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INTRODUCTION

For any assignment of values to its internal parameters θ (weights, thresholds, etc.) a neu-
ral network N with binary outputs computes a function x 7→ N (θ, x) from D into {0, 1},
where D is the domain of the network inputs x (e.g. D = R

n). The Vapnik-Chervonenkis
dimension (VC-dimension) of N is a number which may be viewed as a measure of the
richness (or diversity) of the collection of all functions x 7→ N (θ, x) that can be computed
by N for different values of its internal parameters θ. Not surprisingly, the VC-dimension
of a neural network is related to the number of training examples that are needed in
order to train N to compute—or approximate—a specific target function h : D → {0, 1}.
We shall discuss a number of different types of neural networks, but typically the VC-
dimension grows polynomially (in many cases, between linearly and quadratically) with
the number of adjustable parameters of the neural network. In particular, if the number
of training examples is large compared to the VC-dimension, the network’s performance
on training data is a reliable indication of its future performance on subsequent data.
The notion of the VC-dimension, which was introduced in
[Vapnik and Chervonenkis, 1971], is not specific to neural networks. It applies to
any parameterized class F of functions x 7→ f(θ, x) from some domain D into {0, 1},
where θ ranges over some given parameter space, for example R

w. Related notions for
the case of real-valued outputs will be discussed later. The largest possible richness of
this class F of functions from D into {0, 1} is achieved if every function h : D → {0, 1}
can be computed by a function x 7→ f(θ, x) in F . In this case one says that D is shattered
by F , and the VC-dimension of F is equal to |D|, the number of elements of the domain
D. In the general case one defines the VC-dimension of F (VCdim(F )) as the size of
the largest subset D′ of its domain D so that D′ is shattered by F (or more precisely:
by the restrictions of the function x 7→ f(θ, x) in F to inputs x ∈ D′). In other words:
the VC-dimension of F is the size of the largest subset D′ of its domain D for which
every dichotomy h over D′ (i.e., each of the 2|D

′| many functions h : D′ 7→ {0, 1}) can be
computed by some function in F , or in mathematical notation:

∀ h : D′ → {0, 1} ∃ θ ∀ x ∈ D′ (f(θ, x) = h(x)) .

Although the definition of the VC-dimension focuses on the shattering effect, it yields
a remarkable bound that holds for all finite subsets X of the domain D: If d is the
VC-dimension of F then at most Σd

i=0

(

|X|
i

)

≤ |X|d + 1 functions from X into {0, 1} can
be computed by (restrictions of) functions in F . This estimate, which is commonly re-
ferred to as Sauer’s Lemma, was independently discovered by several authors, including
[Vapnik and Chervonenkis, 1971] (see [Anthony and Bartlett, 1999], Chapter 3 for a re-
view). Results of this form provide the mathematical basis for bounding the number
of training examples that are needed for learning functions in F in terms of the VC-
dimension of F , as in the following theorem. (This theorem is a consequence of a slightly
improved version, due to Talagrand, of a result from [Vapnik and Chervonenkis, 1971];
see [Anthony and Bartlett, 1999], Chapter 4 for related references.)

Theorem 1 Suppose that F is a class of functions mapping from a domain X into {0, 1},
and suppose also that F has VC-dimension d < ∞. Let ((x1, y1), . . . , (xm, ym)) be a
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sequence of m randomly chosen labelled training examples from X × {0, 1}. Then with
probability at least 1 − δ over this sequence, any function f ∈ F has

Pr(f(x) 6= y) ≤ 1

m
|{1 ≤ i ≤ m : f(xi) 6= y}| + ε,

provided that m ≥ c (d + log(1/δ)) /ε2, where c is a universal constant.

