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Abstract
We propose an alternative paradigm for processing time-varying visual inputs, in particular

for tasks involving temporal and spatial integration, which is inspired by hypotheses about the
computational role of cortical microcircuits. Since detailed knowledge about the precise
structure of the microcircuit is not needed for that, it can in principle also be implemented with
partially unknown or faulty analog hardware. In addition, this approach supports parallel real-
time processing of time-varying visual inputs for diverse tasks, since different readouts can be
trained to extract concurrently from the same microcircuit completely different information
components.
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1. Introduction
Cortical neural circuits differ in several essential aspects from circuit models

arising in the context of computer science or artificial neural networks. The
computational units of cortical circuits (neurons and synapses) are quite
heterogeneous, being endowed with a multitude of different dynamical processes on
several time scales (see for example [Gupta et al., 2000] and [Markram et al., 1998]).
Furthermore these units are highly recurrent ("loops within loops") but sparsely
connected, with accidental features in the connectivity patterns. It appears to be
virtually impossible to implement any previously suggested approach for real-time
processing of dynamically changing visual inputs on such circuits.

We show that nevertheless biologically realistic neural microcircuit models can be
used for analyzing complex time-varying visual inputs once they are viewed from a
suitable organisational perspective. Instead of collecting information about preceding
input frames in a suitable datastructure, and then applying time consuming algorithms
in order to extract the desired information, we demonstrate through computer
simulations that a quite different strategy is in principle feasible, and may in fact be
biologically more realistic. One can inject continuously time-varying visual stimuli

)(⋅u  directly into a simulated generic neural microcircuit. Realistic models for

cortical microcircuits are sparse but highly recurrently connected, and involve diverse
dynamical components. Therefore the current spike output )(tx  of such circuit, which

is an n-dimensional vector if the circuit consists of n  neurons, contains information
about the trajectory of preceding inputs )( su  for ts < , although in a highly nonlinear

encoding. Nevertheless simple algorithms for static pattern classification and
regression can be applied to extract at any time t  from the current circuit output )(tx

information about recent movements )(⋅u . The decoding of this information from the

current circuit output )(tx  presents a virtually unsolvable task for a human observer,

or any explicit decoding algorithm, especially if this circuit output is high dimensional
(for example about 10.000-dimensional in the case of a cortical column). But the
nonlinearity and high dimensionality of the "code" )(tx  enhance the chances for

being able to train simple linear readout devices to extract the desired information –
without the danger of getting stuck in local minima of the error function. The reason
is that the transformation of the time-varying inputs )(⋅u  into a subsequent high

dimensional circuit state )(tx  tends to act like a kernel for support vector machines

that facilitates linear readout.

In order to demonstrate the possible contribution of generic cortical circuit
structures for typical visual processing tasks, no attempt has been made in the
simulations discussed in this article to endow the neural microcircuit model in
addition with specialized feature detectors such as orientation- or direction selective
neurons, or neurons with particular receptive fields, or a more specialized
connectivity structure. These features are likely to enhance the performance of such
microcircuit models for a range of visual tasks. In fact, the generic recurrent sparse



connectivity and heterogeneity of our microcircuit model may provide the previously
missing organisational scheme for combining the outputs of such specialized feature
detectors for a wide variety of tasks that require real-time processing of rapidly
varying visual information, even tasks that are not well-matched to the sizes of
receptive fields or other details of specialized feature detectors. Thus the approach
discussed in this article may provide new concepts and ideas for investigating the role
of neural circuits in the visual cortex: by viewing them as wetware implementations
of kernels that are particularly useful for processing time-varying visual inputs
(analogously to the kernels discussed in [Schölkopf and Smola, 2002], which are
particularly useful for other types of tasks).

