....,e}, 7N A{0,....,e}), , =7N{0,...,e} and therefore (e, o,, )=
(e,o N {0,...,e}, 7N {0,...,e}).

Since the critical part of every set contains only finitely many elements of A the
set of these triples (»,0, n) in § is infinite. Therefore there is some »' < (e, 0,. 7, )
such that there are infinitely many numbers £; and stages r,, i € N, such that for
every i € N u(r,, e, %) = »'. If %, is at the end of stage r, not yet in M or it sits above
hole H, then %, runs after stage r, in some state »” < »’ over track C. Otherwise %,
did already at some stage s < r, run over track C in some state »” < »’. Therefore
some »"’' < (e, g,, 7, » occurs infinitely often in 8(@), a contradiction.

Case 2. This case is treated in the same way as in the proof of Claim 2.

Since », occurs infinitely often in § we get the contradiction v, € Gj’w from Claims
1’ and 2".

LEMMA 4.6. For every e € N there are only finitely many X € N with
d(%) = lim d(s, X) < e. Further if X remains permanently in pocket 0 and d(%) =0
then lim v(s, d(%), X) € M.

PROOF. See Lemma 3.6.

LEMMA 4.7. If infinitely many elements remain finally in pocket Q (Q) in final state
v, then infinitely many elements remain finally in pocket P (P) in final state v.

PROOE. See Lemma 3.7.

LeMMA 4.8. If infinitely many elements remain finally in pocket P (}3) in final state
v, then infinitely many elements remain finally in pocket Q (Q) in final state v.

PRrROOF. See Lemma 3.8.

PROOF OF DIRECTION “ OoF THEOREM 1.2. We have constructed a simulta-
neous enumeration of r.e. sets (U,),cn» (V.)oens (U)oens (V.),cn- It is obvious
from the construction that U, C W, and V, C W,. Further, besides numbers less
than e only permanent residents of boxes B, (B,) with | #|< e can be in the difference
w.na-—U (W,— V.). Thus since every box has only finitely many permanent
residents we have W, N A=* U,nN A and W, =*V, for every e € N.

Every number x € A remains finally in pocket P or Q in machine M and every
number # € N remains finally in pocket P or Q in machine M. Therefore Lemmas
4.7 and 4.8 together imply that for every » infinitely many x € A have final state » if
and only if infinitely many x € N have final state ». According to Soare [6] one can
then easily define a function p:= U, _, p, which maps A one-one onto N and
which induces an isomorphism between &(A4) and & as well as between &*(A) and
&*. Every p, is a finite function from a subset of 4 into N.

Set p, := &. For n odd set

29

x, = px € 4 (x & domain p,_,),

ni= max({—l} U {e =0|3% & rangep,,gl(limv(s, e, x,) = limy(s, e, )2))})
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and

=

n = JU"f(en =-1Ax¢& rangep”_])
v (e,, =0 A % &rangep,, Nlimr(s,e,, x,) = limp(s, ¢,, £, ))
5 B

Define p, = p,_, U {(x,, %,)}. For n even we start with some %, € N and
associate analogously some x, € 4.

We get from the precedlng that for every e € N p[W, N Al =*plU, N A=
and p~'[W,]1 = *p'[V,] =* V, N A. Therefore p[W, N A] € & and p~'[W,] € &(
for every e € N. Thus we can define a map ¥: b(A) — & by \I'(W NA):=

pIW, N A}, and a map ®: &*(A) — &* by d(W, N A)*) 1= (p[W, N A])*. By the
preceding both maps are isomorphisms.

For every e € N let f(e) (g(e)) be a canonically chosen index for U (V ). Then f
and g are total recursive functions which witness that @ is an effective isomorphism
from &*(A) onto &*.

* 0,
)
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