In particular, if the sample size is large compared to the VC-dimension of the function
class, the function from the class that minimizes the number of errors on a training sample
will have near-minimal probability of misclassifying subsequent patterns. [Insert here
links to related articles on PAC-learning, etc.].
The definition of the VC-dimension of a function class F immediately implies that
VCdim(F ) ≤ log2 |F | if F is finite. Thus in particular if F is parameterized by w k-
bit parameters, VCdim(F ) ≤ kw. However, many infinite classes F also have a finite
VC-dimension. Consider for example the class FT2 of functions from R

2 into {0, 1} that
can be computed by linear threshold gates (McCulloch-Pitts neurons) with two inputs:

FT2 = {〈x1, x2〉 7→ H(θ1x1 + θ2x2 − θ3) : θ = 〈θ1, θ2, θ3〉 ∈ R
3},

Figure 1: Eight dichotomies of four points in R
2 computed by the class FT2 of linear

threshold functions. For each of the eight functions h ∈ FT2 illustrated, the shaded region
represents the halfspace where h(x) = 1. When a point x satisfies h(x) = 1, it is marked
as a cross; when it satisfies h(x) = 0 it is marked as a circle. The functions illustrated
show that the set {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} is shattered by FT2.

where H(x) = 1 if x ≥ 0, otherwise H(x) = 0. (See Figure 1; the shaded region in
each box corresponds to h(x) = 1.) Obviously the set D′ := {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} can be
shattered by FT2 (as illustrated by the eight dichotomies shown in Figure 1). On the
other hand it is easy to see that the set D′∪{〈1, 1〉} can not be shattered by F (since the
dichotomy h that assumes the value 1 on the points 〈0, 0〉 and 〈1, 1〉 and the value 0 on
the points 〈0, 1〉 and 〈1, 0〉 cannot be computed by any linear threshold gate). Somewhat
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less obvious to see is that there exists no set D′ ⊆ R
2 consisting of 4 or more points

which is shattered by FT2, i.e. that 3 is in fact the VC-dimension of FT2. This follows
immediately from the following theorem.

Theorem 2 (Wenocur and Dudley): Let FTn be the class of functions from R
n into

{0, 1} that can be computed by a linear threshold gate, for any n ∈ N. Then FTn has
VC-dimension n + 1.

Sketch of the proof: One can easily verify that the set S := {0}∪{ei : i ∈ {1, . . . , n}} is
shattered by N (where ei ∈ {0, 1}n denotes the ith unit vector). Hence VCdim(N ) ≥ n+1.
The upper bound follows from Radon’s Theorem, which states that any set S of ≥ n + 2
points in R

n can be partitioned into sets S0 and S1 such that the convex hulls of S0 and S1

intersect. Obviously such sets S0 and S1 cannot be separated by any hyperplane, hence
not by any linear threshold gate.

FEEDFORWARD NEURAL NETS WITH BINARY

OUTPUT

Theorem 3 (Cover, 1968; Baum and Haussler, 1989): Let N be an arbitrary feedforward
neural net with w weights that consists of linear threshold gates. Then VCdim(N ) =
O(w · log w).

Sketch of the proof: Let S be some arbitrary set of m input-vectors for N . By
Theorem 2 and Sauer’s Lemma, a gate g in N can compute at most |X| fan-in(g)+1 + 1
different functions from any finite set X ⊆ R

fan-in(g) into {0, 1}, where fan-in(g) denotes the
number of inputs of gate g. Hence N can compute at most

∏

g gate in N

(mfan-in(g)+1+1) ≤ m2w

different functions from S into {0, 1}. If S is shattered by N then N can compute all 2m

functions from S into {0, 1}, which implies that 2m ≤ m2w, and hence m ≤ 2w · log m. It
follows that log m = O(log w), thus m = O(w · log w).

It is tempting to conjecture that the VC-dimension of a neural net N cannot be larger
than the total number of parameters in N , which, in view of Theorem 2, is equal to the
sum of the VC-dimensions of the individual gates in N . This conjecture would imply
that the O(w log w) upper bound of Theorem 3 can be improved to O(w). However the
following result (whose proof uses techniques from circuit complexity theory) shows that
the superlinear upper bound of Theorem 3 is in fact asymptotically optimal. Hence with
regard to the VC-dimension it is fair to say that a neural net can be “more than the sum
of its parts.”