Earlier neural circuit models for visual processing, such as for example those of
[Abbott and Blum, 1996] and [Rao and Sejnowski, 2000], focused on neural circuits
that had essentially "no hidden neurons". They consisted of arrays of neurons where
each excitatory neuron in the network was directly targeted by exactly one "sensory"
input, with excitatory or inhibitory (mediated by point-to-point interneurons) lateral
connections between these directly input-driven neurons. Consequently these earlier
articles focused on predictions of input movements of pointwise objects whose
direction and speed was aligned with the specific pattern of connections and
transmission delays of the lateral connections between the array of input-driven
neurons. In contrast, we consider in this article generic randomly connected networks
of integrate-and-fire neurons with (biologically realistic) very short synaptic delays,
into which the input is mapped by random connections that favor a topographic map.
We demonstrate that the computational advantage of this biologically more realistic
architecture lies in its capability to support analyzes of a much larger diversity of
shapes, directions and speeds of moving objects that could possibly be anticipated in
the pattern of connections and transmission delays of an explicitly constructed circuit.

The idea to train just the neurons that read out information from a recurrent neural
circuit had apparently first been proposed by [Buonomano and Merzenich, 1995]. The
computational power of the resulting model has previously been analyzed in [Maass
et al., 2001]. A related model for artificial neural networks was proposed in [Jaeger,
2001].

2. The Generic Neural Microcircuit Model
We employed circuit models that reflect empirical data from microcircuits in rat

somatosensory cortex (see [Gupta et al., 2000] and [Markram et al., 1998]) with
regard to the types of dynamic synapses and their relationship to the type of
presynaptic and postsynaptic neuron (excitatory or inhibitory). The biological models
for neurons and dynamic synapses that were used were rather realistic (in contrast to
the neurons and synapses used in artificial neural network models). Connections
between neurons were chosen randomly, but with a biologically realistic bias towards
local connections. The resulting circuits, each consisting of 768 leaky integrate-and-
fire neurons (of which 20 % were randomly chosen to be inhibitory), were sparsely
but highly recurrently connected. We refer to [Maass et al., 2001] for details.



If one excites such complex and highly dynamic recurrent circuit with a continuous
input stream )( su , and looks at a later time st >  at the current output )(tx  of the

circuit, then )(tx  is likely to hold a substantial amount of information about recent

inputs. We as human observers may not be able to understand the "code" by which
this information about )( su  is encoded in )(tx , but that is obviously not essential.

Essential is whether a readout neuron that has to extract such information at time t
for a specific task can accomplish this. But this amounts to a classical (static) pattern
recognition or regression problem, since the temporal dynamics of the input stream

)( su  has been transformed by the recurrent circuit into a single high dimensional

spatial pattern )(tx . This pattern classification or regression task tends to be relatively

easy to learn, even by a memoryless readout, provided the desired information is
present in the circuit output )(tx . We demonstrate that a single readout can be trained

to accomplish this task for many different time points t .

If the recurrent neural circuit is sufficiently large, it may support this learning task
by acting like a kernel for support vector machines (see [Vapnik, 1998]), which
presents a large number of nonlinear combinations of components of the preceding
input stream to the readout. Such nonlinear projection of the original input stream

)(⋅u  into a high dimensional space tends to facilitate the extraction of information

about this input stream at later times t , since it boosts the power of linear readouts for
classification and regression tasks. Linear readouts are not only better models for the
readout capabilities of a biological neuron than for example multi-layer-perceptrons,
but their training is much easier and robust because it cannot get stuck in local
minima of the error function (see [Vapnik, 1998]). These considerations suggest new
hypotheses regarding the computational function of generic neural circuits in the
visual cortex: to serve as general-purpose temporal integrators, and simultaneously as
kernels (i.e., nonlinear projections into a higher dimensional space) to facilitate
subsequent linear readout of information whenever it is needed. Note that in all
experiments described in this article only the readouts were trained for specific tasks,
whereas always the same recurrent circuit (with a randomly chosen fixed setting of
synaptic "weights" and other parameters) was used for generating )(tx .