Theorem 4 (Maass, 1993): There exist neural networks N consisting of linear threshold
gates whose VC-dimension scales proportional to w · log w, where w is the number of
parameters of N .

This superlinear growth of the VC-dimension occurs already for feedforward neural nets
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with two hidden layers in the case of discrete network inputs. Sakurai [Sakurai, 1993]
showed that for the case of continuous network inputs it may even occur with a single
hidden layer.
Proving upper bounds for sigmoidal neural nets, whose computational units employ some
smooth activation function instead of the Heaviside function H, turns out to be quite
challenging. For instance, there exists a feedforward neural net consisting of a linear
threshold gate as output unit and two hidden units that employ as activation function a
very smooth (real analytic) strictly increasing squashing function, which has an infinite
VC-dimension. (See, for example, [Anthony and Bartlett, 1999]; the first result of this
form was due to Sontag.) This shows that it is necessary to exploit more specific properties
of a particular activation function, for example of the logistic sigmoid, in order to achieve
a finite upper bound for the VC-dimension of a sigmoidal neural net. The following
theorem [Goldberg and Jerrum, 1995] provides the key step in this direction.

Theorem 5 (Goldberg and Jerrum, 1995): Consider the parameterized class

F =
{

x 7→ f(θ, x) : θ ∈ R
d
}

,

for some {±1}-valued function f . Suppose that, for each input x ∈ R
n, there is an

algorithm that computes f(θ, x) and this computation takes no more than t operations of
the following types:

• the arithmetic operations +, −, ×, and / on real numbers,

• jumps conditioned on >, ≥, <, ≤, =, and 6= comparisons of real numbers, and

• output 0 or 1.

Then VCdim(H) ≤ 4d(t + 2).

The proof involves counting cells in parameter space. Consider a single thresholded real-
valued function, such as a neural network with a single real output that is thresholded
at 0. Fix a set of n input patterns. To estimate the VC-dimension, we can estimate
the number of distinct dichotomies of those patterns. Suppose two parameter values
give distinct output labels for one of these patterns. Then in moving between these
distinct values in parameter space, we must pass through a parameter value where the
real output is zero in response to the pattern. Such values form the boundaries of cells
in parameter space, and within a cell all classifications are identical. Under appropriate
conditions, counting the number of dichotomies reduces to counting the number of these
cells. For well-behaved parameterizations, the number of cells defined by these zero sets
is closely related to the number of distinct solutions of generic systems of equations. If
the output of the network is polynomial in the parameters, classical results give bounds
on the number of such solutions, and hence on the number of dichotomies. (Ben-David
and Lindenbaumindependently obtained this proof and result in a paper that appeared
at the same conference as Goldberg and Jerrum’s paper.) The argument is essentially
unchanged if the parameterized function class is a fixed boolean function of a number of
thresholded functions that are each polynomial in the parameters. If the computation
of f(θ, x) involves few operations, this implies f can be represented as a fixed boolean
function of a small number of thresholded, low degree polynomials.
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Piecewise polynomial activation functions

As an example of the application of Theorem 5, the output of a linear threshold net
can be computed using O(w) of the operations listed in the theorem, where w is the
number of parameters, so the VC-dimension is O(w2). Theorem 3 shows that this bound
can be improved to Θ(w · log w). Similarly, if the nonlinearity is a piecewise polynomial
function with a fixed number of pieces of fixed degree, the number of operations is again
O(w), so the VC-dimension bound of O(w2) again applies. In some cases, this bound
also can be improved, by applying Theorem 5 more carefully. This leads to the following
bound [Bartlett et al, 1998] on the VC-dimension of a feedforward neural net of piecewise
polynomial gates arranged in L layers (so that each gate has connections only from gates
in earlier layers).