Input to this recurrent circuit was provided by 64 simulated sensors that were
arranged in an 8 × 8  2D array (see Figure 1). The receptive field of each sensor was
modeled as a square of unit size. The sensor output (with range [0, 1]), sampled every
5 ms, reflected at any moment the fraction of the corresponding unit square that was
currently covered by a simulated moving object. The outputs of the 64 sensors were
projected as analog input to the circuit in a topographic manner.2

                                                                
2 The 16 × 16 × 3 neuronal sheet was divided into 64  2 × 2 × 3 input regions, and each sensor

from the 8 × 8 sensor array projected to one such input region in a topographic manner, i.e.,
neighboring sensors projected onto neighboring input regions. Each sensor output was
injected into a randomly chosen subset of the neurons in the corresponding input region
(selection probability 0.6) in the form of additional input current (added to their background
input current). One could just as well provide this input in the form of Poisson spike trains



Neural readouts from this randomly connected recurrent circuit of leaky integrate-
and-fire neurons were simulated as in [Maass et al., 2001] by pools of 50 neurons
(without lateral connections) that received postsynaptic currents from all neurons in
the recurrent circuit, caused by their firing. The synapses of the neurons in each
readout pool were adapted according to the p-delta rule of [Auer et al., 2002]. But in
contrast to [Maass et al., 2001], this learning rule was used here in an unsupervised
mode, where target output values provided by a supervisor were replaced by the
actual later activations of the sensors which they predicted (with prediction spans of
25 and 50 ms into the future). Other readouts were trained in the same unsupervised
manner to predict whether a sensor on the perimeter was going to be activated by
more than 50 % when the moving object finally left the sensor field. These neurons
needed to predict farer into the future (100 – 150 ms, depending on the speed of the
moving object, since they were trained to produce their prediction while the object
was still in the mid-area of the sensor field). The latter readouts only needed to predict
a binary variable, and therefore the corresponding readout pools could be replaced by
a single perceptron (or a single integrate-and-fire neuron), at a cost of about 5 % in
prediction accuracy.

We wanted to demonstrate that the same microcircuit model can support a large
number of different vision tasks. Hence in our simulations 102 readout pools received
their input from the same recurrent circuit consisting of 768 leaky integrate-and-fire
neurons. 36 of them were trained to predict subsequent sensor activation 25 ms later
in the interior 6 × 6 subarray of the 8 × 8 sensor array, 36 other ones were trained for
a 50 ms prediction of the same sensors (note that prediction for those sensors on the
perimeter where the object enters the field is impossible, hence we have not tried to
predict all 64 sensors). 28 readout pools were trained to predict which sensors on the
perimeter of the 8 × 8 array were later going to be activated when the moving object
left the sensor field. All these 100 readout pools were trained in an unsupervised
manner by movements of two different objects, a ball and a bar, over the sensor field.
In order to examine the claim that other readout pools could be trained simultaneously
for completely different tasks, we trained one further readout pool in a supervised
manner by the p-delta rule to classify the object that moved (ball or bar), and another
readout pool to estimate the speed of the moving object.

                                                                                                                                                     
with a corresponding time-varying firing rate, with a slight loss in performance of the
system.



Figure 1: The prediction task.
a) Typical movements of objects over a 8 x 8 sensor field.
b) Time course of activation of 8 randomly selected sensors caused by the movement of

the ball indicated on the l.h.s. of panel a.
c) Resulting firing times of 768 integrate-and-fire neurons in the recurrent circuit of

integrate-and-fire neurons (firing of inhibitory neurons marked by +). The neurons in
the 16 x 16 x 3 array were numbered layer by layer. Hence the 3 clusters in the spike
raster result from concurrent activity in the 3 layers of the circuit.

d) Prediction targets (dashed lines) and actual predictions (solid lines) for the 8 sensors
from panel b. (Predictions were sampled every 25 ms, solid curves result from linear
interpolation.)



Figure 2: 20 typical trajectories of
movements of the center of an object (ball or
bar).

3. Demonstration that this New Approach towards Visual Processing is in
Principle Feasible

The general setup of the prediction task is illustrated in Figure 1. Moving objects, a
ball or a bar, are presented to an 8 × 8 array of sensors (panel a). The time course of
activations of 8 randomly selected sensors, resulting from a typical movement of the
ball, is shown in panel b. Corresponding functions of time, but for all 64 sensors, are
projected as 64 dimensional input by a topographic map into a generic recurrent
circuit of spiking neurons (see Section 2). The resulting firing activity of all 768
integrate-and-fire neurons in the recurrent circuit is shown in panel c. Panel d of
Figure 1 shows the target output for 8 of the 102 readout pools. These 8 readout pools
have the task to predict the output that the 8 sensors shown in panel b will produce 50
ms later. Hence their target output (dashed line) is formally the same function as
shown in panel b, but shifted by 50 ms to the left. The solid lines in panel d show the
actual output of the corresponding readout pools after unsupervised learning. Thus in
each row of panel d the difference between the dashed and predicted line is the
prediction error of the corresponding readout pool.

The diversity of object movements that
are presented to the 64 sensors is
indicated in Figure 2. Any straight line
that crosses the marked horizontal or
vertical line segments of length 4 in
the middle of the 8x8 field may occur
as trajectory for the center of an object.
Training and test examples are drawn
randomly from this – in principle
infinite – set of trajectories, each with
a movement speed that was drawn
independently from a uniform
distribution over the interval from 30
to 50 units per second (unit = side
length of a unit square). Shown in
Figure 2 are 20 trajectories that were
randomly drawn from this distribution. Any such movement is carried out by an
independently drawn object type (ball or bar), where bars were assumed to be
oriented vertically to their direction of movement. Besides movements on straight
lines one could train the same circuit just as well for predicting nonlinear movements,
since nothing in the circuit was specialized for predicting linear movements.

36 readout pools were trained to predict for any such object movement the sensor
activations of the 6 × 6 sensors in the interior of the 8 × 8 array 25 ms into the future.
Further 36 readout pools were independently trained to predict their activation 50 ms
into the future, showing that the prediction span can basically be chosen arbitrarily. At
any time t  (sampled every 25 ms from 0 to 400 ms) one uses for each of the 72
readout pools that predict sensory input T∆  into the future the actual activation of the
corresponding sensor at time Tt ∆+  as target value ("correction") for the learning



rule. The 72 readout pools for short-term movement prediction were trained by 1500
randomly drawn examples of object movements. More precisely, they were trained to
predict future sensor activation at any time (sampled every 25 ms) during the 400 ms
time interval while the object (ball or bar) moved over the sensory field, each with
another trajectory and speed.

Among the predictions of the 72 different readout pools on 300 novel test inputs
there were for the 25 ms prediction 8.5 % false alarms (sensory activity erroneously
predicted) and 4.8 % missed predictions of subsequent sensor activity. For those cases
where a readout pool correctly predicted that a sensor will become active, the mean of
the time period of its activation was predicted with an average error of 10.1 ms. For
the 50 ms prediction there were for 300 novel test inputs 16.5 % false alarms, 4.6 %
missed predictions of sensory activations, and an average 14.5 ms error in the
prediction of the mean of the time interval of sensory activity.

One should keep in mind that movement prediction is actually a computationally
quite difficult task, especially for a moving ball, since it requires context-dependent
integration of information from past inputs over time and space. This computational
problem is often referred to as the "aperture problem": from the perspective of a
single sensor (or a small group of sensors) that is currently partially activated because
the moving ball is covering part of its associated unit square (i.e., its "receptive field")
it is impossible to predict whether this sensor will become more or less activated at
the next movement (see [Mallot, 2000]). In order to decide that question, one has to
know whether the center of the ball is moving towards its receptive field, or is just
passing it tangentially. To predict whether a sensor that is currently not even activated
will be activated 25 or 50 ms later, poses an even more difficult problem that requires
not only information about the direction of the moving object, but also about its speed
and shape. Since there exists in this experiment no preprocessor that extracts these
features, which are vital for a successful prediction, each readout pool that carries out
predictions for a particular sensor has to extract on its own these relevant pieces of
information from the raw and unfiltered information about the recent history of sensor
activities, which are still "reverberating" in the recurrent circuit.