Theorem 6 (Bartlett, Maiorov, Meir, 1998) Suppose N is a feed-forward network with w
weights, l layers, and all non-output gates having a fixed piecewise-polynomial activation
function with a fixed number of pieces. Then VCdim(N ) = O(wl log w + wl2).

Linear threshold gates have a piecewise polynomial activation function. Thus, Theorem
6, together with the lower bound for linear threshold nets (Theorem 4), show that the
VC-dimension of piecewise polynomial networks with a fixed number of layers is also
Θ(w log w). Perhaps surprisingly, the transition from linear threshold gates to piecewise
polynomial gates does not increase the rate of growth of the VC-dimension for networks
with a fixed number of layers.
In contrast, if the number of layers is unbounded, the rate of growth of the VC-dimension
can be faster for piecewise polynomial networks than for linear threshold networks. The
following lower bound applies to networks of gates with an activation function satisfying
two conditions: it has distinct left and right limits, and it has non-zero slope somewhere.
This result is due to Koiran and Sontag [Koiran and Sontag, 1997]; the refinement to
give the dependence on the depth was shown by Bartlett, Maiorov and Meir, and also by
Sakurai.

Theorem 7 Suppose the activation function s : R → R has the following properties:

1. limα→∞ s(α) 6= limα→−∞ s(α), and

2. s is differentiable at some point α0 ∈ R, with s′(α0) 6= 0.

Then for any l and w ≥ 10l, there is a neural network N with l layers and w parameters,
where every gate but the output gate has activation function s, the output gate being a
linear threshold gate, and for which the VC-dimension scales as lw. In particular, for
l = Θ(w), there are such networks with VCdim(N ) = Ω(w2).

Sigmoidal activation functions

While the VC-dimension of networks with piecewise polynomial activation functions is
well understood, most applications of neural networks use the logistic sigmoid function,
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or gaussian radial basis function. Unfortunately, it is not possible to compute such func-
tions using a finite number of the arithmetic operations listed in Theorem 5. However,
Karpinski and Macintyre [Karpinski and Macintyre, 1997] extended Theorem 5 to allow
the computation of exponentials. The proof uses the same ideas, but the bound on the
number of solutions of a system of equations is substantially more difficult.

Theorem 8 Consider the parameterized class

F =
{

x 7→ f(θ, x) : θ ∈ R
d
}

,

for some {±1}-valued function f . Suppose that, for each input x ∈ R
n, there is an

algorithm that computes f(θ, x) and this computation takes no more than t operations of
the following types:

• the exponential function α 7→ eα on real numbers, and

• all of the operations listed in Theorem 5.

Then VCdim(F ) = O(t2d2).

We immediately obtain bounds for the VC-dimension of sigmoid networks and radial basis
networks of the form O(w4), where w is the number of parameters. This upper bound is
considerably larger than the Θ(w log w) bound achieved for linear threshold networks or
fixed depth piecewise polynomial networks. It remains open whether it is optimal. For
fixed depth sigmoid networks, the best lower bounds are those implied by Theorems 4
and 7: Ω(w log w) for networks of fixed depth, and Ω(w2) for arbitrary depth.
If the inputs are restricted to a small set of integers, a simple parameter transformation
allows the machinery of the piecewise polynomial case to be applied to two-layer sigmoid
networks, giving the following result. See [Anthony and Bartlett, 1999] for a proof. A
related result applies to gaussian radial basis networks.

Theorem 9 Consider a two-layer feedforward network N with input domain X =
{−k, . . . , k}n (for k ∈ N) and first-layer computation gates with the standard sigmoid
activation function (the output gate being a linear threshold gate). Let w be the total
number of parameters in the network. Then VCdim(N ) = O(w log(wk)).