28 further readout pools were trained in a similar unsupervised manner (with 1000
training examples) to predict where the moving object is going to leave the sensor
field. More precisely, they predict which of the 28 sensors on the perimeter are going
to be activated by more than 50 % when the moving object leaves the 8 × 8 sensor
field. This requires a prediction for a context-dependent time span into the future that
varies by 66 % between instances of the task, due to the varying speeds of moving
objects. We arranged that this prediction had to be made while the object crossed the
central region of the 8 × 8 field, hence at a time when the current position of the
moving object provided hardly any information about the location where it will leave
the field, since all movements go through the mid area of the field. Therefore the tasks
of these 28 readout neurons require the computation of the direction of movement of
the object, and hence a computationally difficult disambiguation of the current
sensory input. We refer to the discussion of the disambiguation problem of sequence
prediction in [Levy, 1996] and [Abbott and Blum, 1996]. The latter article discusses



Figure 3: Computation of movement direction. Dashed line is the trajectory of a moving
ball. Sensors on the perimeter that will be activated by ≥ 50 % when the moving ball leaves the
sensor field are marked in panel a. Sensors marked by stripes in panel b indicate a typical
prediction of sensors on the perimeter that are going to be activated by ≥  50 %, when the ball
will leave the sensor field (time span into the future varies for this prediction between 100 and
150 ms, depending on the speed and angle of the object movement). Solid line in panel b
represents the estimated direction of ball movement resulting from this prediction (its right end
point is the average of sensors positions on the perimeter that are predicted to become ≥  50 %
activated). The angle between the dashed and solid line (average value 4.9° for test movements)
is the error of this particular computation of movement direction by the simulated neural
circuit.

difficulties of disambiguation of movement prediction that arise already if one has
just pointwise objects moving at a fixed speed, and just 2 of their possible trajectories
cross. Obviously the disambiguation problem is substantially more severe in our case,
since a virtually unlimited number of trajectories (see Figure 2) of different extended
objects, moving at different speeds, crosses in the mid area of the sensor field. The
disambiguation is provided in our case simply through the "context" established
inside the recurrent circuit through the traces (or "reverberations") left by preceding
sensor activations. Figure 3 shows in panel a a typical current position of the moving
ball, as well as the sensors on the perimeter that are going to be active by ≥ 50 %
when the object will finally leave the sensory field. In panel b the predictions of the
corresponding 28 readout neurons (at the time when the object crosses the mid-area of
the sensory field) is also indicated (striped squares). The prediction performance of
these 28 readout neurons was evaluated as follows. We considered for each
movement the line from that point on the opposite part of the perimeter, where the
center of the ball had entered the sensory field, to the midpoint of the group of those
sensors on the perimeter that were activated when the ball left the sensory field
(dashed line). We compared this line with the line that started at the same point, but
went to the midpoint of those sensor positions which were predicted by the 28 readout
neurons to be activated when the ball left the sensory field (solid line). The angle
between these two lines had an average value of 4.9 degrees for 100 randomly drawn
novel test movements of the ball (each with an independently drawn trajectory and
speed).



Another readout pool was independently trained in a supervised manner to classify
the moving object (ball or bar). It had an error of 0 % on 300 test examples of moving
objects. The other readout pool that was trained in a supervised manner to estimate
the speed of the moving bars and balls, which ranged from 30 to 50 units per second,
made an average error of 1.48 units per second on 300 test examples. This shows that
the same recurrent circuit that provides the input for the movement prediction can be
used simultaneously by a basically unlimited number of other readouts, that are
trained to extract completely different information about the visual input.

Finally, we show in Figure 4 what happens if from some arbitrarily chosen time
point on (here 125=t  ms) the sensor input to the recurrent circuit is removed, and
replaced by predictions of future inputs by the readout pools. More precisely, the time
series of inputs (sampled every 5 ms) was replaced for each sensor after 125=t  ms
by the preceding prediction of the corresponding readout pool (that had been trained
for this prediction in an unsupervised manner as described before). Hence further
predictions after time 125=t  ms are made based on an increasing portion of
imagined rather than real inputs to the recurrent circuit. The resulting autonomously
"imagined" continuation of the object movement is shown in panels b – d. It turned
out that this imagined movement proceeded by 87.5 % faster than the initial "real"
part of the movement. Panel e shows the firing activity of 100 neurons in the recurrent
circuit for the case where the input arises from the "real" object movement, and panel
f shows the firing activity of the same neurons when the "real" input is replaced after

125=t  ms by imagined (predicted) inputs.

4. Discussion
We have demonstrated through computer simulations that a radically different

paradigm for processing dynamically changing visual input is in principle feasible.
Instead of storing discrete frames in a suitably constructed datastructure, and then
applying a time-consuming algorithm for extracting movement information from
these frames, we have injected the time-varying (simulated) visual input continuously
into a high dimensional dynamical system consisting of heterogeneous dynamic
components. As dynamical system we took a generic cortical microcircuit model,
with biologically realistic diverse dynamic components. Then we trained neural
readouts to extract at any time t  from the current output )(tx  of the dynamical

system information about the continuous input stream that had recently entered the
dynamical system, not in order to reconstruct that earlier input, but to output directly
the computational targets which required that information. The theoretical potential of
this general approach had previously been explored in [Maass et al., 2001] and
[Haeusler et al., 2002].



Figure 4: Imagined movement generated by the neural circuit. Panels a-d show the

predictions of object positions at times 130=t  ms, 155 ms, 180 ms, 205 ms. Only the first
prediction, shown in panel a, is based on sensor input. The predictions in panels b-d are
primarily based on preceding input predictions, that were fed back as input into the
recurrent neural circuit. This imagined movement happens to proceed faster than the actual
movement which it continues, demonstrating that it is not constrained to have the same
speed. Panel f shows the firing activity of a subset of 100 neurons in the recurrent neural
circuit during this "imagined movement". Compared with the firing pattern of these neurons

during a continuation of sensory input from the actual object movement after 125=t  ms
(if it would continue on the same trajectory, with the same speed as at the beginning),
shown in panel e, the firing pattern is very similar, but contracted in time.

In this way we have shown that generic neural microcircuits are in principle
capable of learning in an autonomous manner to augment and structure the complex
visual input stream that they receive: They can learn to predict individual components
of the subsequent frames of typical "input movies", thereby allowing the system to
focus both on more abstract and on surprising aspects of the input. For example, they
can autonomously learn to extract the direction of movement of an object, which
requires integration of information from many sensors ("pixels") and many frames of
the input movie. Because of the diversity of moving objects, movement speeds,
movement angles, and spatial offsets that occurred, it appears to be very difficult to
construct explicitly any circuit of the same size that could achieve the same
performance. Furthermore the prediction errors of our approach can be reduced by
simply employing a larger generic recurrent circuit. On the other hand, given the
complexity of this prediction task (for two different objects and a large diversity in
movement directions and movement speeds), the recurrent circuit consisting of 768
neurons that we employed – which had not been constructed for this type of task –
was doing already quite well. Its performance provides an interesting comparison to
the analog VLSI circuit for motion analysis on a 7 × 7 array of sensors discussed in
[Stocker and Douglas, 1999].



Whereas a circuit that would have been constructed for this particular task is likely
to be specialized to a particular range of moving objects and movement speeds, the
circuit that we have employed in our simulations is a completely generic circuit,
consisting of randomly connected integrate-and-fire neurons, that has not at all been
specialized for this task. Hence the same circuit could be used by other readouts for
predicting completely different movements, for example curved trajectories. We also
have demonstrated that it can at the same time be used by other readout neurons for
completely different tasks, such as for example object classification. Obviously this
generic neural circuit that has been trained in an unsupervised manner to predict
future inputs automatically supports novelty detection when being exposed to new
types of input movements. Finally we have demonstrated that if from some time point
on the circuit input is replaced by input predictions that are fed back from neural
readouts, the emerging sequence of further predictions on the basis of preceding
predictions may generate a fast imagined continuation of a movement, triggered by
the initial sequence of inputs from the beginning of that movement.