FEEDFORWARD NEURAL NETS WITH REAL

OUTPUTS
All of the results presented so far apply to nets with binary-valued outputs. Neural
networks with real outputs are also commonly used, for instance in regression problems.
In such cases, the appropriate measure of complexity of the network is a scale-sensitive
version of the VC-dimension, called the fat-shattering dimension.
Suppose that F is a set of functions mapping from a domain X to R, D = {x1, x2, . . . , xm}
is a subset of the domain X, and γ is a positive real number. Then we say that D is
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γ-shattered by F if there are real numbers r1, r2, . . . , rm such that for all b ∈ {0, 1}m there
is a function fb in F with

fb(xi) ≥ ri + γ if bi = 1,
fb(xi) ≤ ri − γ if bi = 0

for 1 ≤ i ≤ m. The fat-shattering dimension of F at scale γ, denoted fatF (γ), is the size
of the largest subset D of the domain X that is γ-shattered by F .
It is significant that this notion of complexity depends on a scale parameter γ. In a
sense, the fat-shattering dimension ignores complex behaviour of the function class below
a certain scale. If we are concerned with predicting a real value to some accuracy ε, then
it seems that the behaviour of the function class on a scale much smaller than ε should
not be relevant. The following result formalizes this intuition, by showing that the fat-
shattering dimension is related to the number of training examples that are needed to solve
a regression problem. Although the result is stated in terms of the squared prediction
error, similar results apply to a broad class of loss functions. (The result relies on a
generalization of Sauer’s Lemma to the fat-shattering dimension from [Alon et al, 1997].
See, for example, [Anthony and Bartlett, 1999] for a proof.)

Theorem 10 Suppose that F is a class of functions mapping from a domain X into
the real interval [0, 1], and suppose also that F has finite fat-shattering dimension. Let
((x1, y1), . . . , (xm, ym)) be a sequence of m randomly chosen labelled training examples
from X × [0, 1]. Then there are constants c1, c2 such that, with probability at least 1 − δ,
any function f ∗ that has the average over the sample of (f ∗(x) − y)2 within 1/

√
m of the

minimum over F satisfies

E(f ∗(x) − y)2 ≤ inf
g∈F

E(g(x) − y)2 + ε, (1)

provided that m ≥ c1

(

fatF (c2ε) log2(1/ε) + log(1/δ)
)

/ε2.

It is also known that for any learning algorithm to return a function f ∗ that satisfies (1)
requires the amount of training data to grow at least as fatF (ε). This shows that the
fat-shattering dimension is the right measure of complexity of a function class that is
used for regression.
The fat-shattering dimension is also useful for pattern classification using thresholded
real-valued functions, like neural networks. Many practical algorithms for such functions
typically lead to solutions that have large margins on the training data, where the margin
of a thresholded real-valued function is the amount by which the function is to the correct
side of the threshold. The following result, from [Bartlett, 1998], shows that in these cases
the fat-shattering dimension gives an upper bound on the error.

Theorem 11 Consider a class F of real-valued functions. With probability at least 1− δ
over m independently generated examples (x1, y1), . . . , (xm, ym), for every function f in
F , the classifier H(f) has misclassification probability no more than

b

m
+ O

(

√

1

m

(

fatF (γ/16) log2 m + log(1/δ)
)

)

,
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where b is the number of labelled training examples with margin no more than γ.

The easiest way to obtain bounds on the fat-shattering dimension for neural networks
is via VC-dimension bounds. The following theorem shows that the fat-shattering di-
mension of a network is no bigger than the VC-dimension of a slightly larger network
with one additional input variable. The theorem is a trivial observation involving an-
other combinatorial dimension, called the pseudo-dimension; see Chapters 11 and 14 of
[Anthony and Bartlett, 1999] for details.

Theorem 12 Let N be any neural network with a single real-valued output unit, and
form a neural network N ′ as follows. The network N ′ has one extra real input and one
extra computation unit. This additional computation unit is the output unit of N ′, and is
a linear threshold unit receiving input only from the output unit of N and from the new
input. For any γ > 0, fatN (γ) ≤ VCdim(N ′).