The results of this article are quite stable, and they work for a large variety of
recurrent neural circuits and learning algorithms. In particular they can be
implemented with the most realistic computer models for neural microcircuits that are
currently known. Hence one could view them as starting points for building
biologically realistic models of parts of the visual system which are not just
conceptually interesting or which produce orientation selective cells, but which can
really carry out a multitude of complex visual processing tasks. In our current work
this paradigm is applied to real-time processing of actual visual input and input from
infrared sensors of a mobile robot.

Other current work focuses on the combination of top down processing of
expectations with bottom up processing of visual information – which makes
biologically vision systems so powerful. Obviously our circuit models are ideally
suited for such investigations, because in contrast to virtually all other circuits that
have been constructed for solving vision tasks, the circuits considered in this article
have not been chosen with a bias towards any particular direction of processing.

References

[Abbott and Blum, 1996] Abbott, L. F., and Blum, K. I. (1996) Functional
significance of long-term potentiation for sequence learning and prediction, Cerebral
Cortex, vol. 6, 406-416.

[Auer et al., 2002] Auer, P., Burgsteiner, H., and Maass, W. (2002) Reducing
communication for distributed learning in neural networks. In Proc. ICANN'2002,
2002. Springer-Verlag.

[Buonomano and Merzenich, 1995] Buonomano, D. V., and Merzenich, M. M.
(1995) Temporal information transformed into a spatial code by a neural network
with realistic properties, Science, vol. 267, Feb. 1995, 1028-1030.



[Gupta et al., 2000] Gupta, A., Wang, Y., and Markram, H. (2000) Organizing
principles for a diversity of GABAergic interneurons and synapses in the neocortex,
Science 287, 2000, 273-278.

[Haeusler et al., 2002] Haeusler, S., Markram, H., and Maass, W. (2002)
Observations on low dimensional readouts from the complex high dimensional
dynamics of neural microcircuits, submitted for publication. Online available as # 137
on http://www.igi.tugraz.at/maass/publications.html.

[Jaeger, 2001] Jaeger, H. (2001) The “echo state” approach to analyzing and
training recurrent neural networks, submitted for publication.

[Levy, 1996] Levy, W. B. (1996) A sequence predicting CA3 is a flexible
associator that learns and uses context to solve hippocampal-like tasks, Hippocampus,
vol. 6, 579-590.

[Maass et al., 2001] Maass, W., Natschlaeger, T., and Markram, H. (2001) Real-
time computing without stable states: A new framework for neural computation based
on perturbations, Neural Computation (in press). Online available as # 130 on
http://www.igi.tugraz.at/maass/publications.html.

[Mallot, 2000] Mallot, H. A. (2000) Computational Vision , MIT-Press
(Cambridge, MA).

[Markram et al., 1998] Markram, H., Wang, Y., and Tsodyks, M. (1998)
Differential signaling via the same axon of neocortical pyramidal neurons, Proc. Natl.
Acad. Sci., 95, 5323-5328.

[Rao and Sejnowski, 2000] Rao, R. P. N., and Sejnowski, T. J. (2000) Predictive
sequence learning in recurrent neocortical circuits, Advances in Neural Information
Processing Systems 12, (NIPS*99), 164-170, S. A. Solla, T. K. Leen, and K. R.
Muller (Eds.), MIT Press.

[Schölkopf and Smola, 2002] Schölkopf, B., and Smola, A. J. (2002) Learning
with Kernels, MIT-Press (Cambridge, MA).

[Stocker and Douglas, 1999] Stocker, A., and Douglas, R. (1999) Computation of
smooth optical flow in a feedback connected analog network. Advances in Neural
Information Processing Systems 11, (NIPS*98), 706-712.

[Tsodyks et al., 2000] Tsodyks, M., Uziel, A., and Markram, H. (2000) Synchrony
generation in recurrent networks with frequency-dependent synapses, J.
Neuroscience, Vol. 20, RC50.

[Vapnik, 1998] Vapnik, V. N. (1998) Statistical Learning Theory, John Wiley
(New York).