This result and the upper bounds of the previous section immediately imply upper bounds
on the fat-shattering dimension of networks with linear threshold gates, with piecewise
polynomial activation functions, and with logistic sigmoidal activation functions. These
bounds are in terms of the number of parameters in the network, and, significantly, do
not depend on the scale parameter γ. In some cases, bounds like this are very loose.
For example, the following theorem [Bartlett, 1998] gives an upper bound on the fat-
shattering dimension of a two-layer network with an arbitrary number of computation
units (and hence parameters).

Theorem 13 Suppose that s : R → [−b, b] is a non-decreasing bounded function. For
v ≥ 1, suppose that F is the class of functions from R

n to R computed by two layer neural
networks with an arbitrary number of first layer units, each with activation function s,
and a linear output unit for which the sum of the magnitudes of the weights is bounded by
v. Then

fatF (ε) = O

(

nv2

ε2
ln
(v

ε

)

)

.

It follows that for regression and pattern classification (when the learning algorithm finds
a network with large margins on the training data), it is not necessary to restrict the
number of parameters in the network, provided the parameters are kept small. Bounds of
this kind are also known for deeper networks; see [Anthony and Bartlett, 1999] for details.

OTHER APPLICATIONS TO NEURAL NET-

WORKS
The VC-dimension of recurrent neural networks was analysed by DasGupta, Koiran and
Sontag (see [Sontag, 1998] for a survey of results for feedforward and recurrent neural
nets). In this case it is of interest to consider the case of a time series as the network
input. The length k of the time series enters the bounds for the VC-dimension of the
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neural network as an additional parameter (in most bounds the number w of network
parameters is multiplied by a factor of the form log k or k).
In models for biological neural circuits the transmission delays between neurons enter
as additional parameters, which influence the VC-dimension of such circuits even more
than the synaptic weights: the VC-dimension of a very simple mathematical model for
a single spiking neuron grows superlinearly in the number d of adjustable delays, and
the VC-dimension of a feedforward network of such neurons grows quadratically in d
[Maass and Schmitt, 1999].
In [Koiran, 1996] a technique was introduced for using upper bounds on the VC-dimension
of neural networks for proving lower bounds on the size of any sigmoidal neural net
(with thresholded output) that is able to compute some concrete function. No other
method for proving lower bounds on the size of sigmoidal neural nets is known at present.
This technique can, for example, be used to show that there exist functions that can be
computed with few spiking neurons, but if they are computed by a sigmoidal neural net,
the number of neurons must grow linearly in the number of inputs. (see COMPUTATION
WITH SPIKING NEURONS).

DISCUSSION

The VC-dimension of a neural net with a binary output measures its “expressiveness”.
The related notion of the fat-shattering dimension provides a similar tool for the analysis
of a neural net with a real-valued output. The derivation of bounds for the VC-dimension
and the fat-shattering dimension of neural nets has turned out to be a rather challenging
but quite interesting chapter in the mathematical investigation of neural nets. This work
has brought a number of sophisticated mathematical tools into this research area, which
have subsequently turned out to be also useful for the solution of a variety of other
problems regarding the complexity of computing and learning on neural nets. More
detailed information about all of the results in the Introduction and in Sections 1 and 2
can be found in [Anthony and Bartlett, 1999].
Bounds for the VC-dimension (resp. fat-shattering dimension) of a neural net N provide
estimates for the number of random examples that are needed to train N so that it has
good generalization properties (i.e., so that the error of N on new examples from the same
distribution is at most ε, with probability ≥ 1 − δ). From the point of view of a single
application these bounds tend to be too large, since they provide such a generalization
guarantee for any probability distribution on the examples and for any training algorithm
that minimizes disagreement on the training examples. For some special distributions and
specific training algorithms tighter bounds can be obtained, for instance with the help of
heuristic arguments (replica techniques) from statistical physics.
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